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Abstract

Classical Markov models are defined through a stochastic transition matrix, i.e., a matrix whose
columns (or rows) are deterministic values representing transition probabilities. However, in
practice these quantities could often not be known in a deterministic manner, therefore, it is
more realistic to consider them as random variables. Following this approach, this paper is
aimed to give a technical generalization of classical Markov methodology in order to improve
modelling of stroke disease when dealing with real data. With this goal, we randomize the
entries of the transition matrix of a Markov chain with three states (susceptible, reliant and de-
ceased) that has been previously proposed to model the stroke disease. This randomization of
the classical Markov model permits the computation of the first probability density function of
the solution stochastic process taking advantage of the so-called Random Variable Transforma-
tion technique. Afterwards, punctual and probabilistic predictions are computed from the first
probability density function. In addition, the probability density functions of the time instants
until a certain proportion of the total population remains susceptible, reliant and deceased are
also computed. The study is completed showing the usefulness of our computational approach
to determine, from a probabilistic point of view, key quantities in medical decision making, such
as the cost-effectiveness ratio.

Keywords: Markov process, disease modelling, random variable transformation technique,
computing the first probability density function

1. Introduction1

Discrete Markov stochastic processes (s.p.’s) or discrete Markov chains are often applied to2

model the dynamics of medical events over evenly spaced times, n = 0, 1, 2, . . . , usually referred3

to as periods or cycles. In particular, these kind of s.p.’s have been considered for different4

purposes. For example, to built and simulate models for chronic illnesses [1, 2], to analyse5
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data of hospital infection [3], to provide predictions based on random-effects Markov models6

applied to multiple sclerosis progression [4], to calculate the prevalence of certain diseases and7

to perform budget impact analysis [5], to model human papilloma virus [6], etc. In these models8

individuals are classified in several disjoint classes or states. The evolution of the percentage (or9

number of individuals) in each cycle n is determined by the initial distribution of the individuals10

and a stochastic matrix, usually termed transition matrix. An important assumption of standard11

Markov models is that all the states make up a closed system. This means that any individuals12

can neither leave nor join the system, hence having a constant population size over the time.13

This hypothesis holds in the clinical context where doctors and public health authorities are14

often interested in the evolution of patient groups in controlled studies over the time. In the15

case of discrete homogeneous Markov s.p.’s, the transition matrix is a constant matrix whose16

entries represent the probabilities to change either from one state to another or to remain in the17

same state between two consecutive cycles. When these probabilities depend upon time, the18

s.p. is termed non-homogeneous time discrete Markov chains. In both cases, the entries of the19

transition matrix are assumed to be deterministic quantities (numbers or functions, respectively).20

In this paper, we generalize this feature for discrete homogeneous Markov chains by considering21

that the entries in the transition matrix could be random variables (r.v.’s) rather than deterministic22

constants. Naturally, the r.v.’s are assumed to take values in the interval [0, 1], thus representing23

probabilities for every realization of such r.v.’s. In this manner, we allow for more flexibility when24

probabilities are assigned. Throughout this paper, we will consider this approach to generalize25

the stroke disease model proposed in [7]. It is important to point out that the application of our26

approach is not limited to the stroke disease model presented later but is also valid for modelling27

any disease via time discrete homogeneous Markov chains.28

The manuscript is organized as follows. In Section 2 we introduce the mathematical stroke29

model that will be considered throughout this paper. Section 3 is addressed to give the mathemat-30

ical tools that will be required to study the stroke model. The reader more interested in medical31

results, can skip this section in a first reading. Section 4 is devoted to provide a probabilistic so-32

lution of the randomized Markov model (1)–(2) by means of the first probability density function33

for each subpopulation, susceptible, reliant and deceased. For the sake of clarity we have divided34

this section into two subsections. First, in Subsection 4.1 the main statistical properties, such as,35

the mean, the variance and confidence intervals, are computed. Secondly, Subsection 4.2 is ad-36

dressed to obtain the probabilistic distribution until a given proportion of the population remains37

susceptible. In Section 5 we perform a cost-effectiveness analysis taking advantage of the mathe-38

matical tools presented in Section 3. In Section 6, all the theoretical results developed throughout39

Sections 4 and 5 are applied to simulate the stroke disease taking particular distributions for the40

random input data that are in agreement with the extant literature. In Section 7, we discuss our41

main findings.42

2. Motivating problem: the stroke disease43

Markov/semi-Markov models have demonstrated to be useful mathematical representations44

to model diseases. In particular, this approach has been successfully applied to study the stroke45

disease using different statistical techniques [7, 8, 9]. According to [7], the stroke disease can46

be modelled via a Markov chain considering the three following states, Susceptible (S ), Reliant47

(R) and Deceased (D). In Figure 1 we show the influence or flow diagram associated to the48

Markov model. In this graphical representation, transitions among states have been included.49

We observe that, apart from remaining in each state, the possible transitions between states are50
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Figure 1: Flow diagram for the Markov model (1)–(2). S , R and D stand for Susceptible (S ), Reliant (R) and Deceased
(D), respectively.

S → R, S → D and R → D. Thus, the reliant population cannot recover from the disease.51

Obviously, the state D is an absorbing state. In this study the susceptible individuals make up a52

population at risk, i.e., they have certain pathologies (hypertension, cholesterol, etc.) that may53

conduct to suffer a stroke. Therefore, as we shall see below, the model involves a relative risk.54

In [7], the Markov model is formulated as follows55  S n+1
Rn+1
Dn+1

 = T

 S n

Rn

Dn

 , (S 0,R0,D0)> = (s0, r0, d0)>, n = 0, 1, 2, . . . ,

where S n, Rn and Dn are the proportion of susceptible, reliant and deceased subpopulations in56

cycle n, respectively. As a matter of fact in dealing with markovian models, we will assume that57

S n +Rn +Dn = 1 for each n. As it is plausible from a practical standpoint, we assume that initially58

there are no deaths, hence the initial cohort corresponds with the deterministic vector (s0, r0, 0)>,59

s0 + r0 = 1. Otherwise, the subsequent analysis follows analogously. Moreover, according to60

results given in [7], we shall assume that the transition matrix T is given by61

T =

 e−t1rr + e−(t2+t3(rr−1)) −1 0 0
1 − e−t1rr 1 − p 0

1 − e−(t2+t3(rr−1)) p 1

 ,
being62

• rr is the relative risk of suffering a stroke,63

• t1 is the non-mortal stroke rate,64

• t2 is the deceased rate due to any cause,65

• t3 is the stroke death rate and,66

• p is the probability of the transition R→ D,67

where the rates t1, t2 and t3 are given for a general population. For sake of clarity, we now explain68

the construction of the transition matrix, T , in connection with [7, Table 3] and the meaning of the69

parameters previously introduced. The element (2, 1) of matrix T , T21, represents the probability70
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of suffering a non-mortal stroke in the cycle n + 1 given that the individual was susceptible in71

the cycle n (S → R). The probability of having a stroke is given by 1 minus the probability of72

does not have it, being these kind of probabilities usually modelled by an exponential decay. In73

Table 3 of [7] this probability is given by 1 − e-(“non-mortal stroke rate”). The “non-mortal stroke rate”74

is given by t1 and taking into account that we are dealing with a population under risk, this leads75

to the term t1rr. T31 denotes the probability of the transition S → D. In Table 3 of [7], this76

probability is given by 1− e−(“death rate”). Observe that the “death rate” involved in T31 is given by77

the (t2 + t3(rr − 1)) = t2 − t3 + t3 rr, that is, the non-stroke death rate for a general population,78

t2 − t3, adding the term corresponding to the stroke death rate for the population under risk given79

by t3 rr.80

At this point it is important to remark that the parameter rr though is termed relative risk, in81

the context of medicine is a positive number [10, 11].82

83

Remark 1. From a mathematical standpoint the parameters t1, t2, t3 and rr must satisfy the84

condition 0 < T21 + T31 < 1. This guarantees that T11 ∈]0, 1[. As in practice the rates t1, t2 and85

t3 are small, former condition holds.86

As it has been pointed out previously, a major difference with respect to contribution [7] is87

that we will assume that some model parameters, namely, t2, rr and p, involved in transition ma-88

trix T are absolutely continuous r.v.’s rather than deterministic constants. Hereinafter, as usual in89

Probability Theory, capital letters will be used to highlight this difference. Hence, the following90

identifications, t2 ⇒ T2, rr ⇒ RR and p⇒ P, will be used (see expression (2)). This decision is91

motivated inasmuch as, in practice, the death rate due to any cause, T2, is not known in a deter-92

ministic way and the relative risk of suffering a stroke, RR, varies among physical characteristic93

of individuals being this variation non-deterministic. Regarding parameter P, which represents a94

probability, we assume that it can be described by a r.v. whose domain is contained in the interval95

]0, 1[, allowing for more flexibility throughout the study. In the following, the triplet (Ω,F ,P)96

will denote the common complete probability space where r.v.’s T2, RR and P are defined.97

Summarizing the model that we are going to study is98  S n+1
Rn+1
Dn+1

 = T

 S n

Rn

Dn

 , (S 0,R0,D0)> = (s0, r0, 0)>, n = 0, 1, 2, . . . , (1)

where the transition matrix is given by99

T =

 e−t1RR + e−(T2+t3(RR−1)) −1 0 0
1 − e−t1RR 1 − P 0

1 − e−(T2+t3(RR−1)) P 1

 . (2)

In connection with Remark 1 and, in the random context, to guarantee the positiveness of the100

entry T11(ω) of random matrix (2), it must be imposed that r.v.’s RR and T2 satisfy the following101

condition102

P
[
0 < T21(ω) + T31(ω) = 2 − e−t1RR(ω) − e−(T2(ω)+t3(RR(ω)−1)) < 1

]
= 1, ∀ω ∈ Ω. (3)

To conduct our study, the so-called Random Variable Transformation (RVT) method will be103

used [12]. This technique has been successfully applied in previous contributions related to epi-104

demiological models, some examples include [13, 14, 15, 16]. RVT method allows us to obtain105

4



the first probability density function (1-p.d.f.) of the solution s.p.’s, S n, Rn, Dn, to model (1)–(2).106

Additionally, we will compute the p.d.f.’s of times until a given proportion of the population re-107

mains susceptible, reliant and deceased, respectively. Finally, the p.d.f. of the cost-effectiveness108

ratio will be also computed taking advantage of RVT technique. This is a key quantity in medical109

decision making.110

3. Mathematical tools111

We start stating the key mathematical tool, usually referred to as Random Variable Transfor-112

mation (RVT) method, that we will used in Sections 4 and 5 to give a full probabilistic solution113

of the disease stroke markovian model formulated in (1)–(2).114

Theorem 1. (Multidimensional version, [12, pp. 24–25]). Let U = (U1, . . . ,Un)> and V =115

(V1, . . . ,Vn)> be two n-dimensional absolutely continuous random vectors. Let g : Rn → Rn be a116

one-to-one deterministic transformation of U into V, i.e., V = g(U). Assume that g is continuous117

in U and has continuous partial derivatives with respect to U. Then, if fU(u) denotes the joint118

probability density function of vector U, and h = g−1 = (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn))>119

represents the inverse mapping of g = (g1(u1, . . . , un), . . . , gn(u1, . . . , un))>, the joint probability120

density function of vector V is given by121

fV(v) = fU (h(v)) |J| , (4)

where |J| is the absolute value of the Jacobian, which is defined by122

J = det
(
∂h>

∂v

)
= det


∂h1(v1,...,vn)

∂v1
· · ·

∂hn(v1,...,vn)
∂v1

...
. . .

...
∂h1(v1,...,vn)

∂vn
· · ·

∂hn(v1,...,vn)
∂vn

 . (5)

In the subsequent subsection the RVT method is applied to determine the 1-p.d.f. of the123

solution s.p. to stroke model (1)–(2). This function will permit later to compute important124

statistical properties of the solution to the stroke model, namely, the mean and standard deviation125

functions of susceptible, reliant and deceased subpopulations. In addition, RVT technique will126

play a key role to compute the p.d.f. of the time until a given proportion of the population remains127

in some of the three states (susceptible, reliant and deceased). This will be illustrated later.128

3.1. First probability density function129

As it has been said previously, the goal of this subsection is to obtain the 1-p.d.f. of the130

number of susceptibles, reliants and deceaseds, which are the components of the solution s.p.131

of the random initial value problem (1)–(2). This will be done in terms of the random input132

data. For the sake of generality as it has been indicated previously, throughout this subsection133

RR, T2 and P are assumed to be absolutely continuous dependent r.v.’s, defined on a common134

probability space (Ω,F ,P), with joint p.d.f. fRR,T2,P(rr, t2, p) defined on a domain, say DRR,T2,P.135

It generalizes the case where RR, T2 and P are assumed to be independent r.v.’s with p.d.f.’s136

fRR(rr), fT2 (t2) and fP(p), since in that case fRR,T2,P(rr, t2, p) = fRR(rr) fT2 (t2) fP(p). Although137

less general, independence is a hypothesis usually embraced in probabilistic applications.138
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As it is well known, the solution of (1)– (2) is139  S n

Rn

Dn

 = T n

 s0
r0
0

 . (6)

To conduct our study it is convenient to recast the entries of the transition matrix T as follows140

T =

 1 − K − Q 0 0
K 1 − P 0
Q P 1

 , (7)

where K = 1− e−t1RR and Q = 1− e−(T2+t3(RR−1)). Then, developing the right-hand side of (6) one141

gets142

 S n

Rn

Dn

 =



(1 − K − Q)ns0

(1 − K − Q)nKs0 − (1 − P)n(r0(−P + Q + K) + Ks0)
P − Q − K

r0 − r0(1 − P)n +
(P − Q + (−P + Q)(1 − Q − K)n + (−1 + (1 − P)n)K)s0

P − Q − K


. (8)

Notice that as P, Q and K are absolutely continuous r.v.’s, the denominator of second and third143

components of expression (8) are non-zero with probability 1. Taking into account S n+Rn+Dn =144

1 for each n, it is enough to determine the 1-p.d.f. of susceptible and reliant subpopulations, since145

from them, it is straightforward to obtain the 1-p.d.f. of deceased subpopulation.146

This goal will be achieved by applying RVT method twice. First, we will compute the147

joint p.d.f., fS n,Rn,P(s, r, p), of random vector (S n,Rn, P) from the joint p.d.f., fK,Q,P(k, q, p), of148

(K,Q, P), and secondly, we will compute the joint p.d.f., fK,Q,P(k, q, p), of (K,Q, P) from the149

joint p.d.f., fRR,T2,P(rr, t2, p), of random input data (RR,T2, P).150

Now, we fix the cycle n and use the RVT method. Then, we apply Theorem 1 with the
following identifications

U = (K,Q, P)>, V = (V1,V2,V3), V = g(U)>,

g : R3 → R3, g(k, q, p) = (g1(k, q, p), g2(k, q, p), g3(k, q, p))> = (v1, v2, v3)>,

being

v1 = (1 − k − q)ns0, v2 =
(1 − k − q)nks0 − (1 − p)n (r0(−p + q + k) + ks0)

p − q − k
, v3 = p.

Isolating k, q and p one gets151

k =

(
−1 + v3 +

(
v1
s0

) 1
n
)

(r0(1 − v3)n − v2)

(1 − v3)ns0 − v1
,

q =

v1 − v1

(
v1
s0

) 1
n
+ (−s0 + (r0 + s0)

(
v1
s0

) 1
n
+ r0(−1 + v3))(1 − v3)n − v2

(
−1 +

(
v1
s0

) 1
n
+ v3

)
v1 − s0(1 − v3)n ,

p = v3.

(9)

6



For the sake of clarity, hereinafter we will consider m1 := k and m2 := q.152

Notice that the Jacobian of mapping g−1 is153

J =

(
v1
s0

)1/n
(
−1 +

(
v1
s0

)1/n
+ v3

)
nv1(v1 − s0(1 − v3)n)

.

Then, taking into account (4)–(5), the joint p.d.f. of random vector (V1,V2,V3) = (S n,Rn, P) is154

given by155

fS n,Rn,P(v1, v2, v3) = fK,Q,P(m1,m2, v3)

∣∣∣∣∣∣∣∣∣∣
(

v1
s0

)1/n
(
−1 +

(
v1
s0

)1/n
+ v3

)
nv1(v1 − s0(1 − v3)n)

∣∣∣∣∣∣∣∣∣∣ . (10)

Using again Theorem 1 with the following identifications156

U = Û = (RR,T2, P)>, V = V̂ = (V̂1, V̂2, V̂3), V̂ = g(Û)>,
157

g : R3 → R3, g(rr, t2, p) = (g1(rr, t2, p), g2(rr, t2, p), g3(rr, t2, p))> = (v̂1, v̂2, v̂3)>,

being158

v̂1 = 1 − e−t1rr, v̂2 = 1 − e−(t2+t3(rr−1)), v̂3 = p,

and isolating rr, t2 and p, one gets159

rr =
− log (1 − v̂1)

t1
, t2 = t3 +

t3 log (1 − v̂1)
t1

− log (1 − v̂2), p = v̂3.

Moreover, the Jacobian of the mapping g−1 is160

J =
1

t1(1 − v̂1)(1 − v̂2)
.

Then, taking into account (4)–(5), the joint p.d.f. of random vector (V̂1, V̂2, V̂3) = (K,Q, P) is161

given by162

fK,Q,P(v̂1, v̂2, v̂3) = fRR,T2,P

(
− log (1 − v̂1)

t1
, t3 +

t3 log (1 − v̂1)
t1

− log (1 − v̂2), v̂3

)

×

∣∣∣∣∣ 1
t1(1 − v̂1)(1 − v̂2)

∣∣∣∣∣ .
(11)

Compounding both (10) and (11), we determine the joint p.d.f. of (S n,Rn, P) using the p.d.f.163

of the random vector (RR,T2, P)164

fS n,Rn,P(s, r, p) = fRR,T2,P

(
− log (1 − m1)

t1
, t3 +

t3 log (1 − m1)
t1

− log (1 − m2), p
)

×

∣∣∣∣∣ 1
t1(1 − m1)(1 − m2)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
(

s
s0

)1/n
(
−1 +

(
s
s0

)1/n
+ p

)
ns(s − s0(1 − p)n)

∣∣∣∣∣∣∣∣∣∣ ,
(12)
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where m1 and m2 are the expressions introduced in (9) and below using the identifications v1 ⇒ s,165

v2 ⇒ r and v3 ⇒ p.166

Finally, considering n arbitrary and marginalizing (12), we obtain the 1-p.d.f.’s of the sub-167

population of susceptibles, f1(s, n) and reliants, f1(r, n),168

f1(s, n) =

∫
DRn , P

fRR,T2,P

(
−

log(1 − m1)
t1

, t3 +
t3 log(1 − m1)

t1
− log(1 − m2), p

)

×

∣∣∣∣∣ 1
t1(1 − m1)(1 − m2)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
(

s
s0

)1/n
(
−1 +

(
s
s0

)1/n
+ p

)
ns (s − s0 (1 − p)n)

∣∣∣∣∣∣∣∣∣∣ dp dr,

(13)

f1(r, n) =

∫
DS n , P

fRR,T2,P

(
−

log(1 − m1)
t1

, t3 +
t3 log(1 − m1)

t1
− log(1 − m2), p

)

×

∣∣∣∣∣ 1
t1(1 − m1)(1 − m2)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
(

s
s0

)1/n
(
−1 +

(
s
s0

)1/n
+ p

)
ns (s − s0 (1 − p)n)

∣∣∣∣∣∣∣∣∣∣ dp ds.

(14)

Now, we will provide the 1-p.d.f. of the deceased subpopulation, using that Dn = 1 − S n −169

Rn, for each cycle n. To this end, first we apply Theorem 1 again considering the following170

identifications171

U = (S n,Rn)>, V = (V1,V2), V = g(U)>,
172

g : R2 → R2, g(s, r) = (g1(s, r), g2(s, r))> = (v1, v2)>,

being173

v1 = 1 − s − r, v2 = r.

Isolating s and r one gets174

s = 1 − v1 − v2, r = v2.

Then, taking into account (4)–(5) and that the Jacobian takes the value −1, we obtain the joint175

p.d.f. of random vector (V1,V2) = (Dn,Rn). Finally, marginalizing this latter joint p.d.f. and176

considering n arbitrary, it can be checked that the 1-p.d.f. of the deceased subpopulation is given177

by178

f1(d, n) =

∫
DRn ,P

fRR,T2,P

(
−

log(1 − m1)
t1

, t3 +
t3 log(1 − m1)

t1
− log(1 − m2), p

)

×

∣∣∣∣∣ 1
t1(1 − m1)(1 − m2)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

(
1−d−r

s0

)1/n
(
−1 +

(
1−d−r

s0

)1/n
+ p

)
n(1 − d − r) ((1 − d − r) − s0 (1 − p)n)

∣∣∣∣∣∣∣∣∣∣ dp dr.

(15)
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4. A full probabilistic solution of the stroke markovian model179

The 1-p.d.f. gives a full probabilistic description in each period n of the solution s.p. of a180

markovian model. In particular, the 1-p.d.f. of susceptibles, reliants and deceaseds to the stroke181

markovian model (1)–(2) are given by (13), (14) and (15), respectively. It is important to point182

out that all these expressions are given by closed-form formulas.183

Moreover, from the 1-p.d.f., both the mean and variance functions can be straightforwardly184

computed for every state of the model. This information is crucial in order to provide punc-185

tual and probabilistic predictions. In medical practice it is also important to know when the186

percentage of susceptibles, reliants and deceaseds in the population will achieve a certain level.187

This information can be determined by means of the 1-p.d.f. as well. These ideas motivate the188

following two subsections.189

4.1. Mean and variance functions. Confidence intervals190

Hereinafter, we will focus on susceptible subpopulation, S n, whose 1-p.d.f. is given by (13),191

although the following development can be extrapolated to reliant and deceased subpopulations,192

using (14) and (15), respectively. The expressions for the mean and the variance functions are193

µS n = E [S n] =

∫
DS n

s f1(s, n) ds, σ2
S n

= V [S n] =

∫
DS n

s2 f1(s, n) ds −
(
µS n

)2 , (16)

respectively.194

Furthermore, the 1-p.d.f. is useful to construct confidence intervals. Let α ∈ (0, 1) and n̂195

fixed, one can determine s1 = s1(n̂) and s2 = s2(n̂) such that196 ∫ s1

0
f1(s, n̂) ds =

α

2
=

∫ 1

s2

f1(s, n̂) ds. (17)

Then, (1 − α) × 100%-confidence interval is specified by197

1 − α = P ({ω ∈ Ω : S (n̂;ω) ∈ [s1, s2]}) =

∫ s2

s1

f1(s, n̂) ds. (18)

In addition, it is of interest for doctors knowing the probability, for example, that the proportion198

of susceptible subpopulation lies between a and b at a specific time period, say n̂,199

P[a ≤ S n̂ ≤ b] =

∫ b

a
f1(s, n̂) ds. (19)

4.2. Distribution of time until a given proportion of the population remains susceptible, reliant200

or deceased201

In practice, it is useful to know when the percentage of susceptibles, reliants and deceaseds202

in the population will attain a certain level. This motivates the computation, in a first step, of the203

distribution, NS , of the time until a given proportion of the population, ρS , remains susceptible.204

The same can be said for reliant and deceased subpopulations.205

In order to compute the p.d.f. of Ns for a fixed proportion of susceptibles, ρS , we first isolate206

n = NS from the first component of the exact solution, given by (8), of the initial value problem207

(1)–(2)208

NS =
log

(
ρS
s0

)
log

(
e−t1RR + e−(T2+t3(RR−1)) −1

) . (20)
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Notice that expression (20) depends only on r.v.’s RR and T2. Hence we apply RVT technique,209

i.e., Theorem 1 to210

U = (RR,T2)>, V = (V1,V2), V = g(U)>,
211

g : R2 → R2, g(rr, t2) = (g1(rr, t2), g2(rr, t2))> = (v1, v2)>,

being212

v1 = rr, v2 =
log

(
ρS
s0

)
log

(
e−t1rr + e−(t2+t3(rr−1)) −1

) .
Isolating rr and t2, one gets213

rr = v1, t2 = t3(1 − v1) − log

(ρS

s0

)1/v2

+ 1 − e−t1v1

.
The Jacobian of the inverse of the mapping g(U)>, is given by214

J =

(
ρS
s0

)1/v2
log

(
ρS
s0

)
v2

2

(
1 − e−t1v1 +

(
ρS
s0

)1/v2
) . (21)

Then, taking into account (4)–(5) we obtain the joint p.d.f. of random vector (V1,V2) = (RR,Ns).215

Finally, marginalizing with respect to r.v. RR, the expression of the p.d.f. of NS , for each ρS216

fixed, is217

f1(n, ρS ) =

∫
DRR

fRR,T2

rr, t3(1 − rr) − log

(ρS

s0

)1/n

+ 1 − e−t1rr


×

∣∣∣∣∣∣∣∣∣∣
(
ρS
s0

)1/n
log

(
ρS
s0

)
n2

(
1 − e−t1rr +

(
ρS
s0

)1/n
)
∣∣∣∣∣∣∣∣∣∣ drr.

(22)

5. Probabilistic cost-effectiveness analysis218

The cost-effectiveness analysis is useful to perform an economic evaluation of sanitary in-219

terventions. Incremental cost-effectiveness ratio, CE, can be used in order to prioritise sanitary220

interventions and then maximizing benefits taking into account available budgets [17, 18]. CE is221

a ratio defined from costs and effectivenesses of two alternatives. Namely, CE is defined as222

CE =
C2 −C1

E2 − E1
, (23)

where Ci, and Ei, i = 1, 2, are the cost and the effectiveness of the alternative i, respectively.223

Hereinafter, we assume that Ci and Ei, i = 1, 2 are r.v.’s. In the following, we will compute224

the 1-p.d.f. of the CE to compare two treatments for the stroke disease, being the second more225

effective than the first, but the first cheaper. Then, differences between both are the transition226

matrix T (particularly the relative risk) and the cost. To obtain the 1-p.d.f. of the CE, first we227

will determine the expression of the total effectiveness given by the QALY (Quality Adjusted228
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Life Year), for each treatment. In the context of medical Markov models, the QALY has already229

been used, see for instance [19]. QALY is the sum of the effectiveness of susceptibles, reliants230

and deceaseds. In addition, these three effectivenesses are the sum of the effectiveness in each231

cycle until the value n of total years considered for the study. This effectiveness is the product232

of number of susceptibles, reliants or deceaseds in each cycle 1 ≤ j ≤ n, the utility appropriate233

for each state and a certain constant, which depends on a discount rate r. These magnitudes will234

be detailed later. With this aim, we need to know the utility, or the value of life’s quality, where235

0 value corresponds to death and 1 value represents that stroke disease has not been suffered by236

individuals, [2, 7, 20]. Then, we will consider US = 1 and UD = 0 the utilities of susceptibles237

and deceaseds, respectively. For reliants, we will model the utility, say UR, through a r.v. Taking238

into account the extant literature, we consider r = 0.03 (3%) as the discount rate [7, 21, 22].239

Then, the QALY is given by240

Ei =

n∑
j=1

E[S j,i]
(1 + r) j−1 + UR

n∑
j=1

E[R j,i]
(1 + r) j−1 , i = 1, 2, (24)

where E[S j,i] and E[R j,i] are the average number of susceptibles and reliants of alternative i =241

1, 2, for each cycle j, 1 ≤ j ≤ n, respectively. The second step is to determine the expression242

of the total cost of each treatment. We will follow the same structure that in the case of the243

QALY. On the one hand, we will consider that the cost of the each treatment for susceptible244

subpopulation is CS i = ai W, where ai is the cost, in euros, of medicine per kilogram and W is a245

r.v. that represents the weight of the individual to be studied. On the other hand, we will consider246

that the dependence cost is a r.v., denoted by CR. This r.v. is assumed to be the same in both247

treatments. Then, the cost in each treatment is248

Ci = CS i

n∑
j=1

E[S j,i]
(1 + r) j−1 + CR

n∑
j=1

E[R j,i]
(1 + r) j−1 , i = 1, 2. (25)

Substituting expressions (24)–(25) into (23), one gets249

CE =
W d1 + CR d2

d3 + UR d2
,

where250

d1 =

n∑
j=1

a2E
[
S j,2

]
− a1E

[
S j,1

]
(1 + r) j−1 ,

d2 =

n∑
j=1

E
[
R j,2

]
− E

[
R j,1

]
(1 + r) j−1 ,

d3 =

n∑
j=1

E
[
S j,2

]
− E

[
S j,1

]
(1 + r) j−1 .

Now, applying RVT technique, i.e. Theorem 1, we obtain the 1-p.d.f. of CE from the p.d.f. of251

random vector (W,CR,UR), which is assumed to be known252

f1(ce, n) =

∫
DCR,UR

fW,CR,UR

(
ce(d3 + ur d2) − cr d2

d1
, cr, ur

) ∣∣∣∣∣d3 + ur d2

d1

∣∣∣∣∣ durdcr. (26)
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6. Simulating the stroke disease using real data253

In this section, we will show the results (simulations) for the Markov model (1)–(2) in order254

to study the stroke disease. These simulations are built using the results established in Sections255

4 and 5 and considering the medical information from [7].256

As it is plausible from a practical standpoint, hereinafter we will assume that, at the begin-257

ning, the whole population is susceptible, then, the initial condition is (s0, r0, 0)> = (1, 0, 0)>.258

Based upon [7], the following probability distributions for model inputs parameters are consid-259

ered:260

• The relative risk, RR, is a lognormal r.v. with parameters (1.793; 0.143), i.e., log(RR) ∼261

N(1.793; 0.143).262

• The transition R → D is modelled by r.v. P, which is assumed to be a beta distribution263

with parameters (80; 120), i.e., P ∼ Be(80; 120).264

• The deceased rate due to any cause, T2, is assumed to be a r.v. with a uniform distribution265

on the interval ]0.02127, 0.02227[, T2 ∼ U(]0.02127, 0.02227[).266

With regard to the non-mortal stroke rate, t1, and the stroke deceased rate, t3, it is assumed267

that t1 = 0.00111 and t3 = 0.00176, respectively. These values have been taken from reference268

[7], taking into account that these rates correspond to a group of individuals with 65 years old.269

Notice that the previous theoretical results can be applied because the r.v.’s RR and T2, with the270

distributions specified above, satisfy condition (3).271

In Figure 2, the 1-p.d.f.’s of susceptible, reliant and deceased subpopulations, given by ex-272

pressions (13)–(15), have been plotted. These graphical representations have been made in peri-273

ods {1, 2, . . . , 25}, assuming that r.v.’s RR, P and T2 are independent. From Figure 2, we observe274

that the percentage of susceptibles decreases as time increases. Besides, the percentage of reliant275

increases at the beginning, specifically from n = 1 to n = 6, and afterwards this percentage tends276

to zero.277

On the other hand, the deceased subpopulation is an absorbent state, therefore in the long-278

term all the population will reach this state. This behaviour is in agreement with the results279

shown in Figure 2. From this graphical representation it can be observed that both the percent-280

age of dead and its variability increase over time. This same behaviour is observed to susceptible281

subpopulation for the periods plotted in Figure 2, although it will decrease as time goes on. Fi-282

nally, the shape of the 1-p.d.f., f1(r, n), depicted in Figure 2 becomes sharp as standard deviation283

decreases.284

In Figure 3, the mean plus/minus standard deviation functions of the three subpopulations are285

shown. Notice that graphical representations exhibited in Figure 2 and Figure 3 are in agreement.286

We point out that the computation of the 1-p.d.f. is very useful in applications since from287

it, as we have seen previously in Subsection 4.1, one can compute exact confidence intervals288

in order to construct probabilistic predictions. In addition, it permits the computation of the289

probability associated to sets of interest. For instance, from expression (19) applied to the reliant290

subpopulation, we can obtain the probability that the proportion of reliants that lies between291

a = 0.010 (1%) and b = 0.015 (1.5%) in the time period n̂ = 5 is, approximately 0.7,292

P[0.010 ≤ R5 ≤ 0.015] =

∫ 0.015

0.010
f1(r, 5) dr = 0.7006.
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Figure 2: Plot of the 1-p.d.f.’s: f1(s, n) given by (13) (top); f1(r, n) given by (14) (middle); f1(d, n) given by (15) (bottom)
at the values n ∈ {1, 2, . . . , 25}.
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Figure 4: Plot of the p.d.f. of the time NS until a proportion ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} of the population
remains susceptible.

Table 1: Expectation of time NS until a proportion, ρS , of the population remains susceptible for different values ρS .
ρS 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E[NS ] 42.9520 32.1312 24.4538 18.4980 13.6327 9.5189 5.9553 2.8118

Now, we will determine the p.d.f.’s of time until a given proportion of the population remains293

susceptible, reliant or deceased. For susceptible subpopulation this has been done using expres-294

sion (22). Figure 4 shows this p.d.f. for the following values of ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.295

From the p.d.f. of NS , we can compute the expectation of r.v. NS for a fixed value of ρS , like296

0.70,297

E [NS ] =

∫ ∞

0
n f1(n, 0.70) dn = 9.5190.

This means that, approximately, the middle of 10-th cycle (since the study starts at n = 0)298

represents the average time until 70% of the population will be susceptible. This can also be299

seen graphically in Figure 4. Table 1 collects the expectation, E [NS ], for different values of ρS .300

This is a key information for doctors when they want to study the evolution of susceptibles of301

stroke disease in a group of patients.302

In order to obtain the p.d.f.’s of r.v.’s NR and ND, that denote the time until a proportion303

of population, ρR and ρD, remains reliant or deceased, respectively, we have applied numerical304

methods. We have made this decision because n cannot be isolated from the second and third305

components of the solution given by (8). To illustrate the process that we have followed to carry306

out computations, below we specify the steps for reliant subpopulation where ρR is assumed to307

be fixed:308

• Step 1: To sample 500 000 values, say (rr, t2, p), according to the specific distributions309

assumed for r.v.’s RR, T2 and P.310

• Step 2: For each sampled value (rr, t2, p), to apply Newton method to calculate the value311

n of NR solving the nonlinear equation defined by the second component of (8), that cor-312

responds to the reliant subpopulation, substituting RR ⇒ rr, T2 ⇒ t2 and P ⇒ p. This313

process provides 500 000 values for n of NR.314

• Step 3: To plot the histogram of 500 000 values of n. A normalization of this histogram is315

an approximation of the p.d.f. of NR.316
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Figure 5: Plot of the p.d.f. of the time NR until a proportion ρR = 0.006 of the population remains reliant, using as seed
points sp = 1 (left) and sp = 25 (right).
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Figure 6: Plot of the p.d.f. of the time NR until a proportion ρR = 0.0183 of the population remains reliant, using as seed
point sp = 2.

Since the numerical convergence of Newton method heavily depends on the seed or starting317

point, say sp, for example, in the case that ρR = 0.006, we have obtained two graphical represen-318

tations for the p.d.f. of NR, that are shown in Figure 5. Specifically, taking the values sp = 1 and319

sp = 25, the p.d.f. of the time NR has been obtained for cycles n = 1 and n = 30, respectively.320

This is due because the proportion of reliants reaches the value ρR = 0.006 in those two cycles.321

Whereas for the case ρR = 0.0183, the Newton method always converges for the cycle n = 5,322

thus defining a single p.d.f. for NR. This p.d.f. has been plotted in Figure 6 taking as seed value323

sp = 2.324

Regarding the deceased subpopulation, we have followed the same steps described previ-325

ously. In Figure 7, we have plotted the p.d.f. of ND for the following values of percentage326

ρD ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, where sp = 3 has been taken as the seed point, for327

each value of ρD. In this case, to every value of ρD corresponds a unique value of n.328

Finally, we will compute the 1-p.d.f. of CE given by (26). From it, the mean and confidence329

intervals will also be computed. This will be done for different ages, 30, 65 and 71. This decision330

has been made because the involved rates for each age are different. Computations have been331

carried out taking the following probability distributions for random inputs:332

• The relative risk for the first alternative (the less efficient), RR1, is a lognormal r.v. with333

parameters (1.793; 0.143), i.e., log(RR1) ∼ N(1.793; 0.143).334
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Figure 7: Plot of the p.d.f. of the time ND until a proportion ρD ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} of the population
remains dead.

• The relative risk for the second alternative (the most efficient), RR2 = RR1 B, where B is335

the benefit.336

• B is a lognormal r.v. with parameters (−0.964; 0.163), i.e., log(B) ∼ N(−0.964; 0.163).337

• The transition R → D is modelled by r.v. P, which is assumed to be a beta distribution338

with parameters (80; 120), i.e., P ∼ Be(80; 120).339

• The deceased rate due to any cause, T2, is assumed to be a r.v. with a uniform distribution340

on the interval ]t2 − 0.0001, t2 + 0.0001[, i.e., T2 ∼ U(]t2 − 0.0001, t2 + 0.0001[), where t2341

is a fixed value, which depends on age, and that will be specified below.342

• The dependence cost, CR, is a lognormal r.v. with parameters (6.936; 0.643), i.e., log(CR) ∼343

N(6.936; 0.643).344

• The weight, W, is a normal r.v. with parameters (75.900; 12.290), i.e., W ∼ N(75.900; 12.290).345

The prices of both treatments are a1 = 6.5e/kg and a2 = 65e/kg, [7].346

• The utility, UR, is a normal r.v. with parameters (0.701; 0.347) i.e., UR ∼ N(0.701; 0.347).347

Above, t1, t2 and t3 are rates, which depend on age of the population under study. In Figure 8,348

we show the expectation of susceptibles, reliants and and deceaseds for the two alternatives in349

the three ages. For each one of them, we have considered the following rates, t1, t2 and t3, which350

are based on [7], and end cycles values, nmax,351

• For age of 30 years: t1 = 0.0000298, t2 = 0.00169, t3 = 0.00004 and nmax = 69.352

• For age of 65 years: t1 = 0.0011135, t2 = 0.02177, t3 = 0.00176 and nmax = 34.353

• For age of 71 years: t1 = 0.0031780, t2 = 0.03616 and t3 = 0.00373 and nmax = 28.354

Notice that this study is until 99 years, but we could choose another age limit. From Figure 8,355

we can observe, in all the ages, that the mean of susceptibles with the second treatment is greater356
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Figure 8: Plots of expectation of susceptibles, reliants and deceaseds for the two alternatives 1 (the cheapest) and 2 (the
most expensive) in the three ages: 30 years (first row), 65 years (second row) and 71 years (third row).
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Figure 9: P.d.f.’s de CE given by (26) considering both alternatives in the three ages: 30 years (left), 65 years (center)
and 71 years (right).

than considering the first, and the reverse for the expectation of reliants and deceaseds. This is357

consistent with the fact that the second alternative is better than the first.358

In Figure 9 we have plotted the 1-p.d.f.’s of the CE, given by (26), for each age from cycle 1359

to 34. Notice that graphical representations shown in Figure 9 are in agreement with Figure 10,360

where expectation plus/minus standard deviation functions of CE for each age have been plotted.361

To facilitate comparison between both alternatives, the value 30 000e/QALY (red straight line)362

has also been plotted as a threshold. This benchmark value has been chosen because, according363

to [23], is a standard value in the literature. From Figure 10, we can observe that for people364

aged 71 years old the second alternative (the most expensive), is more effective than the first365

alternative. Naturally, for people aged 30 years old, the best alternative is the first one because366

they have longer lifetime. For people aged 65 years old, it might be controversy because their367

CE is very close to the threshold.368

7. Discussion369

Although Markov models have been used extensively for modelling the dynamics of numer-370

ous diseases, to the best of our knowledge, few attempts have been made regarding the stroke371

disease. The markovian approach is useful to perform the clinical control of patients that suffer372

this disease. Indeed, Markov models allow us to forecast not only the number of patients be-373

longing to each subpopulation (susceptibles, reliants and deceaseds) at every cycle but also to374

account for significant medical information. In this regard, the time until a given proportion of375

patients remain susceptible, reliant or deceased are, for example, important information in the376

medical treatment of the stroke. This is a key information to answer crucial questions like “what377

is the expected time before twenty percent, for instance, of the population remains susceptible?”.378

In this paper, we have given a technical generalization of classical Markov methodology that379

enables the exact determination of the crucial medical information previously indicated. This380

generalization is aimed to improve the modelling of stroke disease when dealing with real data,381
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Figure 10: Plots of expectation plus/minus standard deviation functions of CE for each age considering both alternatives
in the three ages: 30 years (left), 65 years (center) and 71 years (right). The red straight line represents the threshold
value 30 000e/QALY usually taking as reference [23].

although an important issue is that this technique can easily be adapted to another diseases using382

the markovian paradigm. Our approach resorts in the so-called Random Variable Transformation383

method to randomize classical Markov chains. This randomization has been done through some384

of the entries of the transition matrix of a classical Markov chain which has been previously pro-385

posed to model the stroke disease. Our approach allows us the computation of the first probability386

density function of the solution stochastic process, and then obtaining punctual and probabilistic387

predictions as well as the important probabilistic information that we have underlined previously.388

Moreover, we have conducted a probabilistic cost-effectiveness analysis, based on the appli-389

cation of the Random Variable Transformation technique, that to the best of our knowledge, has390

not been done yet. The main advantage of this computational approach is that results can be391

obtained in an exact manner rather than using simulations.392
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doi:10.1016/j.gaceta.2010.02.006.417

[8] S. L. Pan, H. M. Wu, A. M. F. Yen, T. H. H. Chen, A Markov regression random-effects model for remission of418

functional disability in patients following a first stroke: A Bayesian approach, Statistics in Medicine 26 (29) (2007)419

5335–5353.420

[9] V. Kapetanakis, F. E. Matthews, A. van den Hout, A semi-Markov model for stroke with piecewise-constant hazards421

in the presence of left, right and interval censoring, Statistics in Medicine 32 (4) (2013) 697–713.422

[10] J. Zhang, K. F. Yu, What’s the relative risk? A method of correcting the odds ratio in cohort studies of common423

outcomes, Journal of American Medical Association (JAMA) 290 (19) (1998) 1690–1691.424

[11] L. A. McNutt, C. Wu, X. Xue, J. P. Hafner, Estimating the relative risk in cohort studies and clinical trials of425

common outcomes, American Journal of Epidemiology 157 (10) (2003) 940–943. doi:10.1093/aje/kwg074.426

[12] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.427

[13] B. Kegan, R. Webster West, Modeling the simple epidemic with deterministic differential equations and random428

initial conditions, Mathematical Biosciences 195 (5) (2005) 179–193. doi:10.1016/j.mbs.2005.02.004.429

[14] M. C. Casabán, J. C. Cortés, J. V. Romero, M. D. Roselló, Probabilistic solution of random SI-type epidemio-430
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España, Rev. Esp. Cardiol. 58 (2005) 1385–1395. doi:1016/S0300-8932(05)74068-9.450
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