
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

Informa UK (National Inquiry Services Center)

Defez Candel, E.; Tung, MM. (2018). A new type of Hermite matrix polynomial series.
Quaestiones Mathematicae. 41(2):205-212. doi:10.2989/16073606.2017.1376231

https://doi.org/10.2989/16073606.2017.1376231

http://hdl.handle.net/10251/105836



A NEW TYPE OF HERMITE MATRIX POLYNOMIAL SERIES

EMILIO DEFEZ∗ AND MICHAEL M. TUNG[

Abstract. Conventional Hermite polynomials emerge in a great diversity of
applications in mathematical physics, engineering, and related fields. However,

in physical systems with higher degrees of freedom it will be of practical interest
to extend the scalar Hermite functions to their matrix analogue. This work

introduces various new generating functions for Hermite matrix polynomials

and examines existence and convergence of their associated series expansion
by using Mehler’s formula for the general matrix case. Moreover, we derive

interesting new relations for even- and odd-power summation in the generating-

function expansion containing Hermite matrix polynomials. Some new results
for the scalar case are also presented.

1. Introduction

During the last decade, orthogonal matrix polynomials have become increas-
ingly important for numerical computation and its analysis. In particular, Hermite
matrix polynomials were introduced and studied for the first time in [8, 10] and
subsequently received considerable attention for its application in the solutions of
matrix differential equations [2–5, 12, 13]. In the scalar case, Hermite polynomials
emerge in the context of quantum mechanics and optics, mathematical and nuclear
physics among other areas of highly practical interest. Only recently, a new kind of
series expansion involving conventional Hermite polynomials was introduced in [7]
in order to describe new field states in quantum optics—yet without any rigorous
proof of existence and convergence in general.

In this article, we present an entirely new class of series expansion for Hermite
matrix polynomials, which also includes the scalar polynomial expansion of [7] as
a particular case. Besides, we will provide an accurate analysis of convergence.

To start with, in Section 2, we define the new Hermite matrix polynomial series.
Section 3 illustrates the reduction to the scalar case, given in [7]. Throughout
this work, we denote by Cr×r the set of all the complex square matrices of size r.
Furthermore, by Θ and I we denote the zero and the identity matrix, respectively.
If f(z), g(z) are holomorphic functions on an open set Ω ⊂ C, and if the eigenvalues
σ(A) ⊂ Ω, then f(A), g(A) represent the images of functions f and g acting on the
matrix A such that f(A)g(A) = g(A)f(A), see [6, p.558]. If Re(z) > 0 for every
eigenvalue z ∈ σ(A), we say that matrix A is positive stable, In this case, we use√
A = A1/2 = exp (log (A)/2) for the image of the function z1/2 = exp (log (z)/2)
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acting on the matrix A. Note that log (z) as usual denotes the principal branch of
the complex logarithm.

A matrix polynomial of degree n is an expression of the form Pn(t) = Ant
n +

An−1t
n−1 + · · ·+A1t+A0, where t is a real variable and Aj ∈ Cr×r for 0 ≤ j ≤ n.

The usual 2-norm of a quadratic matrix A is denoted by ‖A‖2 .

2. The new Hermite matrix polynomial series

For any positive stable matrix A ∈ Cr×r, the associated Hermite matrix polyno-
mials [8] are defined by the following three-term recurrence for any non-zero positive
integer m ∈ N:

H−1(x,A) = Θ, H0(x,A) = I, Hm(x,A) = x
√

2AHm−1(x,A)−2(m−1)Hm−2(x,A).
(2.1)

This definition fulfills for any n ∈ N0 (positive integers including zero) the relations

H2n+1(0, A) = Θ, H2n(0, A) = (−1)n
(2n)!

n!
I. (2.2)

For the following derivations we need to use two well-known results. The first result
was demonstrated in [1] and establishes the following upper bound:

‖H2n(x,A)‖2 ≤ gn(x), ‖H2n+1(x,A)‖2 ≤ |x|

∥∥∥∥∥
(
A

2

)−1/2
∥∥∥∥∥
2

2gn(x)

n+ 1
,

gn(x) = 22n
(2n+ 1)!

n!
exp

(
5

2
‖A‖2 x

2

)
, n ∈ N0.

(2.3)

The second result was demonstrated in [9] and is Mehler’s formula in the matrix
case:∑
n≥0

Hn(x,A)Hn(y,A)

2nn!
tn = (1−t2)−

1
2 exp

(
2xyt− (x2 + y2)t2

2(1− t2)
A

)
, x, y ∈ R, |t| < 1.

(2.4)
Now we are in the position to prove the following theorem:

Theorem 2.1. Let A ∈ Cr×r be a positive stable matrix and x ∈ R. Then for
|t| < 1/16:

A(s;x, t, A) :=
∑
n≥0

H2n+s(x,A)

n!
tn =

Hs

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s+1 exp

(
2tx2

1 + 4t
A

)
, s ∈ N0.

(2.5)

Proof 2.1. First we will prove that the matrix series A(s;x, t, A) is convergent for
any fixed integer s ∈ N0. Taking into account (2.3), being s = 2l an even number,
one obtains ∥∥∥∥H2n+s(x,A)

n!
tn
∥∥∥∥
2

=

∥∥∥∥H2n+2l(x,A)

n!
tn
∥∥∥∥
2

≤ gn+l(x)|t|n

n!
.

Since
∑
n≥0

gn+l(x)|t|n

n!
is convergent for |t| < 1/16, the matrix series A(2l;x, t, A) is

convergent in any compact real interval. On other hand, if s = 2l + 1 is an odd
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number, then∥∥∥∥H2n+s(x,A)

n!
tn
∥∥∥∥
2

=

∥∥∥∥H2(n+l)+1(x,A)

n!
tn
∥∥∥∥
2

≤ |x|
∥∥∥(A/2)

−1/2
∥∥∥
2

2gn+l(x)|t|n

(n+ l + 1)n!
.

Since
∑
n≥0

|x|
∥∥∥(A/2)

−1/2
∥∥∥
2

2gn+l(x)|t|n

(n+ l + 1)n!
is convergent for |t| < 1/16, the matrix

series A(2l + 1;x, t, A) is convergent in any compact real interval. Thus, the series
A(s;x, t, A) is convergent for all fixed integers s ∈ N0, what was to be shown.

For proving formula (2.5), we will use the induction method. We put y = 0
in formula (2.4) and use relations (2.2). Thus, Mehler’s formula (2.4) reduces to
(see [1] for details):∑

n≥0

(−1)nH2n(x,A)

22nn!
t2n = (1− t2)−

1
2 exp

(
−x2t2

2(1− t2)
A

)
, x ∈ R, |t| < 1/2. (2.6)

Taking u = −t2/4, we can rewrite (2.6) in the form∑
n≥0

H2n(x,A)

n!
un = (1 + 4u)−

1
2 exp

(
2ux2

1 + 4u
A

)
, x ∈ R, |u| < 1/16. (2.7)

Observe that (2.7) is exactly A(0;x, u,A). Thus, formula (2.5) is true for s = 0.
Next, we proceed to prove that formula (2.5) is also true for s = 1. After using

the three-term recurrence (2.1) for m = 2n + 1, multiplying each term by tn/n!
with |t| < 1/16, and finally applying the sum from n = 1 to infinity, one arrives at∑

n≥1

H2n+1(x,A)

n!
tn = x

√
2A
∑
n≥1

H2n(x,A)

n!
tn − 4

∑
n≥1

nH2n−1(x,A)

n!
tn. (2.8)

To start summation at n = 0, we rewrite (2.8) in the form

(1 + 4t)
∑
n≥0

H2n+1(x,A)

n!
tn = H1(x,A)− x

√
2AH0(x,A) + x

√
2A
∑
n≥0

H2n(x,A)

n!
tn.

(2.9)

Applying (2.1), we conclude that H1(x,A) = x
√

2A,H0(x,A) = I. Now, using
(2.7), we may simplify (2.9) to the form:

A(1;x, t, A) =
x
√

2A(√
1 + 4t

)3 exp

(
2tx2

1 + 4t
A

)
=

H1

(
x√

1 + 4t
, A

)
(√

1 + 4t
)2 exp

(
2tx2

1 + 4t
A

)
,

(2.10)
and formula (2.5) is also true for s = 1.

Up to this point we only have shown that the inductive statement A(s;x, u,A)
holds for s = 0, 1. Next, we proceed with the inductive step, showing that if
A(l;x, u,A) holds for 0 ≤ l ≤ s− 1, then A(s;x, u,A) is also true.

Again, we use the recurrence relation (2.1) for m = 2n+ s to obtain

H2n+s(x,A) = x
√

2AH2n+s−1(x,A)− 2(s− 1)H2n+s−2(x,A)− 4nH2n+s−2(x,A).
(2.11)
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Multiplying (2.11) by tn/n! with |t| < 1/16, and applying the sum from n = 1 to
infinity, we deduce∑
n≥1

H2n+s(x,A)

n!
tn =

√
2A
∑
n≥1

H2n+s−1(x,A)

n!
tn − 2(s− 1)

∑
n≥1

H2n+s−2(x,A)

n!
tn

−4
∑
n≥1

nH2n+s−2(x,A)

n!
tn. (2.12)

We can rewrite (2.12) in the form

A(s;x, t, A) = Hs(x,A)− x
√

2AHs−1(x,A)− 2(s− 1)Hs−2(x,A) (2.13)

+x
√

2AA(s− 1;x, t, A)− 2(s− 1)A(s− 2;x, t, A)− 4tA(s;x, t, A).

The first three terms of equation (2.13) reduce to Hs(x,A) − x
√

2AHs−1(x,A) −
2(s− 1)Hs−2(x,A) = Θ by using recurrence (2.1) for m = s. Next, we can simplify
expression (2.13) to

(1 + 4t)A(s;x, u,A) = x
√

2AA(s− 1;x, u,A)− 2(s− 1)A(s− 2;x, u,A). (2.14)

Using the induction hypothesis, we have

A(s− 1;x, u,A) =

Hs−1

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s exp

(
2tx2

1 + 4t
A

)

A(s− 2;x, u,A) =

Hs−2

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s−1 exp

(
2tx2

1 + 4t
A

)


. (2.15)

Substituting (2.15) in (2.14), one finally arrives at

(1 + 4t)A(s;x, u,A) = x
√

2A

Hs−1

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s exp

(
2tx2

1 + 4t
A

)

−2(s− 1)

Hs−2

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s−1 exp

(
2tx2

1 + 4t
A

)

=

exp

(
2tx2

1 + 4t
A

)
(√

1 + 4t
)s−1

[
x
√

2A(√
1 + 4t

)Hs−1

(
x√

1 + 4t
, A

)
− 2(s− 1)Hs−2

(
x√

1 + 4t
, A

)]

=

Hs

(
x√

1 + 4t
, A

)
(√

1 + 4t
)s−1 exp

(
2tx2

1 + 4t
A

)
,

which completes this proof.

Remark 2.1. Working with the series A(s;x, t, A) and its new results established
so far, we may continue to derive additional, previously unknown relations and
properties of the Hermite matrix series, altogether absent from the literature on
special functions.
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For example, considering the combinations A(s;x, t, A) +A(s;x,−t, A) and also
A(s;x, t, A) − A(s;x,−t, A), for s ∈ N0, x ∈ R, |t | < 1/16 it immediately follows
that

∑
n≥0

H4n+s(x,A)

(2n)!
t2n =

Hs

(
x√

1 + 4t
, A

)
2
(√

1 + 4t
)s+1 exp

(
2tx2

1 + 4t
A

)

+

Hs

(
x√

1− 4t
, A

)
2
(√

1− 4t
)s+1 exp

(
−2tx2

1− 4t
A

)
,

∑
n≥0

H4n+s+2(x,A)

(2n+ 1)!
t2n+1 =

Hs

(
x√

1 + 4t
, A

)
2
(√

1 + 4t
)s+1 exp

(
2tx2

1 + 4t
A

)

−
Hs

(
x√

1− 4t
, A

)
2
(√

1− 4t
)s+1 exp

(
−2tx2

1− 4t
A

)
.

(2.16)

Considering now the combinations A(s+ 1;x, t, A) +A(s+ 1;x,−t, A) and also
A(s+1;x, t, A)−A(s+1;x,−t, A), for s ∈ N0, x ∈ R, and |t | < 1/16, it immediately
follows that

∑
n≥0

H4n+s+1(x,A)

(2n)!
t2n =

Hs+1

(
x√

1 + 4t
, A

)
2
(√

1 + 4t
)s+2 exp

(
2tx2

1 + 4t
A

)

+

Hs+1

(
x√

1− 4t
, A

)
2
(√

1− 4t
)s+2 exp

(
−2tx2

1− 4t
A

)
,

∑
n≥0

H4n+s+3(x,A)

(2n+ 1)!
t2n+1 =

Hs+1

(
x√

1 + 4t
, A

)
2
(√

1 + 4t
)s+2 exp

(
2tx2

1 + 4t
A

)

−
Hs+1

(
x√

1− 4t
, A

)
2
(√

1− 4t
)s+2 exp

(
−2tx2

1− 4t
A

)
.

(2.17)

3. The scalar Hermite polynomial series revisited

Clearly, all newly proposed relations for the Hermite matrix polynomials also
subsume the conventional scalar case. This puts us into the position to easily
recover the scalar formula (3.1) derived by the authors of [7] within the context of
quantum mechanics via what they call the quantum mechanical operator-Hermite
polynomial method.
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From a purely mathematical standpoint, we can deduce the following result from
Theorem 2.1:

Corollary 3.1. Let {Hn(x)}n≥0 be the usual sequence of scalar Hermite polynomi-

als. Then for s ∈ N0, x ∈ R, |t | < 1/4:

∑
n≥0

H2n+s(x)

n!
tn =

Hs

(
x√

1 + 4t

)
(√

1 + 4t
)s+1 exp

(
4tx2

1 + 4t

)
, (3.1)

∑
n≥0

H4n+s(x)

(2n)!
t2n =

Hs

(
x√

1+4t

)
2
(√

1+4t
)s+1 exp

(
4tx2

1+4t

)
+

Hs

(
x√

1−4t

)
2
(√

1−4t
)s+1 exp

(
−4tx2

1−4t

)
,

∑
n≥0

H4n+s+2(x)

(2n+ 1)!
t2n+1 =

Hs

(
x√

1+4t

)
2
(√

1+4t
)s+1 exp

(
4tx2

1+4t

)
−
Hs

(
x√

1−4t

)
2
(√

1−4t
)s+1 exp

(
−4tx2

1−4t

)
,

∑
n≥0

H4n+s+1(x)

(2n)!
t2n =

Hs+1

(
x√

1+4t

)
2
(√

1+4t
)s+2 exp

(
4tx2

1+4t

)
+

Hs+1

(
x√

1−4t

)
2
(√

1−4t
)s+2 exp

(
−4tx2

1−4t

)
,

∑
n≥0

H4n+s+3(x)

(2n+ 1)!
t2n+1 =

Hs+1

(
x√

1+4t

)
2
(√

1+4t
)s+2 exp

(
4tx2

1+4t

)
−
Hs+1

(
x√

1−4t

)
2
(√

1−4t
)s+2 exp

(
−4tx2

1−4t

)
.

(3.2)

Proof 3.1. It is well known that when A = 2 with matrix dimension r = 1, the
Hermite matrix polynomials Hn(x,A) reduce to their scalar counterparts, the usual
Hermite polynomials Hn(x). After substituting these values into formulas (2.5),
(2.16) and (2.17), we recover formulas (3.1)–(3.2).

What remains is to prove the change in the interval of convergence, having
|t | < 1/4 instead of |t | < 1/16. For the scalar case, we use the following bound
derived by Cramer [11],

|Hn(x)| ≤ K 2n/2
√
n! ex

2/2, K = 1.086435, (3.3)

to finally obtain the interval of convergence |t | < 1/4.
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Camino de Vera, s/n, 46022 Valencia, Spain
E-mail address: edefez@imm.upv.es
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