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Abstract	
	
The	impedance	concept	is	defined	by	Ohm’s	generalized	law.	Ohm’s	law	requires	the	
fulfilment	of	3	conditions	in	order	to	be	valid:	causality,	linearity	and	stability.	In	general,	
electrochemical	systems	are	highly	nonlinear	systems;	and	therefore,	in	order	to	achieve	
linearity	 low	 amplitude	 perturbations	 have	 to	 be	 used	 during	 EIS	 measurements.	
However,	 small	 amplitude	 perturbations	 lead	 to	 low	 signal-to-noise	 ratios.	
Consequently,	 the	 quality	 of	 an	 EIS	measurement	 is	 determined	 by	 a	 trade-off:	 the	
perturbation	amplitude	should	be	big	enough	in	order	to	obtain	a	good	signal-to-noise	
ratio;	 and	 at	 the	 same	 time,	 it	 should	 be	 small	 enough	 in	 order	 to	 avoid	 significant	
nonlinear	effects.	The	optimum	perturbation	amplitude	corresponds	with	the	maximum	
perturbation	amplitude	 that	 ensures	 a	pseudo	 linear	 response	of	 the	 system.	 In	 this	
work,	a	method	for	experimentally	determining	the	optimum	perturbation	amplitude	
for	 performing	 EIS	 measurements	 of	 a	 given	 system	 is	 presented.	 	 The	 presented	
method	is	based	on	the	harmonic	analysis	of	the	output	signals;	and	in	this	work,	it	was	
applied	 to	 a	 highly	 nonlinear	 system:	 the	 cathodic	 electrode	 of	 an	 alkaline	 water	
electrolyser.	 The	 presented	method	 allows	 optimising	 the	 perturbation	 amplitude	 in	
both,	constant	amplitude	and	frequency	dependant	amplitude	strategies.		
	
Keywords:	 Electrochemical	 Impedance	 Spectroscopy	 (EIS),	 Perturbation	 amplitude,	
Harmonic	analysis,	Linearity	condition,	Frequency	dependant	amplitude.	
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1.	Introduction	
	
Today,	 the	 Electrochemical	 Impedance	 Spectroscopy	 (EIS)	 technique	 has	 become	 a	
widespread	 and	 well-established	 technique	 in	 the	 electrochemical	 field	 [1].	 This	
technique	can	be	applied	in	order	to	study	the	mechanisms	of	electrochemical	reactions,	
for	 measuring	 the	 electric	 and	 transport	 properties	 of	 materials,	 for	 exploring	 the	
properties	of	porous	materials,	and	for	studying	complex	interfaces	[2].	The	power	of	
this	electrochemical	technique	arises	from	its	ability	to	distinguish	the	different	physic-
chemical	processes	undergoing	at	different	timescales	in	the	system	[3].	This	property	
makes	it	suitable	for	a	wide	range	of	applications	such	as	fuel	cells	[4-6],	batteries	[7-
13],	 electrolyzers	 [14],	 corrosion	 [15-17],	 coatings	 [18-19],	 membranes	 [20],	
environmental	 applications	 [21,	 22],	 electrochemical	 sensors	 [23,	 24]	 and	
supercapacitors	[25-27].		
	
This	technique	consists	in	the	measurement	of	the	complex	impedance	of	a	system	at	
different	perturbation	frequencies;	whence	the	name	of	“spectroscopy”	[28].	In	order	
to	 determine	 the	 complex	 impedance	 in	 galvanostatic	 mode,	 a	 sinusoidal	 current	
perturbation	is	applied	to	the	system;	and	the	resulting	potential	signal	is	measured.	In	
potentiostatic	mode,	a	potential	perturbation	is	used,	and	the	resulting	current	signal	is	
measured.	Once	the	response	of	the	system	has	been	obtained,	the	complex	impedance	
is	determined	using	Ohm’s	generalized	law:	
	
	

𝑍 𝜔 =
ℱ 𝑈(𝑡)
ℱ 𝐼(𝑡)

	 (1)	

	
Where	𝑍 𝜔 	denotes	the	complex	impedance	of	the	system	at	angular	frequency	𝜔 =
2𝜋𝑓.	𝑈 𝑡 	and	𝐼(𝑡)	respectively	 stand	 for	 the	potential	and	 the	current	 signals	 in	 the	
time	domain.	And	finally,	ℱ	is	the	Fourier	transform	operator.	The	Fourier	transform	of	
an	arbitrary	function	in	the	time	domain,	ℎ(𝑡),	is	defined	as	[29]:	
	
	

ℱ ℎ(𝑡) 𝜗 = ℎ(𝑡) ∙ 𝑒123456 ∙ 𝑑𝑡
89

19
	 (2)	

	
Where	𝑗 	denotes	 the	 imaginary	 unit,	 −1 ;	 and	𝜗 	represents	 the	 frequency	 domain	
independent	variable.		
	
The	impedance	concept	is	a	generalization	of	the	DC	electric	resistance	concept	to	AC	
perturbed	systems.	The	complex	 impedance	contains	 two	components:	 the	 real	part	
𝑍′ 	and	the	imaginary	part	 𝑍′′ ,	 in	rectangular	representation;	or	the	modulus	 𝑍 	
and	 the	 phase	 angle	 𝜑 ,	 in	 polar	 representation.	On	 the	 one	 hand,	 the	 impedance	
modulus	gives	the	ratio	between	the	amplitude	of	the	voltage	signal	and	the	amplitude	
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of	the	current	signal;	and	on	the	other	hand,	its	argument	gives	the	phase	angle	of	the	
voltage	signal	with	respect	to	the	current	signal	[30].		
	
Macdonald	and	Sikora	stated	that	the	validity	of	Ohm’s	complex	law,	and	thus	of	the	
impedance	concept,	requires	the	fulfilment	of	4	critical	hypotheses:	causality,	linearity,	
stability,	and	finiteness	[31].	However,	it	has	been	proved	that	the	finiteness	condition	
is	 not	 critical;	 therefore	 there	 are	 only	 3	 critical	 hypotheses:	 causality,	 linearity	 and	
stability	 [32].	 If	 any	 of	 these	 conditions	 is	 violated,	 the	 obtained	 EIS	 results	may	 be	
biased;	and	no	reliable	conclusions	can	be	extracted	from	them	[33].	For	this	reason,	it	
is	crucial	to	assess	if	the	3	critical	hypotheses	were	met	during	EIS	measurements,	before	
performing	any	further	analysis	[34].	
	
Linear	 systems	 are	 systems	 in	which	 the	 superposition	 principle	 holds	 [35],	 in	 other	
words,	systems	which	response	to	a	sum	of	perturbations	is	the	sum	of	the	responses	
of	the	system	to	the	individual	perturbations.	A	great	number	of	works	have	studied	the	
effects	of	the	non-fulfilment	of	the	linearity	condition:	some	examples	of	these	works	
are	the	works	of	Darowicki	and	co-workers	[36-39];	the	works	of	Diard	and	co-workers	
[40-45];	and	the	works	of	Van	Gheem’s	team	[46-47].	It	has	been	shown	that	the	main	
effect	of	 nonlinearity	 is	 the	 generation	of	non-fundamental	 harmonics	 in	 the	output	
signal	[48].	When	a	sinusoidal	perturbation	is	applied	to	a	linear	system,	the	response	
signal	is	a	monofrequency	sinusoidal	signal	of	same	frequency	[49].	This	being	the	basis	
of	 the	 impedance	definition	 [30].	On	 the	contrary,	when	a	 sinusoidal	perturbation	 is	
applied	to	a	nonlinear	system,	the	response	signal	is	composed	by	a	fundamental	signal	
and	 its	 harmonics	 [50].	 The	 harmonic	 generation	 may	 distort	 the	 measured	 EIS	
spectrum;	 invalidating	 the	 impedance	 definition.	Montella	 and	Diard	 implemented	 a	
Wolfram®	 Demonstration	 Project	 [51]	 that	 illustrates	 very	 clearly	 the	 effects	 of	 the	
nonlinearity	of	a	Tafelian	system	on	its	EIS	spectrum	[52].		
	
In	EIS	context,	nonlinear	effects,	such	as	nonlinear	kinetics	(Buttler-Volmer’s	equation)	
and	saturation,	often	appear	in	the	investigation	of	electrochemical	systems	[53-54].	On	
account	of	this	reason,	low	amplitude	perturbation	must	be	used	for	EIS	measurements	
[55],	 in	 order	 to	 ensure	 the	 fulfilment	 of	 the	 linearity	 condition	 [56].	 However,	 low	
perturbation	amplitudes	lead	to	low	signal-to-noise	ratios	[57],	which	affects	negatively	
the	 quality	 of	 the	 measured	 EIS	 spectra.	 Thus,	 the	 selection	 of	 the	 perturbation	
amplitude	must	be	done	on	the	basis	of	the	trade-off	between	the	linearity	condition	
fulfilment	 and	 the	 maximization	 of	 the	 signal-to-noise	 ratio	 [2]:	 the	 perturbation	
amplitude	has	 to	be	 low	enough	 in	order	 to	guarantee	the	 fulfilment	of	 the	 linearity	
condition	[58];	and	it	has	to	be	high	enough	in	order	to	achieve	an	acceptable	signal-to-
noise	 ratio	 [59].	The	optimum	perturbation	amplitude	 is	defined	as	 the	perturbation	
amplitude	 that	 maximizes	 the	 signal-to-noise	 ratio	 without	 violating	 the	 linearity	
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condition	[60].	This	optimum	amplitude	varies	from	one	system	to	another;	and	for	a	
given	system,	it	may	even	change	from	one	operation	point	to	another.	
	
The	 optimum	 amplitude	 can	 be	 determined	 using	 a	 linearity	 assessment	method.	 A	
great	number	of	linearity	verification	techniques	can	be	found	in	literature	[61].	These	
linearity	 assessment	 methods	 can	 be	 classified	 into	 3	 main	 types:	 1.	 Experimental	
methods;	2.	Kramers-Kronig	based	methods;	and	3.	harmonic	analysis	based	methods	
[28].	
	
Firstly,	 the	 experimental	 methods	 include	 AC	 plots,	 resolution	 plots	 and	 Lissajous	
figures.	Linearity	can	be	assessed	in	real	time	during	EIS	measurement	using	these	plots.	
The	aforementioned	plots	directly	monitor	the	perturbation	and	response	raw	signals	in	
the	time	domain	[2].	Nowadays,	most	if	not	all	EIS	measurement	commercial	softwares	
include	this	kind	of	tools,	which	can	be	displayed	during	data	acquisition.	This	kind	of	
linearity	 assessment	 methods	 has	 2	 major	 drawbacks.	 On	 the	 one	 hand,	 they	 are	
qualitative	 methods.	 Therefore,	 they	 are	 able	 to	 detect	 nonlinearities,	 but	 cannot	
quantify	the	nonlinearity	level.	On	the	other	hand,	while	the	distortion	of	AC	plots	and	
Lissajous	figures	is	easily	recognizable	for	severe	nonlinearities;	the	distortion	of	these	
plots	due	to	low	and	moderate	nonlinearities	may	be	ambiguous,	and	its	identification	
can	be	subjected	to	the	subjectivity	of	the	analyst	[2].	For	this	reason,	the	use	of	this	
type	 of	 linearity	 assessment	methods	 should	 be	 restricted	 to	 auxiliary	 experimental	
validation	 during	 the	measurement;	 and	 should	 be	 avoided	 in	 rigorous	 perturbation	
amplitude	optimization.	
	
Secondly,	 the	 Kramers-Kronig	 methods	 are	 based	 on	 the	 Kramers-Kronig	 relations,	
which	 are	 integral	 relations	 that	 relate	 the	 real	 and	 the	 imaginary	 parts	 of	 complex	
quantities	that	satisfy	the	conditions	of	causality,	linearity,	and	stability	[30].	The	power	
of	the	Kramers-Kronig	relations	as	a	validation	tool	of	EIS	spectra	has	been	widely	proven	
in	bibliography.	Agarwal	and	Orazem	presented	in	their	work	[62]	an	extensive	review	
of	 the	available	methods	 for	 the	Kramers-Kronig	 relations	application	 for	EIS	 spectra	
validation.	 The	main	 examples	 of	 Kramers-Kronig	 based	 validation	methods	 are	 the	
Voight	method	developed	by	Boukamp	and	co-workers	[63-64];	and	the	measurement	
model	method	developed	by	Orazem’s	group	[34,	62,	65-72].	Urquidi-Macdonald	and	
co-workers	 observed	 that	 the	 Kramers-Kronig	 relations	 were	 highly	 insensitive	 to	
nonlinearity	 [35].	 More	 recently,	 Hirschorn	 and	 Orazem	 have	 shown	 that	 Kramers-
Kronig	relations	are	only	sensitive	to	nonlinearities	if	at	least	part	of	the	spectrum	has	
been	measured	in	a	range	above	the	threshold	frequency	of	the	system;	and	even	then,	
the	sensitivity	is	not	very	high	[73].	These	observations	were	conformed	in	a	previous	
work	[74].	The	low	sensibility	to	nonlinearities	of	this	kind	of	validation	technique	makes	
it	unsuitable	for	perturbation	amplitude	optimization.		
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Finally,	the	harmonic	analysis	based	methods	assess	linearity	through	the	quantification	
of	the	non-fundamental	harmonic	content	of	the	response	signal.	These	methods	are	
based	 on	 the	 analysis	 of	 the	 system’s	 response	 in	 the	 frequency	 domain.	 Several	
examples	of	 this	kind	of	 linearity	assessment	method	can	be	 found	 in	 literature.	The	
method	developed	by	Popkirov	and	Schindler	[48,	75],	the	Pintelon’s	team	method	[76-
77],	and	the	total	distortion	based	method	developed	in	a	previous	work	[78]	are	some	
examples	 of	 the	 harmonic	 analysis	 based	 linearity	 assessment	 methods	 available	 in	
bibliography.	The	advantages	of	this	kind	of	linearity	assessment	methods	are	that	they	
are	 quantitative	 methods,	 able	 to	 quantify	 the	 level	 of	 nonlinearity	 in	 an	 objective	
manner;	and	they	have	a	great	sensibility	to	nonlinearities.		
	
In	a	previous	work,	a	linearity	assessment	method	based	on	the	harmonic	analysis	of	the	
response	signal	was	presented	and	experimentally	validated	[79].	This	work’s	aim	is	to	
apply	 the	 aforementioned	 linearity	 assessment	 method	 in	 order	 to	 determine	 the	
optimum	 perturbation	 amplitude	 for	 EIS	 measurements	 of	 a	 highly	 nonlinear	
electrochemical	 system:	an	alkaline	hydrogen	evolution	 cell.	 Two	different	 strategies	
were	 considered	 in	 this	 work:	 on	 the	 one	 hand,	 the	 traditional	 constant	 amplitude	
perturbation	 strategy;	 and	 on	 the	 other	 hand,	 a	 frequency	 dependant	 perturbation	
amplitude	strategy.		
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2.	Linearity	assessment	method	
	
The	linearity	assessment	method	that	was	used	in	this	work	for	perturbation	amplitude	
optimization	was	described	in	a	previous	work	[79].	The	method	breaks	down	in	3	main	
steps.	In	the	first	step,	the	EIS	spectrum	is	measured	as	usual.	However,	instead	of	saving	
only	 the	 impedance	 value	 for	 each	 excited	 frequency;	 the	 raw	 current	 and	 voltage	
signals	in	the	time	domain,	𝐼(𝑡)	and	𝑈(𝑡),	are	also	stored	for	each	excited	frequency.	In	
a	second	step,	a	Fast	Fourier	Transform	(FFT)	algorithm	is	used	in	order	to	transform	the	
signals	 in	the	time	domain	 into	the	frequency	domain.	FFT	 is	a	well-known	algorithm	
used	to	transform	a	signal	in	the	time	domain	into	the	frequency	domain.	Further	details	
on	FFT	can	be	found	in	any	review	on	spectrum	analysis	(v.g.	the	work	of	Kay	and	Marple	
[80]).	Using	this	algorithm,	the	current	and	voltage	signals	in	the	frequency	domain,	𝐼(𝜗)	
and	𝑈(𝜗),	are	obtained	for	each	excited	frequency.		
	
Once	the	signals	in	the	frequency	domain	have	been	obtained,	in	the	third	step	of	the	
linearity	 assessment	method,	 the	 level	 of	 non-fundamental	 harmonics	 in	 the	 output	
signal	(potential,	in	this	case)	is	quantified	using	the	following	parameter:	
	
	

℘𝑈 = max
DEF

			20 ∙ logFK
𝑈

L

𝑈
F

	 (3)	

	
Where	 𝑈 	denotes	 the	 amplitude	 of	 the	 Fourier	 transform	 of	 the	 output	 signal.	
Subscript	 1	 refers	 to	 the	 fundamental	 component	 of	 the	 signal,	 whereas	 subscripts	
greater	or	equal	to	2	refer	to	non-fundamental	harmonics	of	the	signal.	This	parameter	
quantifies	 in	 decibels	 (dB)	 the	 ratio	 between	 the	 most	 important	 non-fundamental	
harmonic	of	the	signal,	and	its	fundamental	component.		
	
After	applying	this	method,	the	values	of	parameter	℘𝑈	are	obtained	for	each	one	of	
the	frequencies	at	which	the	impedance	was	measured	in	the	first	step.	The	obtained	
results	can	be	analysed	using	two	tools:	the	℘𝑈	curves	and	the	critical	parameter.	On	
the	one	hand,	℘𝑈	curves	correspond	with	the	representation	of	℘𝑈	parameter	versus	
the	excited	frequency.	These	curves	allow	evaluating	individually	the	linearity	of	each	
frequency.	As	it	was	observed	in	a	previous	work	[79],	these	curves	are	very	useful	for	
identifying	 which	 frequencies	 are	 more	 susceptible	 to	 present	 nonlinearities	 in	 the	
studied	 system.	 On	 the	 other	 hand,	 the	 critical	 frequency	 is	 defined	 as	 the	 excited	
frequency	 with	 the	 highest	 harmonic	 content;	 and	 the	 critical	 parameter,	 	℘𝑈M ,	 is	
defined	as	 the	 value	of	℘𝑈	parameter	 at	 the	 critical	 frequency.	An	analog	definition	
stablishes	that:	
	
	 ℘𝑈M = max

NO F;2;⋯;RS
℘𝑈N	 (4)	
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Where	𝑁U	denotes	the	number	of	frequencies	at	which	the	impedance	was	measured.	
This	 critical	 parameter	 provide	 an	 overall	 assessment	 of	 linearity	 by	 considering	 the	
most	 unfavorable	 frequency:	 the	 frequency	 of	 the	 EIS	 spectrum	 with	 the	 highest	
harmonic	content.		
	
Figure	1	of	[79]	shows	a	detailed	outline	of	the	linearity	assessment	method	used	in	this	
work.	As	explained	in	the	aforementioned	work,	the	linearity	assessment	method	was	
implemented	in	Labview®:	the	developed	program	takes	as	input	the	output	of	Nova®,	
which	contains	the	digitalized	raw	signals	(current	and	voltage)	in	the	time	domain;	and	
the	 transformed	 signals	 in	 the	 frequency	 domain.	 The	 program	 reads	 the	 later,	 and	
calculates	 parameter	 ℘𝑈 .	 Repeating	 this	 process	 for	 each	 one	 of	 the	 excited	
frequencies,	 the	 value	 of	 ℘𝑈 	is	 obtained	 for	 every	 frequency;	 obtaining	 the	
corresponding	℘𝑈	curve.	Then,	the	critical	parameter	is	calculated.	
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3.	Methodology	
	
The	 aim	 of	 this	 work	 is	 to	 obtain	 the	 optimum	 perturbation	 amplitude	 for	 EIS	
measurements	 of	 a	 given	 system:	 the	 cathodic	 electrode	 of	 an	 alkaline	 water	
electrolyser.	The	common	approach	used	in	literature	to	tackle	this	problem	is	to	study	
the	effect	of	the	perturbation	amplitude	on	the	impedance	spectra:	 in	this	approach,	
the	 biggest	 perturbation	 amplitude	 that	 does	 not	 affect	 significantly	 the	 measured	
spectrum	is	selected.	For	example,	this	strategy	was	used	by	Yuan	and	co-workers	[81].	
However,	this	method	has	several	weaknesses.	Firstly,	the	electrochemical	impedance	
spectrum	may	vary	because	of	other	causes	than	the	perturbation	amplitude	(i.e.	non	
stationarity).	 Consequently,	 a	 suboptimal	 amplitude	 may	 be	 selected	 because	 a	
variation	in	the	impedance	spectrum	was	observed,	but	that	variation	was	not	due	to	
the	perturbation	amplitude.	Secondly,	“affect	significantly”	is	quite	fuzzy:	the	criterion	
to	 distinguish	 a	 significant	 distortion	 due	 to	 the	 perturbation	 amplitude	 from	 the	
inherent	variability	of	the	measurement	is	quite	unclear,	and	it	is	generally	left	to	the	
subjectivity	of	the	annalist.	Finally,	this	kind	of	approach	 is	only	useful	for	a	constant	
amplitude	 (frequency	 independent)	 strategy;	 but	 it	 cannot	 be	 used	 for	 a	 frequency	
dependent	 amplitude	 strategy,	 in	 which	 a	 different	 amplitude	 is	 selected	 for	 each	
frequency.	The	linearity	assessment	method	overcomes	all	these	limitations.	
	
In	 this	 work,	 two	 strategies	 were	 considered:	 a	 constant	 amplitude	 strategy	 and	 a	
frequency	 dependent	 amplitude	 strategy.	 In	 order	 to	 achieve	 this	 work’s	 goal,	 the	
galvanostatic	impedance	spectra	of	the	studied	system	were	measured	using	different	
perturbation	amplitudes.	The	 linearity	assessment	method,	described	 in	the	previous	
section,	was	applied	to	each	one	of	the	obtained	spectra:	the		℘𝑈	curve	and	the	critical	
parameter,	℘𝑈M,	were	obtained	for	each	perturbation	amplitude.	On	the	one	hand,	the	
critical	parameters	were	used	for	the	constant	amplitude	strategy,	while	the	℘𝑈	curves	
for	individual	frequencies	were	used	for	the	frequency	dependent	amplitude	strategy.	
		
In	the	constant	amplitude	strategy	case,	the	critical	parameter	curve	was	used	in	order	
to	obtain	the	optimum	perturbation	amplitude.	The	critical	parameter	curve	consists	in	
the	representation	of	the	critical	parameter	℘𝑈M	versus	the	perturbation	amplitude.	As	
it	was	shown	in	[79],	the	optimum	amplitude	in	the	constant	amplitude	strategy	case	is	
determined	by	the	minimum	of	the	critical	parameter	curve.	
	
In	 the	 frequency	 dependent	 amplitude	 strategy	 case,	 the	℘𝑈 	curves	 for	 individual	
frequencies	were	used	in	order	to	obtain	the	optimum	perturbation	amplitude	for	each	
frequency.	These	curves	correspond	with	the	representation	of	the	℘𝑈	parameter	for	a	
given	frequency	versus	the	perturbation	amplitude.	Of	course,	there	is	one	such	curve	
for	each	excited	frequency.	The	optimum	amplitude	for	each	frequency	is	given	by	the	
minimum	of	the	℘𝑈	curve	for	that	frequency.		
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4.	Experimental	work	
	
The	experimental	setup	is	shown	in	figure	1.	The	system	corresponds	with	the		cathodic	
electrode	 of	 an	 alkaline	 water	 electrolyser.	 	 A	 detailed	 description	 of	 the	 system	 is	
presented	in	the	works	of	Herraiz-Cardona	and	co-workers	[82-85].	 In	these	works,	 it	
was	shown	that	the	system	is	strongly	nonlinear.	
	
The	main	element	of	this	experimental	setup	is	an	electrochemical	cell	patented	by	the	
Dpto.	Ingenieria	Quimica	y	Nuclear	of	Universitat	Politècnica	de	València	(Spain)	[86].	It	
consists	in	a	three-electrode	electrochemical	cell	coupled	with	a	heating	water	circuit	
that	allows	controlling	the	temperature	of	the	cell.	One	of	the	electrodes	developed	by	
Herraiz-Cardona	 and	 co-workers	 was	 used	 as	 the	 working	 electrode.	 The	 working	
electrode	 was	 placed	 in	 one	 of	 the	 two	 horizontal	 positions	 available	 in	 the	
electrochemical	 cell.	 It	 consists	 in	 a	 nickel	 electrode	 produced	 at	 very	 high	 current	
densities	using	 the	procedure	described	 in	 [85].	The	geometric	area	of	 the	electrode	
used	in	this	work	was	of	0.5	cm2,	and	its	rugosity	factor	was	around	1000.	This	leads	to	
an	active	surface	of	around	500	cm2.	The	counter-electrode,	a	nickel	foam	with	very	high	
surface	area	(Incofoam®	0.17	cm	thick	and	50	pores	per	linear	inch),	was	placed	in	one	
of	 the	 three	 vertical	 openings	 available	 in	 the	 electrochemical	 cell.	 The	 mentioned	
counter-electrode	was	1	cm	wide,	and	its	submerged	length	was	of	5	cm.	Its	active	area	
was	around	2	orders	of	magnitude	higher	than	the	active	area	of	the	working	electrode.	
Finally,	a	commercial	Ag/AgCl	(3M	KCl)	electrode	was	used	as	the	reference	electrode,	
which	was	placed	in	another	of	the	three	vertical	openings	of	the	electrochemical	cell.	
The	third	vertical	opening	was	left	open	to	the	atmosphere,	in	order	to	act	as	a	gas	vent;	
and	 thus,	 to	 prevent	 overpressures	 inside	 the	 electrochemical	 cell	 due	 to	 the	 gases	
produced	during	the	water	electrolysis.	An	oxygen	free	30	wt.%	KOH	solution	was	used	
as	electrolyte.	Before	each	experimental	session,	fresh	electrolyte	was	prepared	using	
85	wt.%	KOH	Panreac®	 lentils.	 To	avoid	 the	 carbonation	of	 the	electrolytic	 solution,	
which	would	cause	an	increase	of	the	electrolyte	resistance	over	time,	the	electrolyte	
was	deaerated	by	bubbling	nitrogen	for	15	minutes	just	before	starting	the	experiments.	
	
As	explained	in	the	methodology	section,	in	order	to	obtain	the	optimum	perturbation	
amplitude,	 the	 EIS	 spectrum	 of	 the	 system	was	measured	 at	 different	 perturbation	
amplitudes.	In	this	case,	12	different	perturbation	amplitudes	were	considered:	0.1	mA;	
0.5	mA;	1	mA;	2	mA;	…;	10	mA	(peak	to	peak	amplitudes).	All	 the	experiments	were	
carried	out	at	30℃,	in	galvanostatic	mode.	In	preliminary	works,	it	was	observed	that	
the	 most	 nonlinear	 operation	 point	 of	 the	 system	 is	 obtained	 for	 an	 operation	 DC	
current	of	-10	mA,	which	corresponds	to	an	overvoltage	of	around	-200	mV.	In	these	
conditions,	the	production	of	bubbles	is	low,	and	therefore	the	bubble	evolution	effect	
is	negligible.	The	minus	sign	indicates	that	the	working	electrode	acts	as	the	cathode	of	
the	 system.	 All	 the	 experiments	 were	 performed	 at	 this	 DC	 current.	 The	maximum	
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perturbation	amplitude	of	10	mA	was	selected	in	order	to	guarantee	that	the	working	
electrode	acts	as	the	cathode	of	the	cell	during	the	whole	EIS	measurement,	even	for	
the	maximum	perturbation	amplitude.	
	
The	 EIS	 measurements	 were	 performed	 using	 an	 Autolab®	 302N	
potentiostat/galvanostat	 with	 FRA	 module,	 controlled	 using	 NOVA®	 software.	 The	
measurement	frequency	range	was	10	kHz	–	5	mHz,	with	10	frequencies	per	decade.	
Table	1	lists	the	measurement	parameters	used	for	all	the	measurements.	The	meaning	
of	each	one	of	these	measurement	parameters	was	widely	explained	in	a	previous	work	
[87].	In	the	mentioned	work,	a	methodology	for	the	optimization	of	the	measurement	
parameters	is	presented.	
	
Measurements	were	obtained	in	triplicate	in	order	to	control	the	reproducibility	of	the	
obtained	 results.	 Replicates	 of	 each	measurement	were	 not	 performed	 sequentially;	
instead,	the	experiments	were	done	in	three	different	blocks	as	shown	in	table	2,	which	
gives	the	sequence	order	in	which	the	experiments	were	performed.		As	it	can	be	seen	
in	 the	 aforementioned	 table,	 the	 order	 of	 the	 experiments	 inside	 each	 block	 was	
randomized;	instead	of	performing	the	experiments	in	order	of	increasing	or	decreasing	
amplitude.	 The	 random	 order	 strategy	was	 selected	 since	 randomization	makes	 the	
factors	of	time	and	amplitude	independent:	this	means	that	it	allows	to	distinguish	the	
effects	of	the	perturbation	amplitude	from	the	effects	of	possible	time	drifts.	On	the	
contrary,	 if	an	 increasing	amplitude	strategy	 is	used,	 it	 is	not	possible	 to	know	 if	 the	
observed	trends	are	due	to	a	time	drift	of	the	system	or	to	the	effect	of	the	perturbation	
amplitude.		
	
Before	each	experiment,	a	pre-treatment	was	applied	to	the	working	electrode	in	order	
to	 ensure	 similar	 surface	 conditions	 in	 all	 experiments.	 The	 applied	 pre-treatment	
consisted	 in	 applying	 a	 -1.6V	 vs.	 Ag/AgCl	 potential	 (overvoltage	 of	 around	 -350	mV)	
during	30	minutes.	This	treatment	was	done	in	order	to	reduce	any	oxide	film	that	could	
exist	on	the	surface	of	the	porous	electrode	[84],	in	order	to	guarantee	that	the	surface	
of	the	electrode	was	in	similar	conditions	in	all	the	experiments.	This	pre-treatment	is	
critical	 in	 order	 to	 ensure	 the	 reproducibility	 of	 the	 results	 from	 one	 experiment	 to	
another.	
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5.	Experimental	results	
	

5.1.	Constant	amplitude	strategy	
	
Figure	2	presents	 the	 critical	 parameter	 curve	of	 the	output	 signal.	 In	 this	 curve	 the	
critical	parameter,		℘𝑈M,	is	represented	versus	the	perturbation	amplitude.	Next	to	each	
point,	the	critical	frequency	for	that	perturbation	amplitude	is	displayed.	Two	different	
trends	can	be	identified	in	figure	2.	On	the	one	hand,	for	low	perturbation	amplitudes,	
an	increase	in	the	amplitude	causes	a	drop	of	the	critical	parameter	of	the	output	signal.	
On	the	other	hand,	for	high	perturbation	amplitudes,	an	increase	in	the	perturbation	
amplitude	causes	an	increase	of	the	critical	parameter.	The	emergence	of	the	two	trends	
is	due	to	the	fact	that	an	increase	in	the	perturbation	amplitude	causes	two	antagonist	
effects,	 each	 one	 dominating	 in	 one	 of	 the	 two	 identified	 perturbation	 amplitude	
ranges.	The	first	effect	of	an	increase	of	the	perturbation	amplitude	is	the	improvement	
of	the	signal-to-noise	ratio.	The	second	effect	is	the	generation	of	higher	levels	of	non-
fundamental	harmonics	due	 to	nonlinear	effects.	 For	 low	amplitudes,	 the	 first	effect	
dominates	over	the	second	one.	For	this	reason,	in	this	perturbation	amplitude	range,	
the	 net	 effect	 of	 an	 increase	 of	 the	 perturbation	 amplitude	 is	 a	 drop	 in	 the	 critical	
parameter.	In	this	zone,	the	system	behaves	linearly-like;	and	thus,	this	zone	is	defined	
as	the	linear	behaviour	zone	of	the	system,	identified	on	figure	2.	On	the	contrary,	for	
high	perturbation	amplitudes,	the	second	effect	dominates	over	the	first	one.	The	result	
is	 that	 the	net	effect	of	an	 increase	of	 the	perturbation	amplitude,	 in	 this	amplitude	
range,	is	an	increase	of	the	critical	parameter.	Therefore,	the	nonlinear	behaviour	of	the	
system	 is	 significant	 for	 perturbation	 amplitudes	 in	 this	 range.	 For	 this	 reason,	 as	
identified	on	figure	2,	this	amplitude	range	is	defined	as	the	nonlinear	behaviour	zone	
of	the	system.	
	
In	addition,	in	figure	2	it	can	be	observed	that	the	critical	frequency	changes	changes	
from	one	zone	to	the	other.	In	the	linear	behaviour	zone,	the	critical	frequency	is	25	Hz	
for	all	the	perturbation	amplitudes.	This	frequency	is	the	perturbation	frequency	that	
presents	a	higher	noise	level,	due	to	the	coupling	with	the	electric	grid.	This	is	consistent	
with	the	 linear	behaviour	zone	definition:	 in	this	zone	(where	noise	 is	dominant	over	
nonlinear	effects),	the	critical	frequency	corresponds	with	the	frequency	with	a	higher	
noise	 level.	 In	 the	 nonlinear	 behaviour	 zone,	 the	 critical	 frequency	 is	 the	 lowest	
frequency	of	the	frequency	range	(5	mHz)	for	every	perturbation	amplitude.	This	is	due	
to	the	fact	that	nonlinear	effects	only	appear	at	low	frequencies	[78].	Therefore,	in	the	
nonlinear	behaviour	zone	(where	nonlinear	effects	are	dominant	over	noise)	the	critical	
frequency	 is	 the	minimum	measured	 frequency,	which	 is	 the	 frequency	 that	exhibits	
higher	nonlinear	effects.	Consequently,	the	critical	frequency	shift	is	an	indicator	of	the	
domination	switch	from	noise	to	nonlinear	effects.	This	shift	delimits	the	linear	and	the	
nonlinear	zones.		
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The	minimum	point	of	the	critical	parameter	curve	identifies	the	perturbation	amplitude	
that	maximizes	 the	 signal-to-noise	 ratio,	while	maintaining	 the	nonlinear	effects	 in	a	
negligible	level.	This	minimum	point	delimits	the	linear	behaviour	zone	of	the	system,	
and	its	nonlinear	behaviour	zone.	By	the	definition	of	optimum	perturbation	amplitude	
presented	 in	 the	 introduction	 section,	 the	 optimum	 perturbation	 is	 given	 by	 the	
horizontal	 coordinate	 of	 the	minimum	point.	 Consequently,	 it	 can	 be	 deduced	 from	
figure	 2	 that	 the	 optimum	 amplitude	 for	 performing	 EIS	 measurements	 of	 the	
considered	system	with	a	constant	amplitude	strategy,	lays	in	the	range	1	mA	to	3	mA.	
However,	with	the	available	data,	it	can	be	deduced	that	the	best	perturbation	of	the	
list	of	applied	perturbations	corresponds	with	the	2	mA	perturbation.	
	

5.2.	Frequency	dependent	amplitude	strategy	
	
Figure	3	shows	the	℘𝑈	curves	obtained	for	2	different	perturbation	amplitudes	(2	mA	
and	10	mA).	These	curves	consist	in	the	representation	of	the	℘𝑈	parameter	versus	the	
perturbation	signal	frequency,	for	a	given	perturbation	amplitude.	These	curves	display	
the	characteristic	shape	described	in	detail	in	a	previous	work	[79].	Comparing	both	℘𝑈	
curves,	two	different	trends	can	be	identified:	for	 low	frequencies,	an	increase	in	the	
perturbation	amplitude	causes	the	 	℘𝑈	curve	to	shift	to	higher	values;	while	for	high	
frequencies,	an	increase	in	the	perturbation	amplitude	causes	the		℘𝑈	curve	to	shift	to	
lower	values.	It	can	be	deduced	that,	in	this	perturbation	amplitude	range,	the	system	
behaves	quasi-linearly	for	high	frequencies;	and	nonlinearly	for	low	frequencies.	This	is	
due	to	 the	existence	of	a	 frequency	 threshold	above	which	nonlinear	effects	are	not	
generated	 even	 for	 very	 high	 perturbation	 amplitudes	 [56,	 73].	 This	 shows	 that	 the	
sensibility	 of	 a	 system	 to	 nonlinear	 effects	 is	 frequency	 dependent:	 for	 a	 given	
perturbation	amplitude,	 a	given	 system	can	behave	 linearly	 in	a	 frequency	 zone	and	
nonlinearly	in	another	frequency	zone.	This	observation	motivates	the	need	to	consider	
a	frequency-dependent	perturbation	amplitude:	large	perturbation	amplitudes	may	be	
applied	in	the	linear	frequency	zone	(in	order	to	improve	as	much	as	possible	the	signal-
to-noise	 ratio);	and	 low	perturbation	amplitudes	have	 to	be	applied	 in	 the	nonlinear	
frequency	zone	(in	order	to	avoid	distortions	of	the	spectrum	due	to	nonlinear	effects).	
	
Figure	 4	 displays	 the	 individual	 frequency	 ℘𝑈 	curves	 of	 4	 different	 excitation	
frequencies	 (10	 kHz,	 50	 Hz,	 20	 Hz,	 and	 5	 mHz).	 These	 curves	 correspond	 with	 the	
representation	 for	 a	 given	 frequency	 of	 the	℘𝑈 	parameter	 versus	 the	 perturbation	
amplitude.	On	the	one	hand,	for	high	frequencies	(10	kHz	and	50	Hz),	only	one	trend	is	
observed:	℘𝑈 	decreases	 (logarithmically)	 with	 the	 perturbation	 amplitude.	 This	 is	
consistent	with	the	expression	of	℘𝑈(𝑓)	obtained	for	the	linear	behaviour	zone	in	[79].	
It	can	be	deduced	that	the	system	behaves	linearly	for	every	perturbation	amplitude	for	
these	frequencies.	Consequently,	the	maximum	perturbation	amplitude	(10	mA)	can	be	
used	 for	 these	 frequencies	 in	 order	 to	 maximize	 the	 signal-to-noise	 ratio,	 since	 no	
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nonlinear	effects	appear	at	these	frequencies.	On	the	other	hand,	for	low	frequencies	
(20	Hz	and	5	mHz)	two	trends	can	be	observed.	The	explanation	of	the	two	trends	was	
already	 presented	 in	 the	 previous	 section.	 The	 optimum	perturbation	 amplitude	 for	
these	frequencies	is	determined	from	the	minimum	of	the	curve.		
	
Using	this	strategy	for	every	excitation	frequency,	the	optimum	amplitude	was	obtained	
for	 each	 frequency.	 The	 results	 are	 shown	 in	 figure	 5.	 It	 can	 be	 observed	 that	 high	
perturbation	amplitudes	should	be	used	for	high	frequencies;	while	 low	perturbation	
amplitudes	 should	 be	 used	 for	 low	 frequencies.	 This	 is	 consistent	with	 the	 fact	 that	
nonlinear	effects	only	appear	under	a	threshold	frequency.	Above	this	frequency,	very	
high	amplitudes	can	be	used	(maximization	of	signal-to-noise	ratio)	without	generating	
significant	nonlinear	effects.	3	peaks	can	be	observed	in	the	aforementioned	figure:	the	
maximum	amplitude	should	be	used	for	the	50	Hz,	the	25	Hz	and	the	12.5	Hz	points.	
These	points	are	below	the	frequency	threshold,	since	nonlinear	effects	start	appearing	
at	250	Hz.	However,	these	points	present	very	high	noise	levels	because	of	coupling	with	
the	 electric	 grid.	 That	 is	 the	 reason	 why	 at	 these	 frequencies	 nonlinear	 effects	 are	
masked	by	noise,	even	at	the	maximum	perturbation	amplitude.		
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6.	Conclusions	
	
In	 conclusion,	 the	 presented	 linearity	 method	 was	 successfully	 used	 to	 obtain	 the	
optimum	perturbation	amplitude	for	EIS	measurements	of	the		cathodic	electrode	of	an	
alkaline	water	 electrolyser	 for	 two	 strategies:	 a	 frequency	 independent	perturbation	
amplitude	strategy	and	a	frequency	dependent	perturbation	amplitude	strategy.		
	
For	the	frequency	independent	perturbation	amplitude	strategy	the	optimum	amplitude	
is	2	mA;	whereas	for	the	frequency	dependent	perturbation	amplitude	strategy,	high	
amplitude	should	be	used	for	high	frequencies	and	low	amplitude	for	low	frequencies.	
	
Even	 if	 in	 this	work	 the	method	has	only	been	applied	 to	 this	particular	 system;	 the	
method	can	be	used	for	perturbation	amplitude	optimization	in	any	system.	The	great	
advantage	 of	 this	 method	 is	 that	 it	 allows	 a	 rigorous	 and	 quantitative	 perturbation	
amplitude	selection.	Furthermore,	the	presented	method	allows	to	obtain	the	optimum	
perturbation	amplitude	for	each	frequency	in	a	frequency	dependent	strategy.	This	kind	
of	strategy	 is	 required	 in	systems	 in	which	 frequency	has	an	 important	effect	on	 the	
sensibility	of	a	system	to	nonlinear	effects.	
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7.	Nomenclature	
	
Latin	letters	
	
ℱ		 	 Fourier	transform	operator	
𝑓		 	 Frequency	 𝐻𝑧 	
𝑓Y 		 	 Critical	frequency	 𝐻𝑧 	
𝐼		 	 Current	in	the	time	domain	 𝐴 	
𝐼		 	 Current	in	the	frequency	domain	 𝐴 	
𝑁U		 	 Number	of	measured	frequencies	
𝑗		 	 Imaginary	unit	
𝑡		 	 Time	domain	independent	variable	 𝑠 	
𝑈		 	 Voltage	in	the	time	domain	 𝑉 	
𝑈		 	 Voltage	in	the	frequency	domain	 𝑉 	
𝑍			 	 Complex	impedance	 Ω 	
𝑍′			 	 Impedance	real	part	 Ω 	
𝑍′′			 	 Impedance	imaginary	part	 Ω 	
	
Greek	letters	
	
Δ𝐼	 	 Galvanostatic	perturbation	amplitude	 𝐴 	
𝜗	 	 Frequency	domain	independent	variable	 𝐻𝑧 	
𝜔		 	 Angular	frequency	 𝑟𝑎𝑑 ∙ 𝑠1F 	
℘𝑈			 	Ratio	 between	 the	most	 important	 non-fundamental	 harmonic	 of	 the	

voltage	signal,	and	its	fundamental	component	 𝑑𝐵 	
℘𝑈M			 Critical	parameter	for	the	voltage	signal	 𝑑𝐵 	
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Table	1.	EIS	measurement	parameters	
Measurement	parameter	 Value	

Integration	time	 1.0	𝑠	
Number	of	integration	cycles	 1	𝑐𝑦𝑐𝑙𝑒	
Number	of	stabilization	cycles	 10	𝑐𝑦𝑐𝑙𝑒𝑠	
Maximum	stabilization	time	 3.0	𝑠	

Minimum	stabilization	cycle	fraction	 0.00	
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Table	2.	Experiment	order	
Order	 Block	 Experiment	 Order	 Block	 Experiment	 Order	 Block	 Experiment	

1	

1	

0.1	mA	 13	

2	

3	mA	 25	

3	

9	mA	
2	 5	mA	 14	 9	mA	 26	 7	mA	
3	 4	mA	 15	 2	mA	 27	 4	mA	
4	 1	mA	 16	 0.5	mA	 28	 2	mA	
5	 0.5	mA	 17	 5	mA	 29	 0.1	mA	
6	 7	mA	 18	 10	mA	 30	 6	mA	
7	 3	mA	 19	 7	mA	 31	 0.5	mA	
8	 2	mA	 20	 8	mA	 32	 1	mA	
9	 6	mA	 21	 0.1	mA	 33	 10	mA	
10	 8	mA	 22	 4	mA	 34	 8	mA	
11	 9	mA	 23	 1	mA	 35	 5	mA	
12	 10	mA	 24	 6	mA	 36	 3	mA	
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Figure	1.	Experimental	setup	
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Figure	2.	Output	signal	critical	parameter	curve	
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Figure	3.	℘𝑈	𝑐𝑢𝑟𝑣𝑒𝑠	𝑓𝑜𝑟	𝑡𝑤𝑜	𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠	
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Figure	4.	℘U	curve	versus	perturbation	amplitude	for	different	excitation	frequencies		
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Figure	5.	Optimum	perturbation	amplitude	for	each	frequency	
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