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Abstract: An alternative approach based on statistical Bayesian inference is 
presented to deal with the development of color-difference models and the 
precision of parameter estimation. The approach was applied to simulated 
data and real data, the latter published by selected authors involved with the 
development of color-difference formulae using traditional methods. Our 
results show very good agreement between the Bayesian and classical 
approaches. Among other benefits, our proposed methodology allows one to 
determine the marginal posterior distribution of each random individual 
parameter of the color-difference model. In this manner, it is possible to 
analyze the effect of individual parameters on the statistical significance 
calculation of a color-difference equation. 
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1. Introduction 

Most of the published work regarding color-difference models has been based on the CIE TC-
1.3 Guidelines for Coordinated Research on Color-Difference Evaluation [1]. Guidelines for 
step one, which are related to object colors that consist mainly for the determination of 
perceptual ellipsoids around different color centers, can be summarized as follows: 

1. Prepared samples are well distributed in the neighborhood of a selected color center. 

2. Selection of the psychophysical data-collection technique. There are two main 
techniques: Pass-Fail, with two variants: Threshold and Constant Stimuli Method, 
and the Gray Scale. 

A selected team of observers is asked if pairs of samples, viewed under very 
controlled conditions, match or not (threshold method), or if the perceived color 
difference of the sample pairs look less or greater than a standard selected pair 
(constant stimuli method). The Constant Stimuli and Threshold Methods have been 
widely used by many authors [2–4]. 

Alternatively, observers can be asked to give a value (using a reference gray scale), 
with pairs of patches ordered from lowest to highest, to determine the measured 
color difference ΔE. The chosen number should indicate that the perceived 
difference between the corresponding pair of patches in the reference scale and the 
difference between the observed pairs appear the same (gray scale method [5,6],). 

3. Collect visual data depending on the chosen psychophysical method. If the gray scale 
method is selected, a visual difference, ΔVi, is assigned to each sample pair based on 
the average of each observer-selected grade (number of the reference gray scale) 
transformed to the fitted ΔEi values of the scale that correspond to ΔVi. 

The relative frequency of acceptances (pass) or rejections (fail) reported by 
observers, that a pair of samples match or not, if the threshold method is selected, or 
that the color difference of a pair of samples exceeds or not a standard pair, if 
constant stimuli method is selected, can be related to the estimated visual difference 
using a psychometric function. 

Several s-shaped, psychometric functions can be used: the cumulative normal 
distribution, as used by many authors such as Luo & Rigg [7]; and the Gaussian 
density, as used by Rich et al. [2]. In this way, when used in tandem with the inverse 
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function (probit, logit, other log functions) it is possible to translate frequency data in 
a linearly measured color-difference space. 

4. Fit visual iVΔ  data to measured iEΔ  data, calculated using Eq. (1) if iEΔ  is 

evaluated in chromaticity space, Yxy; or by Eq. (2) if iEΔ  is evaluated in CIELAB 

space. Any equivalent expression can be used when there are small differences in the 
other color spaces (Brown et al [8]). 

 2 2 2 2
1 2 3 4 5 62 2 2i i i i i i i i i iE g x g y g Y g x y g x Y g y Y= + + + + +Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ  (1) 

 2 2 2 2
1 2 3 4 5 62 2 2i i i i i i i i i iE g a g b g L g a b g a L g b LΔ = + + + + +Δ Δ Δ Δ Δ Δ Δ Δ Δ  (2) 

5. Calculate the jg  coefficients using the difference between iEΔ  and iVΔ  to minimize 
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= Δ − Δ , or by choosing other goodness-of-fit criteria such as the linear 

correlation coefficient between iEΔ  and iVΔ , as used by Kuehni [9]. Other 

goodness-of-fit criteria should be considered by finding the minima of the other 
objective f -functions. 

Friele [10], Luo & Rigg [6], and Cheung & Rigg [11] proposed the following 
function: 

 
22

1

2n

i ii if V E W
=
 = Δ −Δ    (3) 

Where iW  is a weighting factor chosen to give more influence to data pairs that are 

closer to the fitted ellipsoid. 

Berns & Hou [12] used, for supra-threshold differences, the following weighted 
function: 

 [ ]2

1
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=
= Δ −Δ   (4) 

For threshold and constant stimuli cases, jg  coefficients can be determined using 

algorithms that find the best fit between the observed frequencies, iP , and the 

estimated probabilities, iP . These are obtained by using psychometric (s-shaped) 

functions, such as the logistic function, shown in Eq. (5), the Gaussian function, 
shown in Eq. (6) and the normal cumulative distribution function, shown in Eq. (7): 

 ( )E1/ 1  i
iP eα β+ Δ= +  (5) 

Where α  and β  are parameters that are optimized during the fit. 

 ( ) ( )2 2/1 1 iE
iP p e σ− Δ= − −  (6) 

Where p  (a false-alarm parameter) and σ  are parameters that are optimized during 

the fit. 
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Where α  and β  are parameters that are optimized during the fit. 

In such cases, ellipsoid coefficients can be found via methods that minimize the 
quadratic deviation Eq. (8), or by using alternative weighted methods such as one 
that uses the difference between the observed and calculated frequencies, e.g. 
Strocka [13], Witt [14], etc.: 

 ( )( )2

1
min  

n

i ii
P P

=
−  (8) 

An alternative method that is also widely used by other authors [15], is to find the 
coefficients that maximize the likelihood of the samples of observed data. 

The likelihood for constant stimuli, or the threshold method, can be calculated using 
Eq. (9) under the assumption that the absolute frequency of the observers judging a 
pair passes or fails a color comparison follows a binomial distribution: 
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Where ir  is the number of positive answers, in  is the number of presentations of 

pair i , and N is the number of pairs. 
As we can see, the aforementioned methods estimate model parameters (treated usually as 

regression coefficients) via an inference process based on least-squares or the maximum 
likelihood method. The estimation process is, usually, followed via model checking. The 
checking procedure can include: 

1. Evaluation of the accuracy of the estimated parameters. Find confidence intervals of 
the parameters, or the standard error. 

2. Determine the goodness-of-fit of the model. The overall goodness-of-fit can be 
checked by evaluating the coefficient of determination ( 2R ), the Pearson’s 
correlation coefficient ( r ), as recommended by Kichner [15], or by the chi-squared 
test (Alman et al. [16]). Alternatively, a more specific statistic related to the color-
difference field, such as STRESS (Standardized Residual Error Sum of Squares), as 
recommended by García et al. [17], or the combined index PF/3 as proposed by 
Guan & Luo [18], can be used. Most of the recent published work regarding the 
performance of color-difference formulae [19–23] is based on goodness-of-fit 
measurements. 

3. Check the structural assumptions of the model (independence, normality, or 
homoscedasticity of errors). 

4. Detection of possible outliers, or highly unlikely observations, given the assumed 
model. 

The aforementioned methodology is what we call the standard or “frequentist” approach 
to color-difference models. This approach includes the notion of frequentist probability as the 
limit of the relative frequency of the appearance of a possible event in a large number of trials 
of a random experiment. Often, scientists refer to frequentist probability as a physical or 
objective probability that is associated with a random process. Under this approach, it is 
possible to assign a probability to a random process. In contrast, in Bayesian probability 
(which is often referred as subjectivist probability or evidential probability), a probability is 
assigned to any process or statement even when random processes are not involved. This 
approach can be defined as the degree of belief to which a statement or process is supported 
by evidence. 
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In the frequentist approach to inference, unknown parameters are often, but not always, 
treated as fixed, and hence there is no way to associate probabilities to them. In this branch of 
statistics, parameter estimation, hypothesis testing, and confidence intervals are based on the 
underlying influence of the parameter to a random component of data. Under this approach, 
we define a statistic to estimate the parameter that is expected to be random before a 
measurement has taken place. We can estimate a parameter by maximizing its calculated 
likelihood, and thus selecting the parameter that maximizes the probability of being observed 
in the data, and then manage the reliability of the estimation by defining a confidence interval. 

This measure of uncertainty is difficult to interpret due to the subtleties involved. For 
example, a confidence interval of 95% confidence level does not mean that the probability 
that the parameter belongs to the selected interval is 95%. After a sample has been taken, the 
parameter is either in or out of the interval, so that the probability can only be either 1 or 0, 
which is deterministic and not random. A 95% confidence level indicates the probability that 
the extremes of an interval selected in accordance to a specific procedure from a sequence of 
samples captures the true population parameter. That is, the relative frequency with which the 
confidence interval would include the true value in a long sequence of repetitions of the 
experiment. 

In contrast, a Bayesian inference allows probabilities to be associated with the unknown 
parameters. The Bayesian approach allows us to incorporate prior knowledge regarding the 
parameters of a given model. The uncertainty of the unknown parameters is quantified using a 
probability so that the unknown parameters are regarded as random variables. Prior parameter 
probability distributions can be modified using new data acquired from experiments. The goal 
is to find the resulting posterior probability distribution of the parameters given new and 
previous knowledge. The core of this inference method is Bayes' theorem, which relates prior 
knowledge with a posterior probability: 

 

( ) ( ) ( )
( ) ( ) ( )| | * | *

P parameter
P parameter data P data parameter P data parameter P parameter

P data
= ∝   

 (10) 
Where ∝  indicates that the posterior distribution of parameters is proportional to the 

likelihood of data, given the parameters, and is multiplied by the prior distribution of the 
parameters. 

( )P data  acts as a ‘normalizing’ constant, independent of parameters, which is necessary 

to ensure that the posterior distribution integrates to one. 
Once we have determined the posterior distribution of the parameters, the problem of 

estimation is solved and many questions regarding the accuracy of the process can be easily 
determined. One can calculate the expected value of the parameters from the posterior 
distributions, and obtain a measure of the accuracy of the process by means of the standard 
deviation, credible intervals, or via any other measure of dispersion. 

Bayesian credible intervals are analogous to frequentist confidence intervals. Unlike 
frequentist confidence intervals, however, a credible interval of 95% expresses that the 
estimation of the parameter, through the posterior probability distribution, is between the 
extremes of the interval with a 95% probability. In this sense, credible intervals are more 
intuitive and easier to interpret than confidence intervals. 

The whole process of running a color-difference model, following both approaches, can be 
summarized as follows: 

a. Frequentist 
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1. Specify a probability model for the dependent variable. For example, 

( )~ , i i ir Binomial n p  for pass-fail methods, or ~ ( , )i i iV Normal m σΔ  for the gray-

scale method. 

2. Find a maximum likelihood estimator for jg  and its coefficients ( ˆ )jg . 

3. Measure the uncertainty or accuracy of the estimation using the standard error or a 
confidence interval, assuming a distribution of ˆ jg  (usually a multivariate normal 

distribution). 

4. Check the goodness-of-fit or other structural assumptions of the model. 

b. Bayesian 

1. Specify a probability model for the dependent variable ( ( )~ , i i ir Binomial n p ) for 

pass-fail methods, or ~ ( , )i i iV Normal m σΔ  for the gray-scale method) and specify 

the prior distribution of ig  and other parameters involved in the model. 

2. Find the posterior distributions of the parameters using Bayes' rule and other 
conditional dependencies, and calculate the posterior mean. 

3. Measure the uncertainty using standard deviations, credible intervals, quartiles, etc. 

4. Check the goodness-of-fit or other structural assumptions of the model. 
In this paper, we present a Bayesian approach for finding ellipsoidal coefficients of pass-

fail methods. We show how to define a color-difference model from a Bayesian point of view, 
and how to implement and simulate the posterior distribution of parameters using the 
OpenBUGS software. To check the performance of the model, our approach was applied to 
simulated (aka “theoretically perfect”) data, generated from 94EΔ  ellipsoids created from 

hypothetical observed frequencies given by the Gaussian psychometric function Eq. (6), and 
to real data published by Witt & Döring [14]. 

2. Method 

The color-difference problem can be assimilated to a special case of a generalized linear-
regression model by means of a link function, such as a logistic Eq. (5), a Gaussian Eq. (6) or 
a normally cumulative function Eq. (7). In all the cases, except for Gaussian link function, the 
problem is essentially non-linear with respect to jg , due to the square root of EΔ . 

As mentioned above, the first step when running a difference color model from a Bayesian 
point of view is to specify the probability distribution of the dependent variable. In this paper, 
we applied the Bayesian approach to the threshold and constant stimuli method to fit the 
observed frequencies to those predicted by the model. In this case, the dependent variable, the 
frequency, follows a binomial distribution. We state this using Eq. (11): 

 ( )~ ,i i ir Binomial n p  (11) 

Where ip  can be estimated using a psychometric function. If we use the Gaussian 

psychometric function Eq. (6), then the estimated value of ip , iP , is given by Eq. (12): 

 ( )
( )

( )
2 2 2 2

1 2 3 4 5 6
2 2

  2  2  2

1 1 1 1
i i i i i i i i i iE g a g b g L g a b g a L g b L

iP p e p eσ σ
Δ Δ + Δ + Δ + Δ Δ + Δ Δ + Δ Δ

− −
= − − = − −  (12) 

Under the cited hypothesis, the likelihood is given by Eq. (13), assuming that it has no 
false alarm factor, p = 0 (thus pairs with no instrumental color difference are not allowed), 
and fixing 1σ = , thus transferring all of the variation to just the jg  coefficients. 
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 (13) 
If our prior knowledge of the parameters is accumulated using a probability distribution 

function  )(j jP g , the posterior probability distribution of jg  is given by Eq. (14), assuming 

that jg  are independent. 
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|
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− Δ + Δ + Δ + Δ Δ + Δ Δ + Δ Δ

= =

∝

 − 
 
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 (14) 

However, before we can calculate the posterior probability distribution, we must ensure 
that 2ΔE 0i >  for any combination of jg . This can be achieved using the Cholesky 

decomposition. 
The Cholesky decomposition method states that if G is a symmetric matrix with real 

entries, and is positive-definite, then G can be decomposed as G = L*L’, where L is a lower 
triangular matrix with strictly positive diagonal entries and L’ denotes the transpose of L. 

Conversely, the product L*L’ of a lower triangular matrix with strictly positive diagonal 
entries will result in a symmetric positive-definite matrix: 

 
1 4 5 1 1 4 5

4 2 6 4 2 2 6
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0 0

0 * 0 .

0 0
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 (16) 

G is positive-definite, if d1, d2, and d3 > 0. Thus, before we compute jg  we must first 

compute jd , replacing the values of jg  shown in Eq. (14) by the corresponding values shown 

in matrix Eq. (16) Once the replacement is done, we can compute the posterior distribution of 

jd , as shown in Eq. (17): 
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 (17) 

Under the cited assumptions (depending on the priors selected) it is not always possible to 
analytically compute the posterior distribution of jg  or jd . However, by using simulation via 

Monte Carlo methods, one can generate random samples of the parameters, and from them 
estimate the posterior mean, median, standard deviation, and other probability distribution 
parameters. 

It is possible, using the Gibbs sampling algorithm [24] or the slice-sampling algorithm 
proposed by Neal [25], to sample from a distribution using an arbitrary density function that is 
known only up to a constant of proportionality. These algorithms generate Markovian 
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sequences whose stationary distribution is the target distribution. Gibbs and slice samplers are 
also referred to as Markov Chain Monte Carlo (MCMC) algorithms. They differ from other 
MCMC algorithms in that a proposal distribution is not needed. 

The posterior distribution of the parameters given by Eq. (17) can be easily defined and 
sampled using Matlab's “slicesample” function, or by using the OpenBUGS software [26]. 

OpenBUGS is an open source version of the University of Helsinki's (in Finland) 
WinBUGS, the first experimental version of BUGS for windows. BUGS is an acronym of 
Bayesian inference Using Gibbs Sampling. BUGS is the ancestor of WinBUGS and more 
recently OpenBUGS. The MRC Biostatistics Unit initiated the BUGS project in 1989. Latest 
versions of WinBUGS are developed at the Imperial College School of Medicine at St. 
Mary’s London, UK. 

OpenBUGS allows one to build complex statistical Bayesian models. Models can be 
specified using a simple code, which is similar to the S language, or by means of a graphical 
interface (aka a DOODLE interface). Graphical models implemented by the BUGS software 
belong to a class known as Directed Acyclic Graphs (DAGs). The background theory 
regarding DAGs allows one to break down the analysis into a sequence of relatively simple 
computations that reveal the conditional dependence of the model variables. 

The possibility to specify the conditional dependence easily by OpenBUGS makes this 
software more efficient and faster than Matlab for building Bayesian models. 

The proposed BUGS doodle dag for model given by Eq. (17) is shown in Fig. 1. 

 

Fig. 1. BUGS doodle of the color-difference model using Cholesky decomposition and the 
Gaussian psychometric function. 

A Doodle has three elements: nodes, edges, and plates. 
A node can be stochastic, logical, or constant. Stochastic and logical nodes are elliptically 

shaped while constant nodes are square shaped. 
Stochastic nodes are associated with a probability density function whose parameters 

depend exclusively on linked parent nodes. Logical nodes are deterministic and therefore are 
associated with defined non-stochastic functions whose parameters are dependent parent 
nodes. Constant nodes are related to fixed data and have no parent nodes. 
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Edges represent direct links. They can also represent either logical (thick hollow arrow) or 
stochastic (thin solid arrow) dependencies. 

Plates are used to represent repeated parts of the graph. 
The graph represents the assumption of conditional independence of the stochastic nodes, 

so that the full joint distribution can be factorized in terms of the conditional distribution of 
each of the nodes, given its parents. 

An equivalent model to that shown in Fig. 1, which instead uses the BUGS formal 
language, is shown in Fig. 2. A complete description of the model syntax and other details can 
be consulted in the WinBUGS manual [26]. See Ntzoufras [27] for a very good introduction 
to the principles of Bayesian modeling, model building, and implementation using 
WinBUGS. 

 

Fig. 2. BUGS model using formal language for color difference model using Cholesky 
decomposition and Gaussian psychometric function equivalent to doodle model shown in Fig. 
1. 

Notice that the six lines of code after the initial “{” refer to the specification of the prior 
probability distributions of the parameters. The next six lines refer to the logical links needed 
to compute jg  from their Cholesky coefficients jd , and the code inside the ‘for’ loop refers 

to the likelihood specification. 
After the model definition and implementation, we have to compile and run the model 

with the data provided. As mentioned above, two data sets have been used to check the 
performance of our approach. The first is a theoretical one, where the hypothetical frequency 
of affirmative answers to the question: “there is a noticeable difference”, is applied to color 
differences that are uniformly distributed around the five-color center, as suggested by 
Robertson [1]. These were calculated from 94EΔ  and the psychometric Gaussian function Eq. 

(6) using no false alarm parameter (p = 0) and 2 1/ log(2)σ =  so that  0.5 if  1i iP E= Δ = . The 

second data set corresponds to data series II from Witt & Döring [14], which were obtained 
using the pair-comparison method. 
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The distribution of samples around the color centers of the theoretical data set were 
selected over 24 equally spaced vector directions, similarly to the sample design specified by 
Alman, Berns, Snyder & Larsen [16]. Each vector direction has a maximum length of 

3EΔ = , and samples are distributed uniformly in each direction at 3 / sE NΔ =  intervals 

(where sN  is the number of samples in each direction, excluding the origin). Figure 3 shows 

the case when sN  = 2. 

 

Fig. 3. Theoretical color-difference data set corresponding with sN  = 2 samples uniformly 

distributed in 26 vector directions shown around a color center. 

Theoretical absolute-frequency data calculated using the aforementioned procedure for 

sN  = 2, and 40 repeating observer trials for five Robertson’s [1] recommended color centers 

is show in Table 1. Note that frequency data have been rounded to the nearest integer. 
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Table 1. Theoretical absolute frequency for each of the samples shown in Fig. 3, around 

five Robertson’s [1] color centers. These values were calculated using 94EΔ  and the 

Gaussian link function, and 40 observer repeating trials. The calculated frequency values 
have been rounded to the nearest integer. 

Delta vector 
Absolute frequency  

Delta vector 
Absolute frequency 

Color Center  Color Center 

da* db* dL* R Y G B Gy  da* db* dL* R Y G B Gy 

−0.87 −0.87 −0.87 19 22 23 24 32  1.5 0 0 10 16 9 20 32 

−1.73 −1.73 −1.73 37 38 39 39 40  3 0 0 27 35 27 38 40 

0 −1.06 −1.06 25 23 27 24 32  −1.06 0 1.06 24 26 24 27 32 

0 −2.12 −2.12 39 39 40 39 40  −2.12 0 2.12 39 39 39 40 40 

0.87 −0.87 −0.87 23 20 23 22 32  0 0 1.5 32 32 32 32 32 

1.73 −1.73 −1.73 39 38 39 38 40  0 0 3 40 40 40 40 40 

−1.06 −1.06 0 7 13 15 17 32  1.06 0 1.06 24 26 24 27 32 

−2.12 −2.12 0 23 32 34 36 40  2.12 0 2.12 39 39 39 40 40 

0 −1.5 0 15 6 20 10 32  −0.87 0.87 −0.87 24 20 23 22 32 

0 −3 0 34 20 38 27 40  −1.73 1.73 −1.73 39 38 39 39 40 

1.06 −1.06 0 17 10 16 14 32  0 1.06 −1.06 25 23 27 24 32 

2.12 −2.12 0 35 28 35 32 40  0 2.12 −2.12 39 39 40 39 40 

−0.87 −0.87 0.87 19 22 23 24 32  0.87 0.87 −0.87 19 22 23 24 32 

−1.73 −1.73 1.73 37 38 39 39 40  1.73 1.73 −1.73 37 38 39 39 40 

0 −1.06 1.06 25 23 27 24 32  −1.06 1.06 0 17 10 15 14 32 

0 −2.12 2.12 39 39 40 39 40  −2.12 2.12 0 36 27 34 34 40 

0.87 −0.87 0.87 23 20 23 22 32  0 1.5 0 15 6 20 10 32 

1.73 −1.73 1.73 39 38 39 38 40  0 3 0 33 19 38 28 40 

−1.06 0 −1.06 24 26 24 27 32  1.06 1.06 0 7 13 16 18 32 

−2.12 0 −2.12 39 39 39 40 40  2.12 2.12 0 21 31 35 37 40 

0 0 −1.5 32 32 32 32 32  −0.87 0.87 0.87 24 20 23 22 32 

0 0 −3 40 40 40 40 40  −1.73 1.73 1.73 39 38 39 39 40 

1.06 0 −1.06 24 26 24 27 32  0 1.06 1.06 25 23 27 24 32 

2.12 0 −2.12 39 39 39 40 40  0 2.12 2.12 39 39 40 39 40 

−1.5 0 0 10 16 9 21 32  0.87 0.87 0.87 19 22 23 24 32 

−3 0 0 28 35 25 38 40  1.73 1.73 1.73 37 38 39 39 40 

The actual experiment was carried out by generating theoretical samples taken from 10 
equal steps in each of the 26 specified directions around each color center. Supposedly, each 
sample should be judged 100 times by all hypothetical observers. 

A slight modification to the model shown in Fig. 2 is needed to check the performance of 
Bayesian approach with respect to the results of Witt & Döring [14], which were calculated 
using the logistic psychometric function Eq. (5) and the maximum likelihood method Eq. (9). 
The modified model is shown in Fig. 4. 
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Fig. 4. The BUGS model using formal language for the color-difference model, which includes 
Cholesky decomposition and the logistic psychometric function. 

3. Results 

The Bayesian model and theoretical data sets were implemented using OpenBUGS and 
Matlab's ‘slicesample’ function. The results obtained from each were very similar. Processed 
results from generated Markov Chains using OpenBUGS are shown in Table 2. Table 2 shows 
the 50% ellipsoid coefficients for Robertson’s color centers, as predicted by the Bayesian 
model and computed using ΔE94. The coefficients ' jg  shown are the 50% probability ellipsoid 

coefficients, and were calculated by dividing the jg  coefficients of Eq. (17) by log(2) . As 

can be seen, the OpenBUGS results are very similar to the theoretical ones. The calculated 
OpenBUGS ' jg  coefficients differ from the theoretical ΔE94 coefficients in the fourth decimal 

position only. Hue angle differences are smaller than a tenth of a degree and the principal axes 
of the ellipsoids differ by less than a hundredth from the theoretical value. 
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Table 2. Ellipsoid coefficients pertaining to a 50% probability: theoretical values versus 
those predicted by the Bayesian model. Theoretical data obtained from 26 vector 
directions and 10 steps on each direction, deltaE94 color difference formula, 100 

theoretical observers judging each pair and Gauss psychometric 

function. / (2)= logj jg'  g , to obtain the 50% probability ellipsoid coefficients of Eq. 

(17), where a, b, c are the principal semi-axis lengths of the ellipsoid and θ is the angle 
between the projection of the major axis of the ellipsoid with respect to the positive semi-

axis a*. The angle θ of the dE94 ellipsoid corresponds with the hue angle (
*
abh ) of the 

color center. 

Color 
[L* a* 

b*] Model 1g'  2g' 3g'  4g'  5g'  6g'  a b c 
θ 

(deg) 

R
ed

 

[47 37,23] 

dE94 0.1842 0.2956 1.0000 −0.1128 0.0000 0.0000 2.96 1.65 1.00 31.87 

Bayesian 0.1843 0.2948 0.9979 −0.1125 0.0005 0.0001 2.96 1.65 1.00 31.92 

Y
el

lo
w

 

[87 −7 
47] 

dE94 0.3357 0.1067 1.0000 0.0349 0.0000 0.0000 3.14 1.71 1.00 98.47 

Bayesian 0.3357 0.1069 0.9975 0.0351 0.0000 0.0000 3.13 1.71 1.00 98.52 

G
re

en
 

[56 −32 
0] 

dE94 0.1680 0.4565 1.0000 0.0000 0.0000 0.0000 2.44 1.48 1.00 
180.0
0 

Bayesian 0.1676 0.4553 0.9942 0.0000 0.0000 0.0000 2.44 1.48 1.00 
180.0
0 

B
lu

e 

[36,5–30] 

dE94 0.4636 0.1862 1.0000 0.0476 0.0000 0.0000 2.37 1.46 1.00 
279.4
6 

Bayesian 0.4624 0.1868 1.0021 0.0477 0.0000 0.0000 2.37 1.46 1.00 
279.5
4 

G
ra

y 

[62 0 0] 

dE94 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.00 1.00 1.00 0.00 

Bayesian 1.0009 1.0012 1.0009 0.0000 0.0000 0.0000 1.01 1.00 1.00 0.00 

Results computed by OpenBUGS from simulated chains of theoretical red-color centers 
are shown in Table 3. Moreover, shown are the mean, median, standard deviation, Monte 
Carlo error (MC_error) and 2.5 and 97.5 percentiles computed from the simulated chains of 
the marginal posterior distribution of the model's parameters. Monte Carlo errors were 
determined by calculating the standard deviation of the mean of chain batches of a determined 
size that was controlled by the user (100 in Table 3). MC errors must be low in order to 
calculate parameters with increased precision. 
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Table 3. Results from the red-color center using the OpenBUGS model and theoretical 
data shown in Table 2, which are equivalent to a color-difference experiment with 232 

pairs and 100 observers judging once each pair. Sd is the standard deviation, MC_error 
is the Monte Carlo error, and 2.5 pc and 97.5 pc are the 2.5 and 97.5 percentiles. The 
sample indicates the number of chain samples that were considered to simulate the 
posterior distributions. Start indicates the first sample considered after the burning 

period needed to obtain convergence of the distribution. 

 Mean Sd Mc_error 2.5 pc Median 97.5 pc Start Sample 

g1 0.1277 0.0049 0.0001 0.1181 0.1277 0.1376 1001 10000 

g2 0.2043 0.0061 0.0001 0.1927 0.2043 0.2163 1001 10000 

g3 0.6918 0.0114 0.0002 0.6696 0.6918 0.7140 1001 10000 

g4 −0.0779 0.0040 0.0001 −0.0858 −0.0779 −0.0700 1001 10000 

g5 −0.0003 0.0070 0.0002 −0.0139 −0.0003 0.0132 1001 10000 

g6 0.0000 0.0072 0.0001 −0.0140 −0.0001 0.0142 1001 10000 

The last two columns in Table 3 show the start sample obtained after the burning period, 
used to get convergence, and the number of iterations (size) of the simulated chain once 
convergence was reached. As can be seen, all of the samples have been obtained after a 
burning period of 1000 iterations. All chains have a sample size of 10.000 elements. 

Markov chain trace plots of the estimated parameters are shown in Fig. 5. As can be seen, 
convergence and mixing were achieved after a burning period of 1000 iterations (burning 
period not show in the plot). The corresponding density (histogram kernel smoothed) plots are 
shown in Fig. 6. 

Convergence stability can be observed in Figs. 7 & 8. The parameter autocorrelation 
function (ACF) converged very quickly. For a lag greater than 4, ACF is nearly zero and for a 
very few iterations the moving average over 100 iterations was very stable. 
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Fig. 5. Trace plots of the posterior parameter distributions after a burning period of 1000 
iterations. 

 

Fig. 6. Density plots of the estimated marginal posterior distributions of the model parameters. 
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Fig. 7. Sample autocorrelation function (ACF) values show small values as lag increases. 

 

Fig. 8. A moving average over 100 iterations shows that convergence is reached after a few 
iterations. 

Results corresponding to the series II data set from Witt & Döring [14] for the average 
group of observers are shown in Table 4. 
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Table 4. Comparing the BUGS results for data Series 2 in xyY color space to those of 
Witt & Döring [14]. a, b, c are principal semi-axis lengths of the ellipsoid. θ is the angle 

between the projection of the major axis of the ellipsoid with respect to the positive semi-
axis x, and φ is the angle between the major axis of the ellipsoid with respect to the 

horizontal (xy) plane. 

Color Center Green 

Color difference method Anchor Pair/S 2 

Color space/Coordinates xyY = [0.2514 0.36382 24.3] 

Source Witt BUGS 2σ (BUGS) 

g1 
6(10 )−

 0.5351 0.5543 0.09 

g2 
6(10 )−

 0.4279 0.4773 0.08 

g3 8.542 8.7660 1.20 

g4 
6(10 )−

 0.13419 0.1512 0.06 

g5 
3(10 )−

 0.4126 0.4077 0.24 

g6 
3(10 )−

 −0.883 −0.1287 0.23 

a 
3(10 )  1.72 1.72 0.15 

b 
3(10 )  1.26 1.23 0.09 

c 0.3417 0.34 0.02 

θ (deg) 126 130 11 

φ (deg) 2.1967 2.4393 1.5 

Results previously translated to CIELab space, are also shown in Table 5. 

Table 5. Comparing the BUGS results for data Series 2 in CIELab color space to those of 
Witt & Döring [14]. a, b, c are principal semi-axis lengths of the ellipsoid. θ is the angle 

between the projection of the major axis of the ellipsoid with respect to the positive semi-
axis a, and φ is the angle between the major axis of the ellipsoid with respect to the 

horizontal (ab) plane. 

Color Center Green 

Color difference method Anchor Pair/S 2 

Color space/Coordinates Lab = [56.4 −31.4 1.2] 

Source Witt* BUGS 2σ (BUGS) Witt** 

g1 2.05 2.1125 0.39 2.11 

g2 10.03 10.9791 1.54 10.95 

g3 9.81 10.1196 1.36 10.10 

g4 1.72 1.7309 0.59 1.72 

g5 1.78 1.8511 0.57 1.85 

g6 1.25 1.0670 1.07 1.08 

a 0.8394 0.8236 0.08 0.82 

b 0.3397 0.3258 0.02 0.33 

c 0.2911 0.29 0.02 0.29 

θ (deg) 170.238 170.9051 3 170.93 

φ (deg) 10.44 10.8502 3.0 10.90 
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Two methods of calculation were used to translate the Witt ellipsoidal data from xyY to 
Lab space. Coefficients calculated using the first method, whose results are shown in Table 4 
in column labeled ‘Witt*’, were calculated using a direct translation of the quadratic form 
xyY space to Lab space, by means of the corresponding transformation matrices, which can 
be constant for small changes in the coordinates around the color center. Coefficients 
calculated via the second method, whose results are shown in column labeled ‘Witt**’ from 
Table 5, were calculated using the maximum log- likelihood method for the xyY data points 
translated to Lab space. 

As we can see, in the case of the theoretical data, the results agree quite well with the 
objective values, taking into account the dispersion of the posterior parameter distribution. 

The dispersion observed in the theoretically perfect fit corresponds to two causes: 
a) Rounding errors in the observed frequencies because the binomial distribution is 

discrete and not continuous. In fact, when repeating the same experiment using the theoretical 
samples, the uncertainties of the coefficients were reduced as the number of repetitions 
increased, as is expected to occur in the frequentist approach. 

b) Although the experiment was conducted using continuous samples that were perfectly 
adjusted to the psychometric curve, the results should have some uncertainty. This is stated by 
the initial hypothesis, in that the frequency of acceptance by observers that a color pair 
matches follows a binomial distribution. We must note that the variance of a binomial 
distribution, in relative terms, is the product p*(1-p), where p is the expected probability. 
Thus, a variance at 50% of the expected probability is 0.25 multiplied by the number of 
repetitions. 

Results in Table 4 show a good match between the ellipsoid coefficients calculated using 
Bayesian approach, and those calculated by Witt & Döring [14] in plane ‘xy’. However, less 
agreement is seen for other coefficients, specifically g6, when the ‘Y’ direction is implied. 
This can be explained by the differences in the distribution of samples around ‘x’, ‘y’, and ‘Y’ 
axes. 

The orientation of the Bayesian ellipsoid differs from that of Witt & Döring [14] by less 
than 4 degrees. This difference is inside the posterior credible interval of 98% probability 
(≈2σ = 11° ) of the orientation parameter, as can be seen in Table 4. In the same way, 
principal axis sizes match quite well. 

The same applies when the Witt & Döring [14] data are translated to CIELab space, as can 
be seen in Table 5. It seems that a smaller range of variation of the data along the ‘b’ and ‘L’ 
axes is present, especially when compared to that of the ‘a’ axis. This implies that greater 
values of posterior standard deviations of the corresponding parameters are associated with 
those axes. 

Figure 9 shows that the color cloud of the Witt & Döring [14] S2 data series varies over a 
wider range along the ‘a’ axis ( 0.625aσ = ) than along the ‘b’ axis ( 0.343)bσ =  and the ‘L’ 

axis ( 0.423)Lσ = , which is opposite to the corresponding posterior standard deviation of the 

‘g’ parameters, as can be observed in Table 5 (column 2σ). 
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Fig. 9. Witt & Döring [14] S2 data series translated to CIELab space and 50% probability 
ellipsoid projections into coordinate planes. (o) Considered color pairs that fail the matching 
test by less than 50% of the judgments. (x) Considered color pairs that fail the matching test by 
more than 50% of the judgments (repetitions). Standard deviations of the color cloud are: 

a b Lσ 0.625,σ 0.343,σ 0.423= = = . 

4. Conclusions 

The proposed Bayesian approach produces good results with the studied data sets. The mean 
values of the posterior parameter distributions are consistent with the theoretical values, and 
those calculated by other authors using different procedures (within the order of accuracy 
determined by the posterior standard deviation). Different models with different psychometric 
curves are easily implementable using MATLAB or other more specialized tools such as 
OpenBUGS. 

Convergence is reached very rapidly, before 1000 iterations, using Cholesky 
decomposition, which always guarantees 2 0EΔ >  when computed by Eq. (1) if properly 
selected priors for jd  coefficients are used. 

Processing time basically depends on the number of model parameters and the 
characteristics of the computer and software. OpenBUGS processing is significantly faster 
than MATLAB; MATLAB computing times can be 30% larger and convergence problems 
may arise, which usually depend on the configuration for generating Markov chains. 
OpenBUGS processing times can range from 5 to 20 seconds per 1000 iterations. 

The accuracy of parameter estimation depends mainly, as for the frequentist models, on 
the number of repetitions for which each pair of visual stimuli is judged, and less dependent 
on the number of the point cloud around the color center. 

The advantage of using the Bayesian approach is that the interpretation of the results in 
relation to the level of confidence and the precision is much more intuitive. Bayesian models 
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allow one to incorporate previous knowledge regarding the parameters by means of priors, 
which is not possible in frequentist models. 

The influence of low-informative priors on posterior distributions is small for a modest 
high number of repetitions (around 40), similar to that needed by frequentists to obtain 
relevant confidence intervals of the estimated parameters. 

Another advantage of the Bayesian approach is that the uncertainty of the model can be 
stated separately via the posterior marginal parameters distribution, which can tell us how to 
modify data sets to improve estimations. 

Determination of confidence intervals using the frequentist approach requires harder 
simplifying assumptions than those needed by Bayesians. Hypothesis tests are more difficult 
to be stated and to be justified, many of which are based on hypothetically known 
distributions that are met when the sample size is very large, which is not required in the 
Bayesian approach. 

In general, Bayesian statistics are able to estimate more complex models than classical 
approaches. 
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