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[1] At higher frequencies, metal loss effects in passive waveguide components become
more pronounced and hazardous. In this paper, we propose two integral equation
techniques, based on the generalized admittance and impedance matrices, for the accurate
consideration of losses in the metal walls of waveguide junctions. Both techniques
have been evaluated in terms of accuracy and numerical efficiency, and conclusions are
drawn regarding the best properties of the admittance parameter formulation. Finally,
combining such technique with a classical perturbative method for considering
propagation losses, we have successfully predicted all loss effects in two real waveguide
filters used for commercial applications.
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1. Introduction

[2] The modeling of losses due to nonperfect conduct-
ing materials used in the fabrication of microwave
components is a fundamental key for an accurate char-
acterization of passive waveguide devices, such as filters,
couplers, polarizers, orthomode transducers, diplexers
and multiplexers [see Matthaei et al., 1980; Conciauro
et al., 2000]. These components are key elements in most
present and future wireless and/or space communication
systems operating at higher frequencies (microwave and
millimeter-wave bands), where the conventional ap-
proach of neglecting losses or considering them as a
second-order effect, as followed by Alvarez et al. [1996],
is no longer valid. In this high-demanding scenario, an
accurate consideration of the metal loss effects within the
present computer-aided design (CAD) tools of passive
waveguide devices is required [see Melloni and Gentilli,
1995].

[3] The effect of losses in microwave waveguides and
cavities has been under consideration in the technical
literature during recent decades. A first approximation
for the analysis of the metal losses only considers the
attenuation of the power flow in the direction of prop-
agation due to the finite conductivity of the waveguide
metallic ones [see, e.g., Balanis, 1989; Collin, 1991]. In
this perturbation method it is assumed that the electro-
magnetic fields for a given mode in the presence of finite
conductivity walls are essentially the same as when the
conductivity is infinite. As a consequence, the surface
currents flowing on the guide walls can be directly
calculated. Such approach permits to evaluate the losses
in the walls from the known surface current density of
the unperturbed mode, which directly leads to the calcu-
lation of the modal attenuation constant related to the
propagation direction. Another very early contribution to
the general properties of degenerated modes in lossy
waveguides, which are treated by employing a variation-
al method, can be found in work by Gustincic [1963].
However, all these perturbative approaches do not take
into account the losses in the transversal metallic walls of
the waveguide junctions, which can be important as
proved by Hueso et al. [2004].
[4] Therefore, in order to increase the accuracy of

modern CAD tools, the rigorous consideration of the
losses due to the transversal metallic wall of a junction
between two waveguides with different cross sections
should be included. Up to now, very few techniques have
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been developed in order to solve accurately junctions of
waveguides with finite wall conductivity. For instance,
an E field mode-matching method combined with the
conservation of complex power technique was first
proposed by Wade and McPhie [1990], whereas a pure
mode-matching technique formulated in terms of electric
and magnetic currents, and leading to the generalized
scattering matrix (GSM) representation, can be found in
work by Trinchero et al. [1997]. Both works show very
interesting preliminary results, but information about
numerical efficiency and convergence issues (i.e., the
relative convergence phenomenon widely documented
by Leroy [1983], Itoh [1989], and Sorrentino et al.
[1991]) are missed. More recently, the longitudinal and
transversal attenuation constants for a lossy waveguide
(also including the presence of lossy dielectrics) have
been evaluated by means of a nonperturbative technique
by Mattes and Mosig [1999], but such an approach
cannot presently deal with waveguide junctions.
[5] In this context, the objective of this work is to

extend both admittance and impedance integral equation
formulations, originally proposed by Gerini et al. [1998]
for the lossless case, to the accurate consideration of
metal losses in waveguide junctions. The basics of this
theory for the generalized admittance matrix (GAM)
formulation can be found in work by Hueso et al.
[2004], where it was successfully applied to a few simple
examples. In this paper, the theory extension for solving
the same problem in terms of a generalized impedance
matrix (GIM), as well as the efficient solution of both
integral equation formulations, are detailed. Then a
comparative study of GAM and GIM techniques in terms
of numerical robustness and efficiency is presented, thus
revealing the best performance of the admittance param-
eter formulation. Finally, combining the GAM technique
with the classical perturbation method cited before [see
Balanis, 1989; Collin, 1991], we have successfully
predicted all loss effects in two real application proto-
types: an inductive band-pass filter at 28 GHz for local
multipoint distribution systems (LMDS) and a commer-
cial filter composed of a band-pass and a low-pass
section for a C band (6 GHz) communication satellite.

2. Theory

[6] In this section we present the theory developed for
the accurate consideration of metal losses at waveguide
junctions. After a brief review of the integral equation
technique leading to the admittance matrix representa-
tion, we derive the novel expressions for the impedance
matrix case. Next, the efficient implementation of both
techniques is fully described.
[7] Let us consider a general lossy junction between

two waveguides of arbitrary cross section as shown in
Figure 1. According to Figure 1, the cross sections of the

waveguides on each region (d = 1, 2) are defined as
CS(1) = A [W and CS(2) = A. The tangential electric and
magnetic fields at each waveguide region are

E
dð Þ
t ¼

X1
n¼1

V dð Þ
n e dð Þ

n H
dð Þ
t ¼

X1
n¼1

I dð Þ
n h dð Þ

n ð1Þ

where Vn and In are the modal voltages and currents,
respectively, whereas en and hn are the waveguide modal
vector functions [see Marcuvitz, 1986].

2.1. Admittance Integral Equation Formulation

[8] For a good conductor, the boundary conditions of
the tangential electric field are

E
1ð Þ
t rð Þ ¼ E

2ð Þ
t rð Þ r 2 A ð2Þ

E
1ð Þ
t rð Þ � ZsJs rð Þ r 2 W ð3Þ

where Js(r) is the surface current density and Zs is the
surface impedance, which for good conductors can be
approximated as follows [see Balanis, 1989]

Zs ¼ 1þ jð ÞRs ¼ 1þ jð Þ
ffiffiffiffiffiffi
wm
2s

r
ð4Þ

As it is well known, in (4) w represents the angular
frequency, m the magnetic permeability of the medium,
and s the metal conductivity.
[9] The original boundary conditions (2) and (3) can

be rewritten as a single equation

E
1ð Þ
t rð Þ � 1� x rð Þ½ �ZsJs rð Þ ¼ x rð ÞE 2ð Þ

t rð Þ 8r 2 A [W

ð5Þ

Figure 1. Lossy junction in the plane of the aperture
(z = 0).
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where x(r) is an auxiliary function defined in the
following way

x rð Þ ¼ 1 if r 2 A

0 elsewhere

�
ð6Þ

[10] Proceeding now as indicated by Hueso et al.
[2004], we easily obtain the next two sets of Fredholm
integral equations of the second kind

e 1ð Þ
n sð Þ ¼ 1� x sð Þ½ �ZsN 1ð Þ

n sð Þ

þ
Z Z

CS 1ð Þ
N 1ð Þ

n s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
ZZ

CS 2ð Þ
N 1ð Þ

n s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð7Þ

x sð Þe 2ð Þ
n sð Þ ¼ 1� x sð Þ½ �ZsN 2ð Þ

n sð Þ

þ
Z Z

CS 1ð Þ
N 2ð Þ

n s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
Z Z

CS 2ð Þ
N 2ð Þ

n s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð8Þ

where Nn
(d) are the unknown basis functions to be solved,

whereas K(1)(s, s0) and K(2)(s, s0) are the kernels defined as

K 1ð Þ s; s0ð Þ ¼
XN 1ð Þ

m¼1

Ẑ 1ð Þ
m e 1ð Þ

m sð Þ � e 1ð Þ
m s0ð Þ

þ
X1

m¼N 1ð Þþ1

Z 1ð Þ
m e 1ð Þ

m sð Þ � e 1ð Þ
m s0ð Þ ð9Þ

K 2ð Þ s; s0ð Þ ¼
XN 2ð Þ

m¼1

Ẑ 2ð Þ
m e 2ð Þ

m sð Þ � e 2ð Þ
m s0ð Þ

þ
X1

m¼N 2ð Þþ1

Z 2ð Þ
m e 2ð Þ

m sð Þ � e 2ð Þ
m s0ð Þ ð10Þ

[11] In (9) and (10), N(d) means the number of
accessible modes considered in each waveguide,
whose concept was already introduced by Rozzi and
Meelenbrauker [1975]. On the other hand, Zn

(d) is the
modal impedance [see Marcuvitz, 1986], and Ẑn

(d)

denotes its asymptotic behavior as defined by Hueso
et al. [2004]. For the accelerated evaluation of both
kernels, it is recommended to follow the technique
described in Appendix A.
[12] Once the two integral equations are solved as

detailed in section 2.3, we can easily compute the
admittance matrix elements of the lossy junction as
follows

I dð Þ
m ¼

XN 1ð Þ

n¼1

�V 1ð Þ
n Y d;1ð Þ

m;n �
XN 2ð Þ

n¼1

�V 2ð Þ
n Y d;2ð Þ

m;n ð11Þ

where

Y d;gð Þ
m;n ¼

ZZ
CS dð Þ

N gð Þ
n s0ð Þ � e dð Þ

m s0ð Þ ds0 ð12Þ

and the auxiliary voltages �Vn are defined in Figure 2.

2.2. Impedance Integral Equation Formulation

[13] A completely dual procedure to the one just
described before can be followed to formulate a
generalized impedance matrix representation of the
lossy waveguide junction. In this case, the starting
equations are obtained from forcing the boundary

Figure 2. Generalized admittance matrix representation of the lossy waveguide junction.
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conditions for the tangential magnetic field of a good
conductor

H
1ð Þ
t rð Þ ¼ H

2ð Þ
t rð Þ r 2 A ð13Þ

ZsH
1ð Þ
t rð Þ � ẑ� E

1ð Þ
t rð Þ r 2 W ð14Þ

where Zs is the surface impedance previously defined in
(4), and equation (14) has been obtained taking vectorial
products in both sides of equation (3)

ẑ� E
1ð Þ
t rð Þ ¼ Zsẑ� H

1ð Þ
t rð Þ � ẑ

� �
ð15Þ

[14] It must be noted that equations (14) and (3) are
completely dual if (14) is rewritten in terms of the metal
surface admittance Ys. For very good conductors, which
is the most typical situation, it is well known that such
admittance tends to infinity, thus requiring more terms in
the series appearing in (14) to satisfy the equation.
Therefore it can be expected that the impedance formu-
lation will behave rather worse than the admittance one
in terms of convergence speed.
[15] Now we can rewrite (13) and (14) as a single

equation

z rð ÞH 1ð Þ
t rð Þ � 1� x rð Þ½ � ẑ� E

1ð Þ
t rð Þ

� �
¼ x rð ÞH 2ð Þ

t rð Þ 8r 2 A [W ð16Þ

where the following auxiliary function has been
introduced

z rð Þ ¼ x rð Þ þ Zs 1� x rð Þð Þ ð17Þ

Then, following a dual procedure to the one detailed by
Hueso et al. [2004], we finally obtain the next two sets of
Fredholm integral equations of the second kind

z sð Þh 1ð Þ
n sð Þ ¼ 1� x sð Þ½ �M 1ð Þ

n sð Þ

þ z sð Þ
Z Z

CS 1ð Þ
M 1ð Þ

n s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
Z Z

CS 2ð Þ
M 1ð Þ

n s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð18Þ

x sð Þh 2ð Þ
n sð Þ ¼ 1� x sð Þ½ �M 2ð Þ

n sð Þ

þ z sð Þ
Z Z

CS 1ð Þ
M 2ð Þ

n s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
Z Z

CS 2ð Þ
M 2ð Þ

n s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð19Þ

where Mn
(d) are now the unknown basis functions. In this

case, the two integral equation kernels K(1)(s, s0) and
K(2)(s, s0) have dual expressions to the ones shown in (9)
and (10) for the admittance case and can be simply
obtained by replacing in such two equations Ẑm

(d), Zm
(d)

and em
(d) by Ŷ m

(d), Ym
(d) and hm

(d), respectively. Therefore the
acceleration technique described in Appendix A for the
efficient computation of both kernels can also be
followed.
[16] Once the unknown Mn

(d) basis functions are solved
as shown in section 2.3, the impedance matrix elements
of the lossy junction can be easily computed as

Z d;gð Þ
m;n ¼

ZZ
CS dð Þ

M gð Þ
n s0ð Þ � h dð Þ

m s0ð Þ ds0 ð20Þ

In this case, the generalized impedance matrix represen-
tation of the lossy junction is shown in Figure 3, where

Figure 3. Generalized impedance matrix representation of the lossy junction.
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the presence of asymptotic modal admittances (Ŷ n
(d)) in a

shunt configuration can be seen.

2.3. Efficient Solution of the Integral Equations

[17] To solve the integral equations previously de-
rived for the admittance and impedance matrix for-
mulations, the well-known Galerkin version of the
method of moments (MOM) described by Harrington
[1992] will be employed. A different expansion for the
basis functions, with respect to the one proposed by
Gerini et al. [1998], has been used in this work. In
our case, we have chosen modal solutions belonging
only to region (1) (bigger waveguide), which has
allowed us to achieve a complete set of modal

functions for expanding the unknown vector functions
Nn
(d) (Mn

(d)) for the admittance (impedance) formulation.
Therefore

N dð Þ
n sð Þ or M dð Þ

n sð Þ �
XM dð Þ

q¼1

a n;dð Þ
q f 1ð Þ

q sð Þ ð21Þ

s 2 AþW ; n ¼ 1; 2; . . . ;N dð Þ; d ¼ 1; 2

where fq
(1) will be eq

(1) for the admittance case and hq
(1) for

the impedance formulation.
[18] Then the application of Galerkin’s procedure pro-

vides a simple linear problem. The integral equations for
both formulations can be handled in terms of a suitable
defined linear operator L as shown next

XM dð Þ

q¼1

a n;dð Þ
q hLf 1ð Þ

q ; f 1ð Þ
p i � hf dð Þ

n ; f 1ð Þ
p i ð22Þ

where p = 1, 2, . . ., M(d), thus obtaining M(d) equations
with the same number of unknowns, and h�,�i means the
usual inner product defined in the domain A + W.
[19] For the admittance formulation, the operator L

acts in the following way

Lf ¼ 1� x sð Þ½ � Zsf sð Þ þ
Z Z

CS 1ð Þ
f s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
Z Z

CS 2ð Þ
f s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð23Þ

Figure 4. Centered waveguide step.

Figure 5. Magnitude of the transmission coefficient for a centered step considering a perfect
conductor showing a comparison with the lossless Z-IE formulation. The input waveguide is a WR-
75 (a1 = 19.05 mm and b1 = 9.525 mm), and the output waveguide dimensions are a2 = 14 mm and
b2 = 7 mm.
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whereas for the impedance case it is defined as follows

Lf ¼ 1� x sð Þ½ � f sð Þ þ z sð Þ
Z Z

CS 1ð Þ
f s0ð ÞK 1ð Þ s; s0ð Þ ds0

þ x sð Þ
Z Z

CS 2ð Þ
f s0ð ÞK 2ð Þ s; s0ð Þ ds0 ð24Þ

[20] From this point, the classical Galerkin approach
can be easily followed. The operator L should be applied
to each mode eq

(1) (admittance case) or hq
(1) (impedance

case), and the expressions can be easily written in terms
of coupling integrals among the modal vector functions
of the waveguides involved in the lossy junction. For the
efficient evaluation of such coupling integrals, the reader
is referred to Appendix B.

3. Results

[21] To validate the theory presented in this paper, we
have compared the loss effects predicted by our model
with the numerical results provided by Ansoft HFSS
v.8.5, as well as with experimental measurements. In this
study, for comparative purposes, a Pentium IV platform
running at 2.8 GHz with 1 GB DDRAM has been used
for computing our results and those provided by HFSS.
[22] This section is organized as follows. First, a

convergence study has been carried out in order to
compare the admittance and impedance formulations.
For that purpose, the losses introduced by the frontal
walls of a simple waveguide step have been analyzed.
Once the metal losses are accurately considered in the

waveguide junctions, the propagation losses in the wave-
guide sections connecting such junctions in real passive
devices have been included following a classical pertur-
bation approach. Then we have considered two real
devices whose experimental electrical responses are
available. The measured S parameters of an inductive
filter for LMDS applications and of a satellite commer-
cial filter are successfully compared with the simulated
results provided by the proposed technique.

3.1. Convergence Study

[23] To start the validation of both formulations, we
have chosen a simple waveguide step, shown in Figure 4,

Figure 6. Magnitude of the transmission coefficient for a centered step made with copper (sCu =
5.8� 107 S/m) showing a comparison with HFSS results. The dimensions are described in Figure 5.

Figure 7. Photographs of a four-pole symmetric LMDS
filter in WR-28 (a = 7.112 mm and b = 3.556 mm),
where the inductive coupling irises have equal length
(2.5 mm) and widths (4.939 mm, 3.799 mm, and
3.578 mm), and the cavities have equal width (8.636 mm)
and lengths (4.696 mm and 5.555 mm).
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where the shaded area has been first considered as a
perfect conductor. For this limit case, the comparison is
performed with the classical impedance integral equation
(Z-IE) technique which does not consider losses in the
device, already validated by Gerini et al. [1998] and
therefore used as a reference.

[24] To get convergent results (see Figure 5), the
reference method has required only one accessible
mode, 70 basis functions for the Galerkin MOM,
and 250 terms in the kernels. Both admittance and
impedance matrix techniques results (considering a
very high value for the metal conductivity) are also

Figure 8. Detailed view of the insertion losses of the LMDS filter considering the conductivity
value of the aluminum alloy. The Y-IE results are compared with HFSS data and experimental
measurements.

Figure 9. Magnitude of the S parameters of the LMDS filter considering the conductivity value of
the aluminum alloy and comparing experimental measurements.
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represented in Figure 5. We can see that the results
provided by the admittance matrix formulation are
very accurate, and they have been reached using only
one accessible mode, 250 basis functions for the
Galerkin MOM, and 400 terms in the kernels. On
the other hand, in order to recover the less accurate
results provided by the impedance matrix formulation
(see Figure 5), one accessible mode, 2500 basis
functions for the Galerkin MOM, and 8000 terms in
the kernels have been required. Therefore the conver-
gence is reached at a very high CPU cost in the case
of the impedance formulation, as was already predicted
theoretically in section 2.2. It is interesting to remark
that this behavior is completely opposite to what
happens in the lossless case, where impedance IE
outperforms admittance IE, that is, in terms of con-
vergence [see Gerini et al., 1998].
[25] Once the two proposed formulations have been

initially validated with a lossless case, we have studied
the convergence behavior of both techniques for pre-
dicting the losses of the waveguide step shown in
Figure 4 when the shaded area is made of copper
(sCu = 5.8 � 107 S/m). In this case, the results provided
by HFSS for such a lossy junction are selected as a
reference.
[26] For comparative purposes, all the results for this

lossy junction are shown together in Figure 6. As
happened for the lossless case, the Y-IE formulation
converges faster and better to accurate results than the
Z-IE technique. In fact, to get the excellent results
provided by the Y-IE algorithm, only 12 s were needed
for solving 250 frequency points, whereas HFSS and
Z-IE algorithm did require 60 and 1000 min, respectively.
As a consequence, the admittance matrix formulation has
been selected for the accurate analysis of real waveguide
devices considered next.

3.2. LMDS Filter at 28 GHz

[27] Next, we have studied all loss effects in a four-
pole filter used at the input front end of an LMDS
receiver operating in the Ka band. A prototype of such
filter has been made (see Figure 7) employing an
aluminum alloy of conductivity equal to 1.2 � 107 S/m.
This inductive and symmetric LMDS filter has been
designed (see dimensions of the structure in the caption
of Figure 7) to have a band-pass response of 800 MHz
bandwidth centered at 28 GHz.
[28] In Figure 8, we can see a detailed view of the

LMDS filter insertion losses. Figure 8 includes the
simulated results using the Y-IE formulation and HFSS
considering the conductivity value of the employed
aluminum alloy, as well as a comparison with the
experimental measurements of the prototype. As can
be seen, our results agree with those given by the
commercial software. However, the two simulated

results are slightly different from measurements, which
can be attributed to several reasons. First, the real
conductivity of a material can be altered from its
nominal value by environment temperature and humid-
ity. Besides, additional insertion losses can be intro-
duced by each specific manufacturing technique.
Finally, conductivity values are typically provided at
zero frequency (direct current (DC). However, at
higher frequencies (microwaves and millimeter waves),
such values can be affected by the surface properties,
since the induced electrical current flows in smaller
layers.
[29] To alleviate such small differences, or even for

predicting conductivity values for unknown materials,
we can make use of our accurate simulation tool in order
to find an equivalent conductivity which allows us to
recover experimental results. This process obviously
needs previous measurements in order to calibrate the
equivalent conductivity value. Proceeding in this way,

Figure 10. Dimensions (in mm) of the C band filter.
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the loss effects in new manufactured filters using the
same materials and fabrication techniques could be
accurately predicted.
[30] The complete reflection and transmission

responses of this LMDS filter are shown in Figure 9.
To compute these results, our simulation tool only takes

14 min for 250 frequency points (3.4 s per frequency
value), whereas HFSS requires about 140 min.

3.3. C Band Communication Satellite Filter

[31] Finally, a commercial communications satellite
filter has been fully characterized. This device consists

Figure 11. Magnitude of the S parameters for a commercial communications satellite filter
considering the equivalent conductivity and comparing experimental measurements.

Figure 12. Detailed view of the magnitude of the S parameters for a commercial communications
satellite filter considering the equivalent conductivity and comparing experimental measurements.
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of the cascade of an eight-pole band-pass filter, a six-pole
low-pass filter, and two double plane step transformers,
and it has been designed for operating in the C band (see
dimensions in Figure 10). A prototype was built using
two aluminum blocks with subsequent silver plating and
was measured experimentally by Alvarez and Guglielmi
[1994].
[32] In this example, since we did not know a

nominal value for the conductivity of the silver-plated
aluminum, we found an equivalent conductivity value
for such real material following the calibration proce-
dure just described before (sEq = 3 � 107 S/m). As
should be expected, this equivalent value is higher than
the conductivity of the aluminum alloy used in the
previous example (1.2 � 107 S/m) and smaller than
pure silver (6.7 � 107 S/m). Using the predicted
equivalent value, we computed the transmission and
reflection parameters shown in Figure 11. A detailed
view of the band-pass insertion losses is shown in
Figure 12, which are approximately equal to 0.2 dB.
The complete analysis of this device has only taken
52 min for 200 frequency points (i.e., 15.6 s per
frequency value).

4. Conclusions

[33] Two extended integral equation techniques for
the accurate consideration of losses in waveguide junc-
tions are presented and evaluated. From this compara-
tive study, we conclude that the impedance integral
equation formulation does not offer good convergence
results. On the contrary, the admittance formulation
provides accurate loss characterization with very low
CPU cost. The theory proposed for the lossy junctions
has been combined with a classical perturbative
approach for considering all loss effects present in
passive waveguide structures. Successful results for
two real filters used in LMDS and space applications
have proved the accuracy and numerical efficiency of
the proposed theory.

Appendix A: Efficient Computation of

Integral Equation Kernels

[34] For this purpose, we have extended a procedure
originally proposed by Boria and Guglielmi [1997] and
already applied successfully to the lossless case by
Gerini et al. [1998]. Proceeding in this way, the kernels
of our two integral equation formulations can be evalu-
ated as

K dð Þ s; s0ð Þ ¼ K̂ dð Þ s; s0ð Þ �
XR
r¼1

k2r ~̂K
dð Þ
2r s; s0ð Þ ðA1Þ

where K̂(d) and ~̂K2r
(d) have the following expressions

K̂ dð Þ s; s0ð Þ ¼
X1
m¼1

X̂ dð Þ
m f dð Þ

m sð Þ � f dð Þ
m s0ð Þ ðA2Þ

~̂K
dð Þ
2r s; s0ð Þ ¼ B2r

X1
m¼N dð Þþ1

X̂ dð Þ
m

1

k
dð Þ
c;m

 !2r

f dð Þ
m sð Þ � f dð Þ

m s0ð Þ

ðA3Þ

and R is usually set to 4, since it has been verified that it
provides very accurate results in negligible computation
time.
[35] In (A2) and (A3), Xm

(d) and fm
(d) mean Zm

(d) and em
(d)

for the admittance case and Ym
(d) and hm

(d) for the imped-
ance formulation, respectively. In the admittance matrix
formulation, we have for the TE case

B2r ¼ � 1

r!2r

Yr
i¼1

2i� 1ð Þ ¼ � 1

2
;� 3

8
;� 5

16
;� 35

128
; . . .

ðA4Þ

and for the TM case

B2r ¼ � 1

r!2r

Yr
i¼1

2i� 3ð Þ ¼ 1

2
;
1

8
;
1

16
;
5

128
; . . . ðA5Þ

[36] For the impedance matrix formulation, because of
duality, the expressions of the B2r coefficients for the TE
(TM) modes are the ones corresponding to the TM (TE)
modes of the admittance case.
[37] Then, all of the infinite summations involved in

the computation of the integral equation kernels are now
frequency independent and can therefore be evaluated
only once outside the frequency loop.

Appendix B: Efficient Evaluation of

Coupling Integrals

[38] It should be pointed out that, in our case, the
following new terms involving coupling integrals in the
W region appear

Am;n ¼
ZZ

W

e 1ð Þ
m sð Þ � e 1ð Þ

n sð Þ ds ðB1Þ

[39] Obviously, the Am,n coupling integral would be
dm,n if the integration domain was A [ W, because of the
well-known orthonormalization condition of standard
modes [see Marcuvitz, 1986]. Using such normalization
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property, these terms can be easily computed in the
following way

Am;n ¼
Z Z

W

e 1ð Þ
m sð Þ � e 1ð Þ

n sð Þ ds

¼
Z Z

A[W
e 1ð Þ
m sð Þ � e 1ð Þ

n sð Þ ds�
Z Z

A

e 1ð Þ
m sð Þ

� e 1ð Þ
n sð Þ ds

¼ dm;n �
Z Z

A

e 1ð Þ
m sð Þ � e 1ð Þ

n sð Þ ds ðB2Þ

[40] In the previous expression, we have transformed
an integration on the metallic wall W into an integration
on the small aperture A (whose implementation is typi-
cally easier). In any case, the Am,n terms are frequency
independent, and therefore they can also be computed
outside the frequency loop. Following this procedure, the
loss effects in passive waveguide components can be
considered very efficiently.
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