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Abstract

Following Schachermayer, a subset B of an algebra A of subsets of €2 is said to have the N-property if a
B-pointwise bounded subset M of ba(A) is uniformly bounded on A, where ba(A) is the Banach space of the
real (or complex) finitely additive measures of bounded variation defined on .A. Moreover B is said to have
the strong N-property if for each increasing countable covering (B,,),, of B there exists B, which has the
N-property. The classical Nikodym-Grothendieck’s theorem says that each o-algebra S of subsets of {2 has
the N-property. The Valdivia’s theorem stating that each o-algebra S has the strong N-property motivated
the main measure-theoretic result of this paper: We show that if (B,,, )m, is an increasing countable covering
of a g-algebra S and if (Bmhmz,“,?mp,mﬁl)m,,ﬂ is an increasing countable covering of By, ims,,....m,, for each
p,m; € N, 1 <i < p, then there exists a sequence (n;); such that each By, n,,....n,., 7 € N, has the strong N-
property. In particular, for each increasing countable covering (B, ), of a o-algebra S there exists B,, which
has the strong N-property, improving mentioned Valdivia’s theorem. Some applications to localization of
bounded additive vector measures are provided.

Keywords: Bounded set, finitely additive scalar measure, (LF)-space, Nikodym and strong Nikodym
property, increasing tree, set-algebra, o-algebra, vector measure, web
2000 MSC: 28A60, 46G10

1. Introduction

Let B be a subset of an algebra A of subsets of a set ) (in brief, set-algebra A). The normed space L(B)
is the span{xc : C € B} of the characteristic functions of each set C' € B with the supremum norm || - ||
and ba(A) is the Banach space of finitely additive measures on A with bounded variation endowed with the
variation norm, i.e., || :=|-|(Q). If {C; :1 < i < n} is a measurable partition of C' € A and p € ba(A)
then |p| (C) = X;|p| (C;) and, as usual, we represent also by p the linear form in L(A) determined by
wixe) := u(C), for each C € A. By this identification we get that the dual of L(.A) with the dual norm is
isometric to ba(A) (see e.g., [2, Theorem 1.13]).

Polar sets are considered in the dual pair < L(A),ba(A) >, M° means the polar of a set M and if
B C A the topology in ba(A) of pointwise convergence in B is denoted by 75(B). (E’,7s(FE)) is the vector
space of all continuous linear forms defined on a locally convex space E endowed with the topology 75(E)
of the pointwise convergence in E. In particular, the topology 75(L(A)) in ba(A) is 75(A).

The convex (absolutely convex) hull of a subset M of a topological vector space is denoted by co(M)
(absco(M)) and absco(M) = co(U{rM : |r| = 1}). An equivalent norm to the supremum norm in L(.A)
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is the Minkowski functional of absco({xc : C' € A}) ([14, Propositions 1 and 2]) and its dual norm is the
A-supremum norm, i.e., ||p]] := sup{|p(C)| : C € A}, p € ba(A). The closure of a set is marked by an
overline, hence if P C L(A) then span(P) is the closure in L(.A) of the linear hull of P. N is the set {1,2,...}
of positive integers.

Recall the classical Nikodym-Dieudonné-Grothendieck theorem (see [1, page 80, named as Nikodym-
Grothendieck boundedness theorem|): If S is a o-algebra of subsets of a set Q and M is a S-pointwise
bounded subset of ba(S) then M is a bounded subset of ba(S) (i.e., sup{|u(C)| : p € M, C € 8} < o0,
or, equivalently, sup{|u| () : 4 € M} < o0). This theorem was firstly obtained by Nikodym in [11] for a
subset M of countably additive complex measures defined on S and later on by Dieudonné for a subset M
of ba(2%), where 2% is the o-algebra of all subsets of Q, see [3].

It is said that a subset B of an algebra A of subsets of a set 2 has the Nikodym property, N-property in
brief, if the Nikodym-Dieudonné-Grothendieck theorem holds for B, i.e., if each B-pointwise bounded subset
M of ba(A) is bounded in ba(A) (see [12, Definition 2.4] or [15, Definition 1]). Let us note that in this
definition we may suppose that M is 75(A)-closed and absolutely convex. If B has N-property then the
polar set {x¢c : C € B}° is bounded in ba(A), hence {xc : C € B}°° = absco{xc : C' € B} is a neighborhood
of zero in L(A), whence L(B) is dense in L(A).

It is well known that the algebra of finite and co-finite subsets of N fails N-property [2, Example 5 in
page 18] and that Schachermayer proved that the algebra J(I) of Jordan measurable subsets of I := [0, 1]
has N-property (see [12, Corollary 3.5] and a generalization in [4, Corollary]). A recent improvement
of this result for the algebra J(K) of Jordan measurable subsets of a compact k-dimensional interval
K :=TI{[a;,b;] : 1 <4 < k} in R* has been provided in [15, Theorem 2], where Valdivia proved that if J (K )
is the increasing countable union U, B, there exists a positive integer n such that B,, has N-property (see [8,
Theorem 1] for a strong result in J(K')). This fact motivated to say that a subset B of a set-algebra A has
the strong Nikodym property, sN-property in brief, if for each increasing covering U,,B,, of B there exists
B, which has N-property. As far as we know this result suggested the following very interesting Valdivia’s
open question (2013):

Problem 1 ([15, Problem 1}). Let A be an algebra of subsets of Q. Is it true that N-property of A implies
sN -property?

Note that the Nikodym-Dieudonné-Grothendieck stating that every o-algebra S of subsets of a set ) has
property N is a particular case of the following Valdivia’s theorem.

Theorem 1 ([14, Theorem 2]). Fach o-algebra S of subsets of Q0 has sN-property.

Following [7, Chapter 7, 35.1] a family {Bm, m,,....m, : P,m1,ma,...,m, € N} of subsets of A is an
increasing web in A if (B, )m, is an increasing covering of A and (B, ms,...;m,,mp41)m,., 1S an increasing
covering of By, m,,....m,, for each p,m; € N, 1 <4 < p. We will say that a set-algebra A of subsets of
Q has the web strong N-property (web-sN -property, in brief) if for each increasing web {Bm, ms....m, :
p,m1, My, ..., my € N} in A there exists a sequence (n;); in N such that each By, n,...n, has sN-property,
for each i € N.

The main measure-theoretic result of this paper is the following theorem, motivated by Theorem 1 and
covering all mentioned results for o-algebras.

,,,,,

Theorem 2. FEach o-algebra S of subsets of ) has web-sN -property.

In particular, if By, m.,,...,m, = Bm, for each p € N, we have the following improvement of Theorem 1:
If (By)m is an increasing covering of a o-algebra S of subsets of §) there exists an index n so that B,, has
sN -property.

Next section provides properties concerning N-property of subsets of a set-algebra A and unbounded
subsets of ba(A). These results will be used in Section 3 to provide necessary facts to complete the proof of
our main result (Theorem 2).

Last section deals with applications of Theorem 2 to localizations of bounded finite additive vector
measures.



A characterization of sN-property of a set-algebra A by a locally convex property of L(A) was obtained
in [15, Theorem 3]. Analogously a characterization of web-sN-property of a set-algebra A by a locally
convex property of L(A) may be found easily following [5] and [10].

2. Nikodym property and deep unbounded sets

To keep the paper self-contained we provided a short proof of the next (well known) proposition.

Proposition 3. Let A be an algebra of subsets of 2 and let M be an absolutely convex 75(.A)-closed subset
of ba(A). The following properties are equivalent:

1. For each finite subset Q of {xa : A € A} the set M N Q° is an unbounded subset of ba(A).

2. For each finite subset Q of {xa : A € A} such that span{M°} N span{Q} = {0} the set M N Q° is
unbounded in ba(A).

3. M° is not a neighborhood of zero in span{M?°} or the codimension of span{M°} in L(A) is infinite.

If M is unbounded and span{M?°} = L(A) then M verifies the previous properties.

Proof. To prove these equivalences recall that if M is a 75(.A)-closed and absolutely convex subset of ba(.A)
then M°° = M [7, Chapter 4 20.8.5].

(1) <= (2). Let Q ={xq, : @i € A, 1 < i <r}. First we prove that if there exists m; € M° such that
XQ, = himq + ZQgigrhiXQi and if h:=2+ Zlgigr Ih,| then

absco(M° U Q) C habsco(M° U {O\{xq,}})- (1)

In fact, if & € absco(M° U Q) then x = Aomo + E1<icrAiX @i, With mg € M° and Eo<i<r |Ai] < 1, whence
T = Aogmo + A\ himy + E2gi<r()\1hi + )‘i)XQi- From msy := (1 + |)\0| + |)\1h1|)_1()\0m0 + )\1h1m1) e M°
we get the representation x = (1 + |Xo| + [A1h1|)ma + Zaci<r(A1hs + Ai)x @, which verifies the inequality
14 [Xo| + [AMh1] + Bagicr [Mhi + Xi| < h, whence © € habsco(M° U {Q\{xq, }})- Taking polar sets in (1)
we obtain that

MNn{Q\{xq.}}° C (M NQ°%),

hence if M N{Q\{xq, }}° is unbounded one gets that M N Q° is also unbounded. The rest of this equivalence
is obvious.

(2) < (3). If M° is a neighborhood of zero in span{M°} and if Q@ = {xq, : @; € 4,1 <i<r}isa
cobase of span{M°} in L(A) then absco(M° U Q) is a neighborhood of zero in L(A), hence

(absco(M° U Q))°=MnNQ°

is a bounded subset of ba(A).

If M° is not a neighborhood of zero in span{M°} or if the codimension of span{M°} in L(.A) is infinite,
then for each finite set Q = {xq, : @ € A,1 < i < r} such that span{M°} N span{Q} = {0} the set
absco(M° U Q) is not a neighborhood of zero in L(A), whence the set (absco(M° U Q))° = M N Q° is
unbounded in ba(A).

If M is an unbounded subset of ba(A) then M*° is not a neighborhood of zero in L(A). If, additionally,
span{M°} = L(A) we have, by denseness, that M° is not a neighborhood of zero in span{M°} and we
obtain that M verifies (3). O

The fact that if a subset M of ba(.A) verifies (1) in Proposition 3 then its subsets M N Q° are unbounded,
for each finite subset Q of {x 4 : A € A}, motivates the following definition.

Definition 1. Let B be an element of the algebra A of subsets of 2. A subset M of ba(A) is deep B-
unbounded if each finite subset Q of {x4 : A € A} verifies that

sup{|u(C)|:peMNQ°, Cec A CC B} =o0. (2)

or, equivalently, sup{|u| (B): p € M N Q°} = oo.



In particular, a subset M of ba(A) is deep Q-unbounded if M N Q° is an unbounded subset of ba(A),
for each finite subset Q of {xa : A € A}. Therefore an absolutely convex 7,(.A)-closed subset M of
ba(A) is deep Q-unbounded if and only if M verifies condition (2) or (3) in Proposition 3. If, additionally,
span{M¢°} = L(A) then M is deep Q-unbounded if and only if it is unbounded.

Next proposition furnishes sequences of deep -unbounded subsets of ba(A). The particular case
Um B = A is Theorem 1 in [15].

Proposition 4. Let A be an algebra of subsets of Q and let (By,)m be an increasing sequence of subsets of
A such that each By, does not have N-property and span{xc : C € UpBy} = L(A). There exists ng € N
such that for each m > ng there exists a deep Q-unbounded 75(A)-closed absolutely convexr subset M, of
ba(A) which is pointwise bounded in By,, i.e., sup{|u(C)| : p € M,,} < 0o for each C' € By,. In particular
this proposition holds if Uy B, = A or if Uy By, has N-property.

Proof. If for each m € N the subspace H,, := span{x¢ : C € B,,} has infinite codimension in L(.A) then, by
(3) in Proposition 3, the polar set of P, := absco{xc¢ : C € By,} is the deep Q-unbounded set M,, := Py,.
The definition of polar set implies that sup{|u(C)| : p € M} < 1, for each C € B,,. Whence we get the
proposition with ng = 1.

If there exists p such that the codimension of F':= span{xc : C' € B,} in L(A) = span{x¢c : C € U, B, }
is the finite positive number ¢ then {x¢ : C € U,,B,,} ¢ F, whence there exists m; € N and D € By,
such that xp ¢ F and then the codimension of span{xc : C' € Bptm, } in L(A) is less or equal than ¢ — 1.
Therefore there exists ng such that span{xc : C € B,,} = L(A), for each m > ng. As for each m > ng
the set B, does not have N-property there exists an absolutely convex 7,(A)-closed unbounded subset
M, of ba(A) such that sup{|u(C)| : p € My} < ke < oo, for each C € B,,, and then it follows that
{kz'xc : C € By} C MS. This inclusion implies that span{yc : C € B,,} C span{Mg}, whence
span{ M2} = L(A), because span{xc : C € B,,} = L(A). Then, by Proposition 3, the unbounded set M,,
is deep Q2-unbounded for each m > ny.

If UpnB = A or if U, B, has N-property then span{xc : C' € Up,B,,} = L(A) and this proposition
holds. O

Next Proposition 5 it follows from [15, Proposition 1]. We give a simplified proof according to our current
notation.

Proposition 5. Let B be an element of an algebra A and {C1,Ca,...,Cy} a finite partition of B by
elements of A. If M is a deep B-unbounded subset of ba(A) there exists C;, 1 < i < g, such that M is deep
C;-unbounded.

Proof. If for each i, 1 < i < g, there exists a finite set Q' of characteristic functions of elements of A
such that sup{|u| (C;) : p € M N (QY)°} < H;, i € {1,2,...,q}, then we get the contradiction that the set
Q = Ui<igqQ" verifies that sup{|u| (B) : p € M N Q°} < Bi<icqHs. O

Ift = (t1,t2,...,tp), s = (81,82,...,8¢), T and U are two elements and two subsets of U;N° we define
t(1) := (t1,t2,...,t;) if 1 <4 < p, t(z) =0ifi>p, T(m) = {t(m) : t € T}, for each m € N, t X s :=
(t1,t2, -y tpy tpr1, tptay -y tptg), With t,pj =8, for 1< j< g and T xU:={t xu:teT, uecU}. We
simplify (¢1), (n) and T x {(n)} by t1, n and T' x n. The length of t = (t1,t2,...,t,) is p and the cardinal
of a set C is denoted by |C|.

If v € UN® and ¢ x v € U then t X v is an extension of t in U. A sequence (t"), of elements
th = (L0, 5, ..., ...) € UsN® is an infinite chain if for each n € N the element ¢"*! is an extension of the
section t"(n), i.e., @ # t"(n) = t"*1(n).

A subset U of U,N" is increasing at t = (t1,t2,...,t,) € UsN® if U contains p elements t* = (t1,13, . . .)
and t' = (t1,t2,...,ti—1,t5,ti,1,...), 1 < i< p, such that ¢; < ¢!, for each 1 <i < p. A non-void subset U of
UsN?® is increasing (mcreasmg respect to a subset V' of UsN?® ) if U is increasing at eacht € U (at eacht € V),
hence U is increasing if |U(1)| = oo and [{n € N: t(i) x n € U(i + 1)}| = oo, for each t = (t1,t2,...,tp) €U
and 1 <t < p.



If {B, : u € UgN®} is an increasing web in A and U is an increasing subset of UsenyN® then B :=
{Byu@y s v € U, 1 < i < length u} verifies that (By(1))uer is an increasing covering of A and for each
u = (u1,ug,...,up) € U and each i < p the sequence (By(i)xn)u(i)xnev(i+1) 1S an increasing covering of
Byiy- 1f, additionally, each element v € U has an extension in U then renumbering the indexes in the
elements of B we get an increasing web.

The Definition 2 deals with increasing subsets of UsenyN® and it is motivated by the technical Example
1 which will be used onwards to complete the proof of Theorem 2. A particular class of increasing trees,
named NV-trees -surely reminding Nikodym and Valdivia-, is considered in [9, Definition 1].

Definition 2. An increasing tree T is an increasing subset of Us;cyN® without infinite chains.

An increasing tree T is trivial if T = T(1); then T is an infinite subset of N. The sets N', i € N\{1},
and the set U{(i) x N* : ¢ € N} are non trivial increasing trees.

An increasing subset S of an increasing tree T' is an increasing tree. From this observation it follows the
Claim 6.

Claim 6. If (S,), is a sequence of non-void subsets of an increasing tree T such that for each n € N the
set Snp41 1S increasing respect to Sy, then S :=U,S, is an increasing tree.

Proof. 1t is enough to notice that S is an increasing subset of 7. O

Example 1. Let B := {By, m,,....m, : P,M1,Ma,...,my, € N} be an increasing web in an algebra A of
subsets of Q0 with the property that for each sequence (m;); € NN there exists ¢ € N such that By yma,....mq
does not have sN -property. Then there ezists an increasing web C := {Cpy me...., my PPy ML, M, e, My € N}
in A and an increasing tree T such that for each (t1,t2,...,t,) € T there exists a deep Q-unbounded 75(A)-
closed absolutely convex subset My, 1,...+, of ba(A) which is pointwise bounded in Cy, 4y, 1, i-€.,

sup{|(C)| : pt € My, 4.0} < 00, (3)
for each C € Cy, 4,,...t,,-

Proof. If each B,,,, mi1 € N, does not have N-property then the example is given by C := B and T :=
N\{1,2,...,m9 — 1}, where ng is the natural number obtained in Proposition 4 applied to the increasing
covering (B, )m, of A. Hence we may suppose that there exists m; € N such that B, has N-property for
each t; > my and then:

(i1) Either B;, does not have sN-property for each ¢; € N and the inductive process finish defining Ty :=
{tl eEN:tg > ml}.

(#41) Or there exists m} € N such that B;, has sN-property for each t; > m/]. Then we write Q1 := 0 and
’1::{t1€N:t1>m’1}.

Let us assume that for each j, with 2 < j < ¢, we have obtained by induction two disjoint subsets Q;
and Q; of N7 such that each t = (t1,t2,...,t;) € Q; U Q; verifies:

1. t(] — ].) = (tl,tg, A ,tjfl) S Q_Ij—l‘

2. If t € Q; the set B; has N-property but it does not have sN-property and S;;_1) := {n € N :
t(j —1) xn € Q; UQ}} is a cofinite subset of N such that ¢(j — 1) x Sy;_1) C Q-

3. If t € @ the set B; has sN-property and Sé(j—n ={neN:#(j—-1)xn e Q;UQ}is a cofinite
subset of N such that ¢(j —1) x S}, ;) C Q.

If t == (t1,t2,...,t;) € Q) then By, 4, . 4, has sN-property and (B, ¢,,....t;,n)n 1S an increasing covering
of B, t,,...,t;» hence there exists m;41 such that By, +,, ..+, » has N-property for each n > m;y;. Then we
may have two possible cases:



(ti41) Either By, 1,....1;.n does not have sN-property for each n € N and we define Sy, ¢, . ¢ = {n € N:
mi+1 < n}and S; =0,

(ii341) or there exists mj ; € N such that By, y,....¢,» has sN-property for each n > mj_ ;. In this case let
Sty to,..t; =0 and Sélvt%“’t ={neN:mj , <n}.

15625585
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We finish this induction procedure by setting Q;11 := U{t x S; : t € Q;} and Qj,, := U{t x S} : t € Q;}.
By construction Q41 and Qj, ; verify the properties 1., 2. and 3. with j =i+ 1.

The fact that for each sequence (m;); € NN there exists j € N such that B, ms,....m; does not have
sN-property imply that Tj := U{Q; : ¢ € N} does not contain infinite chains, because if (mq,mo,...,mp) €
Qp then By m,,...m, , has sN-property, whence for each (ti,to,...,tx) € Q). there exists ¢ € N and
(tkt1,-- - tetrq) € N7 such that (t1,t2,...,te, thyts .- thtq) € Qryq and then To(k) = Qi U Q) for each
k € N. These equalities imply that Ty is increasing, because [Tp(1)| = |Q}| = co and if t = (¢1,t2,...,t,) € Tp
the the sets Sg(i_l), 1 <i < p, and Sy;,—1) are cofinite subsets of N.

This increasing tree Ty as well as the trivial increasing tree obtained in (i1), also named Ty, verify that
for each t = (t1,t,...,t,) € Ty the family By, 4, .., has N-property and it does not have sN-property,
whence By, 1,,...+, has an increasing covering (B;, ,, ., .)n such that each By , ., ., does not have N-
property. By Proposition 4 there exist ng € N such that for each n > ng there exists a deep 2-unbounded
75 (A)-closed absolutely convex subset My, t,,...t,,n of ba(A) which is By ,, . . pointwise bounded, i.e.,
sup{|p(C)| : p € My, 4, 4,m} < 00, for each C' € By ,, We assume ng = 1, removing Bj,
when n < ng and changing n by n —ng + 1.

Then we get the example with the increasing tree T' := Ty x N and with the increasing web C := {C; : t €
UsN®} in the algebra A such that for each t = (1,12, ...,1,) € USN® either Cy := By ;) if i <p and t(i) € T
or Cp =By if {t(i): 1 <i<p}NT =10. O

tp,m” ta,...stp,m

Let U be a subset of UsN®. An element t € UsN° admits increasing extension in U if the set of
{v e UsN? : txv e U} contains an increasing subset. We need the following obvious properties (a), (b1) and
(b2) to prove Proposition 7, stating that if a subset U of an increasing tree T does not contain an increasing
tree then T\U contains an increasing tree.

(a) It U is a subset of U;N® and U does not contain an increasing tree then there exists m; € N such that
each n € N\{1,2,...,m1} does not admit increasing extension in U.
(b) Let t € UsN® and let U be a subset of the increasing tree T. Suppose that ¢ does not admit increasing
extension in U and that T; := {v € U;N®* : t x v € T} # (). Then
(by) if the increasing tree T; is trivial there exists m; 1 € N such that the set

(tx {N\{1,2,....mi })NT

is an infinite subset of T\U,
(b2) if T} is non-trivial there exists m;,; € N such that each element of

(tx {N\{1,2,...,m, ) NT(i+1)
does not admit increasing extension in U.

Proposition 7. Let U be a subset of an increasing tree T'. If U does not contain an increasing tree then
T\U contains an increasing tree.

Proof. Tt is enough to prove that T\U contains an increasing subset W. Now we follow the scheme of the
proof in Example 1. In fact, if T is a trivial increasing tree the proposition is obvious. Hence we may
suppose that T is a non-trivial increasing tree. Then we define Q1 := () and by (a) there exists m} € N such
that each element of the set Q] := {n € T'(1) : m{ < n} does not admit increasing extension in U. Notice
that Q) C T(1)\T.

Let us suppose that we have obtained for each j, with 2 < j < 7, two disjoint subsets @); and Q;- such
that Q; CT(j) N (T\U), @ C T'(j)\T and each t € Q; U Q] verifies the following properties:
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Ltj—1) €.

2. If t € Q; then the cardinal of S;(;_1) := {n € N: (j—1)xn € Q;UQ}} is infinite and #(j—1) X Sy;_1) C
Qj-

3.If t € Q; then ¢t does not admit increasing extension in U, the cardinal of S (

-1y = {n € N:
t(j —1) xn € Q; UQ}} is infinite and £(j — 1) x Sg(jfl) C Qj.

If t € Q) then t € T(4)\T and it does not admit increasing extension in U. If T} = {v € U;N* : t xv € T'}
then, by (b1) and (b2), it follows that the following two cases may happen:

i. If Ty is trivial then there exists m;11 € N such that the infinite set Sz :=={n € N:m;y; < n,t xn €
T(i+ 1)} verifies that t x S; C T\U and we define S} := 0.

ii. If Ty is non-trivial then there exists mj,; € N such that the infinite set S} := {n € N : mj,; <
n,t xn € T(i + 1)} verifies that ¢ x S; C T(¢ + 1)\T and each element of ¢ x S; does not admit
increasing extension in U. Now we define S; := ().

We finish this induction procedure by setting Q;11 := U{t x Sy : t € Q;} and Q; := U{t x S} : t € Q;}.

By construction Q11 C T'(i + 1) N (T\U), Qi1 C T(i + 1)\T, and each t € Q;41 U Qj,, verifies the
properties 1., 2. and 3. changing j by ¢ + 1.

As T does not contain infinite chains we deduce from 1. that for each (¢1,ta,...,t;) € Q) there exists
g € Nand (tit1,...,ti+q) € N? such that (t1,%t2,...,%,tiq1, ..., titq) € Qiyq. Whence, for each ¢ € N,
(Uj>i@;)(1) = Q; and then W := U{Q, : j € N} is a subset of T\U.

W has the increasing property because from W (k) = Qr U Q},, for each k € N, it follows that |[W(1)| =
|Q)| = 0o and if t = (t1,t2,...,t,) € W then (¢1,t2,...,t;) € Q, if 1 <i < p,and (t1,ts2,...,t,) € Qp, hence
gle inﬁWnite subsets S;(ifl) and Sy(,—1) of N verify that ¢(i —1) x 52@;1) C Q; C W(i)and t(p—1) X Sy(p—1) E

p CW.

Next Proposition 8 follows from [15, Propositions 2 and 3] and we give a simplified proof according to
our current notation for the sake of completeness.

Proposition 8. Let {B,Q1,...,Q,} be a subset of the algebra A of subsets of Q and let M be a deep
B-unbounded absolutely convex subset of ba(A). Then given a positive real number « and a natural number
g > 1 there exists a finite partition {C1,Cs,...,Cq} of B by elements of A and a subset {1, pa, ..., pq} of
M such that |11;(C;)| > o and Eigj<r |1:(Q5)] < 1, fori=1,2,...,q.

Proof. Let Q = {XBsXQ1>XQs:---:X0.}- The deep B-unboundedness of M and the inclusion M C rM
imply that
sup{|p(D)|: p€TMNQ°, DC B, D€ A} =o0.

Hence there exists Py C B, with P, € A, and p € rM N Q° such that |u(Pr)] > r(1 + «). Clearly
pr=r"tpue M, |u(P)] >1+aand |ui(f)] =r~u(f)] < r~! for each f € Q, hence |u1(B)| <r 1 <1
and X1< < [1(Q;)] < r~'r = 1. The set P, := B\P; verifies that

1 (P2)] = [ (P)| = [m(B)| > 1+a—1=a.

From Proposition 5 there exists i € {1,2} such that M is deep P;-unbounded. To finish the first step of
the proof let Cy := Py if M is deep Pr-unbounded and let Cy := P5 if M is deep P;-unbounded. Then M
is deep B\C1-unbounded.

Apply the same argument in B\C; to obtain a measurable set Co C B\C} and a measure us € M such
that |u2(Ca)| > a, |p2(B\(C1 U Cy))| > a and E{|u2(Q;)] : 1 < j < r} < 1, being M deep B\(C1 U Cs)-
unbounded. Hence the proof is provided by applying ¢ — 1 times this argument. In the last step we define
Hq = pg—1 and Cq = B\(C1 U---UCy_1). O

Proposition 9. Let B be an element of an algebra A and {M; : t € T} a family of deep B-unbounded
subsets of ba(A) indexed by an increasing tree T. If t7 := (¢],13,. .. ,t%j) e T, for each 1 < j < k, and
qg=2+X{p; : 1< j <k} then for each finite partition {C1,Ca,...,Cy} of B by elements of A there exists
h € {1,2,---,q} and an increasing tree Ty such that {t',t? ..., t*} C Ty C T and {M; : t € Ty} is a family

of deep B\Ch-unbounded subsets.



Proof. Let {C1,C5,...,Cq} be a finite partition of B by elements of A with ¢ = 2+X{p; : 1 < j < k}. From
Proposition 5 it follows that if {M,, : u € U} is a family of deep B-unbounded subsets of ba(.A) indexed by
an increasing tree U and V; := {u € U : M, is deep C;-unbounded}, 1 < i < ¢, then U = Ui<i<,V; and, by
Proposition 7, there exists [, with 1 <1 < ¢, such that V; contains an increasing tree U;. Therefore

(a) If {M,, : u € U} is a family of deep B-unbounded subsets indexed by an increasing tree U there exists
1€{1,2,...,q} and an increasing tree U; contained in U such that {M,, : v € U} is a family of deep
Cj-unbounded subsets.

In particular, for the increasing tree T and for each element #/ € T, with 1 < j < k, there exist by (a)
and Proposition 5:

(1) i, € {1,2,...,q} and an increasing tree T;, contained in T" such that {M, : ¢ € T;,} is a family of deep
C;,-unbounded subsets,

(2) i/ € {1,2,...,q} such that M, is deep C;;-unbounded.

Let S:={j:1<j <k t/¢T,} Foreach j € S and each section t/(m — 1) of t/ = (t{,té,...,t{,j),
with 2 < m < pj, the set W}, := {v € U;N* : tJ(m — 1) x v € T} is an increasing tree such that
{M(t'{ o) xS WE W7} is a family of deep B-unbounded subsets. By (a) there exists:

sl 1

(3) i, € {1,2,...,q} and an increasing tree V7 contained in W7, such that

Mg .0 yxw U E |43

20 Y m—1

is a family of deep C; -unbounded subsets. Clearly .t ..t YxVicT.

»¥'m—1

As the number of sets C;
he{1,2,--- q} such that

Cii, Ci{,,a with 7 € § and 2 < m < p;, is less or equal than ¢ — 1, there exists

07

D :=C;, U(U{C; U Cﬂn (jEeS, 2<m gpj}) C B\C}.

Let T} be the union of the sets T}, {t/ : j € S} and {(t],#5,...,#/, )} x Vi, with j € S and 2 < m < p;.
Clearly for each t € T} the set M; is deep D-unbounded, whence M; is also deep B\Cp-unbounded. By
construction {t!,¢2,...,t*¥} C T} and T} has the increasing property and it is a subset of the increasing tree
T. Whence T} is an increasing tree. O

We finish this section with a combination of Propositions 8 and 9. The obtained Proposition 10 is a
fundamental tool for the next section.

Proposition 10. Let {B,Q1,...,Q} be a subset of an algebra A of subsets of Q, and let {M; : t € T} be
a family of deep B-unbounded absolutely convex subsets of ba(A), indexed by an increasing tree T. Then for
each positive real number o and each finite subset {t/ : 1 < j < k} of T there exist {B; € A:1 < j < k},
formed by k pairwise disjoint subsets B; of B, 1 < j < k, a set {y; € My, 1 < j <k} and an increasing
tree T* such that:

1o |pi(By)] > a and 2{|pi(Qi)] : 1 <i<r} <1, forj=1,2,...,k,
2. {t/ :1<j<k}CT*CT and {M;:t € T*} is a family of deep (B\ Ui<j<k Bj)-unbounded sets.

Proof. Let t/ := (t{,té,...,tgj), for 1 < j < k. By Proposition 8 applied to B, a, ¢ := 2 + X1¢j<kp; and
My there exist a partition {C],C3,...,C1} of B by elements of A and {A1, Ag, -+ ,Aq} C My such that:
‘)\k(C}i)‘ >« and Elgigr ‘)\k}(Ql)‘ < 1, for k = 1,2, c.o.5q, (4)

hence Proposition 9 applied to the sets {C],C3,---,Cj}, {M; : t € T} and {# : 1 < j < k} gives
he{1,2,---,q} and a family {M, : ¢t € T3 } of deep B\C}-unbounded subsets indexed by an increasing tree

8



Ty such that {t,¢2,. .. ,tk} cTiycT. If By := C}L and gy := \p, then (4) holds with A\, = p; and C} = By.
Clearly {M; : t € Ty} is a family of deep B\Bj-unbounded subsets.

If we apply again Proposition 8 to B\Bj, a, ¢ and M;> we obtain a partition {CF,C3,--- ,C?} of B\B,
by elements of A and {¢1,{2, -+ ,(q} C M;2 such that

|Ge(CD)| > a and T, |G(Qi)] <1, fork=1,2,...,q,

and then by Proposition 9 (applied to {C7,C3,---,C2}, {M; : t € T1} and {t/ : 1 < j < k} there
exists | € {1,2,---,¢} and a family {M; : t € Tz} of deep (B\B;)\C?-unbounded subsets indexed by an
increasing tree Ty such that {t',¢3,... ¢t} C Ty C T. Now if By := C? and s := (; then |ua(Bs)| > a,
S{|lp2(Qi)] : 1 <i<r}<1and {M;:t€Ts}is a family of deep B\(B; U By)-unbounded subsets. With
k — 2 new repetitions of this procedure we get the proof with T := Tj. O

3. Proof of Theorem 2

With a induction procedure based in Proposition 10 we obtain Proposition 12 that together with the
next elementary covering property for families indexed by increasing trees enable to prove Theorem 2.

Proposition 11. If Y = {Yu, m,.....m, : P,m1,M2,...,my, € N} is an increasing web in Y and T is an
increasing tree then Y = U{Y, 1y € T'}.

Proof. Let us suppose that y € Y\(U{Y; : t € T}). As Y is an increasing web and T is an increasing tree
then Y = U{Y,(1) : t € T'}, whence there exists u* = (u,u3,...) € T such that

y € Y, \(U{Y; it € T}).

Assume that there exists {u?,u?,...,u"} C T such that 0 # w1 (j—1) = v/ (j—1) and y € Y,;(;)\U{Y :
te T}, for2<j<n. Theny € Yyn\U{Y;:t € T}, with u™(n) = (uf,uy,...,u;). As Y is an increasing
web and T is an increasing tree then Y,n(,) = U{Yyn(n)xs : u"(n) x s € T(n 4 1)}, hence there exists
u™*! € T such that u"(n) = u"*'(n) and

TS Yun+1(n+1)\(u{}/t 1t e T})

This induction procedure gives the contradiction that 7' contains the infinite chain (u™),. Therefore
Y=U{Y,:ueT} O

In Proposition 12 we refer to the sequence (i,,), = (1,1,2,1,2,3,...), obtained with the first components
of N2 ordered by the diagonal order, i.e., i, = n — 27 'h(h + 1), if n €]27h(h +1),27 (h + 1)(h + 2)] and
h=0,1,2,.... Let us note that i,, < n, for each n € N.

Proposition 12. Let {Bmhmz,wmp : p,mi,Ma,...,my, € N} be an increasing web in a o-algebra S of
subsets of Q with the property that for each sequence (m;); € NN there exists h € N such that By ma,...;mn
does not have sN-property and let (i), = (1,1,2,1,2,3,...). Then there exist a strictly increasing sequence
(Jn)n i N, a sequence (B, j,)n of pairwise disjoints elements of S, a sequence (fi, ;,)n i ba(S) and a
covering (Cy)r of S such that for each n € N

ZS{|:Uin+1jn+1 (Bisjs) 11<s< n}) <1, (5)
i (Bivjn )| > s (6)
Wi (Us{Bigj, 1 < sh)| <1, (7)

and for each r € N and each strictly increasing sequence (n,), such that i,, = r, for each p € N, the set
{tti, 4o, + p € N} is Cr-pointwise bounded, i.e., for each H € C. we have that

supd |ti,, 1., (H)| : p € N} < oc. ®)

9



Proof. Let {C; : t € UsN*} and T be the increasing web in S and the increasing tree determined in Example
1 such that for each t € T there exists a deep -unbounded 74(S)-closed absolutely convex subset M; of
ba(S) which is C¢-pointwise bounded, i.e.,

sup{|u(H)| : p € My} < o0 (9)

for each H € C;.

Then, by induction, we prove that there exist a countable increasing tree {t' : i € N} contained in T,
a strictly increasing sequence of natural numbers (k;);, a set {B;; : (i,7) € N2,i < k;} of pairwise disjoint
elements of S and a set {u;; € My : (i,5) € N?,i < k;} such that if (i,j) € N? and ¢ < k; then

Yo uf{tij(Bsw)| i s < ky, 1 <0 <j} <1, (10)

|wij (Big)| > J, (11)
and for each i € N and each H € C;i we have

sup{ljsg(H)] < 5} < o (12)

Fix t* € T. By Proposition 10 with B :=Q, a =1, {Q1,...,Q,} := 0 and {#': 1 <i < k} := {t'} there
exist By € S, 11 € My and an increasing tree T; such that

1. |p11(B11)| > 1, {M; : t € Ty} is a family of deep Q\Bj1-unbounded subsets and
2.t e T CT.

We define ky := 1, S := {t'} and B! := By;.

Suppose that in the following n — 1 steps of the inductive process we have obtained the finite sequence
ky < k3 < -+ < ky in N\{1}, the increasing trees To D T5 D --- D T, contained in T3, the subset
{t1,#2,... thn} of T, the set {B;; : i < kj, j < n} formed by pairwise disjoint elements of S and the set
{uij € My i< kj, j< n} such that, for each 1 < j < n and each i < kj:

L i (Bij)| > J, Ssol{lpii(Bso)| s < ky, 1 <0 < j} <1, the union B7 := U{By, : s < ky, 1 <v < j}
verifies that {M; : t € T} is a family of deep 2\ B/-unbounded subsets,
2. 8T :={t:i< k;j} C T; and S7 has the increasing property respect to S771.

To finish the induction procedure let {t*»*+1 .. . tkn+1} be a subset of T,,\{t’ : i < k,,} that verifies the
increasing property with respect to S™. Then applying Proposition 10 to Q\B™, {Bsy : 8 < ky, 1 < v < n},
T, the finite subset S™™ := {t' : i < k,41} of T,, and n + 1 we obtain a family {Bj,41 : i < kpy1} of
pairwise disjoint elements of S contained in Q\B™, a subset {fint1 € My @ i < kpg1} of ba(S) and an
increasing tree T}, 1 contained in T;, such that for each i < kj 41,

1. |pins1(Bint1)| > n+ 1, S o{|ttint1(Bsy)| : 8 < ky, 1 < v < n} < 1, the union B" ! := U{B,, : s <
ks, 1 < v < n+ 1} has the property that {M; : t € T,,11} is a family of deep 2\ B"*!-unbounded
subsets,

2. S"*tL C T,41 and S™*! has the increasing property respect to S™.

By Claim 6, U,S,, = {t : i € N} is an increasing tree, whence, by Proposition 11, the sequence (Cy:); is
a countable covering of the o-algebra S. As (k;); is increasing then (i,j) € N? and ¢ < j imply that i < kj,
whence {;; : j € N\{1,2,...,i—1}} C M and from this inclusion and (9) with ¢ = ¢* it follows (12), i.e.,
sup,{|pij(H)| : i < j} < oo, for each i € N and each H € Cyi.

With a new induction procedure we determine the increasing sequence (j, ), such that together with the
sequence (in), = (1,1,2,1,2,3,...) verifies (5), (6), (7) and (8).

Let j1 := 1 and suppose that |u;, ;| (2) < s1, with s; € N. Let {N},1 < u < s1} be a partition of
{m € N:m > j1} in s; infinite subsets and define B := U{Bg; : (s,t) e Nx N}, s <k}, 1 <u < s;. From
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S{|pir g, (BL) 1 1 < u < s1} < s it follows that there exists o/, with 1 < u/ < sy, such that |, ;.| (BL) < 1,
whence the sets N(Y) := N, and B! := B}, verify that NO c{meN:m>j} and

|:ui1j1| (Bl) <L

Assume that in the first [ steps of this induction we have obtained a finite sequence j; < jo < -+ < j;
in N and a decreasing finite sequence NV > N2 5 ... 5 N of infinite subsets of N such that for
eachw € N, 1 <w <1, N Cc {n&N:n>j,} and the variation of the measure My, 1D the set
BY :=U{By : (s5,t) e N x N") 5 < k;} verifies the inequality

i | (BY) < 1.

Let jiy1 be the first element in N and suppose that |tisrjier| () < sig1, with s;41 € N. Then
g1 < jip1 and if {N*1 1 < r < si4q) is a partition of {m € NO : m > ji,1} in s;4; infinite disjoint
subfamilies then the subsets B!f! := U{By : (5,t) € N x Nl s < k), 1 < 7 < 5544, verify that
E{}Miz+1jz+1| (BHY) 11 <7 < sp41} < 8141, whence it follows that there exists 7/, with 1 < 7’ < 5741, such
that the set B! := U{By : (s,t) € N x N5 s < k;} verifies that

|H’il+1jz+1| (BlJrl) < 1.

Set NU+1D) .= fol. Then, by induction, we get a strictly increasing sequence (j,,), in N and a decreasing
sequence (N(™), of infinite subsets of N, with jo € NV c {m € N:m > j;} and jop1 € N® C {m €
N®=1D i > 4.}, for each n > 1, such that the measurable sets B™ := U{By; : (s,t) € Nx N s <k},
n € N, verify that

4,5, (B") < 1. (13)

The inclusion jg € NG=D  N(®) when n < s and the trivial inequalities is; < 5 < ks < k;, imply that
U{B;,;, : s € N, n < s} C B", hence from (13) it follows that

i g | (Us{Bi,j, :n < s}) <1,

for each n € N, and this inequality imply (7) because the variation |u| (B) of p in a set B € S verifies that
[W(B)] < |ul (B).

From the proved relation i, < k;, and the trivial fact that s < n implies that j; < jn, < jn41 it follows
that (10) implies (5). The inequality (6) is a particular case of (11). Finally from (12) with i = r we get (8)
because each (iy,,, jn,) verifies that r =, < n, < j,,.

To finish the proposition define C, := C;r, for each r € N. O

We are at the position to present the proof of Theorem 2. Recall again that (i,), = (1,1,2,1,2,3,...).

Proof of Theorem 2. Assume Theorem 2 fails. Then by Proposition 12 there exist a strictly increasing
sequence (jn)n in N, a sequence (B, ;, )n of pairwise disjoints elements of the o-algebra S, a sequence
(Wi, 5, )n in ba(S) and a covering (C,), of S such that for each n € N

Se{lttinj, (Big,)| s <n}) <1, (14)
\tin g (Binjn )| > dns (15)
i g (Us{Bi,j, 1 < s})| <1, (16)

and for each strictly increasing sequence (n,), such that i,, = r for each p € N we have that the sequence
(Hip,jn, )p = (Krj,, )p 18 pointwise bounded in C,, i.e., for each H € C, we have that

sup{|ti,,, i, (H)‘ :p € N} < o0. (17)
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As Hy :=U{B,,j, : s=1,2,...} € S and (C,), is a covering of the o-algebra S there exists " € N such that
Hy € Cpv. Fix a strictly increasing sequence (nq), in N\{1} such that 4,, = 1, for each ¢ € N. Then, by
(17),

supq |ty jn, (HO)‘ :q € N} < 0. (18)

The sets Cq := Us{Bi,j, : s < ng}, Bi, j,, and Dg = U{Bj, : ng < s} are a partition of the set

Ho. By (14), (15) and (16), ;qnanq(CY)’<< L, i, jus (Biv.ju) > fng > ng and
g € N\{1}. Therefore the inequality

Fingjng (D)’ < 1, for each

Py ing (Ho)’ > = iy g (O)‘ F Hinying (Binging) = |Hinging | (D) > ng — 2,

implies that

lim Lmnpjnp(ffo)‘== o0,

contradicting (18). O

The following corollary extends Theorems 2 and 3 in [14]. Again following [7, 7 Chapter 7, 35.1] a family
{Bmimg..m; + t,m; € N, 1 < j <14 < p} of subsets of A is an increasing p-web in A if (B, )m, 1S an
increasing covering of A and (Bmlmz___miﬂ)mi+1 is an increasing covering of By, m,...m,;, for each m; € N,
I1<j<i<p.

Corollary 13. Let S be a o-algebra of subsets of Q and let {Bu my..m; : &,mj € N, 1 < j <@ < p} be
n, such that if (B, ny....npspi1)sppr 05 G0 increasing
covering of Bp, n,,...n, there exists ny11 € N such that each 74(Bp, n,...npn,. . )-Cauchy sequence (fin)n in
ba(S) is 75(S)-convergent.

.....

Proof. By Theorem 2 there exists By, n,..n, Which has sN-property. Hence there exists By, n,, .. 1,041
which has N-property. Then a 7,(By, n,.....n,n, ., )-Cauchy sequence (i, )n is 75(A)-relatively compact. As

L(By, n,....npnpya ) = L(S) the sequence (j1, ), has no more than one 7, (A)-adherent point, whence (i )y is
75 (A)-convergent. O

4. Applications

We present some applications of Theorem 2 concerning localizations of bounded finitely additive vector
measures.

A finitely additive vector measure, or simply a vector measure, i defined in an algebra A of subsets of
Q with values in a topological vector space E is a map u: A — E such that u(BUC) = u(B) + u(C), for
each pairwise disjoint subsets B, C' € A. The vector measure p is bounded if p(A) is a bounded subset of
E, or, equivalently, if the E-valued linear map p: L(A) — E defined by u(xp) := p(B), for each B € A, is
continuous.

A locally convex space E(7) is an (LF)- or (LB)-space if it is, respectively, the inductive limit of an
increasing sequence (E,,(Tm))m of Fréchet or Banach spaces where the relative topology T,11|g,, induced
on E,, is coarser than 7,,, for each m € N. (E,,(7,))m is a defining sequence for E(7) with steps Ep,(Tm),
m € N, and we write E(T7) = B (7Tim). If Tit1lE,, = T, for each m € N, then E(7) is a strict (LF)-,
or (LB)-space. From [7, 19.4(4)] it follows that if ;1: A — E(7) is a vector bounded measure with values in
a strict (LF)-space E(7) = 3., Ep(7) then there exists n € N such that u(.A) is a bounded subset of the
step E, (). For o-algebras the following extension of this result is contained in [14, Theorem 4].

Theorem 14. Let pu be a bounded vector measure defined in a o-algebra S of subsets of Q0 with values in an
(LF)-space E(1) = Xy Em (7). Then there exists n € N such that u(S) is a bounded subset of E, ().

Theorem 2 provides the following proposition that contains Theorem 14 as a particular case.
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Proposition 15. Let u be a bounded vector measure defined in a o-algebra S of subsets of Q with values in
a topological vector space E(T). Suppose that {Em, my..m; : Mj € N,1 < j <1 < p}is an increasing p-web
in E. Then there exists En, n,,... n, such that if En, pn, . 0, (Tnyna, m,) 8 an (LF)-space, the topology
Tnyna, o, 15 finer than the relative topology 7'|En1m21_>_ - and if (Enyno, np,sper (Tnino, mp,sper))spar 05
a defining sequence for Epn, n, ... m,(Tnino, n,) there exists np 1 € N such that p(S) is a bounded subset of

Enl,n2"" sMp,Mp+1 (Tn17n2,"' 7npynp+l)'

Proof. Let By ma,....m; = M_I(Eml,mg,...,mi) for each m; € N, 1 < j <7 < p. By Theorem 2 there exists

(n1,m2,...,np) € N? such that By, n,,..n, has sN-property. Let (En, n,.....np.sp01 (Tins..npsyi1))spis DE 2
defining sequence for Ey, n,....n, (Thino,..n,) and 1et By v, ooy sy = 1 (EBnyno,npspe)-
As (BnlJL,L,?_,JLP,SPJrl )Serl is an increasing covering of By, n, ... s, there exists n,1 such that By, n, ... 0, np40

has N-property, whence L(Byp, n,.,...n,.n,,) is a dense subspace of L(S) and then the map with closed graph

/’L‘L(Bnl g, L(Bnl’n%‘-wnp»anrl) - Em,nmm,np’npﬂ (Tnl,n2,mnp,np+1)

)

has a continuous extension v: L(S) — En, ny....np.npss (Tnino,.npmpsr) (by [12, 2.4 Definition and (N2)]
and [13, Theorems 1 and 14]). The continuity of y1: L(S) — E(7) implies that v(A) = u(A), for each A € S.
Whence 1(S) is a bounded subset of Ey,, n,.....npmp01 (Tny na,.. O

HMpsMp+1/°

Proposition 15 also holds if we replace (LF')-space by an inductive limit of I',-spaces (see [13, Definition
1] and, taking into account [12, Property (Ng) after 2.4 Definition], apply again [13, Theorems 1 and 14]). A
particular case of this proposition is the next corollary, which it is also a concrete generalization of Theorem
14.

Corollary 16. Let i be a bounded vector measure defined in a o-algebra S of subsets of Q with values in
an inductive limit E(1) = X Ep (1) of an increasing sequence (Ep(Tm))m of (LF)-spaces. There exists
ny € N such that for each defining sequence (En, my(Tnims))ms Of Eny(Tn,) there exists no € N which
verifies that u(S) is a bounded subset of Ey, ny(Tnymy)-

A sequence (zp)r in a locally convex space E is subseries convergent if for every infinite subset J of N
the series X{xy, : k € J} converges and (z1)x is bounded multiplier if for every bounded sequence of scalars
(Ag)r the series L Apxy converges.

A Fréchet space F is Fréchet Montel if each bounded subset of F is relatively compact. Important classes
of Montel and Fréchet Montel spaces are considered and studied while Schwartz Theory of Distributions is
described, for instance, in [6, Chapter 3, Examples 3, 4, 5 and 6.].

The following corollary is a generalization of [14, Corollary 1.4] and it follows partially from Corollary
16.

Corollary 17. Let (xx)r be a subseries convergent sequence in an inductive limit E(7) = Xy En(Tm) of
an increasing sequence (Ep (Tm))m of (LF)-spaces. Then there exists ny € N such that for each defining
sequence (Ep, m,(Tnyms))ms for En, (Tn,) there exists ng € N such that {zy : k € N} is a bounded subset of
Epy o0y (Tnyny)- Ifs additionally, E,, n,(Tny n,) is a Fréchet Montel space then the sequence (xi)y is bounded
multiplier in Ep, n,(Tny no)-

Proof. As the sequence (1), is subseries convergent then the additive vector measure p: 2N — E(7) defined
by u(J) := Spesrr, for each J € 2V is bounded, because as (f(x,)) is subseries convergent for each f € E’
we get that X2, |f(zk)] < o0.

By Corollary 16 there exists nq € N such that for each defining sequence (Ey; m, (Tny ms))ms f0r Epny (Tny)
there exists ny € N with the property that u(2Y) = {Syejzy : J € 2V} is a bounded subset of Ey, n, (T, s )-
Then X |Arf(zx)] < oo for each continuous linear form f defined on E,, p, (7w, n,) and each bounded
sequence (Ag)x of scalars, whence (Elex\ja:j)k is a bounded sequence in Ey; n,(Tn;n,) which has at most
one adherent point, because Xy, f(xr) converges for each f € (Enmny(Tning)) - If Engng (Toin,) is a
Montel space then the bounded subset {E;f’:l)\jxj : k € N} is relatively compact and then the series 3 \pxy
converges in Ep, n, (Tng ny)- O
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Recall that a vector measure u defined in an algebra A of subsets of €2 with values in a Banach space E
is strongly additive whenever given a sequence (B, ), of pairwise disjoint elements of A the series %, 1(B;,)
converges in norm [2, I.1. Definition 14]. Each strongly additive vector measure p is bounded [2, I.1.
Corollary 19].

Corollary 18. Let p be a bounded vector measure defined in a c-algebra S of subsets of Q with values in
an inductive limit E(7) = X Em(Tm) of an increasing sequence (Ep,(Tm))m of (LB)-spaces such that each
Ep(Tm) admit a defining sequence (Ep m,(Tm,ms,))ms 0f Banach spaces which does not contain a copy of
[°°. If H is a dense subset of E'(15(E)) such that fu is countably additive for each f € H, then there exists
(n1,m2) € N2 such that p is a Epn, pny(Tny.n,)-valued countably additive vector measure.

Proof. By Corollary 16 there exists (ny,ns) € N2 such that u(S) is a bounded subset of E,, 1, (Tn, n,)-
As Ep, ny(Tny n,) does not contain a copy of [°° then, by ([2, I.4. Theorem 2]), the measure y is strongly
additive, hence if (B, : n € N) is a sequence of pairwise disjoint subsets of S then X, u(B,) converges to
the vector x in Ey,, n,(Tny n,). Therefore f(x) = X, fu(B,) for each f € E’ and, by countably additivity of
fu when f € H, we have that f(z) = X, fu(Bn) = fu(U,By) for each f € H. By density z = u(U,By,),
whence 3, u(By) = p(UnBp) in En, s (Tryns)- O

Proposition 19. Let p be a bounded vector measure defined in a o-algebra S of subsets of Q0 with values in
a topological vector space E(T). Suppose that {Ewm, my....m; - mj € N, 1 < j <4< p} isan increasing p-web
in E. There exists En, n,,..n, such that if (Em77127“_7np,mp+1)mp+1 is an increasing covering of En, n,,. . n,
with the property that each relative topology 7|k mpt1 € N, is sequentially complete then there

exists npr1 € NP such that (S) C Epy sy,

nimg, My )

sMp,Mp41°

Proof. Let By, ms,...omi = 1 (Emyma,...m;) for each mj € N, 1< j <i<p+1. By Theorem 2 there
exists (n1,n2,...,np) € NP such that By, n,,...n, has sN-property, whence there exists n,,1 € NP such that
B, na,...nynye, has N-property, therefore Em,nz,---,npnpﬂ(T‘Enl,nz,,.,,np,npﬂ) is a dense subspace of E(7),
hence density and sequential completeness imply that the continuous restriction of u to L(Bnl,n%”,nmnp +1)
has a continuous extension v to L(S) with values in the space En, no...npmpir (TIBuy g npiny iy ) AS

w: L(S) — E(7) is continuous then v = p and we get that u(S) C Ep, p,,..

SMp,Mp41°

Corollary 20. Let p be a bounded additive vector measure defined in a o-algebra S of subsets of Q with
values in an inductive limit E(1) = X, Em, (Tm,) of an increasing sequence (E,, (Tm,))m, of countable
dimensional topological vector spaces. Then there exists ny such that span{u(S)} is a finite dimensional
subspace of En, (Tn,).

Proof. For each m1 € N let (Ep,, m,)m, be an increasing covering of E,,, by finite dimensional vector
subspaces. {Epm, m, : mj € N;1 < j < ¢ < 2} is an increasing 2-web in E. As the relative topology
7|8, m, induced on Ey,, ., is complete then, by Proposition 19, there exists (ni,ng) € N? such that
w(S) C Epy ny- O
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