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A. J. Guirao∗, V. Montesinos†, and V. Zizler‡

June 23, 2016

Abstract

There is a maybe unexpected connection between three apparently
unrelated notions concerning a given w∗-dense subspace Y of the dual X∗

of a Banach space X: (i) The norming character of Y , (ii) the fact that
(Y,w∗) has the Mazur property, and (iii) the completeness of the Mackey
topology µ(X,Y ), i.e., the topology on X of the uniform convergence on
the family of all absolutely convex w∗-compact subsets of Y . To clarify
these connections is the purpose of this note. The starting point was a
question raised by M. Kunze and W. Arendt and the answer provided by
J. Bonet and B. Cascales. We fully characterize µ(X,Y )-completeness or
its failure in the case of Banach spaces X with a w∗-angelic dual unit
ball —in particular, separable Banach spaces or, more generally, weakly
compactly generated ones— by using the norming or, alternatively, the
Mazur character of Y . We characterize the class of spaces where the
original Kunze–Arendt question has always a positive answer. Some other
applications are also provided.

1 Introduction

In [BC10], J. Bonet and B. Cascales answered in the negative a question of M.
Kunze and W. Arendt —see [Kun08]— by showing that in the dual of ℓ1[0, 1]
there exists a closed and norming —in fact, 1-norming— subspace Y such that
(ℓ1[0, 1], µ(ℓ1[0, 1], Y )) is not complete. Here, µ(X,Y ) stands for the Mackey
topology on X associated to a dual pair ⟨X,Y ⟩, i.e., the topology on X of the
uniform convergence on the family of all absolutely convex and w(Y,X)-compact
subsets of Y . In [GM15] we gave some criteria for deciding whether, for a
general Banach space X and a w(X∗, X)-dense subspace Y of its dual, the
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space (X,µ(X,Y )) is —or not— complete. We focussed on subspaces Y that
contain a predual of X if available, in contrast with the situation in the original
example of Bonet and Cascales. We discussed also the case of the space c0, that
fails to have a predual. It is worth to remind the reader that if X is a Banach
space, µ(X,X∗) is just the topology defined by the norm—and so (X,µ(X,X∗))
is complete—, and that, in the case that X has a predual P ⊂ X∗, the space
(X,µ(X,P )) is also complete —a consequence of the Krein–Šmulyan theorem—.
Even for subspaces Y of X∗ such that P ⊂ Y , the completeness of (X,µ(X,Y ))
is not guaranteed.

In this note, that extends and completes [BC10] and [GM15] (and provides
some applications), we observe first that a result on Mazur spaces due to A.
Wilansky in [Wi81] gives a unified approach to several situations treated there.
The simplicity of the technique used adds extra insight into previous discussions.
Then we characterize —by using the concept of norming subspace— the com-
pleteness of (X,µ(X,Y )) when the Banach space X has an angelic dual ball, a
situation that includes the separable Banach spaces X and, more generally, the
weakly compactly generated ones —so in particular the reflexive Banach spaces,
although for this last instance our results become irrelevant—. Finally, we apply
our results, among other things, to characterize those Banach spaces where the
answer to the Kunze–Arendt question mentioned above is always positive.

We adopt here the terminology of Banach spaces—as, e.g., in [FHHMZ11]—,
even when dealing with locally convex spaces. For example, if X is a locally
convex space, then X∗ denotes its topological dual. If S is a subset of X∗, the
topology on X of the pointwise convergence on points of S will be denoted by
w(X,S), and w(S,X) will denote the topology on S of the pointwise convergence
on points of X. Quite often, the topology w(X∗, X) will be denoted, as it is
usual, by w∗. We shall try to use the same name for a topology on a topological
space and its restriction to any subset if no ambiguity is expected. The dual
norm of a norm ∥ · ∥ will be denoted by ∥ · ∥∗, although we shall use ∥ · ∥ instead
if there is no risk of misunderstanding.

A subspace Y of the dual X∗ of a Banach space X is said to be norming
(1-norming) whenever ∥x∥Y := sup{⟨x, y∗⟩ : y∗ ∈ BY }, x ∈ X, is an equivalent
norm (respectively, is the original norm) on X. Observe that every norming
subspace of X∗ is w∗-dense. If S is a subset of a vector space E, then [S] will
denote the linear span of S, and if x ∈ E, then [x] will denote the linear span of
the set {x}. For other non-defined concepts we refer, e.g., to [FHHMZ11]. Our
Banach spaces are always assumed to be real.

A. Grothendieck gave a characterization of the completion of a locally convex
space —see, e.g., [Ko69, §21.9]— that, when applied to a dual pair ⟨X,Y ⟩ and
the associated Mackey topology µ(X,Y ) on X, reads:

(G) The completion of the locally convex space (X,µ(X,Y )) can be identified
to the set of all linear functionals L : Y → R whose restriction L|K to any
absolutely convex and w∗-compact subset K of Y is w∗-continuous.

In particular, (X,µ(X,Y )) is complete if, and only if, given a linear func-
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tional L : Y → R whose restriction to any absolutely convex and w∗-compact
subset of Y is w∗-continuous, there is x ∈ X such that ⟨x, y⟩ = L(y) for all
y ∈ Y —we will simply say that L belongs to X.

2 The main results

A topological space T is said to be Fréchet–Urysohn if the sequential closure
and the closure of any subset of T agree. It is said to be angelic —a concept
due to H. D. Fremlin— whenever every relatively countably compact K of T is
relatively compact, and the sequential closure of K coincides with its closure.
Of course, in the setting of compact topological spaces, both notions coincide.
Any Banach space is angelic in its weak topology. If X is a Banach space,
the closed unit ball BX∗ of its dual X∗, when endowed with the w∗-topology, is
angelic if X is weakly compactly generated —WCG, in short, meaning that there
exists a weakly compact and linearly dense subset of X— in particular, if X
is separable. This happens, more generally, if X is weakly Lindelöf determined
—see, e.g., [FHHMZ11, Chapter 14].

Along this paper, Y will denote a w∗-dense subspace of the dual X∗ of a
Banach space X. We shall provide criteria to decide whether (X,µ(X,Y )) is or
not complete.

The first set of criteria —Proposition 1 and Theorem 2— checks complete-
ness by looking at the quality of (Y,w∗) being a Mazur space —a locally convex
space E is said to be Mazur, or, in other terms, that has the Mazur property,
if every sequentially continuous linear form defined on E is continuous—. The
setting includes the separable or, more generally, the WCG Banach spaces. As
we shall see later, Proposition 1 is essentially a reformulation of a result of A.
Wilansky in the context of Banach spaces.

Proposition 1 Let X be a Banach space, and Y be a w∗-dense subspace of
X∗. Assume that every absolutely convex and compact subset of (BY , w

∗) is
Fréchet–Urysohn. If the space (X,µ(X,Y )) is complete, then (Y,w∗) is Mazur.

Surprisingly, for w∗-dense and ∥ · ∥-closed subspaces Y , the converse holds
without assumptions on the Banach space (Proposition 10): (X,µ(X,Y )) is
complete whenever (Y,w∗) is Mazur. This is a consequence of the fact that
(Y,w∗) is locally complete —see Proposition 9 below—. As a byproduct, we
have the following characterization.

Theorem 2 Let X be a Banach space, and Y a w∗-dense and ∥ · ∥-closed
subspace of X∗. Assume that every absolutely convex and compact subset of
(BY , w

∗) is Fréchet-Urysohn. Then the two following statements are equivalent.

1. The space (Y,w∗) is Mazur.

2. The space (X,µ(X,Y )) is complete.
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If Y is just w∗-dense, the implication (1)⇒(2) in Theorem 2 above may fail
—see Example 12 below.

The second set of criteria —Proposition 3 and Theorem 4— checks com-
pleteness now in terms of the norming quality of the subspace Y . Again, the
setting includes the separable and, more generally, the WCG Banach spaces.

Proposition 3 Let X be a Banach space and let Y be a w∗-dense subspace of
X∗. If (X,µ(X,Y )) is complete, then Y is norming.

In case that Y is norm closed we get an equivalence when the closed dual
unit ball is angelic in the w∗-topology.

Theorem 4 Let X be a Banach space, and Y a w∗-dense and ∥ · ∥-closed
subspace of X∗. Assume that (BX∗ , w∗) is angelic. Then, the two following
conditions are equivalent:

1. The space Y is norming.

2. (X,µ(X,Y )) is complete.

If Y is just w∗-dense, the implication (1)⇒(2) in Theorem 4 above may fail
—see again Example 12.

Let us collect in a single result the two main contributions —Theorems 2
and 4— of this note. It is formulated in a somehow less than optimal —albeit
more useful— context. As mentioned above, Theorem 5 below applies to all
weakly compactly generated —in particular, all separable— Banach spaces.

Theorem 5 Let X be a Banach space such that (BX∗ , w∗) is angelic. Let Y
be a w∗-dense and ∥ · ∥-closed subspace of X∗. Then the three following
statements are equivalent.

1. (X,µ(X,Y )) is complete.

2. Y is norming.

3. (Y,w∗) is Mazur.

The rest of the paper includes the proofs of these statements, examples to
test their scope, intermediate results, applications to former and new examples,
and some consequences. Here is a short summary.

Proposition 1 applies to the example given by J. Bonet and B. Cascales in
[BC10] consisting of a w∗-dense and ∥·∥-closed subspace Y (= C[0, 1]) of ℓ∞[0, 1]
such that (ℓ1[0, 1], µ(ℓ1[0, 1], Y )) is not complete —see Subsection 5.1. It also
includes the result in [GM15] showing that (ℓ1(Γ), µ(ℓ1(Γ), Y )) is not complete
whenever Y := c0(Γ)⊕ [x∗∗] (⊂ ℓ∞(Γ)) and x∗∗ has uncountable support.

Theorem 2 applies, in particular, to the result in [GM15] showing that
(ℓ1(Γ), µ(ℓ1(Γ), Y )) is complete whenever Y := c0(Γ) ⊕ [x∗∗] (⊂ ℓ∞(Γ)) and
x∗∗ has countable support.
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Proposition 3 gives in all Banach spaces X having an infinite-dimensional
quotient X∗∗/X (e.g., in the space X := c0) w∗-dense and closed subspaces
Y of X∗ such that (X,µ(X,Y )) is not complete. This solves, in particular, a
question left open for c0 in [GM15]. This fact, together with the result that
quasi-reflexive Banach space are WCG spaces, leads us to a characterization of
those Banach space where the Kunze–Arendt question —see [Kun08]— cannot
be solved in the negative —see Subsection 5.2.

Theorem 4 includes and improves several results in [GM15], for example
Corollary 3 there —the assumption used that µ(X,P ) should be complete for a
separable Banach space X and a ∥ ·∥-closed and norming subspace P of X∗ was
superfluous— and Corollary 13 there —in fact showing that this result is true
for any ∥·∥1-closed and norming subspace H of ℓ1, not necessarily a hyperplane.

3 Proofs

The following result is [Wi81, Theorem 3.3].

Theorem 6 (A. Wilansky) Let X be a complete locally convex space such
that every equicontinuous subset of X∗ is Fréchet–Urysohn in the w∗-topology.
Then (X∗, w∗) is a Mazur space.

Proposition 1 above is a straightforward consequence of the previous theo-
rem, formulated in the setting of Banach spaces. We provide the proof of the
proposition for the sake of completeness. As we shall subsequently see, Propo-
sition 1 solves several questions on the subject of this note.

We shall need the following simple result (see, e.g., [Fl80, Exercise 3.26]).

Lemma 7 Let A be a Fréchet-Urysohn topological space. Let B be a topological
space. Then, every sequentially continuous function f : A → B is continuous.

Proof of Proposition 1. Let L : Y → R be a sequentially continuous linear
form on (Y,w∗). Let K be any absolutely convex and w∗-compact subset of Y .
It is ∥ · ∥-bounded —a consequence of the Banach–Mackey theorem— so we
may assume, without loss of generality, that K ⊂ BY . It follows that (K,w∗)
is Fréchet–Urysohn. According to Lemma 7, L|K is continuous on (K,w∗),
hence an element of the completion of (X,µ(X,Y )) in view of Grothendieck’s
characterization (G) above. There exists then an element x ∈ X such that
L(y) = ⟨x, y⟩ for all y ∈ Y , and so L is w∗-continuous. �

A locally convex space X is said to be locally complete if the normed space
generated by any bounded absolutely convex and closed subset of X is com-
plete. The following result —see, e.g., [BP87, Theorem 5.1.11]— provides a
characterization of this property.

Proposition 8 Let X be a locally convex space. Then, the following are equiv-
alent:
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1. X is locally complete.

2. The closed absolutely convex hull of any null sequence in X is compact.

Probably the following proposition is well known, although we did not find
any reference in the literature. This is why we provide a proof. By the way,
it shows that the hypothesis in [GM15, Lemma 8] on the local completeness of
the space (H,w(H, c0)), where H was a ∥ · ∥-closed and w∗-dense hyperplane of
ℓ1, was superfluous.

Proposition 9 Let X be a Banach space and Y a ∥ · ∥-closed and w∗-dense
subspace of X∗. Then the space (Y,w∗) is locally complete.

Proof. We shall prove that the space (Y,w∗) satisfies (2) in Proposition
8. Let (y∗n)n∈N be a null sequence in (Y,w∗). It is, then, norm-bounded and
the operator T : X → c0 defined by Tx = (y∗n(x))n∈N for every x ∈ X is
well defined and norm-to-norm continuous. The adjoint operator T ∗ : ℓ1 → X∗

is w(ℓ1, c0)-w
∗-continuos —also norm to norm continuous—. Since Bℓ1 is a

w(ℓ1, c0)-compact subset of ℓ1, T
∗Bℓ1 is a w∗-compact subset of X∗. Note that

T ∗e∗n = y∗n for all n ∈ N (where e∗n is the n-th vector of the canonical basis
of ℓ1), so Γ{y∗n : n ∈ N} = T ∗Γ{e∗n : n ∈ N} ⊂ T ∗Bℓ1 . It follows easily that

T ∗Bℓ1 = Γ{y∗n : n ∈ N}
w∗

. Due to the fact that Bℓ1 = Γ{e∗n : n ∈ N}
∥·∥1

and
that Y (⊂ X∗) is ∥ · ∥∗-closed, we get that T ∗Bℓ1 ⊂ Y . �

Proposition 10 Let X be a Banach space, and let Y be a ∥ · ∥-closed and
w∗-dense subspace of X∗. If (Y,w∗) is Mazur then the space (X,µ(X,Y )) is
complete.

Proof Let L : Y → R be an element of the completion of (X,µ(X,Y ))
and let (y∗n)n∈N be a w∗-null sequence in Y . By Proposition 9, the set K =

Γ{y∗n : n ∈ N}
w∗

is an absolutely convex and w∗-compact subset of Y . Therefore,
by Grothendieck’s completeness criterion —see (G) above— L restricted to K is
w∗-continuous. In particular, L(y∗n) → 0. This shows that L is w∗-sequentially
continuous, hence an element in X. �

Proof of Theorem 2. It follows from Propositions 1 and 10. �
Let X be a Banach space. A useful fact —to be used several times below—

is that a w∗-dense subspace Y of X∗ is norming if, and only if, X + Y ⊥ is
∥ · ∥-closed in X∗∗. This is formulated and proved in, e.g., [FHHMZ11, Exercise
5.3] for Y w∗-dense and ∥ · ∥-closed. Certainly, it also holds if we only ask Y to
be w∗-dense.

Proof of Proposition 3. Assume that Y is not norming. Then X + Y ⊥

is not ∥ · ∥-closed in X∗∗. Find x∗∗ ∈ X + Y ⊥∥·∥
\ (X + Y ⊥). Let (xn +

y∗∗n )∞n=1 be a sequence ∥ · ∥-converging to x∗∗, where xn ∈ X and y∗∗n ∈ Y ⊥

for all n ∈ N. Given an absolutely convex and w∗-compact subset K of Y ,
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note that x∗∗|K is w∗-continuous, since it is the uniform limit of the sequence
((xn + y∗∗n )|K)∞n=1 = (xn|K)∞n=1. By Grothendieck’s completeness criterion —
see (G) above— we deduce that x∗∗|Y belongs to the completion of (X,µ(X,Y )).
Therefore, (X,µ(X,Y )) is not complete. �

In the proof of Theorem 4 the following lemma will be needed.

Lemma 11 Let X be a Banach space, and let Y be a norming subspace of X∗.
If x∗∗ ∈ X∗∗ \ (X +Y ⊥) then the space Z = Y ∩ker(x∗∗) is a norming subspace
of X∗.

Proof. We claim that Z⊥ = Y ⊥ + [x∗∗]. To see this, observe first that
Y ⊥ + [x∗∗] ⊂ Z⊥. Take now z∗∗ ∈ Z⊥. The linear form z∗∗|Y : Y → R vanishes
on Z. It follows that z∗∗|Y = λx∗∗|Y for some λ ∈ R. Thus z∗∗ − λx∗∗ ∈ Y ⊥,
and so z∗∗ ∈ Y ⊥+λx∗∗ ⊂ Y ⊥+ [x∗∗]. Since X +Y ⊥ is ∥ · ∥-closed in X∗∗, so it
is X + Z⊥ —see, e.g., [FHHMZ11, Exercise 5.11]— and Z is then norming. �

Proof of Theorem 4. In view of Proposition 3, only the implication
(1)⇒(2) needs a proof. Assume that Y is norming. By Theorem 2 it is enough
to show that (Y,w∗) is Mazur. Let L : Y → R be a w∗-sequentially continuous
linear mapping. Clearly, L is ∥·∥-continuous. Let x∗∗ ∈ X∗∗ be a Hahn–Banach
extension of L to X∗. Assume that x∗∗ ̸∈ X+Y ⊥. By Lemma 11 we know that
Z = Y ∩ ker(x∗∗) is a (proper) ∥ · ∥-closed norming subspace of X∗. Therefore,
there exists a positive scalar α such that

BY ⊂ BX∗ ⊂ αBZ
w∗

⊂ αBX∗ .

Fix y∗ ∈ BY such that y∗ ̸∈ Z. Since y∗ ∈ BX∗ we can find, by assumption,
a sequence (αz∗n)n∈N, where z∗n ∈ BZ for all n ∈ N, such that αz∗n → y∗ in the
topology w∗. But then

L(αz∗n) = ⟨x∗∗, αz∗n⟩ = 0 −̸→ ⟨x∗∗, y∗⟩ = L(y∗) ( ̸= 0),

and so L (= x∗∗
|Y ) is not w∗-sequentially continuous. This is a contradiction,

hence x∗∗ ∈ X + Y ⊥, and so L : Y → R is w∗-continuous. This is what we
wanted to show. �

4 (Counter)examples

Example 12 Neither (1)⇒(2) in Theorem 2 nor (1)⇒(2) in Theorem 4 are true
in general if we remove the condition of ∥ · ∥-closedness of Y . A counterexample
that works for both (taken from [BC10]) consists of the space X := c0 and the
subspace φ of X∗ (= ℓ1) of all its finitely-supported vectors. (Bℓ1 , w

∗) is metriz-
able, hence angelic. The space φ is clearly (1-) norming, while (c0, µ(c0, φ)) is
not complete. The reason for this last assertion is that every absolutely con-
vex and w(φ, c0)-compact subset of φ must be finite-dimensional (due to the
Baire Category Theorem), and so µ(c0, φ) is the topology on c0 of the point-
wise convergence. In this case, this topology is not even sequentially complete.
Moreover, the space (φ,w(φ, c0)) is easily seen to be Mazur.
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Example 13 Observe that Theorem 4 does not hold under the more general
assumption —used in Proposition 1 and Theorem 2, for example— that the ab-
solutely convex and w∗-compact subsets of Y , endowed with the topology w∗,
are Fréchet–Urysohn. In fact, the example of Bonet and Cascales —see Propo-
sition 15— is a counterexample. Indeed, absolutely convex and w∗-compact
subsets of Y := C[0, 1] are w∗-angelic —by the way, in the proof of Propo-
sition 15 below it is proved that (Y,w∗) is angelic—, and Y is (1-) norming.
However, the space (ℓ1[0, 1], µ(ℓ1[0, 1], C[0, 1])) was shown not to be complete.
Thus, Theorem 4 cannot be applied to this example, although Proposition 1
does, as we shall show below —see Propositions 15.

Example 14 Let Y be a w∗-dense subspace of the dual of a Banach space X.
From the proof of Theorem 2 we deduce that (X,µ(X,Y )) is complete whenever
Y is norm-closed and (Y,w∗) is a Mazur space. The converse is not true, for
example X = C([0, ω1]) and Y = X∗. Indeed, (X∗, µ(X∗, X)) is complete but
(X∗, w∗) is not Mazur —see [Kap86]—. On the other hand if (X,µ(X,Y )) is
complete, Proposition 3 implies that Y is necessarily a norming subspace. The
converse of this fact is not true as shows J. Bonet and B. Cascales example —
see subsection 5.1—. This suggests that the equivalence between (X,µ(X,Y ))
being complete and Y being norming is satisfied in a much bigger class of Banach
spaces than the one given in Theorem 5.

5 Applications

5.1 An application to the example of J. Bonet and B.
Cascales in [BC10].

Note that C[0, 1], i.e., the space of continuous functions on the interval [0, 1], is
a (closed) subspace of (ℓ∞[0, 1], ∥ · ∥∞), and it is 1-norming with respect to the
pair ⟨ℓ1[0, 1], ℓ∞[0, 1]⟩, in particular, w∗-dense in ℓ∞[0, 1].

Note, too, that the Riemann integral R : (C[0, 1], w(C[0, 1], ℓ1[0, 1])) → R is
a sequentially continuous non-continuous linear form. Indeed, if (fn)n∈N is a
w(C[0, 1], ℓ1[0, 1])-null sequence in C[0, 1], it is ∥·∥∞-bounded and pointwise null,
and so the sequential continuity is a consequence of the Lebesgue Dominated
Convergence Theorem. Note that R is not an element in ℓ1[0, 1], as elements
there have countable support.

The following result was proved in [BC10] by using the Krein–Šmulyan The-
orem. Here it is obtained as a consequence of Proposition 1 and the previous
observation about the Riemann integral.

Proposition 15 (J. Bonet, B. Cascales, [BC10]) The space
(ℓ1[0, 1], µ(ℓ1[0, 1], C[0, 1])) is not complete.

Proof The space (C[0, 1], Tp) is angelic, where Tp denotes the topology of
the pointwise convergence (see, e.g., [FHHMZ11, Theorem 3.58], or [Fl80, Theo-
rem 3.7]), so it is the space (C[0, 1], w(C[0, 1], ℓ1[0, 1])) (see [Fl80, Theorem 3.3.2
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(ii)]), and, in particular, the topological space (BC[0,1], w(C[0, 1], ℓ1[0, 1])) (an
alternative argument is that on every absolutely convex and w(C[0, 1], ℓ1[0, 1])-
compact subset of C[0, 1], the topologies w(C[0, 1], ℓ1[0, 1]) and Tp agree). More-
over, the space (C[0, 1], w(C[0, 1], ℓ1[0, 1])) is not Mazur —see the note on the
Riemann integral above—. The conclusion follows from Proposition 1. �

Remark 16 Observe that C[0, 1] is ∥·∥∞-closed in ℓ∞[0, 1] and (1-) norming for
ℓ1[0, 1]. Theorem 4 and Proposition 15 together show then that (Bℓ∞[0,1], w

∗)
is not angelic, something that can be checked directly. This is to say that we
cannot apply Theorem 4 to prove Proposition 15 above.

5.2 Answering Kunze–Arendt question

Theorem 4 allows us to show a simple characterization of those Banach spaces
where the answer to the Kunze–Arendt question is always affirmative —see
[BC10] for details on its origin—. Those are, precisely, the quasi-reflexive ones,
i.e., those spaces X for which X∗∗/X is finite-dimensional.

Corollary 17 A Banach space is quasi-reflexive if, and only if, (X,µ(X,Y ))
is complete for any w∗-dense subspace Y of X∗.

Proof Every quasi-reflexive space is WCG [Val77]. Let Y be a w∗-dense
subspace of X∗. A result of W. J. Davis and J. Lindenstrauss [DL72] shows
that Y is norming. It is enough now to apply Theorem 4 to conclude that
(X,µ(X,Y )) is complete.

Conversely, assume that X is not quasi-reflexive. Then we can find a w∗-
dense subspace Y of X∗ which is not norming —see again [DL72]—. Then, by
Theorem 4 —or just by Proposition 3— we deduce that (X,µ(X,Y )) can not
be complete. �

This applies in particular to the space c0. We proved in [GM15] that for
every ∥ · ∥-closed and w∗-dense hyperplane H of ℓ1 —i.e., the kernel of an
element x∗∗ ∈ ℓ∞ \ c0—, the space (c0, µ(c0,H)) is complete. This is now a
consequence of Theorem 4 above, since H is norming for c0. At that time we
could not find w∗-dense and ∥·∥-closed subspaces Y of ℓ1 such that (c0, µ(c0, Y ))
is not complete. Now we may easily provide examples of this situation by using
Theorem 4, either by relying on the result mentioned above in this subsection,
or by giving a concrete example of a ∥ · ∥1-closed w∗-dense and not norming
subspace of ℓ1. We quote [FHHMZ11, Exercise 3.92] for this: take a partition
{I}∪{Ik : k ∈ I} of N into disjoint infinite sets. Let S := {y ∈ ℓ1 : for each k ∈
I, yk = 1

k

∑
n∈Ik

yn}. The space S is w∗-dense in ℓ1 but not norming. Observe,
too, that S is ∥ · ∥1-closed in ℓ1.

5.3 Comparing Proposition 1 and a result in [BC10]

The following result is proved in [BC10]:
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Proposition 18 (J. Bonet, B. Cascales) Let X be a Banach space, and let
Y be a proper (i.e., Y ̸= X∗) w∗-dense subspace of X∗. Assume that

1. The norm-bounded w(X,Y )-compact subsets of X are weakly compact.

2. The space (X,w(X,Y )) is not Mazur.

Then, (X,µ(X,Y )) is not complete.

By the way, (1) in Proposition 18 above is the conclusion of a result of
H. Pfitzner that solves in the positive the so-called boundary problem of G.
Godefroy. Pfitzner’s theorem says [Pf10]: Let X be a Banach space, B be a
bounded subset of X and J a boundary for X. If B is w(X,J)-compact then it
is w(X,X∗)-compact. A (James) boundary for a Banach space X is a subset J
of SX∗ such that for every x ∈ X there exists x∗ ∈ J such that ∥x∥ = ⟨x, x∗⟩.
An example of a boundary is the set of all extreme points of BX∗ . If J is a
boundary then span(J) is obviously a 1-norming subspace of X∗. Note that
the conclusion of Pfitzner’s Theorem holds trivially for a strong boundary, i.e.,
a boundary J for X such that conv ∥·∥(J) = BX∗ . There are boundaries that
are not strong, as the example J := {±δt : t ∈ [0, 1]} (⊂ C[0, 1]∗) shows.

As a consequence —and it was already remarked in [BC10]— any couple
(X,Y ), where X is a Banach space that does not contain a copy of ℓ1[0, 1] and
Y ⊂ X∗ is a subspace containing a boundary for X, satisfies (1) and (2) in
Proposition 18.

Note that if X is a Banach space such that (BX∗ , w∗) is angelic and Y :=

[J ]
∥·∥

for J a James boundary for X, it follows from the completeness of
(X,µ(X,Y )), Pfitzner’s theorem mentioned above, and the classical Eberlein–
Šmulyan theorem that, every bounded and w(X, J)-relatively countably com-
pact subset of X is w-relatively compact, and from the same Pfitzner’s result
and James’ weak compactness theorem that if B is a w(X,Y )-closed subset of
X and every element in Y attains its supremum on B, then B is w-compact.

We note that Proposition 18 is independent of Proposition 1 in the following
sense: A) there are couples (X,Y ) that satisfy (1) and (2) in Proposition 18
although they do not satisfy the hypothesis in Proposition 1, and B) conversely,
there are couples (X,Y ) that satisfy the hypothesis of Proposition 1 and do not
satisfy (1) and (2) in Proposition 18.

Indeed,

A) Put X := C[0, 1] (clearly, this space does not contain a copy of ℓ1[0, 1],
since it is separable and ℓ1[0, 1] is not), and let Y be the ∥ · ∥-closed linear
span of the boundary {±δt : t ∈ [0, 1]}. Note that (Y,w∗) is Mazur. This
is a consequence of Theorem 5: Since C[0, 1] is separable, (BC[0,1]∗ , w

∗) is
angelic, and clearly Y is (1-) norming.

B) Put Z := ℓ1[0, 1] and W := C[0, 1]. We showed above —see Subsec-
tion 5.1— that Proposition 1 can be applied to the couple (Z,W ). How-
ever, the sequence (e1/n − e0)n∈N in ℓ1[0, 1] is w(ℓ1[0, 1], C[0, 1])-null, and
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so K := {e1/n−e0 : n ∈ N}∪{0} is a w(ℓ1[0, 1], C[0, 1])-compact although
not w-compact in ℓ1[0, 1], so (1) in Proposition 18 fails. By the way, it is
not difficult, by using Theorem 5, to show that (2) in Proposition 18 fails
too, i.e., (ℓ1[0, 1], w(ℓ1[0, 1], C[0, 1])) is Mazur.

Acknowledgement. We thank the referee for his/her suggestions that
helped to improve the original manuscript.
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