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A CHARACTERIZATION OF THE WAVE FRONT SET DEFINED BY THE
ITERATES OF AN OPERATOR WITH CONSTANT COEFFICIENTS

CHIARA BOITI AND DAVID JORNET

ABSTRACT. We characterize the wave front set WFT (u) with respect to the iterates of a linear partial
differential operator with constant coefficients of a classical distribution v € D’(€2), 2 an open subset
in R™. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of
Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators
with variable coefficients and constant strength. Finally, we construct a distribution with prescribed
wave front set of this type.
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1. Introduction

We introduced in [3] the wave front set WFL (u), for a classical distribution u € D'(Q) defined on
a open set 2 of R™, with respect to the iterates of a hypoelliptic linear partial differential operator
P with constant coefficients for ultradifferentiable classes in the sense of Braun, Meise and Taylor
[7]. We established in [3] a microlocal regularity theorem for this wave front set and we studied the
product of ultradifferentiable functions defined in the usual way with the ones defined by iterates. As
a consequence we obtained a partial result related to the construction of distributions with prescribed
wave front sets. Here, we describe more precisely the behaviour of the set WFZ (u) and complete
the previous result about prescribed singularities. Finally, we give some applications to the w-micro-
regularity of linear partial differential operators with variable coefficients and constant strength.

The problem of iterates begins mainly when Komatsu [16] in 1960s characterized analytic functions
f in terms of the behaviour of successive iterates P(D)?f of a partial differential elliptic operator
P(D) with constant coefficients, proving that a C'°° function f is real analytic in Q if and only if for
every compact set K CC {2 there is a constant C' > 0 such that

IP(DY fllaxc < CTH(H™,

where m is the order of the operator and || - ||2.k is the L? norm on K. This result was generalized
for elliptic operators with variable analytic coefficients by Kotake and Narasimhan [17, Theorem
1]. Later, it was extended to the setting of Gevrey functions by Newberger and Zielezny [23] and
completely characterized by Métivier [22] (see also [26]). Spaces of Gevrey type given by the iterates
of a differential operator are called generalized Gevrey classes and were used by Langenbruch [18, 19,
20, 21] for different purposes. For more references about generalized Gevrey classes and the microlocal
version of the problem see [3].

More recently, Juan Huguet [14] extended the results of Komatsu [16], Newberger and Zielezny [23]
and Métivier [22] to the setting of non-quasianalytic classes in the sense of Braun, Meise and Taylor [7].
In [14], Juan Huguet introduced the generalized spaces of ultradifferentiable functions £(€2) on an
open subset  of R™ for a fixed linear partial differential operator P with constant coefficients, and
proved that these spaces are complete if and only if P is hypoelliptic. Moreover Juan Huguet showed
that, in this case, the spaces are nuclear. Later, the same author in [15] established a Paley-Wiener
theorem for the classes £(€), again under the hypothesis of the hypoellipticity of P.

In order to remove the assumption on the hypoellipticity of the operator, we considered in [2] a
different setting of ultradifferentiable functions, following the ideas of [4].
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2 A CHARACTERIZATION OF THE WAVE FRONT SET. ..

The structure of the paper is as follows. We begin in Section 2 with some notation and preliminaries.
First, we introduce the classes of ultradifferentiable functions. Then we complete some partially known
results on linear partial differential operators with constant coeflficients regarding w-regularity that
we will use in the last section. In Section 3 we use Paley-Wiener theorems in [15] to characterize
the wave front set WFZ (u) introduced in [3] (see Corollaries 3.14 and 3.15). The main tools to
establish this characterization are [3, Proposition 17], in which we proved that the product of a
suitable Gevrey function and a function in F(Q) is still in £F(Q) (observe that £(Q) is not an
algebra for pointwise multiplication in general), and the application of pseudodifferential operators
defined by symbols supported in a given cone to the description of the wave front set in Theorem 3.11
(see [25, Proposition 3.4.4] for the corresponding result in Gevrey classes). In the last section, Section
4, we give some applications and examples, in particular to operators with variable coefficients and
constant strength. For this purpose we employ some known results on w-micro-regularity of operators
with constant strength (see [8, 9]).

2. Notation and preliminaries

Let us recall from [7] the definitions of weight functions w and of the spaces of ultradifferentiable
functions of Beurling and Roumieu type:

Definition 2.1. A non-quasianalytic weight function is a continuous increasing function w : [0, +oo[—
[0, +-00[ with the following properties:

(o) AL >0 st w(2t) < L(w(t)+1) Vt>0;

(B) [t < oo,

(7) log(t) = o(w(t)) as t — +oo;

(0) @u: t>w(e') is conver.

Normally, we will denote ¢,, simply by .

For a weight function w we define @ : C" — [0, +oo[ by @(2) := w(|z|) and again we denote this
function by w.

The Young conjugate ¢* : [0, +oo[— [0, +oo[ is defined by

¢*(s) := sup{st — ¢(t)}.
>0
There is no loss of generality to assume that w vanishes on [0,1]. Then ¢* has only non-negative
values, it is convex, ¢*(t)/t is increasing and tends to oo as t — oo, and ™ = .

Example 2.2. The following functions are, after a change in some interval [0, M], examples of weight
functions:

(i) w(t) =t for 0 < d < 1.

(i) w(t) = (log(1 +t))%, s > 1.

(iil) w(t) = t(log(e +1))753, B > 1.

(iv) w(t) = exp(B(log(1 + 1)), 0 < a < 1.

In what follows, 2 denotes an arbitrary subset of R” and K CC () means that K is a compact
subset in €.

Definition 2.3. Let w be a weight function.

(a) For a compact subset K in R™ which coincides with the closure of its interior and A > 0, we

define the seminorm
£ @)] exp (—w* <“§'>) ,

ENK) == {f € C®(K) : pra(f) < oo},

prA(f) = sup sup
z€K aeN]

where Ny := NU {0}, and set
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which is a Banach space endowed with the pg (-)-topology.

(b) For an open subset  in R™, the class of w-ultradifferentiable functions of Beurling type is defined
by
Ewy () =={f € C7(Q) : prA(f) < 00, for every K CC Q and every A > 0}.
The topology of this space is
€w)(©2) = proj proj £3(K),
KCCQ A>0
and one can show that £¢,(€2) is a Fréchet space.

(¢) For a compact subset K in R™ which coincides with the closure of its interior and A > 0, set
Ey(K) ={f € C*(K) : there exists m € N such that py 1 (f) < oo},

This space is the strong dual of a nuclear Fréchet space (i.e., a (DFN)-space) if it is endowed with its
natural inductive limit topology, that is,

1
g{w}(K) = ig(j Emn (K)
meN
(d) For an open subset Q in R™, the class of w-ultradifferentiable functions of Roumieu type is
defined by:
Ey () :=={f € C(Q) : VK CC Q I\ > 0 such that pg r(f) < oo}.
Its topology is the following
KccQ
that is, it is endowed with the topology of the projective limit of the spaces €,y (K) when K runs the
compact subsets of £2. This is a complete PLS-space, that is, a complete space which is a projective
limit of LB-spaces (i.e., a countable inductive limit of Banach spaces) with compact linking maps in
the (LB)-steps. Moreover, £,1(£) is also a nuclear and reflexive locally convex space. In particular,
(w1 (9) is an ultrabornological (hence barrelled and bornological) space.

The elements of &, (2) (resp. E,1(2)) are called ultradifferentiable functions of Beurling type
(resp. Roumieu type) in €.

In the case that w(t) := t% (0 < d < 1), the corresponding Roumieu class is the Gevrey class with
exponent 1/d. In the limit case d = 1, not included in our setting, the corresponding Roumieu class
E(wy(€2) is the space of real analytic functions on  whereas the Beurling class £, (R") gives the entire
functions.

If a statement holds in the Beurling and the Roumieu case then we will use the notation £,(€2). It
means that in all cases * can be replaced either by (w) or {w}.

For a compact set K in R", define

D.(K) = {f € &.(R") : suppf C K},
endowed with the induced topology. For an open set 2 in R™, define
D.(Q) := ind D.(K).
Kcca

Following [14], we consider smooth functions in an open set €2 such that there exists C' > 0 verifying

for each j € Ng := NU {0},

A

where K is a compact subset in Q, || - ||2,x denotes the L?-norm on K and P7(D) is the j-th iterate
of the partial differential operator P(D) of order m, i.e.,

PI(D) = P(D)o---oP(D).

|PH(D)fllox < Cexp (wm)) ,
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If j =0, then P°(D)f = f.
Given a polynomial P € Clz,...,2,] of degree m, P(z) = >  aqsz%, the partial differential

la|<m
operator P(D) is defined as P(D) = 7, ,/<;, @aD®, where D = 20.
The spaces of ultradifferentiable functions with respect to the successive iterates of P are defined
as follows.
Let w be a weight function. Given a polynomial P, an open set €2 of R", a compact subset K CC €2
and A > 0, we define the seminorm

A

(2.1) [fllgn = S£§ | P/(D) f|l2. i exp <—)\<P*(jm)>
MASA()

and set
Ep(K) ={f €C(K): ||fllga < +0oo}.

It is a normed space endowed with the || - || x \-norm.
The space of ultradifferentiable functions of Beurling type with respect to the iterates of P is:

Ey( ) ={f €C=(Q) : ||fllkr < +oo for each K CC © and A > 0},
endowed with the topology given by

£l () = proj proj &p,,(K).
KCccQ A>0

If { K, }nen is a compact exhaustion of {2 we have

€ (©2) = proj proj €p, (Kn) = proj €, (Kn).
neN keN neN

This is a metrizable locally convex topology defined by the fundamental system of seminorms
{I- iz inren-
The space of ultradifferentiable functions of Roumieu type with respect to the iterates of P is defined
by:
Ely () ={f €C®(Q): VK CC Q33X > 0 such that || f[|lxx < +o0}.

Its topology is defined by
Sﬁd}(Q) = pioj i{l_c)lé'j}’w(K).
KccQA>0

As in the Gevrey case, we call these classes generalized non-quasianalytic classes. We observe that
in comparison with the spaces of generalized non-quasianalytic classes as defined in [14] we add here
m as a factor inside ¢* in (2.1), where m is the order of the operator P, which does not change the
properties of the classes and will simplify the notation in the following. In fact, the space Ep, (1)
defined by Juan-Huguet [14], where o is now either (o) or {o}, satisfies

Epo () = £ (Q)

for o(t) = w(tl/m) being m the order of the operator P. To be more precise, we have the equality
P3(z) = g (ma) (see [14, p. 273))

The inclusion map &,(Q) — EF(Q) is continuous (see [14, Theorem 4.1]). The space () is
complete if and only if P is hypoelliptic (see [14, Theorem 3.3]). Moreover, under a mild condition on
w introduced by Bonet, Meise and Melikhov [6], £F(Q2) coincides with the class of ultradifferentiable
functions &£,(Q) if and only if P is elliptic (see [14, Theorem 4.12]).

We denote by

the classical Fourier transform F(f).
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Now, let P(D) be a linear partial differential operator with constant coefficients. We recall the
notion of hypoellipticity in the C*° class: P(D) is hypoelliptic in Q2 C R™ if P(D)u € C*°(Q2) implies
u € C°(Q2). In this case we also say that the polynomial P(§) = Z|a|<m ca&® is hypoelliptic.

We set -

V=V(P)={CeC": P) =0}
and consider the distance from £ € R" to V:

dE) = infle—cl.  EeR"

From [13, Thms 11.1.1 and 11.1.3] (see also [25, Prop. 2.2.1]) we recall the following characterization
of hypoellipticity, that will be useful in the following:

Theorem 2.4. Let P(D) be a linear partial differential operator with constant coefficients. The
following properties are equivalent for P to be hypoelliptic:

(1) For every open set Q@ CR"™ and u € D'(Q)
WF(u) = WF(P(D)u).
(2) For every open set Q@ C R™ and u € D'(Q)
sing supp u = sing supp P(D)u.

(3) P is homogeneous hypoelliptic, i.e. if Q0 is open in R™ and u € D'(Q) then P(D)u = 0 implies

ue C®(Q).

. D*P(¢)

4 lim
W 8 The

|§|—+o0
(5) P(D) has a fundamental solution E with singsupp E = {0}.

(6) 5131{% d(§) = +oo.

=0 Va # 0.

|€|—+o00
7 li I = .
(1) lim [T (] = +o0
¢]—+o00
(8) There exist C' > 0 and a largest 0 < ¢ < 1, with ¢ € Q, such that for all a # 0:
D*P(¢) _
<ol e R, g > 1.
S| < N
(9) There exist C > 0 and a largest 0 < ¢ < 1, with ¢ € Q, such that
(22) d€) > Clgle,  §eR", (> 1

Here WF(u) and sing supp u denote the classical wave front set and singular support of u € D'(2),
as defined in [12].

Remark 2.5. By [13, Lemma 11.1.4] there exists a constant C' > 0 such that for all polynomials P
of degree < m

(2.3 <o Y| P
a#0

Therefore the constant ¢ at the exponent in (8) and (9) of Theorem 2.4 coincide.
In particular, from (8) with |a| = m we have that if P is hypoelliptic and of order m then there
exist d,d > 0 such that

(2.4) PO >4l €eR™, ¢ >1,

with mec=d < m.
Moreover, by [10, Thm 3.1], there exists a smallest constant v := (P) > 0, which depends on P
and will be relevant later such that

1
la

<C for £ € R™ with P(§) # 0.

(2.5) DUPEOR<CO+[PEORTT  VeeR'  VaeN,
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for some C' > 0. Note that m <~y < m/e, since b := 1/ has been determined in Theorem 3.1 of [10]
applying the Tarski-Seidenberg theorem to

(2.6) M(A):= sup |grad P(€)| = AN7Y(1 4+ o(1)),
[P(&)=A
and (8) of Theorem 2.4 implies

(2.7) MO\ <AXN~ =, A>1

for some A, A’ > 0, if P has order m; (2.6) and (2.7) imply b > ¢/m and hence m <~y <m/c (y >m
by (2.5) with |a| =m).

We want to generalize Theorem 2.4 to w-hypoellipticity, for a weight function w.

Definition 2.6. A linear partial differential operator P(D) with constant coefficients is said to be
(w)-hypoelliptic ({w}-hypoellpitic) if every solution u € D'(R™) of P(D)u = f is in £ (R™) whenever
f€EWRM) (u € Ey (R™) whenever f € Eq,y(R™)).

We have the following characterization of (w)-hypoellipticity (Beurling case):

Theorem 2.7. Let P(D) be a linear partial differential operator with constant coefficients and w a
non-quasianalytic weight function. The following conditions are equivalent:

(1) P(D) is (w)-hypoelliptic.

_[Im¢]
@ lm T
(¢l -+00

w(é)

im
ger™ d(¢)
|§|—+o00

w(©) [ DP(¢)]
£ER™ [P(E)]
|€| =400

Proof. (1) < (2) is proved in [5].
(3) = (2): If { € V and |Im (| < |Re(], then from property («) of w we have that

n¢l _ d(ReQ)

=0.

(4)

=0 Va # 0.

Q) T IR+
by (3).
If ( € V and |Re(| < |Im (]| then

[Tm¢| _ 1[Re¢|+ [Im(]

WO 2w T
since w(t) = o(t).

(2) = (3): For every fixed & € R™ take ( € V with | — &| < 2d(€). Take |{| large enough.
It | — €] < |c], then [¢] < 2I¢] and

d(§)
w(&)

1e=¢ 1 [Im(]
2 w() 2L( ©+1)

Y

— +00

because of (2).
In [¢ — €| > [(], then (3) follows from the inequality

ae¢) 1 S
<>22 {w@) w(f)’w(é)}’
since w(t) ).

=o(t
(3) & (4): follows from (2.3). 0




C. Borri AND D. JORNET 7

Example 2.8. Theorem 2.7 shows, for example, that the heat operator P = d; — A, is not (t'/?)-
hypoelliptic, since

(T O ID5, P&l (72 + |62 _ 2(r2 +[¢)°
|P(7,€)] jim + (€] VT2 ElR

for 7 = |€| — +oo if 2a > 1. On the other hand, it is well known that the heat operator is {t'/2}-
hypoelliptic (as can be seen also by Theorem 2.9 below).

40

In the Roumieu case we have the following theorem of characterization of {w }-hypoellipticity, which
generalizes Proposition 2.2.1 of [25] (where a similar result is given for the Gevrey classes):

Theorem 2.9. Let P(D) be a linear partial differential operator with constant coefficients and w a
non-quasianalytic weight function. The following conditions are equivalent:

(1) P(D) is {w}-hypoelliptic.
2 lim inf
® ¢eViicltoo w(()

(3) There exists ¢ > 0 such that

> 0.

w(¢) <e(1+]Im¢]) VeV
(4) There exist c,C > 0 such that
w(§) <CdE€)  for£ R, [¢] > e
(5) There exist ¢,C > 0 such that
IDP(&)] < CIPE©)w(©)™* for £ e R, [¢] > ¢, a €N,

Proof. (1) < (2) is proved in [5].
(2) < (3): it is easy to check.
(3) = (4): For every fixed £ € R™ take ¢ € V with |( — ] < 2d(€).
If |¢] < |€ — (] then |£] < 2| — (| and for || large enough

w(§) <w(2]€ = ¢]) < ¢l = (] < 2cd(§)

for some ¢ > 0 since w(t) = o(t).
If |€ — ¢] < [¢] then |£] < 2|¢| and, by property («) of w and (3),

w(§) < L(w(Q) +1) < L'(|Tm¢| + 1) < L'(|¢ = & + 1) < L"d(¢€),

for some L', L > 0, since (3) implies that d(§) — +oo (see [25, Prop. 2.2.1]).
(4) = (3): If [Im (] < |Re(|, then property (o) of w and (4) imply that

w(¢) < Lw(Re () +1) < L'(d(Re ) + 1) < /(| Tm¢] +1)

for some L' > 0.
If |[Re (] < |Im(]| then, by property («) of w,

w(¢) < Lw(|Im¢]) + 1) < L'(| Im (| + 1)

for some L’ > 0 since w(t) = o(t).
(4) < (5): It is straightforward because of (2.3). O

Remark 2.10. From Theorems 2.7 and 2.9 we immediately get the well-known result that (w)-
hypoellipticity implies {w}-hypoellipticity and they both imply hypoellipticity by Theorem 2.4.
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3. Characterization of w-micro-hypoellipticity with respect to the it-
erates of an operator

Let w be a non-quasianalytic weight function and P(D) a linear partial differential operator with
constant coefficients. We want to characterize the functions in the class £F, for x = (w) or {w},
by means of the Fourier transform. To this aim we use a Paley-Wiener theorem for these spaces of
functions, that we borrow from [15]. Since our spaces £ (Q) are slightly different from the analogous
ones defined in [15], our Paley-Wiener theorem is only sligthly different from the one of [15], and
therefore we shall present the suitable statement here, omiting the proof (see [15, Lemma 3.1}).

Lemma 3.1. Let w be a non-quasianalytic weight function, P a polynomial of degree m, K a compact
convex subset of R™ and f € D(R™) with supp f C K. Then the following statements are equivalent:

(1) there exists A > 0 such that
[ IF@PPOM Mg < oo
(2) there exists \,C > 0 such that
|PY(D) fll2rn < cere () Vj € Np.

To be more precise, if (1) holds for some Ao > 0, then (2) holds for X = \o/2 and for C =
(2m) 12 (o | Q) PPo0PEN ™)

Conversely, if (2) holds for some X\ > 0, then
(3.1) 1F(Q)] < m(E) 20Dy, e mO=2e(POM™  ye e cm,

for some Dy, > 0 depending on X\ and w, where m(K) is the Lebesque measure of K and Hg(-) the
supporting function of K ; therefore (1) holds for any N < \.

We present also, similarly as in [15, Thms 3.3 and 3.4], the following Paley-Wiener type theorem
for functions in
D] (R") = {f € &/(R"): f € D[R},
for * = (w) or {w}:
Theorem 3.2. Let P(§) be a hypoelliptic polynomial of degree m and w a non-quasianalytic weight

function. If f € D(Pw) (R™) (resp. f € wa}(R”)) then its Fourier-Laplace transform F(C) = f(C) is an
entire function satisfying the following two conditions:

(i) there exist C, A > 0 such that
POl < Cetll veecn
(ii) for every A >0 (resp. there exists A > 0):

1
/ |F(€) P IPOI) de < 4oo.

Conversely, if F' is an entire function satisfying (i) and (ii), then F(() = f(() for some f € D{;) (R™)
(resp. fEwa}( ")).

Now, we have all the tools to prove the following theorems of characterization of 5(]; ) and £ {IZJ y:

Theorem 3.3. Let P(D) be a hypoelliptic linear partial differential operator with constant coefficients,
Q an open subset of R™, uw € D'(Q) and zo € Q. Let w be a non-quasianalytic weight function such
that w(t?) = o(o(t)), as t — 400, where ~ is the constant defined in (2.5) and o(t) =t/ for some
s> 1.

The following conditions are equivalent:

(1) ue E(IZJ)(U) for some neighborhood U of xg.
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(2) There exists {fn}nen C E'(Q) such that fx = P(D)Nu in a neighborhood of xo and:
V/{EN,MGRHC]C,M>O:

(3.2) ()] < Crare™ VB (1 4 ehM YN €N, € e R™
(3) There exists ¥ € Di51(Q), with ¢ =1 in a neighborhood of o, such that:
Vke NdC, > 0:
(33) [Pu(€)] < Cre ®IPOI™ — ye e R,

(4) There exists ¥ € Di51(Q), with ¢ =1 in a neighborhood of o, such that:

VEeN,£>03Ck,>0:
(3.4) IP()[N[du(€)] < Creeke VMW (1 4 [¢))~¢ VYN €Ny, € € R

Theorem 3.4. Let P(D) be a hypoelliptic linear partial differential operator with constant coefficients,
Q an open subset of R™, u € D'(Q) and xo € Q. Let w be a non-quasianalytic weight function such
that w(t?) = o(o(t)), as t — 400, where vy is the constant defined in (2.5) and o(t) = t'/* for some
s> 1.

Then the following conditions are equivalent:

{1} v € S{IZJ}(U) for some neighborhood U of xg.

{2} There exists {fn}nen C E'(Q) such that fy = P(D)Nu in a neighborhood of xo and:
dk e N,VM € R 3Cy > 0

(3:5) Fn(©) < Cuex? ML 41gh)M YN €N, £ e R™
{3} There exzists 1 € Dy51(Q), with 1 =1 in a neighborhood of xo, such that:
JkeN,C>0:
(3.6) [u()] < Ce #IPOM™  ye e R™,

{4} There exists 1 € D5y (S2), with ¢ =1 in a neighborhood of wo, such that:
dke N,V >03C, > 0:
(3.7) POINu(©)] < Ceer? NP (L4 [¢)™ YN € No, £ ER™.
Before proving Theorems 3.3 and 3.4 we need the following lemma:

Lemma 3.5. Let I' C R" be a cone, P(D) a linear partial differential operator of order m with
constant coefficients, Q@ an open subset of R"™, u € D'(Q), ¢ € D(Q). Then:

(1) Beurling case. The following two conditions are equivalent:
(1.a) for every k € N there exists Cy, > 0 such that

[Gu(©)] < CreHIPOI™ g e
(1.b) for every k € N, £ > 0 there exists Cyy > 0 such that
(PO [9u(€)] < Creet® VM1 +[¢)™ YN eNp, (€T

(2) Roumieu case. The following two conditions are equivalent:
(2.a) there ezist k € N and C' > 0 such that

[Pu(€)] < Cem ke IPOM™  ve e
(2.b) there exists k € N such that for every £ > 0 there is Cy > 0 s.t.

1P(&)[N|Pu(€)] < Coed® VMR (1 4 j¢)=¢ YN e Ng, € €.
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Proof of Lemma 3.5. Beurling case. (1.a) = (1.b): Since P is hypoelliptic, by (2.4), (1.a), [3, Lemma
16(i)] and the convexity of ¢*, we have, for all £ > 0 and N € Ny,

—_ _ £ —_
€[PE)N[u©)] < 6~ PE) e |du())
< A P(E) ) F N o HPO)
< Ck,eekso*(Ni’m)'
(1.b) = (1.a): Assume first that |P(£)| > 1. By (1.b) with £ = m we have that for every k there exists
a constant C}, ,, = C > 0 such that

g PEN e ) gu(e) < ¢ YN eN.geT.
Since |P(§)] < ¢|¢|™ for some ¢ > 0, we thus have that
(35) sup {(|P()|/m) O ek () L o)) < i
NeNg
for some Cj, > 0. But for all s > 0 there exists N € Ny such that Nm < s < (N + 1)m, so that

“u 1/ (N-+1)m ki () su 1/mys ,~ko* ()
s {(1POF™ #OR} > sup [P mye e ()]

exp{ke(log |P(€)|"/™)} = e"<(IPO™),
Substituting in (3.8) we have that
PO ™ gu(e) < ¢, Ve €T with [P(€)] > 1.

If |P(€)] <1 then w(|P(€)]"/™) = 0 and the thesis is trivial.
Roumieu case. It is similar to the Beurling case. (]

Proof of Theorem 3.3. (1) < (2) was proved in [3, Prop. 6].
(1) = (3): Let u € EP)(U) and take 1) € D5 (U) with ¢ = 1 in a neighborhood V' C U of x.

(w
Since w(tY) = o(o(t)), by Proposition 17 of [3] we have that ¢u € Da)(U).
By the Paley-Wiener Theorem 3.2, for all A > 0 there exists C'y > 0 such that

/ ()P (PO ge < ¢
R’ﬂ
and hence, by Lemma 3.1 for K = supp,
[u(C)] < m(K)2C\Dy el tmO=X(PO™ ye e e,

For A =k € N and ¢ = ¢ € R" we thus obtain (3.3).
(3) = (1): From (3.3) it follows that for every A > 0

. 1/2
C < / W(g)|262Aw<lp<£>l”m>dg> < +o0.
Therefore, by Lemma 3.1, we obtain
| PI(D)($u)llzn < (27) 200 () ) e N,
Since ¥ = 1 in a neighborhood U of xg, then for every compact K CC U

[P (D)ulla.ic = 1P/ (D)) < [P (D)) oen < G (5) ) € N,
for some C\ >0, ie. u € E(IZ)(U).
(3) & (4) follows from Lemma 3.5 for I' = R". O
Proof of Theorem 3.4. It is analogous to that of Theorem 3.3 for A = 1/k. U

Let us now consider the wave front set with respect to the iterates of an operator. We recall the
following definition from [3]:
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Definition 3.6. Let P(D) be a hypoelliptic linear partial differential operator with constant coeffi-
cients, w a non-quasinanlytic weight function, Q0 an open subset of R™, u € D'(Q). We say that
a point (xo,&) € Q x (R™\ {0}) is not in the (w)-wave front set WFJ(Z) (u) (resp. {w}-wave front
set WFfw}(u)) with respect to the iterates of P, if there are a neighborhood U of xg, an open conic
neighborhood T' of & and a sequence {fn}nen C E'(QY) such that (i) and (ii) (resp. (i) and (iii)) of
the following conditions hold:

(i) fv =P(D)Nu inU.

(ii) Beurling case:

(a) there exist M,C > 0 such that for all k € N there is Cj, > 0:

(3.9) P (©)] < GOV (edn? () 4 jghV (1 + )™ YN €N, £ e R™;
(b) for every ¢ € Ny, k € N there exists Cy ¢ > 0 such that
(3.10) 1FN(E)] < Crpe VM1 4 1e)~¢ VN eN, ¢eT.

(iii) Roumieu case:
(a) there exist k € N, M,C > 0 such that

(3.11) PN ()] < OV (emmre Vmk) )N m(1 )M YN €N, € € R™;
(b) there exists k € N such that for every ¢ € Ny there is Cyp > 0 s.t.
(3.12) N (E)] < Cer® N1 4 1g)™* YN eN, el

Now we want to characterize the w-wave front set in terms of condition (3.3) for the Beurling case,
and (3.6) for the Roumieu case. To do this, we first give the following definition of wave front set and
we prove in Theorem 3.13 below its equivalence to the one of Definition 3.6:

Definition 3.7. Let P(D) be a hypoelliptic linear partial differential operator with constant coeffi-
cients; let w be a non-quasianalytic weight function with w(t”) = o(o(t)), as t — 400, where v is the
constant defined in (2.5) and o(t) = t'/° for some s > 1; let Q be an open subset of R™ and u € D'(Q).

We say that (zo,80) € Q x (R" \ {0}) is not in the (w)-wave front set WF () p(u) (resp. {w}-wave
front set WF{w}Vp(u)) with respect to the iterates of P, if there exist a neighborhood U of xg, an open
conic neighborhood T' of & and ¢ € D5y () with ¢p = 1 in U such that the following condition (i)
(resp. (ii)) holds:

(i) Beurling case: For every k € N there exists Cy, > 0 such that

(3.13) [Du(€)] < Cre (POIM™  yeer.
(ii) Roumieu case: There exist k € N, C > 0 such that
(3.14) [pu(€)] < CemwIP@OM™  yeeT,

In order to prove that WFL (u) = WF, p(u), for * = (w) or {w}, let’s start by the following:

Lemma 3.8. Let P(D) be a hypoelliptic linear partial differential operator of order m with constant
coefficients; let w be a non-quasianalytic weight function such that w(tY) = o(o(t)), ast — 400, where
v is the constant defined in (2.5) and o(t) = t'/* for some s > 1; let Q be an open subset of R™ and
u € D(Q). Then

WET (u) € WF, p(u),
for x = (w) or {w},

Proof. Beurling case. Let (z0,&) ¢ WF(,,) p(u). There exist then a neighborhood U of xo, an open
conic neighborhood neighborhood I of &y and 1 € Dy, (€2) with ) =1 in U satisfying (3.13). Setting

fn = P(D)N(ypu) we have that fy € £'(Q), fv = P(D)Nuin U and
(3.15) In@© < IPEOINPu© <N+ )M+ ghM v eRr”
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for some M > 0, since ¢u € E'(R™). Clearly (3.15) implies (3.9).
To prove (3.10) take k € N, £ > 0 and £ € I". By (2.4) and (3.13) we have

1 Fn @)1 < 5 PE17 PEIN [Pu€)]
< O (|P(g) /) N e PORT)

< O (2)
by [3, Lemma 16(i)] and the convexity of ¢*.
This proves (3.10) and hence (z¢, &) ¢ WFiJ) (u).

Roumieu case. It’s similar to the Beurling case. ([

We recall, from [9, Lemma 4] (see also [25, Proposition 3.4.4]), the following lemma that we shall
need later:

Lemma 3.9. Let T' and I’ be two cones in R™ such that I CC T in the sense that I' N S"~!' cC
I' N S™ L where S is the unit sphere in R™.

Then there exists a bounded ¢ € E\(R™) C Ery (R™) with supp¢ C T, ¢ =1 on T (for large |£]),
which is the symbol of a pseudo-differential operator ¢(D) satisfying

(3.16) p(D)u(§) = o(§u(€)  ue€ Dy,y(R"), L€ R™
Remark 3.10. Here, the definition of pseudodifferential operator is as in [9, Def. 3]. Then, we must

consider the symbol of the operator ¢(D) as (2m) "¢(§) (compare with the beginning of the proof of
[9, Theorem 2]).

We can now prove the following result:

Theorem 3.11. Let P(D) be a hypoelliptic linear partial differential operator of order m with constant
coefficients; let w be a non-quasianalytic weight function such that w(t") = o(o(t)), ast — +oo, where
v is the constant defined in (2.5) and o(t) = t'/° for some s > 1. Let Q be an open subset of R",
u € &'(N) and (x0,&) € 2 x (R™\ {0}).

Then (z0, &) ¢ WFL (u) if and only if there exists ¢ as in Lemma 3.9 such that ¢(D)ul,, € EF(V)

for some neighborhood V' of xg, where x = (w) or {w}.

Proof. Beurling case. Let (x,&)) ¢ WF{ZJ) (u). There exist a neighborhood U of xg, an open conic

neighborhood I of &y and a sequence {fn}nyen C £'(Q) with fy = P(D)Yu in U and satisfying (3.9)
and (3.10).

Now, we consider a conic neigborhood I of & with IV cC I'. Take then ¢ as in Lemma 3.9
and define hy := ¢(D)fy. Since ¢(D) and P(D)Y commute, we have that hy = P(D)N¢(D)u in
a neighborhood of xy and ﬁN(ﬁ) = ¢(&)fn (&) satisfies (3.2) because of (3.10) and ¢ bounded with

supp ¢ C I'. Therefore ¢(D)uly, € 55»(‘/) for a neighborhood V' of xg by Theorem 3.3.
P

Conversely, let us now assume ¢(D)ul, € E(w)(V), where ¢ is as in Lemma 3.9, for some neigh-
borhood V' of zy and for some neighborhoods T" CC T of §. Take ¢ € D5 (V) with ¢ =1 in a
neighborhood of zy and write

pu = pd(D)u+ @(I = ¢(D))u =: u1 + uz.
Since ¢(D)uly, € S(Ij))(V) by assumption and ¢ € Dy, (V), we can apply [3, Prop. 17] to get
up € S(IZ)(V). We thus have to prove that (zg,&) ¢ WFL y(u2). By Lemma 3.8 it’s enough to prove

(w

that (zo,80) € WF(,),p(u2). To do this, we have to find 1) € D,(2) with ¢ =1 in a neighborhood

—

of zg and Yuy(§) satisfying (3.13) in a conic neighborhood of &.
Taking ¢ € Dy} (2) with ¢ = 1 on supp ¢ we have that ¢uy = uz by the definition of ua. Hence
we will prove (3.13) for uz. We have

@y = Flo(I - o(D)u)(€) = (20) (3 + (1 - $)A)(€)
(3.17) = @m)" / B(€ — m)(1 — ) (m)aln)dn.
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Let A be a conic neighorhood of &, with A C I”, so that (1 — ¢)(n) = 0 in A. For fixed £ € A we set

Aw={neR": |£—n| <5(|¢+[n])}
B:={neR": [£—n|> (& +In)}

for § > 0 small enough so that A C I and hence (1 — ¢)(n) =0 in A.
Splitting the integral (3.17) we have, for £ € A:

(€)= (2m)7 /A B(€— (1 — ) (n)a(n)dy + (2m) " /B B(E — )1 — ) (n)a(n)dy
(3.18) — (@n) /B B¢ — n)(1 — &) (n)a(n)dn.

For { € A and n € B, as ¢ € Dy,}(12) and o(t) = t1/5, there exist C,C", e, > 0 such that

15(¢& —n)| < Ce=oleD < e (@(€D+a(lnD)
Moreover, |u(n)] < C(1+ |n|)M for some C, M > 0 since u € £'(Q), and therefore

@(5—n><1—¢><n>a<n>dn's Ce @ [ 1= piaplfat)le "y

< De—'0©) / (1 + [n])Me=e @ gy

(3.19) < Do)

for some D, D’ > 0, because 1 — ¢(n) is bounded.
Since w(tY) = o(o(t)) with v > 1 (see Remark 2.5), for every k € N there exists Ry > 0 such that
for all [£| > Ry:

L 1
(3.20) w(IPE)]m) < wlcle]) < L(w(§) +1) = 7o(6) + L
for some ¢, L > 0, and hence, from (3.19) and (3.18), for every k € N there is Dy, > 0 such that:

B

[Ua(8)| < Dke—kW(\P(é)ll/’") VE € A,

proving that (zo, &) € WF (. p(u2) and hence (zo,&o) ¢ WF@)(U).

Roumieu case. The proof is analogous to that of the Beurling case. If (zg,&) ¢ WF{ p(u) w
find a neighborhood U of z(, an open conic neighborhood I' of &) and a sequence {fn}neny C 5’(9)
satisfying (7), (¢i7)(a) and (#27)(b) of Definition 3.6. As in the Beurling case hy := ¢(D)fn satisfies
the desired estimate (3.5), so that ¢(D)uly, € 5{1}(‘/) for a neighborhood V' of z¢ by Theorem 3.4.

Conversely, if ¢(D)ul, € E{W}(V) we proceed as in the Beurling case and obtain that u; :=

ep(D)u € S{IZJ}(V) by Proposition 17 of [3]. The proof that (x¢, &) ¢ WFfw}(uQ) is analogous to the
one in the Beurling case, applying (3.20) for k£ = 1. O

Proposition 3.12. Let P(D) be a hypoelliptic linear partial differential operator with constant coef-
ficients; let w be a non-quasianalytic weight function such that w(tY) = o(o(t)), as t — 400, where
v is the constant defined in (2.5) and o(t) = t'/* for some s > 1; let Q be an open subset of R™ and
u € D'(Q). Ifp € Disy(Q), then

WE, (Yu) € WE(u),
for x = (w) or {w}.

Proof. Beurling case. Let (x0,&o) ¢ WF&)(U). First, we observe that we can assume u € £'(Q), since
the definition of the wave front set is local. Then, there exist a neighborhood V of ¢ and a conic
neighborhood I'" of £y such that

(V xT)NWEL, (u) = 0.
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For I CC T there exists, by Theorem 3.11, a bounded ¢ € &, (R") with supp¢ C T, ¢ =1 in IV

such that ¢(D)uly, € E(IZ)(V’) for some neighborhood V' C V of z.

Let us then consider ¢ € Dy,}(V’) with ¢ =1 in a neighborhood of z¢, and set
pu = @P(D)u+ (I — ¢(D))u =: uy + ug.
Since ¢,9 € Dy, () we have, by [7, Prop. 4.4], that pi) € D,}(£2) and hence u; € S(IZ)(V’) by [3,
Prop. 17] because ¢(D)ul,, € E(Izj)(V’).
Arguing as in the proof of Theorem 3.11 with ¢ € D4y instead of ¢ € Dy,y, we obtain that
(w0,&0) € WF () p(u2) and hence (o, &) ¢ WF{Z)) (uz) by Lemma 3.8.
Therefore (z9,&p) ¢ WF(P;) (Yu).

Roumieu case. It is similar to the Beurling case. ([

Theorem 3.13. Let P(D) be a hypoelliptic linear partial differential operator of order m with constant
coefficients; let w be a non-quasianalytic weight function such that w(tY) = o(o(t)), ast — 400, where
v is the constant defined in (2.5) and o(t) = t'/* for some s > 1; let Q be an open subset of R™ and
u e D(Q). Then

WET (u) = WF, p(u),
for x = (w) or {w},
Proof. The inclusion

WFL (u) € WF, p(u)

has been proved in Lemma 3.8.

Let us prove the other inclusion.

Beurling case. Let (z9,&0) ¢ WF%ZJ) (u). There exist a compact neighborhood K of xy and a closed
conic neighborhood F' of &y such that

WF () (u) N (K x F) = 0.
Take, according to [11, Lemma 2.2], yy C D(K) with xny =1 in a neighborhood K’ C K of x, that
satisfies
(3.21) sup Dy y| < Co(CaN)Pl Vo, 8 € Ny, || < N.
K

Fix ¢ € Dys(K'). By Proposition 3.12
WF{, (Yu) € WE{,) (u),
and, hence,
WE () (du) N (K x F) = 0.
Now, consider gy := XNmpP(D)N1u, for p sufficiently large so that, by [3, Corollary 10], for every
k,¢ € N there exists Cj ¢ > 0 such that

(3.22) G8(©)] < Cree® )1+ |e)"  VYNEeN, c€F
Moreover,
gN = XNmpP(D)Npu = P(D)Nopu  in R,

since Xnmp = 1 on supp ¥.
Therefore

PN bu(©)] = |F(PD)Npu)(©)] = [Gu ()] < Creet®’(
By Lemma 3.5, this implies that

!@(5” < Cke—kw(lP(ﬁ)\l/m) Ve € F,

)

(1+1)" VYNeN, ceF.

ie. (zo,&) € WF(,),p(u).
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Roumieu case. It is similar to the Beurling case. O

By Theorem 3.13 and Lemma 3.5 we can now prove the following characterizations of the wave
front set with respect to the iterates:

Corollary 3.14. Let P(D) be a hypoelliptic linear partial differential operator with constant coeffi-
cients; let w be a non-quasianalytic weight function such that w(tY) = o(o(t)), as t — +o0, where 7y is
the constant defined in (2.5) and o(t) = t'/* for some s > 1; let Q be an open subset of R, u € D'(Q)
and (zg, &) € @ x (R™\ {0}).

The following conditions are equivalent:

(1) (20, &) ¢ WFP, (u).
(2) There exist a neighborhood U of xo, an open conic neighborhood I' of §y and ¢ € D5y (2) with
Y =11 U such that:

VkeN, 3C, >0
(3.23) [Pu(é)] < Cre mIPOI™  ye e,

(3) There exist a neighborhood U of xo, an open conic neighborhood I' of §y and ¢ € D5y () with
Y =11 U such that:

Vk,f € N, HCM >0:
(3.24) 1PN du(€)] < Creeb® F) (1 +1¢))™"  VYNEN, ¢eT.

(4) There exist a neighborhood U of xo, an open conic neighborhood T' of §y and a bounded sequence
{un}nen C E'(Q) such that uy = u in U and:

Vk € N,/ € Ny, HCW >0:
(3.25) 1PN [an ()] < Cree™ )1+ 1)  VYNEN, ¢eT.

Corollary 3.15. Let P(D) be a hypoelliptic linear partial differential operator with constant coeffi-
cients; let w be a non-quasianalytic weight function such that w(tY) = o(o(t)), as t — +o0, where 7y is
the constant defined in (2.5) and o(t) = t'/* for some s > 1; let Q be an open subset of R, u € D'(Q)
and (zg, &) € @ x (R™\ {0}).

The following conditions are equivalent:

(1) (w0,0) ¢ WF, (w).

(2) There exist a neighborhood U of xg, an open conic neighborhood T' of §y and 1) € Dy (S2) with

=11 U such that:
JkeN,C>0:

(3.26) [pu(€)] < Cemw(IP@OM™  yeeT,

(3) There exist a neighborhood U of xo, an open conic neighborhood I' of §y and ¢ € D5y (2) with
=114 U such that:

dke N,V eN, AC, > 0:
(3.27) [PE)IN[du(€)] < Coer* ®mD(1 1 |g)=¢ YN eN, ¢el.

(4) There exist a neighborhood U of xg, an open conic neighborhood T' of §y and a bounded sequence
{un}nen C E'(R) such that uy = in U and:

Jk e N,VZ € Ny, 4Cy > 0 :
(3.28) PEINfan (€)] < Ceet® NP (1 4 [¢))F YN eN, g€,
Proof of Corollary 3.14. (1) < (2) follows from Theorem 3.13.
(2) < (3) follows from Lemma 3.5.

(3) = (4): Taking uny = tpu we have that {uy}nen is a bounded sequence in £'(Q), uy = u in U
and (3.24) implies (3.25) by the choice of uy.
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(4) = (1): Taking fy = P(D)Muy we have that fy = P(D)Yu in U and, by (3.25),

~ - *(Nm —
PO = 1PN fan(©)] < e 1+ )" weer,
giving condition (3.10).
Finally, since {uy}nen is a bounded sequence in £'(Q2), there exist ¢, M > 0 such that
an (@l <c(t+[E)"  VEeR"

and hence

IN©1 < (PO [an(©)] < OV 1+ [eh™Ve(1+ [Eh™

< CN(emn? (CF) L N1 4 g™ Ve e R,

for some C,C > 0, proving also (3.9).

Therefore (z9,&) ¢ WF{;) (u). O
Proof of Corollary 3.15. Its similar to the Beurling case, Corollary 3.14. U

The new characterization of WFZ (u) given by Corollaries 3.14 and 3.15 allows to complete Theorem
18 of [3], obtaining the existence of a distribution with prescribed w-wave front set with respect to the
iterates:

Theorem 3.16. Let P(D) be a linear partial differential operator of order m with constant coefficients
which is hypoelliptic, but not elliptic. Let w be a non-quasi-analytic weight function such that w(t?) =
0(a(t)), as t — +oo, where 5(t) = t'/* for some s > 1 and b = max{y, 3/2}, with v defined in (2.5).

Given an open subset @ of R™ and a closed conic subset S of Q x (R™\ {0}), there exists u € D'(Q)
with

WF{ (u) = 5,

for x = (w) or {w}.
Proof. We assume, without loss of generality, that 2 = R™; we construct the same distribution u €
D'(R™) constructed in [3, Thm. 18] and follow the ideas therein and in [12, Thm. 8.1.4].

We choose a sequence (z, 0) € S with |0, = 1 so that every (x,60) € S with |§] = 1 is the limit of

a subsequence.
We set o(t) := w(t¥/?) and separate the Beurling and the Roumieu cases.

Beurling case: Take ¢ € Dy, (R") with g/b\(O) =1 and define, as in (158) of [3],
= d i3
(3.29) u(z) = 3 e E MG (k(x — )l @0
k=1
where d is the constant of (2.4) with 0 < d < m since P is not elliptic by assumption. This is a
continuous function in R™ and it was already proved in [3, Thm. 18] that

0 # WF(,(u) CS.

Let us now prove the other inclusion. Fix (z¢,&p) € S and assume by contradiction that (xo,&p) ¢
WFa) (u). Then, by Corollary 3.14, there exist a neighborhood U of ¢, an open conic neighborhood
I of §p and 9 € Dy53(R™) with ¢» =1 in U such that (3.24) is satisfied.

Set then

Y

only) = ¥ (3 +21) 0(y).

Since o(t) = o(a(t)) by assumption, we have that D5 (R") C D, (R") by [7, Prop. 4.7] and
therefore {¢y tren is a bounded sequence in D(U) (R™), taking into account that supp ¢, C supp ¢ for
all k € N. By [7, Prop. 3.4], for each h € N there is C, > 0 such that

(3.30) 16;(€)] < Crhe ™ VjeN, ¢ eRM
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Moreover, following [3], we have

—+00

FPDN@w)(€) = Y e U IPEONF (6;((x — ;))ed” =00

J=1

+m . m ~ —_— ‘3 - . .
— Ze_a(]d/ )P<£)N,7_n¢j (f -] 0]) el(xj,j?’ej—§>'

Jj=1

If 1, is close to xp and k is large enough, then ¢, = ¢ and

F(P(D)™ () (K60)| = ]e0<'fd/*">knp<k3ek>N

+§ :e—J(Jd/ )i~ p(K30 Ng. < _ J> oH(@5:3°0;—k0k)
J (K°0k)™ &5 ;

Jj#k
k36, —536.;
m d/m —ho L
Z ’P(ksek)’N (eo(kd/ )kfn _ Z efa'(‘]d/ )jfnohe ( J ))
J#k
> 6Nk3Nd(e—a(kd/m)k,—n o C;Ze—lw(k:))7

for some Cj > 0, because of (3.30), (2.4) and
E30p — 520, > |kK° — 3| > K2+ kj+ 2 > ki ifk# .

But for every fixed h > 2 there exists kg € N such that
logCl log2 nlogk o(k¥™)

< >
olk) o(k) o(k) olk) — h vk = ko
since logk = o(o(k)) and 0 < d < m.
Therefore
3.31 U k)| = = e > ko.
F(P(D)N (hu)) (k0 ;5N/<3Ndk ok > g

On the other hand, by (3.24):

(3:32)  [F(PD)Y (u)) (K0,)| = [P(E0) N du(k*60)] < Croee® () (14 (K0,

But (3.31) and (3.32) give a contradiction for k large enough (see [3] for more details). Therefore
(x0,&0) € WF{ZJ) (u) and S C WF{ZJ) (w).

Roumieu case: Take ¢ € Dy, (R") with <$(0) = 1; choose, by Lemma 1.7 of [7], a non-quasianalytic
weight function «(t) such that logt = o(«a(t)) and «a(t) = o(o(t)) for t — +00, and define, as in (138)
of 3],

T _oedm log k 2.3
u(x) = Ze k) TR g (e — ) )R @Ok
k=1

This is a continuous function in R™ and it was already proved in [3, Thm. 18] that
0 # WF{,(u) CS.
Let us now prove the other inclusion. Fix (x0,&p) € S and assume by contradiction that (xg,&) ¢
WFfw}(u). Then, by Corollary 3.15, there exist a neighborhood U of x(, an open conic neighborhood
[ of §p and 9 € Dy53(R™) with ¢» =1 in U such that (3.27) is satisfied.
Define, as in the Beurling case, ¢(y) = ¢ (¥ + 21) ¢(y) € Disy(R™) such that, by [7, Prop. 3.4],
there exists C, h > 0:

16;(6)] < Ce #°® Wi eN, ¢ eR™
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Then, if zj, is close to xg and k is large enough,

_ U(kd/m)
e a(kd/m)

log k

[F(P(D)N (u)) (k305)| = kP (k0N

— 2™ 1og ~ (kPO — 720;\ i
+Ze (G Og]j_"P(kSQk;)N@ < kj J J) ez(wj,j39j—k39k)
J#k

N _ ok log k
|P(k30) |<e a(d/my P8 p=n

v

3 -3
oGY™y N e )
— g e_a(;d/m) 10g]j_”Ce hg( I >

ik

a(k:d/m)

5Nk33Nd(€_ a(kd/m; log k

Y

cr(kd/m)
}5Nk3Nde*7a(kd/m) log kk—n

(3.33) 5

v

if £ is large enough, because

log(2C")  a(k¥™) logk nlogh _ 1
o(k) o(k) a(kdm™)  o(k) ~— h

if k is sufficiently large, since logk = o(a(k)), logk = o(o(k)) and 0 < d < m.
On the other hand, by (3.27) there exists h € N such that

[F(PDYN (9u) (k%05)] = [Pk 0) | [u(k*05)| < Coen® V™ (1 4 [k30) ¢

which contradicts (3.33) (see [3] for more details).
Therefore (z9, &) € WFfw}(u) and WFfw}(u) =S. O

Example 3.17. Let  be an open subset of R” and P(D) a linear partial differential operator with
constant coefficients and of order m. By Theorems 4.1 and 4.8 of [1], for * = (w) or {w}, we have

(3.34) WF,(u) C WF,(Pu)UX, u € D(Q),
where
Li={(2,8) € A xR"\ {0} : Pn(§) =0}

is the characteristic set of P (here P,, is the principal part of P).
This implies that if u is a solution of P(D)u = f, then

(3.35) WF,(u) C %, for each f € £,(Q),

since WFE,(f) =0 for f € £.().
Now, by Theorem 13 of [3]

WF.(u) CWFP(w)Us,  uweD(Q),
so that we can improve (3.35) saying that
WF,(u) CX  if fe &l Q).
Indeed, if f € EF(Q)\ £.(Q) then WFZ(f) = () and hence
WF,(u) C WF(u) U = WF (Pu) U = WF(flux = 3.
Let us now prove a result that establishes the relationship between the wave front set in the Beurling

class and in the Roumieu class. See also [1, Proposition 4.5] and [9, Proposition 2] for similar results
in this setting for the usual wave front set, even for quasianalytic weight functions.
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Proposition 3.18. Let P(D) be a hypoelliptic linear partial differential operator of order m with
constant coefficients, 0 an open subset of R™ and u € D'(Q2). Let o¢ and w be two non-quasianalytic
weight functions such that, for t — 400, oo(t) = o(w(t)) and w(t?) = o(t'/*) for v as in (2.5) and
s> 1. Then

WF{, (u U WE(
oesS

where S := {0 non-quasianalytic weight function: op <o = o(w)}.
Proof. Let us first prove that
(3.36) U WE, (u) € WF, (u).

oS

To do this, we fix (x,&p) ¢ WFfw}(u). By Corollary 3.15 there exist a neighborhood U of xg, an open
conic neighborhood I' of &y and 1) € D{tl/s}(R”) with ¢» = 1 in U such that (3.26) is satisfied for some
ko € Nand C > 0.

If o(t) = o(w(t)), then for every k € N there exists ¢, > 0 such that

ko(t) < —w(t) Yt > .
ko

Since P is hypoelliptic there exists then Ry > 0 such that
ko(IPEIF) < LwlIPOIF) Vel 2 R
and therefore there exists C, > 0 such that, by (3.26),
Tu(e)] < Ce R IPOI) < g —halPOIF)  ye e g,
This proves, by Corollary 3.14, that (zo,&o) ¢ WF (o)(u) and hence

| WE(,) (1) € WF{, (u).
oges

Since the wave front set WF? {w}(w) is always a closed set, we have the inclusion (3.36).

Let us prove the other inclusion. Take (z9,&) ¢ U,cg WF g)(u). Then there exist a compact
neighborhood K of xg and a closed conic neighborhood F' of &, such that

(K x F) UWFU)
ceS

Take xy € D(K) with x5 = 1 in a neighborhood K’ C K of xzy which satisfies (3.21). Take then
¥ € Dyyysy(K'). By Proposition 3.12

WF(,(yu) S WF{y(u) Voes
and hence
(KxF)ﬂWF y@Wu) =0  Voes.
Consider then gn := XNmpP(D)Nu, for p sufficiently large so that, by [3, Cor. 10]:
Vo € S,Vk, £ € N 3C s >0 s.t.
G (O] < Creod A+l vee R,

where ¢ is the Young conjugate of o, (t) = o(et).
But

gN = XNmpP(D)NﬂJU = P(D)qu in R"
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since X Nmp = 1 on supp . Therefore

IPENu(€)] = [Gn(E)] < Cruoe® )1+ gt veeF,
which implies, by Lemma 3.5:
(3.37) [Pu(€)] < Cpe FIPOM™  yee

We want to prove that there exists k € N such that (3.26) is satisfied on F' (this would imply, by
Corollary 3.15, that (zo,&) ¢ WFfw}(u)). We argue by contradiction and assume that for every n € N
there exists &, € F' such that

[P(€n)] = 8l€n|" — +00
and
(3.38) [u(&,)| > ne~w@IPE™  yp e N
Since o(t) = o(w(t)), for o € S, for every n € N there exists k, > n such that

o(P(Em™) 1
S(PETm) S TR

This would imply, together with (3.38), that
@ZL(&Q )| > kne—ﬁW(lP(fkn)\l/’") > ne~w@(IPEIY™) S ne*ﬂ(\P(fkn)\l/m%

contradicting (3.37) for k = 1.
Therefore (z9,&) ¢ WFfw}(u) and the proposition is proved. O

4. Operators with constant strength

We give some applications to linear partial differential operators with variable coefficients with constant
strength. We recall, from [13], the following:

Definition 4.1. Let P(D) and Q(D) be two linear partial differential operators with constant coef-
ficients. We say that P is weaker than @, and write P < Q, if there exists a constant C > 0 such
that

P <CQE)  VEER,

where P(€) := /3. [D*P(E)[2. We say that P and Q are equally strong if there exists a constant
C > 0 such that

CTIP(E) <Q(6) <CP(E)  VeEeR™

Remark 4.2. If P(D) and Q(D) are equally strong and hypoelliptic, then by Theorem 2.4 it follows
that there are two constants C, C’ > 0 such that

PP <CO+IQEP)  YEeR"
QP <C'A+|PE)F)  VEeR™
In particular, deg P = deg Q.
We recall from [13, Thm. 11.1.9] the following

Theorem 4.3. If P(D) and Q(D) are equally strong and P(D) is hypoelliptic, then also Q(D) is
hypoelliptic. Moreover, if dp(§) and dg(&) are the distance from & € R™ to V(P) and V(Q) respectively,
there exists then a constant C > 0 such that

(4.1) ct< dp(€) +1

_dQ(£)+1§C’ Vé e R™.
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Lemma 4.4. Let P(D) and Q(D) be two equally strong linear partial differential operators. Assume
that P (and hence Q) is hypoelliptic and of order m. Let cp and cq be the constants defined in (2.2)
for P and Q respectively. Then cp = cq.

Proof. Let us first remark that condition (4.1) is equivalent to

=1 _ dp(§) _ ~
(4.2) c' < 10© <C,  [f>1,

for some C' > 0, because of condition (6) of Theorem 2.4.
Then (2.2) implies, for some C,C > 0,
g7 < C7ldp(§) < C7'Cdg(€) = cqzep
g0 < Cdg(§) <CTICdp(§) = ep>cg
and cp = cq. O

Remark 4.5. If P(D) and Q(D) are equally strong, hypoelliptic and of order m, and if yp and g
are the constants defined in (2.5) for P and @ respectively, then (see Remark 2.5):
m m

(4.3) MmIAPNQ S =
cp CQ

Theorem 4.6. Let P(D) and Q(D) be two equally strong linear partial differential operators and let w
be a non-quasianalytic weight function. If P is x-hypoelliptic then also Q is x-hypoelliptic, for x = (w)

or {w}.

Proof. From Remark 2.10 we have that P is hypoelliptic. Therefore also @ is hypoelliptic, by Theorem
4.3, and (4.2) is satisfied.
Beurling case. If P is (w)-hypoelliptic, then by Theorem 2.7

w©) _ A w(©)
d0(©) = “dp(e)

and hence also @ is (w)-hypoelliptic.
Roumieu case. If P is {w}-hypoelliptic, then by Theorem 2.9

w() < Cdp(§) < CCdg(¢),  [¢|>1
and hence also @ is {w}-hypoelliptic. O

—0 as |§] = +oo

Now, from Theorems 3.3 and 3.4, and Corollaries 3.14 and 3.15 it is easy to deduce the following:

Proposition 4.7. Let P(D) and Q(D) be two equally strong linear partial differential operators.
Assume that P (and hence Q) is hypoelliptic and of order m. Let w be a non-quasianalytic weight
function such that w(t") = o(c(t)), as t — 400, where vy := 2 = % as in (4.3) and o(t) = t'/* for

cp c
some s > 1. Let Q) be an open subset of R™ and u € D'(Q). Then
(4.4) el(Q) = £2(9)

(4.5) WEFL (u) = WF?(u)

for x = (w) or {w}.

Let us now consider linear partial differential operators P(x, D) with variable coefficients on an
open subset © of R™. We recall from [13] the following:

Definition 4.8. A linear partial differential operator P(x, D), with C*° coefficients on an open subset
Q of R", is said to have constant strength in  if, for every xo,yo € €2, the differential operators with
constant coefficients P(xg, D) and P(yo, D) are equally strong.

The following result is due to Hérmander and Taylor (cf. Theorems 13.4.1, 13.4.2 and 13.4.4 of
[13]):
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Theorem 4.9. Let Q be an open subset of R™ and P(x, D) a linear partial differential operator with
coefficients in C*°(Q). Assume that P(x, D) has constant strength. Then the following conditions are
equivalent:

(1) P(x, D) is hypoelliptic in €2, i.e.
sing supp u = sing supp P(-, D)u, u € D'(Q);
(2) P(xo, D) is hypoelliptic for some xg € Q;
(3) P(xo, D) is hypoelliptic for all zy € €.
Moreover, if one of the above equivalent conditions is satisfied, then P(x, D) is micro-hypoelliptic in
Q, i.e.
WF(u) = WF(P(-, D)u), u € D'(Q).

In the case of w-hypoellipticity, from Theorem 4.6 we immediately obtain that for a linear partial
differential operator with C*° coefficients P(x, D) with constant strength, P(xg, D) is #-hypoelliptic
for some z¢ € Q if and only if P(xg, D) is *-hypoelliptic for all ¢ € Q, where * = (w) or {w}.

As a consequence of Theorem 4.9 and Lemma 4.4 we have that if P(z, D) is a hypoelliptic linear
partial differential operator of order m with C* coefficients and of constant strength in an open
subset 2 of R™, there is then a unique constant cp € (0,1] N Q satisfying (2.2), in the sense that
CP(z0,D) = CP(z,,p) =: cp for all zg, 71 € Q. We can then uniquely define

(4.6) vp =

; .
Corollary 4.10. Let Q2 be an open subset of R™ and u € D'(Q). Let P(x, D) be a linear partial
differential operator with coefficients in C*°(2). Assume that P(x, D) has constant strength in 0 and
that P(xo, D) is hypoelliptic for some xy € ). Let w be a non-quasianalytic weight function such that
w(t?) = o(a(t)), as t — +oo, where v = yp is the constant defined in (4.6) and o(t) = t'/* for some
s> 1. Then
@D gy = eP@Pq) Va2l €0

WEZ@P) () = WEPE P (y)  va,2 € Q
for x = (w) or {w}.
Proof. Tt follows from Theorem 4.9 and Proposition 4.7. O
Corollary 4.11. Let  be an open subset of R™ and uw € D'(Q). Let P(x,D) be a linear partial
differential operator with coefficients in C*°(2). Assume that P(x, D) has constant strength in 2 and
that P(xo, D) is hypoelliptic for some xo € ). Let w be a non-quasianalytic weight function such that
w(t?) = o(o(t)), as t — 400, where v = p is the constant defined in (4.6) and o(t) = t'/* for some
s> 1. Then

WF, (u) € WFZEe1P) () U < N Ex1> Vo, € Q,
z'eq
where x = (w) or {w} and
Sor = {(2,€) € A x (R"\ {0}) : Pr(ar)(a’,€) = 0}
with Py (2',€) the principal part of P(z',¢).
Proof. By Theorem 13 of [3] we have that

WF, (u) € WFL

P UL, Vil eQ
— wrltenD) (u) UX, Vzi, 2 € Q

by Corollary 4.10. This proves the thesis. O
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Corollary 4.12. Let Q be an open subset of R™ and uw € D'(Q). Let P(x,D) be a linear partial
differential operator with coefficients in C*°(2). Assume that P(x, D) has constant strength in 2 and
that P(xo, D) is elliptic for some xg € Q. Let w be a non-quasianalytic weight function such that
w(t?) = o(o(t)), as t — 400, where y = p is the constant defined in (4.6) and o(t) = t'/* for some
s> 1.

Then P(x1, D) is x-micro-hypoelliptic for all z1 € Q, i.e.

WF, (u) = WFE.(P(z1, D)u) YV € Q,
for x = (w) or {w}.
Proof. By [3, Rem. 14] we have that
WE, (1) = WEP@0:P) ()
by the ellipticity of P(zg, D).
Therefore, by Corollary 4.10 and [3, Rem. 12 and Prop. 9], for all z; € :
WE, (u) = WE#0P) (u) = WFEEHP) ()
= WFP@P)(p(ay, D)u) € WE,(P(21, D)u) € WF, (u),
and hence the thesis. O

The following corollary can be proved directly with the results obtained in [9], but we present it
here as a consequence of the previous theorems.

Corollary 4.13. Let Q be an open subset of R™ and u € D'(Q). Let P(x,D) be a linear partial
differential operator with coefficients in E51(Q). Assume that P(z, D) has constant strength in
and that P(xo, D) is elliptic for some xg € Q. Let w be a non-quasianalytic weight function such that
w(tY) = o(t'/*), for v = vp asin (4.6) and s > 1, and such that w(t) = o(c(t)) for a non-quasianalytic
weight function o satisfying, for some ¢ > 0,

(4.7) /joo Uitzy)dt <co(t)+c  y>0.
Then
(4.8) WF. (1) = WE.(P(-, D)u) = WF.(P(z1,D)u) Va1 € Q,

for x = (w) or {w}.
Proof. By Theorem 3 of [9] we have that
WF,(u) = WF,(P(-, D)u).
By Corollary 4.12 we have
WF,(u) = WF.(P(x1, D)u) Vo € Q.
Therefore also
WF.(P(-, D)u) = WF,(P(x1, D)u) Yz € Q
is valid. O

Example 4.14. Let ¢(£) > 0 be a hypoelliptic polynomial, h,m, m’ € Ny, m > m/, and consider the
operator P(z, D) with symbol

p(z,€) = |2|*g(&)™ + (&)™

It was proved in [8, Ex. 3.6] that there exist 0 < § < p < 1 such that, fora < d:=p—9§ < 1,
a/d<r<1,o(t)=t" and w(t) = o(t*):

(4.9) p(z, &) = ce™ & Ve e R", €[> 1
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for some ¢ > 0, and
(4.10)  [DgD{p(, )| < Clal Pl greres (alb)|p(z, €)|(1 + ¢) 7Pl va e R™ J¢] > 1

for some C'> 0 and k € N.
By [8, Thm. 3.4] and [9, Thm. 2] we have

WF()(u) = WF () (P(, D)u),  u € &, ().
Analogously, since (4.9) and (4.10) hold also for every fixed z; € 2, we have that
WF () (u) = WF(y(P(x1, D)u), Va1 €,

and hence (4.8) holds for all u € géw)(Q), and hence for all u € £'(Q).
Note that P is not of constant strength, and that P is elliptic in some z¢ €  if and only if ¢(§) is

elliptic.
Example 4.15. Let us consider, for m > 1, the operator
P(,y, Dy, Dy) = DI™ + 2*" D242
It was proved in [24, Thm. 3.1] that if b > m and w(t) = t'/5, with s > 1 + L then
(4.11) WF 3 (u) = WF (1 (P(, D)u),  Vu e D'(R?).

However, for fixed (z1,y1) = (0,41) the operator P(0,v1,D,, Dy) = D?™ is not {w}-hypoellip-
tic, since every f(z,y) = f(y) € D'(R) \ £ (R) solves P(0,y1, Dy, Dyy)f = 0, and hence it is not
{w}-microhypoelliptic by [3, Cor. 11]:

WE A (P(0,y1, Doy Dy) f) € WE 1 (f).
In particular, by (4.11):

Note that P does not have constant strength and P(xo, yo, Dy, Dy) is not elliptic for any (xo,yo) €
R2.
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