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Abstract: The provision of very high capacity is one of the big challenges of the 5G cellular 

technology. This challenge will not be met using traditional approaches like increasing spectral 

efficiency and bandwidth, as witnessed in previous technology generations. Cell densification 

will play a major role thanks to its ability to increase the spatial reuse of the available resources. 

However, this solution is accompanied by some additional management challenges. In this 

article, we analyze and present the most promising solutions identified in the METIS project for 

the most relevant network layer challenges of cell densification: resource, interference and 

mobility management. 

 

I. Introduction 

Network densification manifesting in deployments of small cells (SCs) is an ongoing trend in 

contemporary cellular networks. Although SCs were already commercially available for the 2G 

and 3G technologies, the LTE and LTE-A standards provide technical solutions that exploit the 

local nature of such deployments. SCs are well suited for handling large traffic demands in 

hotspot areas with noticeable proliferation over the last years of high-end devices capable of 

processing data heavy content, e.g. high definition video. Moreover, people expect to have a 

broadband experience not only at home or office, but also outdoors. These two trends combined 

create a massive upsurge of cellular traffic, often referred to as the x1000 traffic volume 
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challenge [1]. The next generation of cellular technology –5G– is expected to provide an 

economically justified system that will cater for this massive demand and extravagant user 

requirements. 

The performance of modern cellular networks, mainly limited by the radio access network, is 

usually enhanced through solutions aiming at improving spectral efficiency, such as advanced 

antenna techniques (including the use of massive number of antennas) and endeavors of cellular 

industry to obtain more spectrum for wireless transmission in low and high frequency bands [1]. 

Despite technical challenges, this way forward is definitely a promising direction to improve 

capacity of future 5G networks, but, without a doubt, they will not be sufficient to provide a 

ubiquitous high-end user experience for the 2020-and-beyond mobile society. As proven in 

contemporary cellular networks, in order to satisfy growing user demands, improved spectral 

efficiency should be accompanied by further cell densification, especially in dense urban areas 

and indoors. Massive roll-out of SCs immediately poses a question on its economic feasibility. 

SC solutions available today rely on methods such as distributed antenna systems, unlicensed 

spectrum, or user-deployed SCs in order to bring down the deployment costs. SCs can be also 

extended to moving relays or nomadic cells where antenna systems exploiting wireless backhaul 

are mounted on cars, buses or trains, in order to provide a broadband experience to users inside 

or in proximity of vehicles. 

The above-mentioned factors suggest that further deployment densification, resulting in ultra-

dense network (UDN), is inevitable, which has interesting consequences for future networks 

operations. Shrunken cell sizes lead to reduced number of users served simultaneously by 

individual SCs over a geographical area, and hence to sharing the radio resources among fewer 

users. Moreover, smaller user-to-access-node distances decrease the probability of severe 

shadowing. This factor plays a major role in wave propagation at higher frequencies, which are 

interesting due to the availability of large bandwidths. Higher frequencies are a perfect fit for 

UDNs since, paradoxically, their higher attenuation limits the interference to neighboring sites 

and users. On the other hand, fewer users per cell leads to a more bursty activity profile of SCs. 

In combination with the time division duplexing (TDD) mode, which is expected to be extensively 

used in 5G due to its capability to adapt to dynamic traffic demands, this will pose a significant 

challenge to future 5G resource allocation schemes. It is still an open question to which extent 

advanced receivers and transmission schemes will be able to cope with the dynamic 

interferences [2]. Another challenge expected in UDNs is the heterogeneity of the 5G 

deployment. 5G is expected not only to introduce new access technologies, but also to reuse 

legacy 3GPP systems as well as IEEE technologies in order to provide the required user 

experience exactly where it is needed. This complicated deployment is very demanding from the 

mobility point of view, but it is also an opportunity for future devices to use specific technologies 

or layers in order to provide the necessary performance. How to efficiently detect and exploit 

this heterogeneous environment is definitely one of the most important challenges for the UDN 

design. 

All aforementioned factors pose a question mark on the resource, interference and mobility 

management schemes that are used in current cellular networks, and they call for new methods, 

which will be able to fully exploit the benefits of SC deployments. This article provides an 

overview of some of the most promising network layer techniques identified in the METIS 
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project [3]. First, we present two types of techniques related with the resource and interference 

management. In the methods of the first type, which directly coordinate interference in the 

network layer, access nodes take either decentralized decisions or are managed by a central 

entity to reduce interference. The methods of the second type focus on enabling cooperative 

multi-point (CoMP) transmissions, a promising medium access control (MAC) layer interference 

coordination scheme but with large computational burden and backhauling requirements. 

These methods use the network layer perspective to efficiently reduce the set of cooperating 

access nodes, hence alleviating the previous drawbacks of CoMP, by creating clusters. Second, 

we present mobility management schemes, which either use context information to anticipate 

handovers and future demands, or use radio fingerprints to efficiently discover SCs. Finally, we 

extract the main conclusions and highlight some future challenges. 

 

II. Resource and interference management 

in the network layer 

In this section, we present several coordination alternatives to mitigate interference impact. 

Most of these techniques require the coordination of the neighbor base stations (BSs) to prevent 

the use of the same resources in some damaging situations, e.g., for cell-edge users. This implies 

that the resource allocation must be influenced by these techniques, which, at the same time, 

have to take into account how the resources should be allocated to users. In particular, short 

coverage ranges imply low delay spreads, which leads to large coherence bandwidths. In this 

context, we investigated if a given frequency resource, W, should be dedicated, shared, or partly 

dedicated and partly shared between a given set of users at a given time instant (see [4][5] and 

references therein for further details). When compared to [5], we do not require the feedback 

of channel state information (CSI) at the transmitter, and only the receiver possesses CSI. Figure 

1 shows some simulation results for a two-user, two-BS scenario where, at low signal to noise 

ratios (SNRs), sharing the same frequency resources between users is superior in terms of the 

long term throughput with continuous data transmission. This is due to the fact that the 

achievable rate is mainly limited by noise, and interference has a lower impact. At high SNRs, 

dedicating resources is better, since, in this case, noise becomes negligible compared to 

interference, and the long term throughput for sharing the resources becomes independent of 

the SNR [4]. Any other ratio of dedicated and shared resources is suboptimal. 

The rest of this section focuses on the interference coordination techniques. These techniques 

are classified in a) standalone techniques in which BSs autonomously mitigate interference, b) 

techniques in which BSs autonomously decide to transmit in certain resources after coordinating 

with the neighbors, and c) centralized techniques that require a central entity. These classes are 

described in the following subsections. In particular, classes a) and b) are described in the first 

subsection, and class c) in the second subsection. 
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A. Decentralized interference coordination 

The simplest way to deal with interference is the use of standalone interference mitigation 

techniques. The main interest of these techniques is that they can be implemented 

progressively, i.e., BSs that implement these techniques can coexist with other BSs that do not 

implement them. Standalone methods are based on a combination of advanced receiver side 

signal processing, implicit interference coordination, and scheduling. The network may enable 

interference mitigation using advanced receivers by, e.g., a fully synchronized network among 

multiple SCs. Additionally, BSs have the freedom to perform implicit coordination using 

interference estimation and making self-decisions on the extent of resource usage [6]. 

Moreover, interference-aware scheduling uses interference knowledge from the previous time 

slots to opportunistically schedule users that relatively experience low interference levels. 

Other decentralized interference mitigation techniques require the coordination of BSs. Some 

of these techniques have been proposed for cellular systems, including inter-cell interference 

cancellation (ICIC) proposed for LTE, and enhanced ICIC (eICIC) based on almost blank subframes 

(ABSF) introduced in LTE-Advanced [7]. ICIC based schemes, introduced to mitigate the 

interference between the neighboring cells in homogeneous networks, divide the available 

resources into frequency bands with different transmit power profiles to create a fractional 

frequency reuse pattern. However, finding sufficient power profiles for networks with very 

heterogeneous deployments, like 5G-UDNs, is challenging. As an alternative, we proposed the 

use of distributed and dynamic fractional frequency reuse schemes in which the power profiles 

are generated dynamically [8]. To this aim, BSs select a subset of preferential resources to be 

used at full power. Then, BSs that wake up follow these steps: a) detect all interfering BSs, b) 

communicate with them and ask for their preferential resources, c) select its preferential 

 

Figure 1. Long term system efficiency versus SNR. The legend shows the distribution of the total 

frequency resource, W, as shared, dedicated or partly dedicated or shared. 



5 

 

resources such that they do not intersect with those of the interfering BSs, and d) report the 

selected resources to the interfering BSs. After step d), the BS has the highest priority to use its 

preferential resources, and it can, for instance, forbid their use to the interfering BSs. 

The other state-of-the-art technique – eICIC based on ABSF – is a simple approach that can be 

applied to a very dense heterogeneous network. To overcome the disadvantage of ICIC, which 

is the high complexity of finding good power profiles for dense heterogeneous deployments, 

time-domain muting of macro BS transmission is introduced. This is motivated by the significant 

inter-tier interference that arises when large amounts of users are offloaded from macro layer 

to the small BSs using the range expansion mechanism. The muting is implemented with ABSFs 

that allow macro interference-free transmission gaps in the small cells. This enables the small 

cell scheduler to allocate resources to cell-edge users that experience the highest interference 

in normal mode. 

Although many variants of eICIC have been introduced, they address only the macro-to-small-

cells interference problem. Moreover, eICIC is usually considered in a static or semi-static form 

[7], and hence it cannot adapt to changing environments, thus neglecting the possible gains from 

frequency diversity. The dynamic application of eICIC, on the other hand, requires the availability 

of timely inputs of coordination data based on the network analysis, thus making this approach 

difficult to realize practically, because of the changing nature of radio environment.  

To account for the changes in propagation conditions, our decentralized adaptive multi-tier 

interference mitigation [9] instead applies a game theoretic approach, where BSs select an 

action (resource allocation strategy) based on a probability distribution. The probabilities of 

particular actions are obtained using the iterative regret-matching learning procedure [10], 

 

Figure 2. The 10th percentile of the users’ rate for different decentralized interference 

coordination techniques simulated in an indoor SC scenario consisting of a 6-floor building with 10 

SCs per floor and an outdoor urban scenario with 3 macro BS and 21 SCs . 
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where BSs learn the action regrets and aim at minimizing the average regret. The actions 

represent the time-frequency partitioning of resources between BSs and the transmit power, 

thus combining the properties of ICIC and eICIC. The regret-matching procedure is facilitated by 

periodic information exchange on interference and selected actions. The game aim is to 

cooperatively maximize a rate-based utility for all users.  

The performance of our preferential resources approach (PRA) in a scenario with indoor SCs and 

our game theoretic approach (GTA) in a scenario with outdoor macro and SCs, both evaluated 

using a system-level simulation, is depicted in Figure 2. Owing to the interference-limited 

condition of the indoor scenario, significant gains are obtained by the PRA in the 10th percentile 

rate with respect to no ICIC, at expenses of a small reduction in total average throughput. In the 

outdoor case, a 30% gain is achieved by the GTA together with an increment of the total average 

throughput. 

 

B. Centralized interference coordination 

In the previous section we presented techniques that deal with interference in a decentralized 

manner. This section analyzes centralized techniques that have a wider perspective of 

interference. 

A promising approach is the use of joint schedulers which, among other functions, decide the 

time and frequency resources used for uplink and downlink transmissions in each SC. The joint 

schedulers coordinate interference by muting cells at a resource block level, perform flexible 

uplink and downlink switching for a group of coordinating SCs, and assign resource blocks to 

users. One main benefit of centralized scheduling is that the algorithm can include fairness 

metrics for all the users within the cluster of coordinating cells.  

Macro BSs are good candidates for central entities that manage the interference of their SCs. 

New system architectures have been proposed for this type of scenarios. In particular, the 

phantom cell concept takes advantage of both macro BSs broad network coverage and SCs high 

capacity. In this case, each user in the system is connected to both a macro BS, providing control 

plane connectivity, and a SC, providing user plane connectivity. This dual connectivity feature 

offers the possibility to flexibly deactivate unused or underutilized SCs without disrupting 

connectivity to the cellular network thanks to the macro BS. In addition to the network energy 

saving, the deactivation of SCs is beneficial in terms of interference for two main reasons. First, 

unused SCs transmit pilot and reference signals that interfere neighboring SCs. Second, 

underutilized SCs use a lot of power to transmit to a few users that could be served by 

neighboring SCs or even the macro BS. With this idea in mind, we proposed the following four 

activation and deactivation schemes: 

• A downlink signaling-based scheme, in which users can discover deactivated SCs from 

discovery signals sent at a very low rate compared to activated SCs. 

• An uplink signaling-based scheme, in which users send wake-up signals to activate and 

make SCs discoverable. In these two schemes, SCs are deactivated if they serve no user 

for certain period of time. 
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• A database-aided scheme, in which cached estimates of the user-small-cell channels are 

stored in a database so that, using users’ location information, the macro BSs activate 

or deactivate certain SCs if necessary. 

• A graph-based scheme, in which dynamic activation and deactivation is decided based 

on a wireless network graph. 

In all the schemes presented here, resources are managed by a joint scheduler in the macro BS, 

which is connected to the SCs by a backhaul link. In the graph-based scheme, the macro BS 

monitors reports from both SCs and users to generate a wireless network graph that takes into 

account the users in the SCs coverage area and the overlap of their transmission ranges. The 

deactivation of SCs is triggered when the coverage overlap is high and the capacity usage ratio 

estimated from the reports is low. On the other hand, the activation of SCs is triggered in the 

case of low coverage, low channel quality indicators, or even high blocking probability. 

Figure 3 illustrates the energy saving achieved by the downlink signaling-based, the uplink 

signaling-based, and the database-aided schemes measured with respect to a scheme in which 

SCs are always active. These results are obtained by performing system-level simulations of a 

single macro cell site with a cell radius of 290 m, comprised of 3 macro cells, with 20 SCs 

deployed per macro cell. Interested readers may find results and performance analysis of the 

graph-based scheme in [3]. 

The highest energy saving, more than 45%, is obtained with the database-aided and the 

downlink signaling-based schemes. The uplink signaling-based scheme consumes more energy 

due to the temporal activation of all SCs in the vicinity of the users that send a wake-up signal. 

In addition to the energy savings, the average user throughput increases due to lower 

interference levels. Up to 25% of throughput improvement is observed with the downlink and 

 

Figure 3. Energy saving achieved with the downlink signaling-based, the uplink signaling-based 

and the database-aided schemes. 
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uplink signaling-based schemes, and up to 8% with the database-aided scheme. This difference 

is due to the cached averaged channel estimates used by the databased-aided scheme, instead 

of the actual channel estimation performed by the other two schemes. 

 

III. Clustering for CoMP 

An important technology in future 5G networks is CoMP in which several BSs cooperate in 

serving a group of users. This cooperation is especially beneficial for the cell-edge users, since it 

reduces interference and increases the useful signal power. Although CoMP is a promising MAC 

layer interference coordination scheme, it suffers from large computational burden and 

backhauling requirements. This section analyzes cell clustering techniques that enable 

manageable CoMP by reducing the amount of cooperating points.  

Cells clusters can be designed during the network deployment phase. However, the 

activation/deactivation and potential mobility of SCs modifies the optimum clustering, and the 

cluster-edge users suffer from interference like previous cell-edge users. These limitations show 

that advanced clustering techniques need to be carefully developed. 

Taking into account the previous limitations, we proposed two clustering techniques. The first 

one is a user-centric dynamic clustering which creates a cluster of BSs for each individual user. 

This is achieved selecting the power that BSs use in the transmission of each user with the 

objective of reducing interference and maximizing the users’ fairness. The technique uses 

reports of path loss and shadowing to perform the optimization, and hence, it is dynamic and 

adapts to network changes. It also eliminates the cluster-edge users, since all of them are in the 

center of their own cluster. 

The second technique creates a fixed set of overlapped clusters. In particular, BSs belong to 

some specific number of clusters, say , in such a way that every location in the scenario is close 

to the center of a cluster. This criterion also eliminates the cluster-edge users. The available 

resources are split into  orthogonal pools to prevent interference between overlapped 

clusters. The clusters are designed in the deployment phase and, hence, are not dynamic, 

although, since all locations are close to cluster centers, this technique has a good behavior with 

respect to users’ mobility. In our approach, the clustering was performed in  phases in which 

non-overlapped clusters were generated in each one. To do this non-overlapped clustering, we 

designed a clustering toolbox based on graph partitioning. In particular, the toolbox generates 

a graph of the network in which the cells are the graph nodes, and two nodes are linked with an 

edge if they share certain coverage area. In each phase, the toolbox first identifies a group of 

head nodes selected according to their degree (number of edges incident to the node), and then 

forms the clusters based on the network density and by a process of “preferential attachment,” 

where nodes prefer to join the more “popular” clusters. In each phase, we modified the graph 

eliminating certain edges in order to ensure that the toolbox selects a different group of head 

nodes. 

The performance of the two clustering techniques presented in this section is depicted in Figure 

4. The results are obtained by means of system-level simulations of 100 BSs and 1000 users 
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randomly deployed in a squared area of 500 m side. In the case of the overlapped clustering, 

each cluster maximized the users’ fairness using joint transmission with dirty paper coding (DPC) 

[11] that reduces the intra-cluster interference. In the case of the dynamic clustering, DPC was 

not used since only one user is in each cluster. The spectral efficiency achieved by the 95% of 

users with the overlapped clustering is up to 3 times higher than that achieved with no 

clustering. The different performance of the overlapped and the dynamic clustering approaches 

is a consequence of the interference mitigation of DPC in the overlapped clustering. 

 

IV. Mobility management in the network layer 

Interference and mobility management are, probably, the two most challenging topics of UDNs. 

In this section, we will focus on mobility management, and in particular, on a new generation of 

handover techniques based on context information, and on energy efficient SC discovery. 

 

A. Context-awareness for handovers 

The key element of mobility management is the handover procedure, which generally utilizes 

well-established metrics for the handover decision, such as the reference signal received quality 

(RSRQ) or the reference signal received power (RSRP). However, the new challenges of 5G 

networks require new techniques based on context-awareness. Context refers to any 

information that characterizes an entity. By increasing context-awareness both on the network 

and user sides, the decision-making can be more distributed in forthcoming mobile networks’ 

architectures. The fundamental context-related processes comprise monitoring, aggregating, 

 

Figure 4. Spectral efficiency achieved by the 95% of users with different clustering techniques. 
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modeling, interpreting/reasoning, storing, retrieving, and finally utilizing the context. In some 

cases, additional operations such as predicting the context may apply. The price to pay is that 

the context has to be signaled through the air interface, consuming valuable resources. 

However, this is usually not a show stopper as the required amount of resources is almost 

negligible as compared with interference coordination and, specially, CoMP. With respect to 

context information for handovers, the users’ localization is important, and also the prediction 

of cells that will be traversed by the users. Other relevant context information is the RSRP, the 

RSRQ, the battery-level, the speed, the service type and user preferences. 

Several schemes have been proposed so far that attempt to enhance the handover procedure 

(see a survey in [12]). These schemes extend from very simple solutions that do not attempt to 

acquire a holistic picture of the network environment context (in order to avoid signaling 

overhead issues) to complex frameworks, which however require major modifications in the 

core network components. We recently proposed the COmpAsS scheme for handovers [13], 

which is a context-aware technique executed in the user equipments that employs the user 

preferences, equipment capabilities and status, and the network availability, load and policies. 

The advantages of this approach are: 

• A per-traffic-flow handover decision that enables very high service-level granularity. 

• The mechanism is functioning on the terminal-side only (maintaining however the core 

network as the final decision-maker).  

• It does not require modifications in the current 3GPP release network architecture. 

• The scheme uses fuzzy logic in order to evaluate the available information resulting in a 

very lightweight and efficient solution for 5G networks. 

The use of context information is especially useful in networks with nomadic relays, i.e., vehicle 

mounted relays. They extend the legacy network by randomly located relays that are not 

controllable by the network operators. This requires a high effort in coordination and 

management. In particular,  

• for the handovers of the nomadic cells, a dynamic backhaul selection based on network 

load and backhaul quality can benefit the network performance; and 

• for the users that are connected to the nomadic cells, a handover is required when the 

nomadic cells become unavailable, even if the user is stationary. 

For the handover of users connected to nomadic cells, we proposed to solve an optimization 

problem based on diverse network utilities [14]. The context information about the availability 

of the nomadic cells can facilitate a novel class of user handover mechanisms. In particular, we 

proposed a predictive handover mechanism initiated by the nomadic cells based on an 

availability prediction in the following time slots. 

Figure 5 shows the performance of our nomadic cell initiated handover (NCIH) and COmpAsS 

schemes. The NCIH scheme was compared against the user’s RSRP based handover scheme in 

LTE, which required that users re-connect to the network when a nomadic cell is deactivated. 

Simulations were performed in a scenario with 7 BSs, 150 users and different quantities of 

nomadic relays that randomly became available/unavailable. The COmpAsS scheme was 

compared against the A2-A4 RSRQ mechanism for LTE. The scenario for the COmpAsS evaluation 
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was a shopping mall with 3 floors, 50 SCs per floor, 2 eNodeBs outside the shopping mall and 

100 users moving with random patterns inside the mall. The figure shows the throughput gain, 

which ranges from 12% to 86%, for both schemes when the traffic load increases. 

Context information can be also used for load balancing. Traditional load balancing schemes 

either rely solely on the user (when it is in idle state) or on the network (when the user is in 

active state), with no actual interaction between both parties, which leads to an inefficient 

operation. In this context, we proposed a new family of load balancing solutions in which BSs 

constantly broadcast an indication of the experienced cell load that combines several factors, 

which is used as context information. Idle users can use these indications as additional inputs to 

the cell selection and reselection algorithms. In the case of active users, they can report to the 

serving cell the neighbor cell load indications. These cell loads can, therefore, be exploited by 

actual network-based handover algorithms to take into account the loads of the different target 

cells. Having knowledge of the neighbor cell loads allows the network to perform consistent load 

balancing strategies without complex information exchange between the target nodes. Here, 

the challenge to balance the efficiency of broadcast information transmission versus the amount 

and frequency of updates is not hard to achieve, because cell load usually evolves at a rather 

slow pace compared to the typical time scales of RRM mechanisms. 

 

B. SCs discovery 

The spectrum available for the future 5G networks will likely have separate pieces of the 

centimeter and millimeter bands. In order to reduce the complexity of the filter design, BSs may 

only operate in one of those pieces. However, the detection of SCs in many frequency bands is 

very challenging. To address this problem, we proposed a solution where users are assisted by 

 

Figure 5. Throughput gains of context-aware handover schemes. 
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the network with information, which consists on radio fingerprint samples that correspond to 

SC locations. Radio fingerprint samples are lists of cell-ID and, e.g., RSRP interval pairs. When 

served by the macro cell network, as part of the normal operation, users perform neighbor cell 

measurements and compare those to the radio fingerprint samples. If they find a fingerprint 

match, they report it to the network, which configures the users with the targeted 

measurements (on a specific carrier) to find the corresponding SC. The benefit of this approach 

is that the users and the network save energy, since users avoid unnecessary measurements if 

no SC is in proximity, and the network activates the SCs only in the presence of users [15]. 

Figure 6 illustrates the power saving with respect to the percentage of the SC range covered by 

the fingerprints, and for a different quantity of fingerprint samples per SC. The results are 

obtained by means of simulations in an urban scenario with a 3-sector macro cell and 12 SCs 

covering approximately 20% of the outdoor area. Using 3 to 12 fingerprint samples per SC, the 

user energy consumption is reduced by 70 to 80% while still maintaining 95% accuracy of SC 

coverage. For a given number of fingerprint samples per SC, different trade-offs between 

fingerprint coverage and power saving have been obtained by increasing or reducing the RSRP 

interval where the fingerprints are considered matching. 

 

V. Conclusions 

In this article, we have presented the most promising solutions identified in the METIS project 

to enable cell densification in the future 5G UDNs. In particular, we presented resource and 

 

Figure 6. Simulation results showing trade-off between UE’s inter-frequency measurement power 

saving and fingerprint (FP) coverage (percentage of area with a fingerprint match out of total SC 

coverage). The reference for UE power saving is periodic measurements of inter-frequency SC 

carrier according to LTE-A assumptions. 
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interference management techniques of different implementation complexities: standalone, 

decentralized and centralized. We also proposed clustering techniques to enable advanced 

CoMP communications, and used context information in the design of reliable and energy 

efficient mobility management.  

Our results show that PRA can improve the throughput of the users with the worst channel 

conditions by a factor of around x10, and CoMP combined with an overlapped clustering by a 

factor of x3. Throughputs gains of 80% are also possible with our context-aware COmpAsS and 

NCIH mobility management techniques. With respect to energy efficiency, up to the 45% of the 

energy can be saved with our SC activation/deactivation techniques, and between 70 to 80% 

with our SC discovery technique. 

Combinations of these techniques will facilitate the design of a technology that will be robust 

against unplanned dense deployments and user and cell mobility, although the best 

combination for each scenario is still an open issue. Other questions that need to be answered 

during the 5G system design include the extent of resource and interference management 

performed in the network and MAC layers, as well as the optimum amount of context 

information to be exchanged in order to take advantage of it and maintain low levels of signaling 

overhead. 

 

Acknowledgement 

This work was performed in the framework of the FP7 project ICT-317669 METIS, which is partly 

funded by the European Union. The authors would like to acknowledge the contributions of their 

colleagues in METIS, although the views expressed are those of the authors and do not 

necessarily represent the project. 

 

References 

[1] S. F. Yunas, M. Valkama, and J. Niemelä, "Spectral and energy efficiency of ultra-dense 

networks under different deployment strategies," IEEE Communications Magazine, vol. 53, 

no. 1, pp. 90-100, 2015. 

[2] B. Soret, K. I. Pedersen, N. T. K. Jørgensen, and V. Fernández-López, "Interference 

coordination for dense wireless networks," IEEE Communications Magazine, vol. 53, no. 1, 

pp. 102-109, 2015. 

[3] ICT-317669 METIS project, "Final report on network-level solutions," Deliverable D4.3, 

March 2015, https://www.metis2020.com/documents/deliverables/. Accessed on 

November 4th 2016. 

[4] T.R. Lakshmana, B. Makki, and T. Svensson, "Frequency allocation in non-coherent joint 

transmission CoMP networks," in IEEE International Conference on Communications (ICC) 

Workshops, Sydney, Australia, 10-14 June 2014. 

[5] Z.-Q. Luo and S. Zhang, "Dynamic spectrum management: Complexity and duality," IEEE 

Journal on Selected Topics in Signal Processing, vol. 2, no. 1, pp. 57-73, 2008. 



14 

 

[6] G. W. O. da Costa, A. F. Cattoni, I. Z. Kovács, and P. E. Mogensen, "A scalable spectrum-

sharing mechanism for local area network deployment," IEEE Transactions on Vehicular 

Technology, vol. 59, no. 4, pp. 1630-1645, 2010. 

[7] M. I. Kamel and K. Elsayed, "Performance evaluation of a coordinated time-domain eICIC 

framework based on ABSF in heterogeneous LTE-Advanced networks," In IEEE Global 

Communications Conference (GLOBECOM), Anaheim, CA, 3-7 December 2012. 

[8] S. Giménez, D. Calabuig, J. F. Monserrat, and N. Cardona, "Dynamic and Load-Adapting 

Distributed Fractional Frequency Reuse Algorithm for Ultra-Dense Networks", Waves 

Journal, vol. 7, pp. 27-34, 2015. 

[9] P. Sroka and A. Kliks, "Distributed interference mitigation in two-tier wireless networks 

using correlated equilibrium and regret-matching learning," European Conference on 

Networks and Communications (EuCNC) 2014, 23-26 June 2014. 

[10] A. Kliks, P. Sroka, and M. Debbah, "Crystallized rate regions for MIMO transmission," 

Eurasip Journal on Wireless Communications and Networking, vol. 2010, 2010. 

[11] D. Calabuig, R. H. Gohary and H. Yanikomeroglu, "Optimum Transmission Through the 

Multiple-Antenna Gaussian Multiple Access Channel," IEEE Transactions on Information 

Theory, vol. 62, no. 1, pp. 230-243, 2016. 

[12] D. Xenakis, N. Passas, L. Merakos, and C. Verikoukis, "Mobility management for femtocells 

in LTE-Advanced: Key aspects and survey of handover decision algorithms," IEEE 

Communications Surveys & Tutorials, vol. 16, no. 1, pp. 64-91, 2014. 

[13] S. Barmpounakis, A. Kaloxylos, P. Spapis, and N. Alonistioti, "COmpAsS: A context-aware, 

user-oriented RAT selection mechanism in heterogeneous wireless networks", in Mobility 

2014, Fourth International Conference on Mobile Services, Resources, and Users, Paris, 

France, 20-24 July 2014. 

[14] Z. Ren, S. Stanczak, and P. Fertl, "A Distributed Algorithm for Energy Saving in Nomadic 

Relaying Networks," Asilomar Conference on Signals, Systems, and Computers, Pacific 

Grove, CA, 2-5 November 2014. 

[15] A. Prasad, P. Lunden, K. Valkealahti, M. Moisio, and M. A. Uusitalo, "Network Assisted Small 

Cell Discovery in Multi-Layer and mmWave Networks", IEEE Conference on Standards for 

Communications and Networking (CSCN), Tokyo, Japan, 28-30 October 2015. 

 

Daniel Calabuig [M] (dacaso@iteam.upv.es) received the M.Sc. and Ph.D. degrees in 

telecommunications from the Universidad Politécnica de Valencia (UPV), Valencia, Spain, in 

2005 and 2010 respectively. In 2005 he joined the iTEAM Institute from the UPV. During his Ph.D. 

he participated in some European projects and activities like NEWCOM, COST2100 and ICARUS. 

In 2010 he obtained a Marie Curie Fellowship and joined the Department of Systems and 

Computer Engineering at Carleton University, Ottawa, Canada. In 2012, he returned to the 

iTEAM and started working inside the European project METIS, which main objective is laying 

the foundation of 5G. He is currently involved in the METIS-II project. 

Sokratis Barmpounakis (sokbar@di.uoa.gr) obtained his Engineering Diploma from National 

Technical University of Athens (NTUA), in the Department of Electrical and Computer 

Engineering. In 2010, he began his research activities in the University of Geneva, Switzerland. 

Since March 2013, he is a PhD candidate in the Department of Informatics and 



15 

 

Telecommunications of the National and Kapodistrian University of Athens (UoA). His main fields 

of interest are 5G networks and Context-Aware Mobility and Resource Management. 

Sonia Giménez (sogico@iteam.upv.es) received her Telecommunications Engineer degree and 

M.Sc. degree from the Universitat Politècnica de València in 2009 and 2010, respectively. Since 

2012, she is a PhD grant holder of the Spanish Ministry of Economy. Within the PhD program, 

she has been at the Fraunhofer Heinrich Hertz Institute in Berlin, Nokia Bell Labs and University 

of Stuttgart. Her current work is focused on the study of massive MIMO and millimeter wave 

communications. 

Apostolos Kousaridas (akousar@di.uoa.gr) received his PhD from the Department of 

Informatics & Telecommunications at the University of Athens. He has worked as Technical 

Project Manager in the Innovation Center of Velti and as Senior Researcher for the University of 

Athens. Currently, he is Senior Research Engineer of the Huawei European Research Center in 

Munich, contributing to the design of the 5G communication systems. His research interests 

include vehicular communications, wireless networks, network management, cognitive adaptive 

systems, and software engineering. 

Tilak Rajesh Lakshmana received the B.E. degree in electronics and communication engineering 

in 2002 from the University Visvesvaraya College of Engineering, Bangalore, India. He worked as 

an Associate Engineer with PrairieComm Inc. (2002-2005) and as a Senior Software Engineer at 

Freescale Semiconductor Inc. (2005-2008). He returned to academia to pursue his research 

interests in communication engineering with the M.Sc. (2008-2010) and Ph.D (2010-2015) at 

Chalmers University of Technology, Gothenburg, Sweden. Since 2016, he is working at Alten 

Sverige AB, Gothenburg, as a Technical Consultant for electronics and software development in 

embedded systems. His research interests include wireless communications, signal processing, 

cooperative communications, and more recently with Cryptography and the Internet of Things. 

Javier Lorca [M] (franciscojavier.lorcahernando@telefonica.com) received his 

Telecommunication Engineering MSc degree in 1998 from the Polytechnic University of Madrid, 

Spain. In 1999 he joined Teldat to work on cable modems measurements and ciphering 

techniques for IP routers. Since 2000 he works in Telefónica I+D on cellular radio access 

technologies, including several European projects (FP7 MAMMOET, FP7 METIS, H2020 

mmMAGIC, H2020 METIS-II). He has several patents as well as journal and conference 

publications on radio research, and a book chapter on 5G. His current interests include 

mmWaves, MIMO and massive MIMO, RAN virtualization, new waveforms, interference control, 

RRM techniques, and advanced receivers. 

Petteri Lundén (petteri.lunden@nokia-bell-labs.com) received his M.Sc. in computer and 

information science from Helsinki University of Technology, Finland, in 2004. He is currently with 

Nokia Bell Labs, Finland, working as a senior specialist, radio research. He has worked on design, 

standardization and performance analysis of wireless communication systems since 2002. His 

research interests include mobility and radio resource management solutions in LTE, MulteFire 

and 5G. 

Zhe Ren (zhe.ren@bmw.de) received an M.S. in Electronic and Information Technique at 

Technical University of Munich in 2011. During the master study, he worked on the 



16 

 

standardization of the 4G LTE-Advanced Relaying. After graduation and one year of working on 

automotive software quality management, he joined BMW Group and the METIS project. During 

the METIS project, he published several papers in the area of vehicular communication systems, 

contributing significantly to the business aspects and technical foundations for 5G. Now, he is 

working with BMW Group in the area of e-Mobility. His particular interests now are network 

operation, business intelligence and information security. 

Paweł Sroka [M] (pawel.sroka@put.poznan.pl) received his M.S. degree in Electronics and 

Telecommunications and PhD in Telecommunications from the Poznan University of Technology 

in 2004 and 2012, respectively. He is currently employed as an assistant professor with the Chair 

of Wireless Communications, Poznan University of Technology. His current research interests 

include radio resource management in wireless systems, as well as the vehicle-to-vehicle (V2V) 

communications. 

Emmanuel Ternon (emmanuel.ternon@gmail.com) received his Master's degree in Electronic 

Engineering and Computer Science from the ESIEE Paris engineering school in 2010. He is 

currently pursuing a Ph.D. degree in Electrical Engineering at the University of Bremen, 

Germany, based on his research work at DOCOMO Communications Laboratories Europe GmbH 

in Munich, Germany. His research interests include energy savings in dual connectivity 

heterogeneous networks, particularly in the phantom cell concept architecture developed by 

NTT DOCOMO, Inc. 

Venkatkumar Venkatasubramanian (venkatkumar.venkatasubramanian@nokia-bell-labs.com) 

has been a Senior Research Engineer with Nokia, Poland since January 2013 and has represented 

Nokia in various EU projects. Prior to joining Nokia, Venkatkumar was a research associate at 

Fraunhofer Heinrich Hertz Institute in Berlin, specializing in MIMO-OFDM wireless systems.  He 

was also a PhD intern at Nokia Siemens Network Munich where he conducted LTE downlink field 

trials and indoor relay measurements. Venkatkumar completed his PhD on radio resource 

management for OFDM wireless systems in 2011 from Victoria University in Melbourne, 

Australia. He was also an algorithm design engineer in a start-up Nandoradio, Australia 

specializing in IEEE 802.11n systems. His research interests are Physical layer, interference 

coordination, cancellation techniques, and radio resource management of 5G cellular systems. 

Since January 2016, he has been with Nokia-Bell Labs, Poland. 

Michał Maternia (michal.maternia@nokia-bell-labs) holds a Master degree in Optical 

Telecommunications from Wrocław Technical University, Poland. He is now a senior radio 

research engineer in Nokia Networks Bell Labs, Wrocław, Poland. He was leading a Multi-

RAT/Multi-Layer work package in a collaborative METIS project focused on 5G, and is now 

leading 5G RAN Design work package in METIS-II. 

 

 


