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A note on variable exponent Hörmander spaces

Joaquı́n Motos, Marı́a Jesús Planells and César Felix Talavera

Abstract. In this paper we introduce the variable exponent Hörmander spaces
and we study some of their properties. In particular, it is shown that

(
Bc

p(·)(Ω)
)′

is isomorphic to Bloc
p̃′(·)

(Ω) (Ω open set in Rn, p− > 1 and the Hardy-Littlewood

maximal operator M is bounded in Lp(·)) extending a Hörmander’s result to our
context. As a consequence, a number of results on sequence space representa-
tions of variable exponent Hörmander spaces are given.
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1. Introduction and notation
1.1. Introduction
The Lebesgue spaces Lp(·) with variable exponent and the corresponding Sobolev
spaces W m

p(·) have been intensively investigated during the last years (see the re-
cent book of Diening et al. [3]). These spaces are of interest in their own right and
also have applications to PDE of non-standard growth (see e.g. [3, Chapter 13])
and to modelling electrorheological fluids and to image restoration (see [3, Chapter
14]). Our paper lies in this field of variable exponent function spaces. We introduce
the variable exponent Hörmander spaces Bp(·), Bc

p(·)(Ω) and Bloc
p(·)(Ω) (it is well

known that the Hörmander spaces Bp,k, Bc
p,k(Ω) and Bloc

p,k(Ω) play a crucial role
in the theory of linear partial differential operators (see e.g. [8], [24], [6], [15], [16],
[17])) and we study some of their properties. We also give a number of results on
sequence space representations of the introduced spaces.

The organization of the paper is as follows. Section 2 contains some basic
facts about variable exponent Lebesgue spaces and the definition of variable expo-
nent Lebesgue spaces of entire analytic functions. In Section 3 we introduce the
variable exponent Hörmander spaces Bp(·), Bc

p(·)(Ω) and Bloc
p(·)(Ω) and we study

some of their properties when the Hardy-Littlewood maximal operator M is bounded
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in Lp(·)/p0 for some 0 < p0 < p− (convolution, density, completeness, embedding
theorems, multiplication operators) and, by using Fourier multipliers and a result
of Diening [2], we obtain a sequence space representation of the space Bc

p(·)(]a,b[)
(see Theorem 3.5/5). We also extend a result of Hörmander [8, Chapter XV, 15.2]
to the variable exponent Hörmander spaces Bc

p(·)(Ω) (see Remark 3.6/2). In Sec-

tion 4 we show that
(
Bc

p(·)(Ω)
)′ is isomorphic to Bloc

p̃′(·)
(Ω) (see also [8, Chapter

XV] and [16]) and another result on sequence space representation is given. Finally,
two questions on complex interpolation and on sequence space representation of
variable exponent Hörmander spaces are proposed.

1.2. Notation
Let E and F be topological linear spaces over C. If E and F are (topologically)
isomorphic we put E ' F . The (topological) dual of E is denoted by E ′ and is given
the strong topology (i.e. the topology of uniform convergence on all the bounded
subsets of E). We put E ↪→ F if E is a linear subspace of F and the canonical

injection is continuous (if E is also dense in F we replace ↪→ by
d
↪→). If {En}∞

n=1 is a
sequence of Banach spaces, ∏

∞
n=1 En denotes the topological product of the spaces

En and ⊕∞
n=1En their locally convex direct sum. The Fréchet space defined by the

projective sequence of Banach spaces En and linking maps An will be denoted by
projn(En,An) (or projn En, for short). If {En}∞

n=1 is a sequence of topological linear
spaces such that En ↪→ En+1 for each n, then their inductive limit is denoted by
indn En (see [9], [10]).

If f ∈ L1(Rn) the Fourier transform of f , f̂ or F f , is defined by f̂ (ξ ) =∫
Rn f (x)e−iξ xdx. If f is a function on Rn, then f̃ (x) = f (−x) for x ∈ Rn. Br is the

closed Euclidean ball {x : |x| ≤ r} in Rn. C∞
0 (Rn) (=D(Rn)), C∞

0 (Ω) (=D(Ω)) and
S(Rn) are the usual Schwartz spaces (in the last space the norms max|α|≤m supx∈Rn

(1 + |x|2)m|∂ α ϕ(x)|, m = 0,1,2, . . . , are denoted by |ϕ|m). D ′(Rn), D ′(Ω) and
S′(Rn) are their corresponding duals. E ′(K) (K compact in Rn) is the set of dis-
tributions on Rn with supports contained in K. OM is the space of all functions
ϕ ∈ C∞(Rn) such that ϕψ ∈ S(Rn) for all ψ ∈ S(Rn). The Fourier transform in
S′(Rn) is also denoted by ˆ (or F ). If u ∈ S′(Rn), ũ is defined by 〈ϕ, ũ〉 = 〈ϕ̃,u〉
for all ϕ ∈ S(Rn); thus ∼ coincides with the operator (2π)−nF 2. In general, we
will consider function spaces defined on the whole Euclidean space Rn. So, in what
follows, we shall omit the “Rn” of their notation. The letter C will always denote a
positive constant, not necessarily the same at each ocurrence.

2. Preliminaries
In this section we collect some basic facts about variable exponent spaces and we
give the definition of variable Lebesgue spaces of entire analytic functions.

2.1. Variable exponent spaces
If p(·) is a measurable function on Rn with range in [1,∞], we put Rn

∞ = {x ∈ Rn :
p(x) =∞}, p−= ess infx∈Rn p(x), p+ = ess supx∈Rn p(x), and we define the modular
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functional
ρ( f ) :=

∫
RnrRn

∞

| f (x)|p(x)dx+‖ f‖L∞(Rn
∞)

.

Lp(·) denotes the set of all complex-valued measurable functions on Rn such that for
some λ > 0, ρ( f/λ ) < ∞. This set becomes a Banach space when equipped with
the Luxemburg norm

‖ f‖p(·) := inf{λ > 0 : ρ( f/λ )≤ 1} .

These spaces are referred to as variable exponent Lebesgue spaces since they gener-
alize the standard Lebesgue spaces. In this paper, we shall also consider analogous
spaces to classical Lebesgue spaces Lp, 0 < p < 1, with variable exponents. De-
fine P0 to be the set of all measurable functions on Rn with range in (0,∞) such
that p− = ess infx∈Rn p(x) > 0 and p+ = ess supx∈Rn p(x) < ∞. Given p(·) ∈P0,
we also define the space Lp(·) as above. This is equivalent to defining it to be the
set of all measurable functions f such that | f |p0 ∈ Lq(·), where 0 < p0 ≤ p− and

q(x) = p(x)
p0

. We can define a quasi-norm on this space by

‖ f‖p(·) := ‖| f |p0‖1/p0
q(·)

(
= inf

{
λ > 0 :

∫
Rn

(
| f (x)|

λ

)p(x)

dx≤ 1
})

(see [1]). With this quasi-norm Lp(·) becomes a quasi-Banach space.
Next we give some basic results about variable Lebesgue spaces. Their proofs

can be found in [3] (see also [11]).

Lemma 2.1. If p(·)∈P0, then ‖ fk− f‖p(·)→ 0 if and only if
∫
Rn | fk(x)− f (x)|p(x)dx

→ 0. If ‖ fk− f‖p(·)→ 0 then there exists a subsequence of ( fk) which converges a.e.
to f .

Lemma 2.2 (generalized Hölder inequality). Let p(·) : Rn → [1,∞]. If f ∈ Lp(·)
and g ∈ Lp′(·), then ∫

Rn
| f (x)g(x)|dx≤C‖ f‖p(·)‖g‖p′(·)

where p′(·) is the conjugate exponent function defined by 1
p(x) +

1
p′(x) = 1, x ∈ Rn.

Lemma 2.3. Let p(·) : Rn→ [1,∞]. The natural mapping

I : Lp′(·)→
(
Lp(·)

)′ : g→ 〈 f , I(g)〉=
∫
Rn

f (x)g(x)dx

is an isomorphism if and only if p+ < ∞. The space Lp(·) is reflexive if and only if
1 < p− ≤ p+ < ∞.

Lemma 2.4.
1. Let p(·) : Rn→ [1,∞]. Then S ↪→ Lp(·) ↪→ Lloc

1 ,S′. Furthermore, if p+ < ∞, C∞
0

and S are dense in Lp(·) and the mapping S×Lp(·) → Lp(·) : (ϕ, f )→ ϕ f is
continuous.

2. If p(·) ∈P0, S ↪→ Lp(·) and the mapping S×Lp(·) → Lp(·) : (ϕ, f )→ ϕ f is
continuous.
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Many classical operators in harmonic analysis (maximal operators, Calderón-
Zygmund operators, fractional integrals, . . . ) are bounded in Lp(·) whenever the
Hardy-Littlewood maximal operator M is bounded in Lp(·) (c.f., e.g. [1], [2] and
[3]). The next lemma provides a sufficient condition on p(·) for M to be bounded in
Lp(·) and one important consequence of the Diening’s characterization of variable
Lebesgue spaces on which the maximal operator M is bounded:

Lemma 2.5.

1. Let p(·) : Rn→ [1,∞] be such that 1 < p− ≤ p+ < ∞. Suppose that p(·) satis-
fies

|p(x)− p(y)| ≤ C
− log |x− y|

, |x− y| ≤ 1
2
,

and

|p(x)− p(y)| ≤ C
log(e+ |x|)

, |x| ≤ |y| .

Then the Hardy-Littlewood maximal operator M is bounded in Lp(·).
2. If 1 < p− ≤ p+ < ∞, then the following conditions are equivalent:

(a) M is bounded in Lp(·),
(b) M is bounded in Lp′(·),
(c) M is bounded in Lp(·)/q for some 1 < q < p−,
(d) M is bounded in L(p(·)/q)′ for some 1 < q < p−.

Remark 2.6. In spite of the previous results, the variable Lebesgue spaces have a
number of undesired properties. For example, these spaces are not translation in-
variant and so the Young’s inequality cannot be generalized to the spaces Lp(·) for
non-constant p(·) (see [3] and [11]).

2.2. Variable exponent Lebesgue spaces of entire analytic functions
If K is a compact subset of Rn, µ is a positive Borel measure on Rn and 0 < p≤ ∞,
then

LK
p (µ) := { f ∈ S′ : supp f̂ ⊂ K, f ∈ Lp(µ)}

(LK
p := LK

p (µ) if µ is the Lebesgue measure). (LK
p (µ),‖ ·‖p) is a quasi-Banach (Ba-

nach if p≥ 1) space (see [23], [19]; see also [20]).
If K is a compact subset of Rn and p(·) ∈P0, then

LK
p(·) := { f ∈ S′ : supp f̂ ⊂ K, ‖ f‖p(·) < ∞} .

(LK
p(·),‖ · ‖p(·)) is a quasinormed (normed if p− ≥ 1) linear space. From the Paley-

Wiener-Schwartz theorem it follows that the elements of LK
p(·) are entire analytic

functions of exponential type. When p(·) ≡ p, a constant, then LK
p(·) = LK

p with
equality of quasi-norms (resp. norms). We shall denote by SK the collection of all
f ∈ S such that supp f̂ ⊂ K; obviously SK ⊂ LK

p(·). The spaces LK
p(·) have been intro-

duced in [18].
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3. Variable exponent Hörmander spaces
In this section we introduce the variable exponent Hörmander spaces Bp(·), Bc

p(·)(Ω)

and Bloc
p(·)(Ω) (see Definition 3.1) and we study some of their properties when the

Hardy-Littlewood maximal operator M is bounded in Lp(·)/p0 for some 0< p0 < p−:
convolution, density, completeness, embedding theorems, multiplication operators,
sequence space representations, . . .

We begin with the variable exponent (and weight k ≡ 1) counterpart of [8,
Definition 10.1.6] (see also [8, Sections 10 and 15] and [16], [17], [24]).

Definition 3.1. Let p(·) ∈P0 be and let Ω be an open set in Rn. Then

Bp(·) := {u ∈ S′ : û ∈ Lp(·)} .

If u ∈Bp(·) we put ‖u‖Bp(·) := ‖û‖p(·). (Bp(·),‖ · ‖Bp(·)) is a quasi-normed space
isomorphic to (Lp(·) ∩ S′,‖ · ‖p(·)) (a Banach space isomorphic to Lp(·) if p− ≥ 1).
Now we consider the space

Bc
p(·)(Ω) := ∪{Bp(·)∩E ′(K) : K bΩ} .

If every Bp(·)∩E ′(K) is equipped with the topology induced by Bp(·), then Bc
p(·)(Ω)

(endowed with the corresponding inductive linear topology) becomes a strict induc-
tive limit

Bc
p(·)(Ω) := indK [Bp(·)∩E ′(K)] .

Finally,

Bloc
p(·)(Ω) := {u ∈D ′(Ω) : ϕu ∈Bp(·) for all ϕ ∈C∞

0 (Ω)} .

The topology of this space is generated by the seminorms (semiquasi-norms when
p− < 1) u→‖u‖p(·),ϕ := ‖ϕu‖Bp(·) , ϕ ∈C∞

0 (Ω).

Remark 3.2.

1. Bp(·), Bc
p(·)(Ω) and Bloc

p(·)(Ω) are called variable exponent Hörmander spaces.
If p(·)≡ p and p≥ 1, these spaces coincide with the Hörmander spaces Bp,1,
Bc

p,1(Ω) and Bloc
p,1(Ω) respectively (see [8]).

2. In general, the space Bp(·) ∩ E ′(K) (K any compact in Rn) is not a com-
plemented subspace of Bp(·). For example, if n > 1, p(·) ≡ p (a constant),
1 < p 6= 2 < ∞ and K = B1, then Bp,1 ∩E ′(B1) is not a complemented sub-
space of Bp,1 since Bp,1 ∩E ′(B1) is isomorphic (via the Fourier transform)
to LB1

p and this space is not a complemented subspace of Lp by the Fefferman
theorem (see [4] and [14]).

The following elementary fact will be used in the next theorem: “Let F =
ind j Fj be the strict inductive limit of a properly increasing sequence F1 ⊂ F2 ⊂ ·· ·
of Banach spaces. Assume that every Fj is a complemented subspace of Fj+1 and
that G j is a topological complement of Fj in Fj+1. Then the mapping F1⊕G1⊕G2⊕
·· ·→ F : ( f1,g1,g2, . . .)→ f1+g1+g2+ · · · is an isomorphism”. We will also need
the following lemmata.
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Lemma 3.3. Let p(·) ∈P0. Then the bilinear mapping Φ : S×Bp(·) → Bp(·),
defined by Φ(ϕ,u) =ϕ ∗u, is continuous. Furthermore, for every u∈Bp(·), θε ∗u→
u in Bp(·) when ε→ 0+ (here θε(x)= 1

εn θ( x
ε
) being θ a C∞

0 function such that θ ≥ 0
and

∫
Rn θ(x)dx = 1).

Proof. If ϕ ∈ S and u ∈ Bp(·) then ϕ ∗ u ∈ OM and ϕ̂ ∗u = ϕ̂ û. Hence and from
Lemma 2.4/2 if follows that ϕ ∗u ∈Bp(·). Using again Lemma 2.4/2 and the conti-
nuity of the Fourier transform, we obtain

‖ϕ ∗u‖Bp(·) = ‖ϕ̂ ∗u‖p(·) = ‖ϕ̂ û‖p(·) ≤C |ϕ̂|r ‖û‖p(·) ≤C |ϕ|m ‖u‖Bp(·)

(here r,m ∈ N0 are independent both of ϕ and u). This proves the continuity of Φ.
By Lemma 2.1

‖θε ∗u−u‖Bp(·) = ‖(θ̂ε −1)û‖p(·)

goes to zero if and only if
∫
Rn(|θ̂ε(x)− 1| |û(x)|)p(x)dx→ 0 but the latter is a con-

sequence of the Lebesgue dominated convergence theorem in view of the estimate
|θ̂ε(x)−1|p(x) ≤ 2p+ , the fact that θ̂ε → 1 pointwise when ε→ 0+, and the integra-
bility of the function |û(x)|p(x). �

Lemma 3.4. Let K be a compact subset of Rn and let p(·) ∈P0 be such that M is
bounded in Lp(·)/p0 for some 0 < p0 < p−.

1. The convolution S×LK
p(·)→ LK

p(·) : (ϕ, f )→ϕ ∗ f is well defined and is bilinear
and continuous.

2. (Inequalities of Plancherel-Polya-Nikol’skij type) Let α be a multiindex. Then
there exists a constant C such that

‖∂ α f‖p(·) ≤C‖ f‖p(·)

holds for all f ∈ LK
p(·).

Proof. See [18, Theorems 3.5/2, 3.5/5]. �

Theorem 3.5. Let Ω be an open set in Rn and let p(·) ∈P0.
1. C∞

0 (Ω) ↪→Bc
p(·)(Ω) and C∞

0 (Ω) is sequentially dense in Bc
p(·)(Ω).

2. If M is bounded in Lp(·)/p0 for some 0 < p0 < p−, then Bc
p(·)(Ω) ↪→ S′. (If

p− ≥ 1, the hypothesis on M is not necessary.)
3. Let M be as in 2. Then the inductive limit Bc

p(·)(Ω) is regular (i.e. every
bounded set in Bc

p(·)(Ω) is contained and bounded in some step) and com-
plete. (If p− ≥ 1, the hypothesis on M is not necessary.)

4. Let M as in 2. Let ϕ ∈ S (resp. P a polynomial in Rn). Then the multiplication
operator Mϕ (resp. MP) is continuous from Bc

p(·)(Ω) into Bc
p(·)(Ω).

5. Assume n = 1. Let p(·) be such that 1 < p− ≤ p+ < ∞ and M is bounded
in Lp(·)(R). Let Ω =]a,b[ (−∞ ≤ a < b ≤ ∞). Let a j ↘ a, b j ↗ b, and we
put K j = [a j,b j] for j = 1,2, . . . Then Bc

p(·)(Ω)' L−K1
p(·) ⊕G1⊕G2⊕·· · being

each G j an infinite dimensional complemented subspace of L
−K j+1
p(·) . In the case

p(·) ≡ p, the space Bc
p(·)(Ω) is isomorphic to (lp(Z))(N). Finally, if p(·) ≡
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p and 0 < p < 1 then the Banach envelope of each step Bp(·) ∩ E ′(K j) is
isomorphic to l1.

Proof.

1. It is easily seen that the natural mapping C∞
0 (Ω)→Bc

p(·)(Ω) : ϕ → 〈θ ,ϕ〉 =∫
Rn θϕ dx (θ ∈ S) is well defined and is linear and injective. Next we prove that

it is continuous. If K is any compact subset of Ω then 〈·,ϕ〉 ∈Bp(·)∩E ′(K) for
all ϕ ∈C∞

0 (K). Then if ϕ j→ 0 in C∞
0 (K) it results that ϕ j→ 0 in S, i.e. ϕ̂ j→ 0

in S, thus ϕ̂ j→ 0 in Lp(·) which implies that 〈·,ϕ j〉→ 0 in Bp(·)∩E ′(K). Since
C∞

0 (Ω) and Bc
p(·)(Ω) are inductive limits the required continuity is shown. In

order to prove the density we take any u in Bc
p(·)(Ω) and we apply Lemma 3.3.

Then, θε ∗ u → u in Bp(·) (without loss of generality, we can assume that
suppθ ⊂B1). If u∈Bp(·)∩E ′(K) and K+Bε0 ⊂Ω then (θε ∗u)ε≤ε0 ⊂C∞

0 (Ω)

and θε ∗u→ u in Bp(·)∩E ′(K +Bε0), therefore θε ∗u→ u in Bc
p(·)(Ω).

2. Let K be any compact subset of Ω and consider the following diagram

Bp(·)∩E ′(K)
F−→ L−K

p(·)
j−→ S′ F−1
−−−→ S′

where F is the Fourier transform, j is the canonical injection and F−1 is the
inverse Fourier transform. Since F is an isomorphism, j is continuous (use
the hypothesis on M and [18, Theorem 3.5/4]) and F−1 is an automorphism,
it results that the canonical injection Bp(·)∩E ′(K)→ S′ is also continuous. In
consequence, Bc

p(·)(Ω) ↪→ S′.
3. It is easy to see that Bc

p(·)(Ω) coincides with the inductive limit ind j[Bp(·) ∩
E ′(K j)] where {K j}∞

j=1 is any fundamental sequence of compact subsets of
Ω. Then, since M is bounded in Lp(·)/p0 , it follows from [18, Theorem 3.5/4]

that each L
−K j
p(·) is complete (i.e. a quasi-Banach space). Thus each step Bp(·)∩

E ′(K j) is also complete and so Bp(·) ∩E ′(K j) is closed in Bp(·) ∩E ′(K j+1)
for all j. In view of [9, Theorem 2 p. 84, Theorem 4 p. 86], the inductive limit
Bc

p(·)(Ω) is regular and complete.
4. If K is any compact subset of Ω, it is sufficient to show that Mϕ and MP

are bounded operators from Bp(·) ∩ E ′(K) into Bp(·) ∩ E ′(K). But this is a
consequence of the following commutative diagrams and Lemma 3.4:

Bp(·)∩E ′(K)
Mϕ //

F
��

Bp(·)∩E ′(K)

L−K
p(·)

// L−K
p(·)

F−1

OO

f // (2π)−nϕ̂ ∗ f

Bp(·)∩E ′(K)
M(−ix)α //

F
��

Bp(·)∩E ′(K)

L−K
p(·)

∂ α

// L−K
p(·)

F−1

OO

5. We have Bc
p(·)(Ω) = ind j[Bp(·) ∩E ′(K j)] and here each step Bp(·) ∩E ′(K j)

is isomorphic (via Fourier transform) to L
−K j
p(·) . On the other hand, by [2, The-

orem 8.14], the Hilbert transform is bounded in Lp(·)(R). Hence it follows,
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reasoning as in the classical case, that every χ−K j is an Lp(·)(R)-Fourier mul-
tiplier (i.e. the operator associated with χ−K j , S−K j( f ) = F−1(χ−K j f̂ ), is

bounded in Lp(·)(R)). Then, since Lp(·)(R)= L
−K j
p(·) ⊕kerS−K j , we get L

−K j+1
p(·) =

L
−K j
p(·) ⊕

(
kerS−K j ∩ L

−K j+1
p(·)

)
which shows that G j = kerS−K j ∩ L

−K j+1
p(·) is an

infinite-dimensional (if Q is a compact interval such that Q⊂−K j+1r(−K j+

[−ε,ε]), for a sufficiently small ε > 0, then G j ⊃ SQ) topological complement
of L

−K j
p(·) in L

−K j+1
p(·) . Next, using the fact previous to Lemma 3.3, we obtain the

required isomorphism: Bc
p(·)(Ω)' L−K1

p(·) ⊕G1⊕G2⊕·· · . If p(·)≡ p we know

(see e.g. [22, pp. 239,240]) that every L
−K j
p is isomorphic to lp(Z), thus G j is

isomorphic to an infinite-dimensional complemented subspace of lp(Z) and
so, since the space lp(Z) is prime [12, Theorem 2.a.3], G j becomes isomor-

phic to lp(Z). We conclude that Bc
p(Ω) '

(
lp(Z)

)(N) (see also [6], [16]). If
0 < p < 1 Hoffmann [7] proved that the Banach envelope of the quasi-Banach
space L[−π,π]

p is isomorphic to l1, thus our claim is an immediate consequence
of this result.

�

Remark 3.6.
1. Let us recall that a bounded open set Ω in Rn has the segment property if there

exist open balls Vj and vectors y j ∈ Rn, j = 1, . . . ,N, such that Ω̄ ⊂ ∪N
j=1Vj

and (Ω̄∩Vj)+ ty j ⊂Ω for 0 < t < 1 and j = 1, . . . ,N. In [18, Theorem 3.5/3]
it is shown that if M is bounded in Lp(·)/p0 for some 0 < p0 < p− and K = Ō,
being O a bounded open set with the segment property, then SK is dense in
LK

p(·). By using this result, it is immediate to check that C∞
0 (K) is also dense

in Bp(·)∩E ′(K) (p(·) and K as before). This improves Theorem 3.5/1 (versus
the additional hypothesis that M is bounded in Lp(·)/p0 for some 0 < p0 < p−)
since all open set in Rn has a fundamental sequence of compact subsets which
are the closures of open sets with the segment property.

2. In [8, Chapter XV, 15.2] Hörmander obtains a family of seminorms defining
the inductive limit topology of Bc

2,k(Ω) when k is a Hörmander weight. In this
note we extend this result to the variable exponent Hörmander spaces Bc

p(·)(Ω)

when p(·) is as in Lemma 3.4 and p− ≥ 1: If (θ j)
∞
j=1 is a C∞

0 (Ω)-partition of
unity on Ω, then the inductive limit topology of Bc

p(·)(Ω) is generated by the
system of seminorms

‖u‖(Ci) :=
∞

∑
i=1

Ci ‖θiu‖Bp(·) , u ∈Bc
p(·)(Ω) , (Ci)

∞
i=1 ∈ (R+)

N .

Let {K j}∞
j=1 be a fundamental sequence of compact subsets of Ω. For each

u ∈ Bc
p(·)(Ω), θiu = 0 for all i large enough. Indeed, if suppu ⊂ K j there

exist a relatively compact open set Wj and a positive integer m j such that
K j ⊂Wj ⊂ W̄j ⊂Ω and θ1(x)+ · · ·+θm j(x) = 1 in Wj. Therefore θi = 0 in Wj

for i>m j and so θiu= 0 for these indexes. Consequently, u=∑
m j
i=1 θiu. Hence
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it follows that, for each (Ci)
∞
i=1 ∈ (R+)

N, the mapping Bc
p(·)(Ω)→ [0,∞[: u→

‖u‖(Ci) is a seminorm on Bc
p(·)(Ω). Let T be the topology generated by these

seminorms. If (Ci)
∞
i=1 ∈ (R+)

N, the Lemma 3.4/1 and the continuity of the
Fourier transform show that exist a positive integer k and a positive constant
C such that

‖u‖(Ci) =
m j

∑
i=1

Ci ‖θiu‖Bp(·) =
m j

∑
i=1

Ci ‖θ̂iu‖p(·) = (2π)−n
m j

∑
i=1

Ci ‖θ̂i ∗ û‖p(·)

≤C
(m j

∑
i=1

Ci |θi|k
)
‖u‖Bp(·)

holds for all u ∈ Bp(·) ∩ E ′(K j). This proves the continuity of the canoni-
cal injection Bp(·) ∩E ′(K j)→Bc

p(·)(Ω)[T ]. Since this is valid for all j, the
topology T is coarser than the inductive limit topology. Let us see the reverse
inclusion: Let {K jl}∞

l=1 be a subsequence of {K j}∞
j=1 such that suppθl ⊂ K jl

for all l. If ‖ ·‖ is a continuous seminorm in the space Bc
p(·)(Ω) equipped with

the inductive limit topology, its restriction to each step is continuous. So there
are constants Cl > 0 such that ‖u‖ ≤ Cl ‖u‖Bp(·) for all u ∈ Bp(·) ∩ E ′(K jl )

l = 1,2, . . . Let u ∈Bc
p(·)(Ω). If suppu ⊂ K j, we know that u = ∑

m j
i=1 θiu for

some positive integer m j. Since each θiu is in Bp(·)∩E ′(K ji), we obtain

‖u‖ ≤
m j

∑
i=1
‖θiu‖ ≤

m j

∑
i=1

Ci ‖θiu‖Bp(·) =
∞

∑
i=1

Ci ‖θiu‖Bp(·) = ‖u‖(Ci) .

In consequence the two topologies coincide.

In the next theorem we show a number of basic properties of the spaces
Bloc

p(·)(Ω) that we shall need to study the duality 〈Bc
p(·)(Ω),Bloc

p̃′(·)
(Ω)〉.

Theorem 3.7. Let Ω be an open set in Rn and let p(·) ∈P0 be such that M is
bounded in Lp(·)/p0 for some 0 < p0 < p−. Then:

1. Bloc
p(·)(Ω) is a metrizable topological linear space,

2. We have the natural embeddings C∞(Ω) ↪→ Bloc
p(·)(Ω) ↪→ D ′(Ω), C∞

0 (Ω)
d
↪→

Bloc
p(·)(Ω),

3. Bloc
p(·)(Ω) is complete (i.e. an F-space; a Fréchet space if p− ≥ 1).

Proof.
1. Let u∈Bloc

p(·)(Ω)r{0} and let ϕ ∈C∞
0 (Ω) such that 〈ϕ,u〉 6= 0. Then ‖u‖p(·),θ

> 0 for all θ ∈C∞
0 (Ω) such that θ = 1 in suppϕ . Thus the topology of Bloc

p(·)(Ω)

is Hausdorff. We now consider a fundamental sequence {K j}∞
j=1 of compact

subsets of Ω and choose ϕ j ∈ C∞
0 (Ω) such that ϕ j ≡ 1 on K j and suppϕ j ⊂

◦
K j+1, j = 1,2, . . . Then the topology of Bloc

p(·)(Ω) is also generated by the sys-
tem of semiquasi-norms {‖ · ‖p(·),ϕ j : j = 1,2, . . .}. In order to prove this, we



10 Joaquı́n Motos, Marı́a Jesús Planells and César Felix Talavera

choose a function ϕ ∈ C∞
0 (Ω) and an integer j such that suppϕ ⊂ K j. Then,

for each u ∈Bloc
p(·)(Ω), we have ϕu = ϕ(ϕ ju) where ϕ ju ∈Bp(·)∩E ′(K j+1).

Thus, by using Lemma 3.4/1 and the continuity in S of the Fourier transform,
we get a positive constant C and a positive integer m such that

‖u‖p(·),ϕ = ‖ϕu‖Bp(·) = ‖ϕ(ϕ ju)‖Bp(·) =
∥∥ϕ̂(ϕ ju)

∥∥
p(·) = (2π)−n‖ϕ̂ ∗ ϕ̂ ju‖p(·)

≤C |ϕ|m ‖ϕ ju‖Bp(·) =C |ϕ|m ‖u‖p(·),ϕ j

holds for all u ∈Bloc
p(·)(Ω). This proves 1.

2. We will only show the density of C∞
0 (Ω) in Bloc

p(·)(Ω). Let u ∈ Bloc
p(·)(Ω).

Given ϕ ∈ C∞
0 (Ω) and ε > 0 we have to prove that there exists a function

φ ∈ C∞
0 (Ω) such that ‖u− φ‖p(·),ϕ < ε . Let ψ ∈ C∞

0 (Ω) so that ψ = 1 in
suppϕ . Then ψu ∈Bc

p(·)(Ω), and there exists a sequence (χν) in C∞
0 (Ω) such

that χν → ψu in Bc
p(·)(Ω) when ν → ∞ (apply Theorem 3.5/1). Hence and

from Theorem 3.5/4 if follows that ϕχν → ϕ(ψu) = ϕu in Bc
p(·)(Ω) and, a

fortiori, in Bp(·). Therefore, putting φ = χν with ν sufficiently large, we have
‖u−φ‖p(·),ϕ < ε .

3. Let (u j)
∞
j=1 be a Cauchy sequence in Bloc

p(·)(Ω) (only consider sequences in
virtue of 1). By 2 and the completeness of D ′(Ω), u j has a limit u in D ′(Ω).
Let us see that u∈Bloc

p(·)(Ω). Let ϕ ∈C∞
0 (Ω). Obviously, ϕu j→ ϕu in D ′(Ω).

Furthermore, (ϕu j)
∞
j=1 is a Cauchy sequence in the quasi-Banach space Bp(·)

∩E ′(suppϕ). Let v be the limit of ϕu j in this space. From Theorem 3.5/2 we
conclude that ϕu = v. Hence it follows that u ∈Bloc

p(·)(Ω) and that u j → u in

Bloc
p(·)(Ω).

�

4. The dual of Bc
p(·)(Ω)

In [8, Chapter XV], Hörmander studies the behaviour of the Fourier-Laplace trans-
form in the space Bc

2,k(Ω)= indK [B2,k∩E ′(K)] when Ω is an open convex set in Rn

and k satisfies the estimate k(x+ y) ≤ (1+C |x|)Nk(y), x,y ∈ Rn (C and N positive
constants). For this he analyses the inductive topology in Bc

2,k(Ω), proves the iso-

morphism
(
Bc

2,k(Ω)
)′ 'Bloc

2,1/k̃
(Ω) and shows that every continuous seminorm in

Bc
2,k(Ω) is bounded by a seminorm of the form u→

(∫
Cn |û(ζ )|2e−2φ(ζ )dλ (ζ )

)1/2
,

where û is the Fourier-Laplace transform of u and φ is plurisubharmonic (see [8,
Section 15.2]). In [16, Section 3] the former isomorphism is extended to Hörmander
spaces in the sense of Beurling and Björck. A number of applications of this dual-
ity (to sequence space representations of several ultradistributions spaces and to
linear partial differential operators) are also given in [16] and [17]. In this section
we extend the former isomorphism to variable exponent Hörmander spaces. As a
consequence, some results on sequence space representations of variable exponent
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Hörmander spaces are given. Finally, we propose a question on interpolation of the
spaces Bp(·)∩E ′(K).

Lemma 4.1. Let p ∈ P0 be with p− > 1 and let f be a measurable function
on Rn such that f ϕ ∈ L1 for all ϕ ∈ S and such that B := sup

{∣∣∫
Rn f ϕ dx

∣∣ : ϕ ∈
S, ‖ϕ‖p′(·) ≤ 1

}
< ∞. Then f ∈ Lp(·).

Proof. We define the functional u(ϕ) :=
∫
Rn f ϕ dx, ϕ ∈ S. Since |u(ϕ)| ≤ B‖ϕ‖p′(·)

for all ϕ ∈ S, it follows that u ∈ (S,‖ · ‖p′(·))
′ and, since S is dense in Lp′(·) (use

Lemma 2.4/1), u has a unique continuous linear extension U to Lp′(·). Next, by
duality (Lemma 2.3), we can find a function g ∈ Lp(·) such that

∫
Rn gϕ dx =U(ϕ) =∫

Rn f ϕ dx for all ϕ ∈ S. In consequence, f = g and f ∈ Lp(·). �

Lemma 4.2. Let p(·) ∈P0 be such that p− > 1 and such that M is bounded in
Lp(·). Let K be a locally integrable function in Rn r{0} such that K̂ ∈ L∞, |K(x)| ≤
C |x|−n and |∇K(x)| ≤C |x|−(n+1) for all x 6= 0. Then the singular integral operator
T , defined by T f (x) = K ∗ f (x), is bounded in Lp(·).

Proof. See [1, p. 247]. �

Theorem 4.3. Let Ω be an open set in Rn and let p(·) ∈P0 be such that p− > 1
and M is bounded in Lp(·). Then

(
Bc

p(·)(Ω)
)′ is isomorphic to Bloc

p̃′(·)
(Ω).

Proof. Let J be the natural embedding

C∞
0 (Ω)→Bc

p(·)(Ω) : ϕ → 〈θ ,J(ϕ)〉=
∫
Rn

θϕ dx (θ ∈ S)

(see Theorem 3.5/1) and consider its adjoint operator J′ :
(
Bc

p(·)(Ω)
)′→D ′(Ω). Let

us see that ImJ′ ⊂Bloc
p̃′(·)

(Ω). Let l ∈
(
Bc

p(·)(Ω)
)′. We have to show that ϕJ′(l) ∈

B
p̃′(·), i.e. F (ϕJ′(l)) ∈ L

p̃′(·), for all ϕ ∈C∞
0 (Ω). Let us fix such a ϕ and set K =

suppϕ . Then F 2(ϕJ′(l)) = (2π)nϕ̃J′(l) = (2π)nϕ̂ J̃′(l) and so suppF 2(ϕJ′(l))⊂
−K. This implies, by the Paley-Wiener-Schwartz theorem, that F (ϕJ′(l)) is an
entire analytic function of n complex variables such that for any ε > 0

|F (ϕJ′(l))(z)| ≤ Aε(1+ |x|)λ e(σ+ε)|y|

holds for all z = x+ iy with x,y ∈ Rn (λ ∈ R is a constant and Aε depends on ε but
not on z) (see e.g. [21, p. 272]). We now prove that sup

{∣∣∫
Rn F (ϕJ′(l))θ dx

∣∣ : θ ∈
S, ‖θ‖

p̃(·) ≤ 1
}
< ∞ since, once this is established, Lemma 4.1 yields F (ϕJ′(l)) ∈

L
p̃′(·). Fix an element θ ∈ S such that ‖θ‖

p̃(·) ≤ 1. Then, from the continuity of l on
the step Bp(·) ∩E ′(K) and from the continuity in Lp(·) of the operator θ → θ ∗ ϕ̂

(Lemma 4.2), we get∣∣∣∫
Rn

F (ϕJ′(l))θ dx
∣∣∣= ∣∣〈θ ,F (ϕJ′(l))〉

∣∣= ∣∣〈J(θ̂ϕ), l〉
∣∣≤C‖J(θ̂ϕ)‖Bp(·)

=C‖F (θ̂ϕ)‖p(·) =C‖θ̃ ∗ ϕ̂‖p(·) ≤C‖θ̃‖p(·) =C‖θ‖
p̃(·) ≤C .
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Therefore, we have shown that ImJ′ ⊂Bloc
p̃′(·)

(Ω). Next we prove that the mapping

J′ :
(
Bc

p(·)(Ω)
)′→Bloc

p̃′(·)
(Ω)

is onto: Let {K j}∞
j=1 be a fundamental sequence of compact subsets of Ω such that

every K j is the closure of an open set with the segment property; moreover, let
χ j ∈C∞

0 (Ω) be such that χ j(x) = 1 whenever x ∈ K j, j = 1,2, . . . Let u ∈Bloc
p̃′(·)

(Ω).

For each j we define l j by 〈J(ϕ), l j〉 := 〈ϕ,u〉 for all ϕ ∈C∞
0 (K j). Then, taking into

account the generalized Hölder inequality, we get

|〈J(ϕ), l j〉|= |〈ϕ,u〉|= |〈ϕ,χ ju〉|=C
∣∣∣∫

Rn
χ̂ ju ˜̂ϕ dx

∣∣∣
≤C‖ ˜̂ϕ‖

p̃(·)‖χ̂ ju‖(p̃(·))′ =C‖ϕ̂‖p(·) =C‖J(ϕ)‖Bp(·)

for all ϕ ∈ C∞
0 (K j). Hence and from the density of J(C∞

0 (K j)) in the step Bp(·) ∩
E ′(K j) (use Lemma 2.4/1 and Remark 3.6/1) it follows that l j extends to a unique
continuous linear form l̄ j on Bp(·) ∩E ′(K j). Finally, since l̄ j+1 and l̄ j coincide on
Bp(·) ∩ E ′(K j), we easily obtain an l in

(
Bc

p(·)(Ω)
)′ with J′(l) = u. To sum up,

J′ is an algebraic isomorphism from
(
Bc

p(·)(Ω)
)′ onto Bloc

p̃′(·)
(Ω). To see that J′

is a (topological) isomorphism it suffices to prove that it is continuous since that
those spaces are Fréchet spaces (Bloc

p̃′(·)
(Ω) is a Fréchet space by Lemma 2.4/1 and

Theorem 3.7/3; Bc
p(·)(Ω) is a (DF)-space by Theorem 3.5/3 and [10, (4) p. 402]

and so its strong dual is also a Fréchet space (see [10, (1) p. 397])). Suppose that
lν → 0 in

(
Bc

p(·)(Ω)
)′. Fix ϕ in C∞

0 (Ω). Then, taking into account Lemma 2.3 and
Lemma 2.5/2, we get

‖ϕJ′(lν)‖B
p̃′(·)

= ‖F (ϕJ′(lν))‖ p̃′(·)

≤C sup
{∣∣∣∫

Rn
F (ϕJ′(lν))θ dx

∣∣∣ : θ ∈ S, ‖θ‖
p̃(·) ≤ 1

}
=C sup

{∣∣〈J(θ̂ϕ), lν〉
∣∣ : θ ∈ S, ‖θ‖

p̃(·) ≤ 1
}
.

But the set A = {J(θ̂ϕ) : θ ∈ S, ‖θ‖
p̃(·) ≤ 1} is bounded in Bc

p(·)(Ω) (in fact, if
K = suppϕ then A ⊂ Bp(·) ∩ E ′(K) and so, reasoning as in the first part of the
proof, it results that sup

{
‖J(θ̂ϕ)‖Bp(·) : θ ∈ S, ‖θ‖

p̃(·) ≤ 1
}
< ∞, but this shows

that A is bounded in that step and thus in Bc
p(·)(Ω)) which implies, in virtue of the

previous estimate and of the convergence to 0 in
(
Bc

p(·)(Ω)
)′ of (lν), that

‖ϕJ′(lν)‖B
p̃′(·)
≤C sup

u∈A
|〈u, lν〉| → 0

when ν→∞. Since ϕ is arbitrary, we have shown that J′(lν)→ 0 in Bloc
p̃′(·)

(Ω). �

Remark 4.4. “If E is the inductive limit of an increasing sequence E1[T1]⊂E2[T2]⊂
·· · of quasi-Banach spaces such that Tn+1 induces on En the topology Tn and the
dual E ′n of En[Tn] separates the points of En for each n, then the (strong) dual E ′
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is isomorphic to the projective limit of the Banach spaces E ′n via the natural map-
ping E ′→ projn E ′n : u→ (u|En)

∞
n=1”. (We shall omit the proof of this simple result.)

Hence and from Theorem 3.5/3 it follows that if Ω is an open set in Rn and p(·) ∈
P0 is such that M is bounded in Lp(·)/p0 for some 0 < p0 < p−, then

(
Bc

p(·)(Ω)
)′

is isomorphic to the projective limit of the Banach spaces
(
Bp(·) ∩E ′(K j)

)′ (here
{K j}∞

j=1 is any fundamental sequence of compact subsets of Ω). In particular, if

Ω is as in Theorem 3.5/5 and p(·) ≡ p with 0 < p < 1 then
(
Bc

p(Ω)
)′ ' proj j X j

where the Banach spaces X j are isomorphic to l∞ (use Theorem 3.5/5 and recall that
a quasi-Banach space and its Banach envelope have isomorphic duals (see e.g. [13,
Corollary 1])).

The sequence space representation Bloc
1,k(Ω) ' lN1 was established by Vogt in

[24] (Ω an open set in Rn and k a temperate weight function on Rn). In [6] and [16]
(see also [15], [17]) the sequence space representations Bloc

p,k(Ω)' lNp , 1< p≤∞ (Ω
open set in Rn, k a temperate weight function on Rn in [6] and k a temperate weight
function on Rn with kp in the generalized Muckenhoupt class A∗p (see [5, p. 453])
when p < ∞ in [16]) were obtained. Next we give a result on function sequence
space representation of variable exponent Hörmander spaces.

Corollary 4.5. Let p(·) be such that 1 < p− ≤ p+ < ∞ and M is bounded in
Lp(·)(R). Let Ω =]a,b[ (−∞ ≤ a < b ≤ ∞). Let a j ↘ a, b j ↗ b, and we put K j =

[a j,b j] for j = 1,2, . . . Then Bloc
p(·)(Ω) is isomorphic to L−K1

p(·) ×∏
∞
j=1 H j where each

H j is isomorphic to an infinite dimensional complemented subspace of L
−K j+1
p(·) (thus

Bloc
p(·)(Ω) is isomorphic to a complemented subspace of

(
Lp(·)(R)

)N).

Proof. From Lemma 2.5/2 if follows that M is also bounded in Lp′(·)(R) (and thus
in L

p̃′(·)(R)), then using Theorem 4.3 and Theorem 3.5/5, and taking into account
that the dual of a locally convex direct sum of Banach spaces is isomorphic to the
product of their duals (see e.g. [10, p. 287]) and that the dual of L

−K j

p̃′(·)
is isomorphic

to L
K j

p̃(·)
[18, Theorem 4.3], we get the isomorphisms

Bloc
p(·)(Ω)'

(
Bc

p̃′(·)
(Ω)
)′ ' (L−K1

p̃′(·)
⊕ (⊕∞

j=1G j)
)′ ' LK1

p̃(·)
×

∞

∏
j=1

G′j ' L−K1
p(·) ×

∞

∏
j=1

H j

where, for all j, H j is an infinite dimensional complemented subspace of L
−K j+1
p(·)

(the last isomorphism is the operator ∼). �

Some questions
• It would also be interesting to obtain sequence space representations of the

space Bp(·)∩E ′(Q) (Q a cube in Rn) and of the spaces Bc
p(·)(Ω) and Bloc

p(·)(Ω)

(Ω open set in Rn).
• Characterize the variable exponents p0(·), p1(·) (with 1≤ (p j)−≤ (p j)+ <∞,

j = 0,1) and the compact subsets K of Rn such that
[
Bp0(·)∩E ′(K),Bp1(·)∩
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E ′(K)
]
[θ ]
' Bpθ (·) ∩ E ′(K) (complex interpolation) where 0 < θ < 1 and

1
pθ (x)

= 1−θ

p0(x)
+ θ

p1(x)
(we know that

[
Bp0(·),Bp1(·)

]
[θ ]
'Bpθ (·) (use the defi-

nition of Bp(·) and [3, Theorem 7.1.2]); see also [23, pp. 66-78]).
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Universidad Politécnica de Valencia
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