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Abstract 
In this paper, the results of a comprehensive parametric study for the member capacity of 
columns subjected to axial forces on the one hand and axial forces plus bending moments 
on the other hand are presented, considering all relevant types of composite sections: a) 
concrete encased sections, b) partially encased sections, c) concrete filled rectangular and 
circular tubes. Different steel grades and concrete strength classes are also considered. 
 
Firstly, the different methods of design in the Eurocode are briefly summed up: a) 
simplified method, based on buckling curves, for axial forces only, b) simplified method, 
based on a section verification with 2nd order moments, including equivalent geometric 
imperfections, c) a general method, based on geometrical and material nonlinear 
calculations with 3D-FEM-models. 
 
In the main part of the paper, the buckling resistance of the columns, based on these 3 
methods, are compared, over the whole range of relative slenderness, for different section 
types, material strengths and type of loading (N, N + Mz, N + My). Also in the case of 
columns subjected to bending moments about the strong axis and axial forces, buckling 
about both axis is studied in detail. 

Keywords: column buckling; Eurocode design; design methods. 

 
 

1. Design of composite columns based on 
Eurocode 

In Fig. 1 the different methods for the design 
of composite columns in EN 1994-1-1 [1] are 
summed up together with their limits of 
application. In the following, a brief summary of 
these methods is presented. 

For cases with axial forces only, two 
simplified methods are available. Only for this 
loading case the application of the steel buckling 
curves is possible – see method M1 in Fig. 1. 

1.1. Method M1 – application of steel buckling 
curves 

The calculation of the relative slenderness is 
based on Eq. (1), with the plastic resistance of 
the section Npl,Rk – ignoring the individual partial 
factors for Npl,Rd in Eq. (2). Only for concrete 
filled sections the coefficient 1.0 (instead of 
0.85) may be used. The elastic critical axial force 

Ncr is based on Eq. (3) with the effective flexural 
stiffness (EI)eff given in Eq. (4) and buckling 
length L of the member. 
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For the different composite sections the 
accurate buckling curves are given in Fig. 2, 
leading to the reduction factor χ, based on EN 
1993-1-1 [2]. 
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Fig. 1. Calculation procedures for composite columns 

in EN 1994-1-1 

Finally, the buckling capacity Nb,Rd of the 
composite column is based on Eq. (5), which 
also shows the verification procedure. 

Rd,plRd,bEd NNN    (5) 

The influence of long-term effects on the 
buckling capacity Nb,Rd is considered by reducing 
the effective flexural stiffness. Now – instead of 
Ecm – an effective modulus of elasticity Ec,eff for 
the concrete is used, based on Eq. (6). NG,Ed is the 
part of the axial force that is permanent, φt is the 
creep coefficient, according to EN 1994-1-1 (φt 
smaller than in EN 1992-1-1 [3]). 
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1.2. Method M2 – 2nd order analysis with 
imperfections 

This method is also available for cases with 
axial force plus bending (see Fig. 1). The linear 
elastic analysis is based on the effective stiffness 
(EI)eff,II calculated with Eq. (7). 

   ccmII,essaaII,eff IEKIEIEKEI  0  (7) 

      with 900 .K   and 50.K II,E   

Individual elastic analysis for both axis of 
buckling are possible, with additional equivalent 
geometrical imperfections in the direction of the 
buckling deformations only, with different 
amplitudes for each type of composite section 
(see Fig. 2). 

 
Fig. 2.  Investigated cross-sections with equivalent 

geometric imperfections and corresponding 
buckling curves (based on [2]) 

The buckling check is then substituted by a 
verification of the member capacity, simplified 
in Fig. 1 in form of an utilization factor UF ≤ 1.0. 

The verification of the member capacity in 
detail is given in Fig. 3, showing the verification 
for axial force plus uniaxial bending in Fig. 3a 
and axial force plus biaxial bending in Fig. 3b. 
Because the member capacity is calculated 
without any strain limitation (within this study 
the software INCA2 [4] is used) a reduction 
factor αM must be used. 
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Fig. 3.  Procedure of the design check for 

compression and mono-axial or bi-axial 
bending (method M2) 

1.3. General method 
The general method has no application limits. 

It is also applicable for non-symmetric sections 
and members with non-uniform sections. The 

global analysis on a 3D-model is a geometric and 
material nonlinear analysis with imperfections 
(GMNIA) and must include 2nd order effects, 
imperfections (geometric imp. and residual 
stresses), cracking of concrete and long term 
effects of concrete (creep and shrinkage). For the 
global analysis mean values for the material 
parameters must be used. The tensile strength of 
the concrete should be neglected. Full composite 
action may be assumed in the interface between 
concrete and steel components. Unfortunately, in 
Eurocode no mean values for structural steel are 
given. 

In addition to the global analysis, which 
results in a load amplification factor λult also the 
section behaviour of the critical section must be 
considered (Fig. 4) to calculate the overall partial 
factor γR for the resistance. Finally, in the 
verification λult must be higher than γR. 

 
Fig. 4. Procedure of the design check according to the 

general design method 

Within this study, the global analysis were 
done with the software Abaqus [5], using solid 
elements of type C3D8R (linear elements with 8 
nodes and 1 integration point). For the structural 
steel component, the fillets are modelled and 
also the reinforcing bars. Full composite action 
between all components was assumed. The 
residual stresses in the structural steel 
component were modelled directly, with the 
distributions given in [6]. For the geometric 
imperfections, the buckling shape of the 1st 
eigenmode was chosen with a maximum 
amplitude of e0,geom = L/1000. 

For structural steel and steel reinforcement a 
linear elastic, ideal plastic stress-strain curve was 
used. For the stress-strain curve of the concrete 
EN 1992-1-1 [3] and Model Code 2010 [7] were 
chosen. 

For the material parameters the following 
mean and design values were used: 

aM = 0.9 (up to S355); aM = 0.8 (else)
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- S235: fyd = fyk = 235; fym = 285; Ea = 
210,000 N/mm²; ν = 0.3 

- BSt550: fsd = 478; fsk = 550; fsm = 605; Ea 
= 200,000 N/mm²; ν = 0.3 

- Concrete: fcm = fck + 8; fctm = 0.3∙fck
0.67; Ecm 

= 22,000∙(fcm/10)0.3 N/mm² 

The cracking of concrete was considered in 
form of a linear reduction of the tensile stresses, 
based on the fracture energy GF, with GF = 
73∙fcm

0.18 [7]. The effect of creep was considered, 
as for the simplified methods, in form of a 
reduced effective modulus of elasticity Ec,eff, see 
Eq. (6). 

Within the global analyses presented in this 
paper, the following steps were made: i) linear 
buckling analyses for calculation of the assumed 
imperfection shape, ii) application of residual 
stresses, strains due to shrinkage (only for study 
of long term behaviour) and full axial force N, 
iii) nonlinear increase of bending moment. 

In addition, other possible load paths were 
verified (simultaneous increase of axial force 
plus bending, firstly application of full bending 
moment), leading to nearly the same ultimate 
loads. 

2. Comparison of results – axial force N 
only 

For all different types of composite sections 
(concrete encased, partially encased, concrete 
filled rectangular and circular tubes), a 
comparison of the results of the two simplified 
methods was done. On the one hand for short 
term behaviour and on the other hand for long 
term behaviour. For the latter, extreme values – 
in view of practical applications – were assumed 
(NG,Ed / NEd = 0.75), with to = 28 days and a creep 
coefficient φt = φ (∞, 28) based on EN 1994-1-1. 

Due to space limitations, only one 
representative section type, a partially encased 
section, is presented in Fig. 5. All other section 
types are presented in detail in [8, 9]. The results 
are given in form of the reduction factor χ for 
different combinations of material strength, 
plotted over the relative slenderness   also 
given for 02.  which is outside the scope of 
the code (see Fig. 1). In Fig. 5a the results for the 
short term behaviour are given and in Fig. 5b for 
the long term behaviour. 

For method M1 each material combination 
leads to the same load capacity (called EC4-
b.curve c). It can be seen that method M2, based 

on an elastic 2nd order analysis, leads in general 
to lower ultimate loads. Also for this method M2 
the material combination has nearly no influence 
on the reduction factor . For low relative 
slenderness of about 0150 ..    the 
differences are least. For the long term behaviour 
method M2 leads to increased ultimate loads, 
leading sometimes to higher capacities than 
based on method M1. 

 

 
Fig. 5.  Comparison of the two simplified design 

methods for compression (M1 and M2) and 
for different material combinations of a 

partially concrete encased HEA 220 section; 
a) without creep, b) including creep effects 

for NG,Ed/NEd = 0.75 and t = 2.8 

As summary, the differences of both 
simplified methods are small and the simpler one 
(M1), from a practical point of view, leads in 
general to higher ultimate loads. 
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3. Compression and uniaxial bending (N 
+ My) – accurate buckling checks 

For structural steel sections in case of loading 
due to compression and uniaxial bending, a 
simplified buckling verification for buckling 
about the z-axis is allowed [2], ignoring the 
bending moment My. This is called „verification 
c“ in Fig. 6 and allows the application of both 
simplified methods. The correct application of 
EN 1994-1-1 for a buckling verification about 
the z-axis leads to biaxial bending, because of 
geometric imperfections in y-direction leading to 
additional bending moments Mz – here called 
„verification b“. 

The buckling verification about the y-axis, 
called „verification a“, leads to uniaxial bending 
(N + My) only. In Fig. 6 the ultimate capacities 
for these different buckling verifications are 
again shown for an example of a partially 
encased section (similar behavior also for other 
section types) if method M2 is applied, for 
different combinations of NEd and My,Ed. It can be 
seen that a buckling verification about the z-axis, 
ignoring the bending moment My (verification 
a+c), leads to unacceptable member capacities 
compared to the correct application (verification 
b+c), highlighted by the shaded area. 

 
Fig. 6. Column subjected to N plus My; Presentation 

of the individual buckling checks 

As a summary, for composite columns the 
buckling verification about the z-axis must 
always include the bending moment My. 

4. Application of the global method and 
comparison with method M2 – loading N 
+ My 

Also for this comparison only the results for 
short term behaviour and the section type 
partially encased and concrete filled circular 

tubes are presented in Fig. 7 and Fig. 8, with 
assumed constant moment along the member. 
The results for long term behaviour and other 
section types and also for loading N + Mz are 
given in [8, 9]. 

 
Fig. 7. Section HEA220, C25/30, S235 – Resistance 

curves for buckling about strong axis under N 
+ My without creep effects 

The results, based on the global method and 
the simplified method M2 are plotted in form of 
an interaction diagram, based on the 1st order 
moments. The results are given for four different 
slenderness values ( = 0.5; 1.0; 1.5; 2.0) and for 
the borderline case of the section capacity only   
( 20. ). The plotted curves represent method 
M2, whereas dots represent results of the general 
method. 

 
Fig. 8. Section CHS355,6x10, C25/30, S235 – 

Resistance curves for ρs = 5.0% and e0,d acc. 
to buckling curve b for M2 under N + M – 

without creep effects 
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For the partially encased section both 
methods give nearly the same member capacity, 
shown in Fig. 7. For the concrete filled circular 
tube (Fig. 8) the simplified method 
overestimates the loading capacity of the general 
method. 

The application of buckling curve b for the 
concrete filled circular tube in the simplified 
method M2 seems to be unsafe. If buckling curve 
c is assumed the results of both methods are 
nearly the same. 

If also long term behaviour is assumed the 
differences between the results of both methods 
increase, with in general higher capacities based 
on the simplified method M2. 

As an example for this issue the results 
including the long-term behavior are given in 
Fig. 9 and can be compared with the results in 
Fig. 7 without any long-term effects. In Fig. 9 
also for the general method the results are given 
for: i) only creep effects (GMNIA C), ii) creep 
and shrinkage effects (GMNIA C+S). 

5. Conclusions 
The comprehensive study of the different 

design methods for composite columns in 
Eurocode, summed up in this paper, showed the 
following results for the studied double 
symmetric sections (concrete encased sections, 
partially encased sections, concrete filled 
rectangular and circular tubes): 

   For columns with uniaxial bending (N + My) 
the buckling verification about the z-axis must 
always include the bending moment My. A 
simplified procedure for buckling about the z-
axis with axial force N only, will lead to an 
unacceptable high ultimate load capacity. 
   For columns in compression (axial force N 
only) the simplest buckling verification based on 
the buckling curves for steel sections (method 
M1) leads to very similar, predominantly higher 
results than the verification based on a 2nd order 
analysis with imperfections (method M2). 
   For columns with compression plus uniaxial 
bending (N + My or N + Mz) the general method 
nearly always leads to lower ultimate loads than 
the simplified method M2. From a practical 
point of view the application of the general 
method seems therefore only useful if the limits 
of application of the simplified methods are not 
fulfilled. 

 
Fig. 9. Section HEA220, C25/30, S235 – Resistance 

curves for buckling about strong axis under N 
+ My including long-term effects with 

NG,Ed/NEd = 0.60 and t = 2.8 
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