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Abstract 
Second-order direct analysis has been used in some regions for reliable analysis and 
design of steel structures. Currently, the stiffness-based element is widely used with 
accuracy improved by enforcing equilibrium along mid-span or “stations” along the 
member length in order to achieve equilibrium which is not guaranteed along an element. 
In this paper, a flexibility-based beam-column element considering member imperfection 
based on Hellinger-Reissner functional is developed and used for practical second-order 
direct analysis. This new element is a flexibility-based element with member initial 
bowing at the element level for direct analysis of three-dimensional frame analysis 
whereas previous flexibility-based elements assumed perfectly straight geometry for the 
element. The fiber plastic hinge approach is adopted to account for the distributed 
plasticity of a section. The new flexibility-based element performs excellently for 
modeling of members under high stress with material yielded as the conventional 
stiffness-based element has less accuracy when few elements are used in modeling a 
plastic member. This will significantly enhance accuracy and computational efficiency 
for direct plastic analysis which can then be more widely used in practical design. Several 
examples are employed to validate the accuracy and efficiency of the proposed element 
along this line of thought. 

Keywords: Direct analysis; flexibility-based; initial imperfection; plastic zone; fiber 
section. 

 
1. Introduction 

Steel structure is mainly made of steel, and 
is one of the main kinds of building structure. It 
has many advantages, such as, high strength 
and good ductility. Stability problems are 
important during the design of steel structure. 
However, the traditional linear analysis cannot 
satisfy the requirements of current steel 
structure design. Nowadays, design codes of 
steel structure in many countries have 
incorporated the theory of direct analysis, and 
recommend this new method which can replace 
the conventional linear analysis and the design 
method based on effective length. The design 
method of calculating effective length is rarely 
used or eliminated in Eurocode-3 2005 [1], 
LRFD 2010 [2] and HKSC 2011 [3], and is 
displaced by second-order direct analysis.  

The traditional design method needs to 
classify types of steel structure. These structure 
cannot be designed by linear analysis when 
their critical elastic coefficient is less than a 
particular value, for example, 3 in Eurocode-3 
2005 [1], 4 in HKSC 2011 and AS4100(1995). 
However, elastic critical load has limited 
applications, such as, regular buildings mainly 
under gravity load. It is not able to measure 
many complex structures, for example, large 
power transmission tower, scaffolding and 
spatial latticed structures, which lead to the 
invalidation of linear analysis and design. 
Second-order direct analysis has been a 
preferred method in current design of steel 
structure. LRFD 2010 [2] includes the second-
order direct analysis method in the core chapter, 
while the linear analysis method in appendix. 
Eurocode-3 2005 [1] puts it in front of the 
linear analysis method. Theoretically, the 
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variation of structure and members under load 
action is not considered and internal force 
results are inaccurate by the linear analysis. Its 
assumption is that all stiffness comes from 
material and geometrical features of structures, 
neglecting the effect of load applied on 
members which makes no difference of 
member’s capacity under tension and 
compression, while the long practical 
experience shows that compression members’ 
bearing capacity significantly lower than tensile 
ones. Therefore, LFRD 2010 [2] requires using 
reduction factor to cover the shortage of linear 
analysis. More importantly, the value of 
effective length is uncertain, maybe 
overestimated or too low, and the effect of 
eccentricity is hard to be measured. That is why 
current design codes try to avoid using effective 
length method to structures’ design. 

Chan and Gu [4] derived a stability equation 
of bending according to the curvature shown in 
the table 5.1 of Eurocode-3 2005. Chan [5] 
applied this equation in second-order direct 
analysis and design of semi-rigid steel frame. 
Fig. 1 shows load-deflection curves obtained by 
different analysis and design methods. These 
methods’ ultimate bearing capacities are also 
compared with u got in experiment. The 
failure criterion of structure is appearance of the 
fist plastic hinge when designed by second-
order elastic analysis. The first plastic hinge 
method can capture failure of the first member 
in structure, which is loading coefficient y 
when the first member begin to yield. This 
compromise method is relatively conservative 
because traditional plastic hinge method can 
only consider plastic hinge happened at 
member’s two ends and disturbed plastic zone 
method needs huge computation.  

In the present paper, a beam-column element 
based on flexibility method, for using second-
order direct analysis of structure, has been 
introduced, where disturbed plastic zone has 
been considered. This element has the capacity 
of directly modelling geometrical initial 
imperfection of members, and has a high 
accuracy so that it is able to model one member 
by one element. These features can significantly 
reduce engineers’ workload of modelling and 
calculation time of analysis. Especially, this 
method eliminates inconvenience of modelling 
one member’s geometrical initial imperfection 
by multi-elements. At the same time, 
considering nonlinearity of material by 

disturbed plastic hinge method, it can reflect 
development of yielding zone so as to capture 
the response of members relative to traditional 
plastic hinge element. Compared with beam-
column elements with disturbed zone method, it 
has advantages on computational speed because 
there is no section integration during every 
cycle. 

  
Fig. 1. Analysis methods. 

2. Description of beam-column element 
based on flexibility method 

The shape function of beam-column element 
based on flexibility method is the equation of 
force and error of this kind of element only 
comes from the integration along the member. 
For this reason, they have higher accuracy than 
these based on stiffness method. The proposed 
element incorporates effect of P-and material 
nonlinearity, as well as geometrical initial 
imperfection in the elemental stiffness matrix 
for practical use. Derivation of this element is 
as follows. 

2.1. Hellinger-Reissner vibrational method 
The displacement-based elements are 

generally derived by the principle of minimum 
potential energy while the flexibility-based 
elements are commonly based on the Hellinger-
Reissner (HR) variational principle which is 
expressed in equation (1) in terms of 
displacement filed 𝐮  and stress filed 𝛔  as 
follows 

Π𝐻𝑅(𝛔, 𝐮) =  ∫ {𝛆(𝑥, 𝑦, 𝑧)𝛔 −  𝜒(𝛔)}𝑑𝛺
𝛺
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Taking the first variation for equation (1) 
with regard to the displacement and the stress 
resultant and setting it to zero, the stationary of 
the Hellinger-Reissner potential is expressed as 

𝛿𝚷𝐻𝑅(𝐒, 𝐮) =  𝛿𝑺𝚷𝐻𝑅 + 𝛿𝒖𝚷𝐻𝑅 = 0      (2)  (2) 

Thus, the weak form of equilibrium and 
compatibility equations can be obtained in 
equations (3) and (4) respectively. 

𝛿𝒖𝚷𝐻𝑅 = 0       (3)  (3) 

𝛿𝑺𝚷𝐻𝑅 = 0                                                      (4) 

2.2.  Equilibrium equation 
The equilibrium equations defined in 

equation (3) can be expanded as 

𝛿𝒖𝚷𝐻𝑅 =

∫ 𝐒𝑇
𝐿

{

𝛿𝑢′ + 𝑣′𝛿𝑣′ + 𝑤′𝛿𝑤′ + 𝑣0
′𝛿𝑣′ + 𝑤0

′𝛿𝑤′

𝛿𝑣′′

−𝛿𝑤′′

𝛿𝜓′

}𝑑𝑥 −

 𝑷
𝑻
𝛿𝐃 = 0                                                       (5)  

with 𝑣0  and 𝑤0  are geometrical initial 
imperfection. The section forces 𝐒(𝑥) in related 
with end forces 𝐏 can be presented as 

𝐒(𝑥) =

{
 

 
𝑁(𝑥)

𝑀𝑧(𝑥)

𝑀𝑦(𝑥)

𝑇(𝑥) }
 

 

= 𝐛(𝑥)𝐏                             (6) 

2.3. Compatibility equation 
The compatibility equations given in 

equation (4) can be further expressed as 

𝛿𝑺𝚷𝐻𝑅 =

∫ 𝛿𝐒𝑇
𝐿

[
 
 
 
 

{
 
 

 
 𝑢

′ +
1

2
𝑣′
2
+
1

2
𝑤′2 + 𝑣′𝑣0

′ + 𝑤′𝑤0
′

𝑣′′

−𝑤′′

𝜓′ }
 
 

 
 

−

𝜕𝜒(𝐒)

𝜕𝐒

]
 
 
 
 

𝑑𝑥 = 0                                                     (7) 

From the virtual work principle, there exists a 
relation between the increment of virtual 
internal forces and virtual end forces given by 

∫ 𝛿𝐒(𝑥)𝑇𝐝(𝑥)𝑑𝑥 =
𝐿

𝛿𝐏𝑇𝐃       (8) 

The relation between the end displacements 
𝐃 and the section deformations corresponding 

to the generalized strains 𝐝 along the member 
can be obtained as 

𝐃 = ∫ 𝐛∗(𝑥)𝑇
𝐿

𝐝(𝑥)𝑑𝑥 (9) 

2.4. Elemental flexibility matrix 
Taking derivative of the end nodal 

displacements 𝐃 in equation (9) with respect to 
end nodal forces 𝐏 , the element flexibility 
matrix can be established as 

𝐅𝒆 = 
𝜕𝐃

𝜕𝐏
 =  ∫ (

𝜕𝐛∗(𝑥)𝑇

𝜕𝐏
𝐝(𝑥) + 𝐛∗(𝑥)𝑇

𝜕𝐝(𝑥)

𝜕𝐏
  ) 𝑑𝑥

𝐿

= ∫ {𝐛∗(𝑥)𝑇
𝐿

𝐟𝑠(𝑥)[𝐛(𝑥) + 𝐡(𝑥)] + 𝐠(𝑥)}𝑑𝑥
    

                     (10) 

in which 𝐡(𝑥) and 𝐠(𝑥) are expressed as 

𝐡(𝑥) =
𝜕𝐛(𝑥)

𝜕𝑣(𝑥)
𝐏
𝜕𝑣(𝑥)𝑇

𝜕𝐏
+
𝜕𝐛(𝑥)

𝜕𝑤(𝑥)
𝐏
𝜕𝑤(𝑥)𝑇

𝜕𝐏
 

= 𝑃1 [

𝟎
𝑽(𝑥)
−𝑾(𝑥)
𝟎

]                                             (11) 

𝐠(𝑥) =  
𝜕𝐛∗(𝑥)𝑇

𝜕𝑣(𝑥)
𝐝(𝑥)

𝜕𝑣(𝑥)𝑇

𝜕𝐏

+ 
𝜕𝐛∗(𝑥)𝑇

𝜕𝑤(𝑥)
𝐝(𝑥)

𝜕𝑤(𝑥)𝑇

𝜕𝐏
 

=
1

2
𝜅𝑧

[
 
 
 
 
 
𝑽(𝑥)
𝟎
𝟎
𝟎
𝟎
𝟎 ]
 
 
 
 
 

−
1

2
𝜅𝑦

[
 
 
 
 
 
𝑾(𝑥)
𝟎
𝟎
𝟎
𝟎
𝟎 ]

 
 
 
 
 

            (12) 

with 

𝑽(𝑥) =
𝜕𝑣(𝑥)

𝜕𝑷
=

[
𝜕𝑣(𝑥)

𝜕𝑃1

𝜕𝑣(𝑥)

𝜕𝑃2

𝜕𝑣(𝑥)

𝜕𝑃3

𝜕𝑣(𝑥)

𝜕𝑃4

𝜕𝑣(𝑥)

𝜕𝑃5

𝜕𝑣(𝑥)

𝜕𝑃6
] (13) 

𝑾(𝑥) =
𝜕𝑤(𝑥)

𝜕𝑷
=

[
𝜕𝑤(𝑥)

𝜕𝑃1

𝜕𝑤(𝑥)

𝜕𝑃2

𝜕𝑤(𝑥)

𝜕𝑃3

𝜕𝑤(𝑥)

𝜕𝑃4

𝜕𝑤(𝑥)

𝜕𝑃5

𝜕𝑤(𝑥)

𝜕𝑃6
]  

(14) 

From above, once the displacements 𝑣(𝑥) 
and 𝑤(𝑥) as well as initial imperfections 𝑣0(𝑥) 
and 𝑤0(𝑥)  are known the element flexibility 
matrix can be determined. 

2.5. Transformation from basic to global 
system 

To incorporate this new flexibility-based 
element into the conventional stiffness-based 
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software package like NIDA [6], the element 
stiffness matrix 𝐊𝒆  in basic coordinate system 
can be obtained as 

𝐊𝒆 = 𝐅𝒆
−𝟏   (15) 

in which 𝐅𝒆 is the flexibility matrix defined in 
equation (10). 

In this paper, the co-rotational method used 
in [7] is adopted to carry out the transformation 
between the basic and global systems. Under 
the co-rotational framework, the tangent 
stiffness matrix 𝐊𝑻  of beam-column element 
can be calculated as 

𝐊𝑻 = 𝑳(𝑻
𝑻𝐊𝒆𝑻 + 𝑵)𝑳

𝑻  (16) 

in which 𝑻 is transformation matrix from basic 
to local system, 𝑵 is a matrix considering the 
work due to the initial force and the 
translational displacements, 𝑳 is transformation 
matrix from local to global system. The details 
of the matrixes 𝑻, 𝑵 and 𝑳 can be found in [8]. 

3. Yield surface of frame section 
The concentrated plasticity method assumes 

that plastic hinge only happens at the end of 
members, and imports internal degree of 
freedom to describe material nonlinearity 
approximately. This method The procedures of 
this method can be described as follows. 

Step 1: Defining plastic hinge model before 
analysis.  

Step 2: Determination of elemental state such 
as elastic or plastic. 

Step 3: Insert a plastic hinge in the element. 

Step 4: Condensation of internal degrees of 
freedom, and determination of whole element 
state. The predefined plastic hinge model can 
save computational time and should be more 
efficient. However, the location of plastic hinge 
is limited at the end of a member and as a result 
it is hard to capture actual material nonlinearity 
behaviour along a member. Some researchers 
have proposed arbitrarily-located-plastic-hinge 
beam-column element. This kind of element 
condenses internal degrees of freedom 
essentially, which has a complex deduced 
process and a poor expression. 

In order to get 𝐟𝑠(𝑥)  in equation (10), 
traditional disturbed plastic zone method 
discretises frame section into many fibers. 
Generally, the precision of section internal 

force and stiffness depends on the number of 
fibers. Each fiber needs individual parameters 
to record material status. This method has two 
disadvantages: (1) the computer time increases 
as the number of fibers increases, especially in 
nonlinear dynamic analysis; (2) generous fibers 
also increase the requirement of memory. 
Because of these, a section constitutive model 
is proposed in this paper to simplify the 
procedures of second-order inelastic analysis 
with acceptable accuracy. 

3.1. Elemental flexibility matrix 
Following the concept of constitutive 

relation of metal, Krenk [9] and Powell [10] 
proposed constitutive relation at the section 
level. Lu [11] deduced refined plastic hinge 
formulation, which is able to capture plasticity 
development. Although the yield criterion by P-
My-Mz function is used to detect the sectional 
state, the sectional forces such as P, My and Mz 
do not consider the coupling effect between the 
axis force P and bending moments My and Mz. 
For the steel member with compact wide-flange 
section, Orbison [12] proposed a yield surface 
reproduced in equation (17) to trace the 
material nonlinearity. Fig. 2 shows the typical 
full yield surface proposed by Orbison [12]. 

Φ(F) = 1.15𝑝2+𝑚𝑧
2+𝑚𝑦

2+ 3.67𝑝2𝑚𝑧
2+

3𝑝6𝑚𝑦
2+ 4.65𝑚𝑦

2𝑚𝑧
4 = 1                              (17) 

F(𝑃,𝑀𝑧, 𝑀𝑦) = [

𝑝
𝑚𝑧

𝑚𝑦

] =

[
 
 
 
 
 
𝑃

𝑃𝑦
𝑀𝑧

𝑀𝑝𝑧
𝑀𝑦

𝑀𝑝𝑦]
 
 
 
 
 

                (18) 

in which z-axis and y-axis are the major and  
minor axes respectively; 𝑃𝑦 , 𝑀𝑝𝑧  and 𝑀𝑝𝑦  are 
the axial force capacity of the cross-section, full 
plastic moments about the major and minor 
principal axes respectively. 

Van Long and Hung [13] proposed a strain 
hardening rule for frame section, which is 
applied in a beam-column element with 
traditional plastic hinge. Their strain hardening 
rule is able to describe three ranges, i.e. elastic 
range, strain hardening range and flowed range. 
The rule can be expressed as 

𝝓(F, 𝐾) = 𝜙 − 𝐾 ≤ 0                                  (19) 

𝜙 = Φ(F) − 1                                                 (20) 
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Fig. 2. Full surface under interaction of force 

resultants. 

where 𝐾  is the parameter for hardening and 
given in equation (21); 𝜙 is shown in equation 
(17). 

𝐾 = {
𝐻𝜀̅𝑝      𝑖𝑓 0 ≤  𝜀̅𝑝 ≤ 𝜀𝑙̅

𝑝
;

𝐻𝜀𝑙̅
𝑝
     𝑖𝑓  𝜀 ̅𝑝 > 𝜀𝑙̅

𝑝
;             

                 (21) 

𝜀̅𝑝 =
|∆𝑝|

𝑙
+
|𝜃𝑧
𝑝
|ℎ

2𝑙
+
|𝜃𝑦
𝑝
|𝑏

2𝑙
                                 (22) 

in which  𝜀 ̅𝑝 is the effective strain; ℎ and 𝑏 are, 
respectively, the depth and the wide of the 
section; 𝑙 is the member length; 𝜀𝑙̅

𝑝 is the limit 
effective strain; 𝐻  is the strain hardening 
modulus. The differential of equation (19) is 
given below 

d𝝓 = [
𝜕𝝓

𝜕F
]
𝑇
dF − 𝐻d𝜀̅𝑝                                 (23) 

3.2. Derivation of section stiffness matrix 
The incremental sectional force can be 

calculated as 

d[F] = [𝐂𝑒𝑝]d[d(𝑥)]                                   (24) 

in which [𝐂𝑒𝑝] is the stiffness matrix of section. 
When the section is in elastic state, the elastic 
stiffness matrix can be written (torsion-stiffness 
is not included for simplicity) 

[𝐂] = [

EA 𝟎 𝟎
𝟎 EI𝑧 𝟎
𝟎 𝟎 EI𝑦

]                                (25) 

For the elastic case, the matrix [𝐂] is same 
as that generated by fiber section method. It 
should be pointed out that the fiber section 
method requires much computer resources since 
many members remain in elastic range in 
practical projects at low load level. 

The sectional deformation composes of 
elastic part and plastic part. 

d(𝑥) = d𝑒(𝑥) + d𝑝(𝑥)                                (26) 

Using the associated flow rule, the plastic 
deformation can be expressed as 

d[d𝑝(𝑥)] = d [

∆𝑝

𝜃𝑧
𝑝

𝜃𝑦
𝑝
] = 𝜆

[
 
 
 
 
𝜕𝝓

𝜕𝑃
𝜕𝝓

𝜕𝑀𝑧
𝜕𝝓

𝜕𝑀𝑦]
 
 
 
 

= 𝜆 [
𝜕𝝓

𝜕F
]      (27) 

in which 𝜆  is scalar parameter of plastic 
increment. Accordingly, the incremental 
effective strain is 

d𝜀̅𝑝 =
1

𝑙
[1

ℎ

2

𝑏

𝑧
]

[
 
 
 
 |
𝜕𝝓

𝜕𝑃
|

|
𝜕𝝓

𝜕𝑀𝑧
|

|
𝜕𝝓

𝜕𝑀𝑦
|
]
 
 
 
 

𝜆 = 𝜆b [
𝜕𝝓

𝜕F
]      (28) 

b =
1

𝑙
[1

ℎ

2

𝑏

𝑧
]                                          (29) 

The incremental section internal force is 
only determined by the incremental elastic 
deformation. Thus, one has 

d[F] = [𝐂𝑒] (d[d(𝑥)] − 𝜆 [
𝜕𝝓

𝜕F
])                   (30) 

Substituting equation (28) into equation (23), 
one obtains the incremental sectional forces 

d𝝓 = [
𝜕𝝓

𝜕F
]
𝑇
[𝐂𝑒] (d[d(𝑥)] − 𝜆 [

𝜕𝝓

𝜕F
]) −

𝐻𝜆b [
𝜕𝝓

𝜕F
] = 0                                               (31) 

and then, 

𝜆 =
1

𝑎
[
𝜕𝝓

𝜕F
]
𝑇
[𝐂𝑒]d[d(𝑥)]                               (32) 

𝑎 = [
𝜕𝝓

𝜕F
]
𝑇
[𝐂𝑒] [

𝜕𝝓

𝜕F
] + 𝐻b

𝜕𝝓

𝜕F
                       (33) 

When the section is in plastic range, the 
force-deformation relation is expressed as 

d[F] = ([𝐂𝑒] − [𝐂𝑝])d[d(𝑥)]                      (34) 

in which [𝐂𝑝]  is the plastic matrix and 
calculated by 

[𝐂𝑝] =
1

𝑎
[𝐂𝑒] [

𝜕𝝓

𝜕𝐹
] [
𝜕𝝓

𝜕F
]
𝑇
[𝐂𝑒]                       (35) 

Finally, the section stiffness matrix can be 
obtained as 

[𝐂𝑒𝑝] = [𝐂𝑒] − [𝐂𝑝]                                     (36) 
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3.3. Determination of section elastic-plastic 
status 

Incremental-iterative method is the general 
approach to solve nonlinear problems. The 
elasto-plastic behaviour is reflected by 
nonlinear constitutive law on the basis of stress 
resultant. The nodal displacements by solving 
system equations and residual forces will be 
extracted for each element and further 
converted to basic system to calculate the 
section deformation. The detailed process of 
incremental-iterative method to determine 
sectional state is introduced as follows. 

Step 1: calculation of trial internal force at 
section level. 

Assuming that the monitoring section is 
elastic, the initial elastic stiffness matrix is used 
to calculate trial incremental sectional forces as 

d[S(𝑥)] = [𝐂𝑒]d[d(𝑥)](37)Then, the total trial 
sectional forces of the section is 

S𝑖+1(𝑥) = S𝑖(𝑥) + d[S(𝑥)]                           (38) 

Step 2: calculation of section yield function. 

The value ϕ(F, K) of section yield function 
can be calculated using the trial sectional forces 
obtained in previous step. If section state is in 
elastic range in last step, go to step 3, otherwise 
jump to step 4. 

Step 3: section state is elastic in last step. 

If ϕ(F, K)  ≤   0 , the section is still in 
elastic range, the trial sectional forces are the 
final forces, and exits the loop. 

If ϕ(F, K) >   0 , the coefficient λ  is 
obtained by iterative solving, and then it goes to 
step 5. 

Step 4: section state is in plastic range in 
last step. 

If ϕ(F, K) >   0, the coefficient λ is equal to 
zero, and then it goes to step 5. 

If ϕ(F, K)  ≤   0, the section is in unloading 
phase and assumed to be elastic. The trial 
sectional forces are determined; exits the loop. 

Step 5: calculation of section internal forces 
and tangent stiffness. 

4. Verification examples 

4.1 A single column under compression 
Fig. 3 shows two columns with different 

boundary conditions. The section is W12x4, 
with A = 4.13x10-3 m2, I = 1.94x10-6 m4 and r = 
0.02166 m. The yield stress and elastic modulus 
are taken as 275 kN/m2 and 2.05x108 kN/m2. 
The hardening ratio is 0.01. The column is 
subjected to a concentrated point load at the top 
point. The member is modelled by one 
proposed element, and the section is 
represented with the proposed model. 

 
Fig. 3. Layout of columns. 

The rotation of the top point is shown in Fig. 
4 (a) and (b) against the applied force. 

 
(a) 
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(b) 

Fig. 4. Load-displacement curves of columns. 

From Fig. 4, it can be seen that the initial 
imperfection will significantly affect the 
member behavior.  

4.2 Six-story frame 
The six-story frame as shown in Fig. 5 

subjected to distributed gravity loads and 
concentrated lateral loads is studied here. 

 
Fig. 5. Layout of six-story frame. 

The displacement of top right joint in 
horizontal direction is shown in Fig. 6. The 
ultimate load factor is around 1.1 which is close 
to previous research. The equivalent 
geometrical imperfection of “L/500” and the 
separate consideration of geometrical 
imperfection “L/1000” with residual stress are 
considered in this example. It can be seen that 
the two methods produce well-agreed results. 

 
Fig. 6. Load-deflection curves of six-story frame. 

5. Conclusions 
In this paper, a beam-column element, with 

disturbed plastic hinges, based on flexibility 
method is proposed to account for geometrical 
and material non-linearity behaviour of frame 
structures. This element incorporates geometric 
initial imperfection with high accuracy and 
therefore it can use one element to model one 
member. This element can significantly reduce 
engineers’ modelling workload as well as 
computational time of nonlinear analysis.  The 
section constitutive model derived from section 
yield function can replace the section 
integration by fiber section approach to 
represent the relationship between the internal 
forces and deformations. This technique has 
advantages on computational efficiency and 
simulation on plasticity development and is 
ready for static and dynamic nonlinear analysis. 

Acknowledgments 
The authors are grateful for financial support 

from the Research Grant Council of the Hong 
Kong SAR Government on the projects 
“Second-order Analysis of Shallow Dome 
Structures made of Tapering Members (PolyU 
152047/17E)” and “Second-Order Analysis of 
Flexible Steel Cable Nets Supporting Debris 
(PolyU 152008/15E) ”; from the Innovation and 
Technology Fund of the Hong Kong SAR 
Government for the project “Development of an 
Energy Absorbing Device for Flexible Rock-
Fall Barriers (ITS/059/16FP) ”; and from the 
Hong Kong Branch of the Chinese National 
Engineering Research Centre for Steel 
Construction of The Innovation and 
Technology Fund of the Hong Kong SAR 
Government for the project “Advanced 

399



Liu, Y.P., Shu, G.P. and Chan, S.L. 
 

  
  2018, Universitat Politècnica de València  

Numerical Analyses for Building Structures 
Using High Performance Steel Materials”. 

 

References 
[1] Eurocode3, EN 1993-1-1: Design of steel 

structures - General rules and rules for 
buildings. European Committee for 
Standardization; 2005. 

[2] AISC-LRFD, Specification for structural steel 
buildings. AISC, Inc., One East Wacker Driver, 
Suite 700, Chicago, Illinois 60601-1802; 2010. 

[3] COPHK, Code of practice for the structural use 
of steel 2011. Buildings Department, Hong 
Kong SAR Government; 2011. 

[4] Chan SL and Gu JX. Exact tangent stiffness for 
imperfect beam-column members. Journal of 
Structural Engineering-Asce 2000; 126(9): 
1094-1102. 

[5] Chan SL and Chui PPT. Nonlinear static and 
cyclic analysis of steel frames with semi-rigid 
connections. Elsevier Science; 2000. 

[6] NIDA, User's Manual, Nonlinear Integrated 
Design and Analysis. NIDA 9.0 HTML online 
documentation. http://www.nidacse.com; 2015. 

[7] Chan SL and Zhou ZH. Pointwise equilibrating 
polynomial element for nonlinear-analysis of 
frames. Journal of Structural Engineering-Asce 
1994: 120(6); 1703-1717. 

[8] Chan SL and Zhou ZH. 2nd-order elastic 
analysis of frames using single imperfect 
element per member. Journal of Structural 
Engineering-Asce 1995; 121(6): 939-945. 

[9] Krenk S, Vissing S, Vissing-Jørgensen C. A 
finite step updating method for elastoplastic 
analysis of frames. Journal of engineering 
mechanics 1993; 119(12): 2478-2495. 

[10] Powell GH, Chen PF-S. 3D beam-column 
element with generalized plastic hinges. Journal 
of Engineering Mechanics 1986; 112(7): 627-
641. 

[11] Iu C, Bradford M. Higher-order non-linear 
analysis of steel structures. Part II: refined 
plastic hinge formulation. Advanced Steel 
Construction 2012; 8(2): 183-198. 

[12] Orbison JG, McGuire W, Abel JF. Yield surface 
applications in nonlinear steel frame analysis. 
Computer Methods in Applied Mechanics and 
Engineering 1982; 33(1): 557-573. 

[13] Van Long H, Hung ND. Second-order plastic-
hinge analysis of 3-D steel frames including 
strain-hardening effects. Engineering Structures 
2008; 30(12): 3505-3512. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

400




