

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

Institution of Electrical Engineers

Torres Carot, V.; Valls Coquillat, J.; Canet Subiela, MJ. (2017). Optimised CORDIC-based
atan2 computation for FPGA implementations. Electronics Letters. 53(19):1296-1298.
doi:10.1049/el.2017.2090

http://doi.org/10.1049/el.2017.2090

http://hdl.handle.net/10251/108350

Optimized CORDIC-based atan2 computation

for FPGA implementations

V. Torres, J. Valls and M.J. Canet

1st June 2017

Abstract

In the present article we describe a method for the implementation of the atan2
operator based on the CORDIC algorithm. In our proposal the computation of
the z-path takes advantage of the LUT-based Field Programmable Gate Array
(FPGA) resources to reduce by between 17% and 25%, without performance
deterioration, the overall area of the unrolled architecture.

1 Introduction

The atan2(y,x) function is an operation frequently needed in hardware sys-
tems. For example, it is required to compute the angle of complex numbers
in the time/frequency/phase synchronization stages of digital communication
systems. Since the atan2 function is highly nonlinear and has two input vari-
ables, the overall implementation cost of the operator can be significant. In
this regard, hardware-optimized operators are always desirable in real-world
designs to reduce their economical cost or to improve the performance with-
out increasing that cost. The iterative algorithm COordinate Rotation DIgital
Computer (CORDIC) [1] in its vectoring mode is probably the best option for
hardware implementations of the atan2(y,x), and the conventional version is
the best choice for FPGAs because it profits from the fast carry propagation
logic, which is faster than general logic [2]. In vectoring mode, the aim of the
CORDIC algorithm is to rotate its input vector (x,y) trying to align it with the
x axis to obtain the atan2(y,x) value in the z variable. The direction di of the
rotation at iteration i is decided by the sign of yi: di=−sign(yi). The initial
values for the algorithm are z0=0, x0=x, y0=y and the CORDIC equations for
iteration i are as follows:

xi+1 = xi − di · yi · 2−i, yi+1 = yi + di · xi · 2−i, (1)

zi+1 = zi − di · atan(2−i), (2)

Since the range of convergence of the algorithm is |z|≤1.74329, some sort of
preprocessing, and may be also postprocessing, must be done to ensure the

1

convergence for any possible input vector. Without loss of generality, we will
assume the use of the following preprocessing stage [1] that guarantees the con-
vergence for any input vector because it moves the initial angle of the regular
CORDIC to the [−π/2, π/2] range: x0=−d−1·y, y0=d−1·x, z0=−d−1·π/2, be-
ing d−1 = sign(y). To have a w-bit output precision, w+1 iterations are needed.

In the present work we propose a method to reduce the cost of the z-path
in the conventional CORDIC for FPGA devices.

2 Optimizations for the CORDIC atan2

Several optimizations can be applied when the only output of the algorithm
is atan2(y,x): a) the width of the y-path can be progressively reduced, since
|yi| has a bound that is divided by 2 with each iteration, b) the x-path can be
frozen, that is, it is not updated any more as soon as this does not negatively
affect the output accuracy, since the only output of the operator is z, c) the
adder/subtractors in the x-path can have a shorter word length than those
in the y-path, since this last data-path needs more precision to guarantee the
right decisions and d) the y-path adder/subtractor for the final iteration can
be omitted because its output is irrelevant for the atan2 computation. All
the optimizations explained above can be applied and the accuracy goal at the
output of the operator is still satisfied, which in this work we assume is last-bit
accuracy (LBA), i.e. the maximum error magnitude is less or equal than the
weight of the least significant bit (LSB) of the output. For example, the operator
in Fig. 1 is a 12-bit CORDIC where the x-path is frozen after the 4th regular
CORDIC stage and the sizes of the adder/subtractors are drawn in accordance
to their real word length.

3 LUT-based computation of the z-path

In the conventional CORDIC, the angle zi+1 is computed from the angle zi
accumulated in the previous iterations and the angle rotated in the current
iteration, according to (2). Therefore, the update of the z-path requires an
adder/subtractor for each CORDIC iteration. In the present paper we propose
a novel implementation scheme that profits from the resources offered by modern
FPGA devices. These devices provide look-up tables (LUTs) connected to carry-
chain logic to implement fast ripple-carry structures, as shown in Fig. 2a. These
resources can be used to store precomputed values for all the possible rotated
angles for n consecutive CORDIC iterations and, also, to add that value to the
angle zg accumulated in previous stages. Note that, despite the reduction in
the use of resources that we will show in next sections, with this proposal we
are still benefiting from the carry-chain logic, as shown in Fig. 2b. Hence, if the
table that stores the precomputed values for n iterations is named LUTn, the
new value for the angle is obtained as:

zg+n = LUTn(dg, . . . , dg+n−1) + zg. (3)

2

*1
/-

1
d
−1

*1
/-

1
y
−1

x x
−1

y

+/
-

�
0

d
0

+/
-�

0

y
0

x
0

+/
-

�
1

d
1

+/
-�

1

y
1

x
1

+/
-

�
2

d
2

+/
-�

2

y
2

x
2

+/
-

�
3

d
3

+/
-�

3

y
3

x
3

+/
-�

4

y
4

x
4

+/
-�

5

y
5

x
5

+/
-�

6

y
6

x
6

+/
-�

7

y
7

x
7

+/
-�

8

y
8

x
8

+/
-�

9

y
9

x
9

+/
-�

10

y
1
0

x
1
0

y
1
1

L
U

T
6

sgn

d
−1

sgn

d
0

sgn

d
1

sgn

d
2

sgn
d
3

sgn

d
4

L
U

T
5

sgn

d
5

sgn

d
6

sgn

d
7

sgn

d
8

sgn

d
9

+

z 5

L
U

T
2

sgn

d
1
0

sgn

d
1
1

+

z 1
0

z 1
2

z=
at

an
2(
y

,x
)

Figure 1: Schematic diagram of the operator. The first stage of the operator
is a ±π/2 rotator, as described in the text. The sgn block is an operator that
extracts the sign bit of its input. LUTns blocks and one adder are implemented
using 6-input LUTs and carry-logic resources.

Assuming that all the iterations follow equations (1)–(2), the content of the
LUTn for a set of n stages is filled using the following expression:

LUTn(dg, . . . , dg+n−1) = −
g+n−1∑
i=g

di · atan
(
2−i
)
. (4)

Specifically, current Xilinx slices provide 5-input LUTs whose output can be
added to another input, as shown in Fig. 2a. Therefore, the rotated angle for
sets of n≤5 iterations can be stored using one 5-input LUT per bit of the angle.
Since for the first 6 iterations there is no accumulated angle, the basic structure
of the FPGA can be configured to act as a LUT6 without an adder. After that,
as many LUT5 plus adder structures should be used as needed (e.g. only one of
these structures is needed in Fig. 1). The LUTn for the final set of iterations
may be smaller than in previous stages (e.g. a LUT2 is needed in Fig. 1). The
required amount of LUTns for a w-bit precision CORDIC is:

ns = 1 + d(w+1−6) /5e. (5)

For example, for a 24-bit CORDIC, instead of the 25 adder/subtractors required
by a conventional z-path, only 5 LUTns are needed: one LUT6, three LUT5
plus adder, and a final LUT4 plus adder.

Finally, the output of the operator can be rounded to w fractional bits just
by adding 2−(w+1) to one of the LUTns that store the combinations of atan
values and, then, simply truncating the output of the operator.

3

B

ai ci

ci+1

si

6-input
LUT

5-
in
pu
t

LU
T

bi5

d g
..
.d
g+
n-
1

n

zg

LU
T
n

zg+n

b)a)

w+g0

w+g0

Figure 2: Basic blocks for the z-path implementationa Bit slice of a LUT and its
connection to the carry-chain in Xilinx FPGAs. b For each set of n iterations,
the updated value for the z-path is computed by adding the angle accumu-
lated in previous iterations to the precomputed rotation for the current set of n
iterations.

4 Cost reduction analysis

Since we propose a novel architecture for the computation of the z-path, without
loss of generality we can assume that the xi, yi values are computed with enough
accuracy to ensure that their rounding errors do not change the decisions in a
way that cannot be corrected by CORDIC. We also assume that the output
format is normalized to the [0, 1) range with the same word-length w as the
inputs.

Assuming that w+1 CORDIC stages are required to guarantee the desired
output accuracy (e.g. LBA), and since the first two atan values used in the
z-path are exactly rounded (i.e. their normalized values are 0.25 and 0.125), in
a classical scheme w−1 rounded atan values are added, what gives a theoretical
upper bound for the absolute value of the error ez due to rounding operations
at the operator output of:

|ez| ≤ (w−1) · 2−(w+g+1), (6)

where g is the number of guard bits. On the contrary, in our proposal the ns
LUTns store precomputed combinations of n atan values, and, therefore, the
rounding errors are added only ns times (see (5)), so the upper bound for the
absolute value of the error in the z-path due to rounding operations is:

|ezo| ≤ ns · 2−(w+go+1), (7)

where go is the amount of guard bits in our proposal. Equaling (6) and (7) it is
deduced that in order for our proposal to have the same z-path error bound as in
the classical scheme, it must be satisfied: ns·2−go = (w−1)·2−g, or, equivalently,
the expected reduction in the amount of guard bits is g− go = log2((w−1)/ns).
It can be shown, by assigning values to w, that the predicted reduction in the
amount of guard bits is around 2 bits. Nevertheless, that is a prediction related
to upper error bounds that in a real design may not be reached and, as a matter
of fact, the maximum error obtained in our simulations (data not shown) reveals

4

Table 1: Implementation results in a xc7k325tffg900-2 FPGA. Used abbrevia-
tions: LUTs: 6-input look-up-tables, reg: pipelining registers, cyc: total latency
in clock cycles, f: maximum clock frequency (MHz)

Conventional CORDIC Proposed (z-path reduction)
w LUTs reg cyc@f LUTs reg cyc@f

759 16 1@50 570 16 1@49
759 88 2@96 568 70 2@93
759 151 3@133 568 131 3@137

16 759 211 4@174 568 177 4@174
759 314 5@253 568 271 5@254
747 483 9@344 553 402 9@353
751 930 17@595 563 741 17@571

1676 24 1@28 1237 24 1@28
1676 126 2@54 1237 111 2@54
1676 225 3@78 1237 195 3@79

24 1676 318 4@107 1237 261 4@106
1679 406 5@128 1237 319 5@126
1654 1091 13@266 1227 882 13@278
1660 2116 25@485 1227 1664 25@462

that g0=g−1 produces a similar error in the z-path with both methods due to
the actual combination of the rounding errors. Therefore, the expected overall
difference ∆LUT in the amount of 6-input LUTs required in the z-path is:

∆LUT ≈ ns · (w + g − 1)− (w − 1) · (w + g). (8)

The amount of registers for pipelined versions of the operator is also expected
to be reduced. In this regard, it should be noted that a shift register of up to
32 bits can be mapped in a single 5-input LUT (the so called SRL32 primitive)
in a Xilinx FPGA. Therefore, if the computation of the z-path is conveniently
performed in the last stages of the pipeline, the total amount of required registers
is significantly reduced. For example, for a fully-pipelined version, the expected
difference is:

∆reg ≈ (ns + 1) · (w + g − 1)− (w − 1) · (w + g). (9)

For example, for w={16, 24} with g={4, 5}, (8) predicts a saving of around
{224, 527} 6-input LUTs, while for a fully pipelined operator, (9) predicts a
saving of {205, 499} 1-bit registers. In next section we provide actual imple-
mentation results that are a bit lower than these predictions. This is due to the
optimizations performed by the synthesis tool.

5 Implementation results

In Table 1 we show the implementation results for a Kintex7 xc7k325tffg900-2A
device from Xilinx. All the operators were modelled using VHDL language and

5

dimensioned to achieve LBA using the optimizations explained above.
The results in Table 1 clearly show that using the proposed method for the

computation of the z-path can significantly reduce the overall use of resources of
the operator without degrading its speed. A 25% reduction in the total amount
of 6-input LUTs and a variable reduction in the amount of registers (dependent
on the pipelining degree) are achieved. In the reported implementation results,
output registers are always included, even for the purely combinational (1 cycle)
implementations.

Our proposal was also tested using Altera Stratix-V devices, where the best
approach is the use of sets of 6 iterations, instead of 5 as was the case in Xilinx
devices. For a 16-bit operator, ALUTs are reduced from 703 to 575, and for a
24-bit operator they are reduced from 1575 to 1327. Therefore, an approximated
overall 17% reduction in the total amount of required ALUTs is achieved without
affecting accuracy nor speed.

From the results in [2], it can be concluded that one of the best alternatives
to the CORDIC algorithm for the computation of the atan2 is the recip-mult-
atan method (RMAM). This method first computes z=a/b by means of a LUT
that stores 1/b and a multiplier and, then, the one-variable function atan(z)
is computed using another LUT. We implemented that operator, designed for
LBA, in the Xilinx device specified above using the FloPoCo tool provided by
the authors of [2]. For 16-bit inputs this operator uses bipartite tables and
needs 1042 6-input LUTs or 755 6-input LUTs and 1 DSP48. Our proposal
(see Table 1) achieves the same accuracy with just 570 6-input LUTs. For a
24-bit operator, the RMAM is based on a Horner scheme and requires 2437
6-input LUTs or 794 6-input LUTs and 6 DSP48, while our proposal requires
1237 6-input LUTs and no DSP48.

6 Conclusions

We propose a novel strategy for the computation in FPGAs of the atan2 function
based on a CORDIC algorithm, which reduces the cost of the z-path by adapting
its design to the resources of FPGA devices and still profiting from the fast
carry propagation logic. The method has been verified using FPGA devices
from Xilinx and Altera, obtaining a 25% and a 17% reduction in the amount of
6-input LUTs, respectively, compared to the conventional approach. If future
FPGA devices provide bigger LUTs in their basic cells, the savings could be
much bigger.

7 Acknowledgements

This work is funded by the Spanish Ministerio de Economı́a y Competitividad
and FEDER under the grant TEC2015-70858-C2-2-R.

V. Torres, J. Valls and M.J. Canet (Instituto de Telecomunicaciones y Aplica-
ciones Multimedia, Universitat Politècnica de València, Spain)

6

E-mail: jvalls@eln.upv.es

References

[1] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, K. Maharatna, ‘50 years
of CORDIC: Algorithms, architectures, and applications,’ Trans. Cir. Sys.
Part I, 2009, 56 (9), pp. 1893–1907, doi: 10.1109/TCSI.2009.2025803

[2] F. de Dinechin, M. Istoan, ‘Hardware implementations of fixed-point atan2,’
in 22nd Symp. on Computer Arithmetic, Lyon, France, June 2015, pp. 34–40,
doi: 10.1109/ARITH.2015.23

7

