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Abstract

The developments introduced in this thesis belong to the area of computer vision and
are aimed to provide with ideas to solve the problem of automatically segmenting ob-
jects in images acquired in environments with activity, i. e., those in which objects are
moving and the illumination is not controlled. In order to develop the ideas and evalu-
ate their performance, two different problems, from the point of view of requirements
and environment conditions, are given a solution. Both of the problems are considered
as challenges by the research community in the area of computer vision.

The first problem to be considered consists on segmenting, and later identifying, the
container’s codes of trucks. For this challenge, images taken at the entrance of a com-
mercial port were used. In this case, segmentation techniques that allow the extraction
of concrete objects fom indidivual images, characters in this case, were implemented.
Natural light is not the only challenge in this case, but alsothe conditions of the con-
tainers themselves. In this context, we study different techiques from the literature as
LAT, Watershed, Otsu’s algorithm, local variation and thresholding algorithm, using
them to segment gray-tone images. Based on this study, a solution is proposed com-
bining several different techniques as an approach to successfully extract characters
regardless of the environmental conditions.

Joining several segmentation techniques into a single method produces noisy seg-
mentations. The knowledge of the features of the seeked objects helps designing filters
which can discriminate the valid objecs from noise, avoiding this way to relay only
on a classifier. The proposed system does not need any parameter tuning in order to
adapt to light variations and achieves a high level of segmentation and identification
of characters, although the system performance depends greatly on the classifier’s ca-
pacity. Afterwards, experiments with sequences of images are performed in order to
improve system’s response. Each sequence contains severalimages of the same truck
in consecutive moments of time.

The second problem considered in this thesis, is extractingall the objects which
do not belong to an scene, using streams of sequences and by designing background
models which can adapt to changes in the scene, specially, light changes.

Based on thecniques proposed in the literature for background subtraction and bear-
ing in mind the memory and computational time constraints imposed by some intelli-
gent systems, in this thesis several techniques are proposed to obtain adaptive back-
ground models with requirements specially suited to automatic surveillance systems.
The proposed techniques, called BAC (Background Adaptative with Confidence) and
FBS (Fuzzy Background Subtracion), use a measure of similarity and a computation
of probability based on experimental studies and are able tomodel the background
adapting it to changes in the environment providing at the same time with a confidence
measure of the built model. BAC and FSB subtract a frame from the background by
assigning each pixel with a possibility of belonging eitherto foreground or background.
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At this point, our developments are evaluted with several video sequences obtained
indoors where problems shadows or sudden light changes may appear, and also the
Wallflower benchmark, accepted in the literature as a good means to test background
modelling technqiues. Results obtained by BAC and FSB are promising when com-
pared to those obtained by other algorithms accepted by the community as representa-
tive.



Resumen

La presente tesis está enmarcada en el área de visión por computador y en ella se
realizan aportaciones encaminados a resolver el problema de segmentar automática-
mente objetos en imágenes de escenas adquiridas en entornosdonde se está realizando
actividad, es decir, aparece movimiento de los elementos que la componen, y con ilu-
minación variable o no controlada. Para llevar a cabo los desarrollos y poder evaluar
prestaciones se ha abordado la resolución de dos problemas distintos desde el punto de
vista de requerimientos y condiciones de entorno, ambos considerados como retos por
los investigadores en el área de la visión por computador.

En primer lugar se aborda el problema de segmentar, para posteriormente identi-
ficar, los códigos de los contenedores de camiones con imágenes tomadas en la entrada
de un puerto comercial que se encuentra ubicada a la intemperie (luz natural). En este
caso se trata de proponer técnicas de segmentación que permitan extraer objetos con-
cretos, en nuestro caso caracteres en contenedores, procesando imágenes individuales.
No sólo supone un reto el trabajar con iluminación natural, sino además el trabajar con
elementos deteriorados, con contrastes muy diferentes, etc. Dentro de este contexto, en
la tesis se evalúan técnicas presentes en la literatura comoLAT, Watershed, algoritmo
de Otsu, variación local o umbralizado para segmentar imágenes en niveles de gris. A
partir de este estudio, se propone una solución que combina varias de las técnicas an-
teriores, en un intento de abordar con éxito la extracción decaracteres de contenedores
en todas las situaciones ambientales de movimiento e iluminación.

El aunar varias técnicas de segmentación en un único método produjo segmenta-
ciones ruidosas. El conocimiento a priori del tipo de objetos a segmentar nos permitió
diseñar filtros con capacidad discriminante entre el ruido ylos caracteres, evitando con
ello que toda la responsabilidad de esta decisión recayera en el clasificador. El sistema
propuesto tiene el valor añadido de que no necesita el ajustede parámetros, por parte
del usuario, para adaptarse a las variaciones de iluminación ambientales y consigue un
nivel alto en la segmentación e identificación de caracteres, aunque las prestaciones del
sistema dependen en gran medida de la capacidad del clasificador. En un paso pos-
terior, se realizan experiencias con secuencias de imágenes de cada contenedor para
refinar la respuesta del sistema.

El segundo problema analizado en la tesis, aborda la temática de extraer todos
los objetos que no forman parte del fondo en una escena, utilizando secuencias de
imágenes y diseñando modelos de fondo capaces de adaptarse alos cambios en la
escena, especialmente a los cambios de iluminación.

A partir de las técnicas propuestas en la literatura para el restado de fondo (back-
ground subtraction) y teniendo en cuenta restricciones de memoria y computo impues-
tas por algunos sistemas inteligentes, en esta tesis, se proponen técnicas para obtener
modelos de fondo adaptativos con requisitos propios de los sistemas de vigilancia au-
tomática (surveillance system). En concreto, mediante unadefinición propia de simili-
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tud y utilizando un computo de probabilidad basado en un estudio experimental, se pro-
ponen dos algoritmos denominados BAC (Background Adaptative with Confidence) y
FBS (Fuzzy Background Subtracion) capaces de modelar el fondo con capacidad adap-
tativa y de proporcionar una medida de confianza. BAC y FBS llevan a cabo el restado
de fondo asignando a cada pixel una probabilidad de pertenecer a fondo o de ser parte
de un objeto (foreground).

En este punto nuestros desarrollos se evalúan con secuencias de imágenes adquiri-
das en interiores donde aparecen problemas de sombras, cambios de iluminación, así
como con el benchmark Wallflower aceptado en la literatura especializada para testear
técnicas de modelado de fondo. Los resultados obtenidos porlas técnicas propuestas
BAC y FBS se muestran prometedores al ser comparados con los obtenidos por otras
técnicas presentes en la literatura.



Resum

La present tesi pertany a l’àmbit de la visió per computador irealitza aportacions amb
l ’objectiu de resoldre el problema de segmentar automáticament objectes en imatges
adquirides en entorns amb activitat, és a dir, on apareix moviment dels elements que
les composen i amb il.luminació variable. Per a poder dur a terme els desenrollatments
i poder evaluar les prestacions des de’l punt de vista dels requisits i condicions de
l’entorn, ambdós considerats com a reptes pels investigadors en l’área de la visió per
computador.

Primerament, s’aborda el problema de segmentar, i posteriorment identificar, les
matrícules dels contenidors de camions amb imatges pressesa l’entrada d’un port com-
ercial que es trova situada a l’intemperie (llum natural). En est cas, es tracta de proposar
tècniques de segmentació que permitisquen extraure objectes concrets, caracters de les
matrícules, processant imatges individuals. No és tracta només de superar el repte de
treballar amb il.luminació natural, si no, a més, treballaramb imatges deteriorades,
amb contrastos molt diferents.... Dins d’est context, a la tesis se evaluen tècniques de
la literatura com ara LAT, Watershed, l’algoritme d’Otsu, la tècnica de variació local o
l’umbralitzat per a segmentar imatges en nivells de gris. A partir de l’estudi, es proposa
una solució que combina varies de les tècniques presentadesen un intent d’abordar amb
èxit l’extracció de caracters de la matrícula en totes les situacions ambientals possibles.

Unir varies tècniques de segmentació en un sol mètode produeïx segmentacions
sorolloses. El coneiximent a priori del tipus d’objects a segmentar ens permiteix dis-
senyar filtres amb capacitat discriminant entre el sollor i els veritables caracters, evitant
que tota la responsabilitat d’esta separació caiga sobre elclassificador. El sistema pro-
posat té un valor afegit en tant que no necesita ajustar parámetres externs per part de
l’usuari per a adaptar-se a les variacions d’iluminació ambiental i aconsegueix un nivell
alt tant en la segmentació com la identificació de caracters,malgrat que les prestacions
del sistema depenen en gran mesura de la capacitat del clasificador utilitzat. En un pas
posterior, es realitzen experiències amb secuències d’imatges de cada contenidor per a
refinar la resposta del sistema.

El segon problema que s’analitza és el d’extraure tots els elements que no formen
part del fons d’una escena, utilitzant secuències d’imatges i dissenyant models de fons
capaços d’adaptar-se als cambis en l’escena, especialmentals canvis d’il.luminació.

Prenint com a base les tècniques proposades en la literaturaper al restat de fons
(background subtraction) i tenint presents les restriccions de memòria i còmput im-
posades per alguns sistemes inteligents, en esta tesi es proposen tècniques per a obtin-
dre models de fons adaptatius amb requeriments propis dels sistemes de vigiláncia
automática (surveillance systems). Concretament, mitjançant una definició propia de
similitut i utilitzant un còmput de probabilitat bassat en estudis experimentals, es pro-
posen dos algorismes anomenats BAC (Background Adaptive with Confidence) i FSB
(Fuzzy Background Subtraction) que poden modelar el fons adaptativament i propor-
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cionar una mesura de confiança. BAC i FSB resten cada fotograma del fons assignant a
cada píxel una probabilitat de pertányer al fons o de ser partd’un objecte (foreground).

En est punt, els nostres desenvolupaments s’evaluen amb secuències adquirides en
interiors on apareixen problemes amb sombres, canvis d’il.lumniació, així com també
utilizant el benchmark Wallflower acceptat per la comunitatcientífica per a provar tèc-
niques de modelatje de fons. Els resultats obtesos per les tècniques proposades, BAC y
FSB es mostren prometedors si es comparen amb els obtesos perles tècniques presents
en la literatura.
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Chapter 1

Introduction

In this chapter we present the framework in which this thesiswas developed: the Com-
puter Vision Group of the DISCA department in the Technical University of Valen-
cia and the University Institute of Control Systems and Industrial Computing (better
known with the acronym AI2). The goals of the projects which motivated our work in
these areas are outlined along with the contributions made.

1.1 Computer vision systems

Computer vision deals with extracting meaningful descriptions of physical objects from
images. Tasks such as identifying a signature, locating faces or recognizing objects in
a scene are considered to be within the scope of computer vision. Humans can perform
these tasks effortlessly, but developing a system to perform them is a very difficult
process. Usually, for a given process, the whole task must bedivided into easier-to-
solve stages, which perform one or more operations in the incoming data.

The design of a specific computer vision system consists on finding the most suit-
able techniques in order to process the captured images. Foreach concrete problem, it
is necessary to select specific algorithms and techniques. In figure 1.1, the phases in
which a computer vision system may be divided are shown.

Each step in the vision process corresponds to:

• Acquisition : acquisition and digitalization of the image.

• Preprocessing : modify the image to improve it in some way; usually with the
aim of ease its manipulation.

• Segmentation : divide the image in a set of objects and background.

• Feature extraction : extract descriptors of the regions of interest of the image.
Some typical descriptors are shape descriptors, colour, histograms...

• Classification : classify objects attending to the descriptors extracted in previous
step.

• Interpretation: give a description of the image, in terms ofthe application, taking
into account the results of previous stages.

1
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Figure 1.1: The vision process in its different steps.

Each one of these steps depends highly on the concrete information we look for in
images. This means, that a processing technique which worksfine with a concrete set
of images for a certain problem, probably will not perform good for another problem.

Thus, for each different problem, a different solution has to be found. It is a chal-
lenge finding the best techniques for each step in the processthat can give the best
possible result. Of course, not every step has to appear in a real process. Sometimes,
situations may be met, in which a certain step is not needed. And it is also true, that
these steps are not always so clearly separate. It may occur,for instance, that we have
to apply different preprocessing techniques before segmenting, or that one or more of
these steps are fused into one.

1.2 Image segmentation

Image segmentation, either in grey tones or in colour images, is defined in the computer
vision literature as the process of dividing an image into disjoint regions in such a way,
that the union of all these regions results in the original image. This division is achieved
by grouping neighbouring pixels according to criteria of proximity and/or similarity.
With this process, further processing steps on the image maybe centred only in certain
regions and not in the complete image. The classical definition of segmentation of an
imageI defined as a partition ofI into components or regionsRi, which verify that
Ri ∩Rj = ∅ ∧ i 6= j and that

⋃

Ri = I.
The task of finding the best segmentation method for an specific application is still

a difficult challenge. One of the difficulties that any segmentation technique has to
face is the illumination of the scene. Due to the fact that shines or shadows affect
dramatically the search of valid thresholds to segment the image; it is always desirable
to control illumination and the kind of light used to captureimages. However, this is
not always the case, and situations exist in which images must be taken under light
conditions out of control and processed in real time, what really diminishes the amount
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of preprocessing that can be performed on the image and also,the control on the capture
conditions.

As said, when images are taken under non controlled light conditions, it is very dif-
ficult to adjust algorithm’s parameters, in order to be able to detect all regions of interest
in images. Applying an algorithm with the suitable parameters for some concrete envi-
ronmental conditions, would run fine for some conditions or some images, but would
fail in others, as images will contain shines or shadows which will be, unfortunately
in most cases, detected as regions of interest. As a result, avery coarse segmentation
may be obtained (undersegmentation), or the opposite case, a segmentation with a lot
of regions (usually known asoversegmentation).

Choosing among several elements always requires a set of criteria to ground the
decision on. In the case of choosing among several segmentation techniques, to find
the best for a given problem, all available techniques should be evaluated in the same
conditions.

Evaluation of the segmentation techniques, consists in determining if the regions
detected by the algorithms as regions of interest do really correspond with regions of
interest according to what is expected in the application. Usually, a human opera-
tor labels which regions are expected to be the result of the algorithm, the so called
ground-truth. This ground-truth is then checked with the automatic result; optionally,
after applying any filter to remove noise in the output, for instance. The quality of the
response may be evaluated in several ways, for instance, testing if the areas segmented
by the human operator and those detected by the algorithm overlap in a given percent-
age, or if centres of the regions are close one to each other. This method of a human
operator labelling images in order to test the segmentationalgorithms is followed in
the experiments discussed later in this work.

1.3 Motivation

Visual information makes up an important amount of all the sensorial information re-
ceived by a person during a lifetime. This information is processed not only efficiently
but also transparently by the human brain.

The ultimate goal of computer vision is to mimic human visualperception. There-
fore, in the broadest sense, robustness of a computer visionalgorithm is judged against
the performance of a human observer performing an equivalent task. In this context,
robustness is the ability to extract the visual informationof relevance for a specific
task, even when this information is carried only by a small subset of the data, and/or is
significantly different from an already stored representation.

One of the components of visual information is information about objects which
are actually seen. The information associated to each object is huge, estimations of
distance, height and width and other measures, along with boundaries of regions and
relationships between these regions.

Being able to distinguish some regions from others, is very useful when a system
has to recognize some specific objects. Also, the relationships between regions may be
useful when the possibility exists that objects are composed of different regions, which
are, by any means, connected between them.

Finding regions in images and the relationships between them is performed by seg-
mentation techniques in computer vision. The aim of these techniques is finding the
different regions in which an image can be decomposed to easeany further processing
on them.
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First works of this thesis started the Computer Vision groupof AI2 in a project
aimed to detect and recognize characters on containers, developed with the support of
the grant FEDER-CICYT DPI2003-09173-C02-01. The goal of the project was de-
veloping a system that could find containers identification numbers under uncontrolled
environmental situations.

In this project, a solution for the problem of segmentation under different light con-
ditions was tested with success. The solution basically used the fusion of information
of different algorithms to obtain an accurate result.

Following with a similar situation, the group started in a project within the sixth
framework programme priority IST 2.5.3 Embedded systems called SENSE (Smart
Embedded Network of Sensing Entities). In this case, the problem to face had some
similarities with the previous one, but also notable pointsof difference. The goal
was detecting people inside a scene, in which light was not controlled by the system.
Though similar techniques to those developed previously could have been applied, one
of the constraints of the system was that besides locating objects in the scene, they had
to be tracked, as well.

1.4 Goals

Developments in this thesis are centred in the study of different segmentation methods
applied to images taken in environments in which light cannot be always controlled.
As said before, segmentation algorithms try to separate images into independent re-
gions which meet some given properties, in order to ease further processing. Under
these variant light conditions, for instance, it is difficult to set parameters for some
segmentation algorithms, as it is difficult that they cover all possible situations.

The general goal of this thesis is segmenting images regardless light condi-
tions. Techniques to achieve this goal have been developed for twodifferent real-life
applications. In the first one, the problem was recognizing truck container codes with
images taken in the entrance of a commercial port. Images represent the container as
it approaches the entrance and were taken as isolated images. Similar systems may be
found in [brad01], [barroso97] and[hegt98] and previous related work with this issue
may be found in [salva01], [salva02] and [atienza05].In this project, developed with
the support of the grant FEDER-CICYT DPI2003-09173-C02-01, our goals were:

• To implement and to test image segmentation algorithms fromcurrent literature

• To test best configuration of the implemented algorithms according to problem
constraints

• To develop new techniques to detect regions of interest regardless of the light
conditions

• To propose methods to determine which regions of interest are valid from the
point of view of the application

The second project is project033279 within the sixth framework programme pri-
ority IST 2.5.3 Embedded systems SENSE. A surveillance project that consists in seg-
menting and tracking people and luggage in an airport in video sequences. In this case,
illumination differences inside the same scene due to the light coming from windows,



1.5. CONTRIBUTIONS 5

doors and so on were in some cases important. Similar surveillance systems are de-
scribed and discussed in [haritaoglu00], [vsam99], [wren97] and [hu04]. Our goals for
this project were:

• Implement and test video analysis algorithms from literature

• Propose techniques to create background models within the constraints of the
SENSE application

• Define a measure of the quality of a background model

• Develop sets of features which can be used to classify objects into three classes
of interest

1.5 Contributions

Bearing in mind the general goal of this work, and the challenges which motivated these
developments, several contributions were made either directly related to the problem
of object segmentation or to add new techniques to the existing corpus. A brief intro-
duction to our contributions is listed below:

• Merge different algorithms to segment images. In [rosell06] we discuss the
use merging of the segmentation results of several algorithms for the same image
as a way to improve segmentation performance.

• Apply filters to remove false positives. In [rosell06a], we propose methods to
discard regions of interest obtained by using segmentationmethods which do not
represent valid elements from the point of view of the application. Extending this
idea, in [rosell06b] we explore the use of time-shifted images representing the
same object to obtain better segmentation results; the integration of the informa-
tion obtained in each image to conclude a final segmentation is presented.

• Background modelling. Having a background model that describes accurately a
scene is crucial when background subtraction techniques are used. In [rosell08a]
the BAC algorithm is introduced, this algorithm creates or restores a background
model based on the behaviour of pixels in successive frames and, at the same
time, performs a segmentation of objects in the scene, with the novelty that it
yields a confidence value for the obtained background. BAC isextended to use
colour [rosell09] and to support multiple model descriptions per pixel (MBAC
[rosell10]). The difficulty to find a method to determine segmentation threshold
motivated the development in [rosell10b] of the FSB algorithm, which eludes
the use of fixed or probabilistic thresholds usually found inthe traditional back-
ground subtraction.

• Background model’s confidence and corruption detection. In [rosell08a],
[rosell09], [rosell10] and [rosell10b] we discuss algorithms that attach the back-
ground models they build with a measure of the confidence of the model. With
this measure, the algorithms estimate how close to the reality the model is. The
algorithms discussed also detect model’s corruption by means of different mea-
sures, this detection permits them recomputing the model incase of failure.
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• Person, group and luggage recognition. Research was done in the recognition
of different objects in scenarios. A set of different techniques aimed to classify
objects in three groups are discussed in [rosell08] and [atienza08].

1.6 Organization

The thesis has been organized into7 chapters and2 appendices. First chapter corre-
sponds to this introduction. In chapter 2, a review on different segmentation methods
and preprocessing techniques is discussed and some algorithms are introduced in de-
tail. Chapter 3 shows the state of the art in segmentation techniques for video streams;
as these are slightly different from those used to segment stand alone images, it seemed
better to write a chapter for each set of techniques. In chapter 4, 5 two different prob-
lems are solved using similar approaches, several segmentation techniques and filters
for the output. First problem, detecting and recognizing characters on truck containers
is addressed in chapter 4. In chapter 5, the problem is detecting and tracking people
and luggage in an airport. Chapter 6 presents the contributions made if the field of
background modelling algorithms and a comparison with current state of the art. In
chapter 7, conclusions are discussed and future works are proposed. In appendix A a
brief introduction to the top-hat operator may be found; appendix B explains in more
detail the classifiers used during the development of the solutions for both problems.



Chapter 2

Image segmentation

This chapter is devoted to introduce the concept of image preprocessing and segmen-
tation, and discuss well-known preprocessing techniques,such as Sobel or top-hat op-
erator, and segmentation techniques, such as Otsu’s algorithm, Local Adaptive Thresh-
olding (LAT), Watershed, global thresholding or local variation algorithm. These tech-
niques will be the basis for further developments introduced in this thesis.

2.1 Introduction

Image segmentation is the process of dividing an image into different, non overlapping
regions with the aim of ease the processing of the image. Several algorithms have been
developed to segment images, though techniques may be grouped into thresholding
techniques, which are those that calculate a threshold, either local orglobal, to segment
the image andgrowing regions algorithms, which create the regions by joining pixels
between them if some criteria is met.

In many applications of image processing, the grey tones of pixels belonging to
searched objects are substantially different from the greytones of the pixels belonging
to background. Thresholding becomes a simple but effectivetool to separate objects
from the background. Examples of thresholding applications aredocument image anal-
ysis, where the goal is to extract printed characters, logos, graphical content, or musical
scores.Map processing, where lines, legends, and characters are to be found.Scene
processing, where a target is to be detected andquality inspection of materials, where
defective parts must be delineated. Other applications canbe listed as follows:cell
imagesandknowledge representation, ultrasonic images, thermal images, x-ray com-
puted tomography, CAT endoscopic images, laser scanning, extraction of edge field,
image segmentation in general, spatio-temporal segmentation of video images, ...

Various factors, such as non stationary and correlated noise, ambient illumination,
distribution of grey tones within the object and its background, inadequate contrast, and
object size not commensurate with the scene complicate the thresholding operation.

Though thresholding algorithms assume no preprocessing, enhancing images by
applying preprocessing techniques on them is always worth the effort. This way, in-
teresting features in images may be enhanced or differencesbetween background and
foreground pixels may be increased. Also reducing noise in the image may be help-
ful when thresholding it. There are a lot of preprocessing techniques which can help
achieving better results in the segmentation step by removing noise, enlarging contrast

7
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and so on.
Working under uncontrolled light conditions adds more difficulties to the segmen-

tation process. As different light configurations may be found in the images to be
processed, the task involves not only finding the most suitable algorithm for the image
but also, finding which parameters, if any, have to be tuned inorder to achieve best
results.

Most segmentation algorithms proposed in the literature base their work on suppo-
sitions about light distribution on an image. Most of them expect that light is smoothly
distributed on the captured surface and thus, different regions are easily distinguished
by trying to find differences in the colour or grey levels of pixels. This is not always
the case if the image has been taken outdoors. In this case, sunlight, clouds and other
natural events may interfere with the light arriving to the scene and induce shadows
and artefacts in the captured image. In this circumstances,the supposition of smooth
light distribution may not hold for the entire image.

The lack of objective measures to assess the performance of various thresholding
algorithms, and the difficulty of extensive testing in a task-oriented environment, are
other major handicaps. It is true, that thresholding algorithms which perform well in
a certain problem will not behave that good in another, for instance, algorithms that
apply well for document images are not necessarily the good ones for medical images,
and vice versa, given the different nature of document and medical images.

We focus our attention on algorithms aimed to segment regions in any kind of im-
ages without previous constraints. In this case, the problem is finding areas in the
images which may be of interest for further processing. The major difficulty affecting
this kind of images is that only information found in the image may be used to seg-
ment it; so it is crucial that algorithms are well tuned, in order to achieve good results.
In the following sections, five different algorithms for image segmentation are intro-
duced which are well known in the literature. They, and variants of them, are widely
used to segment images depending only on the relationships of each pixel with their
neighbours.

In next section, notation and definitions are discussed. Some preprocessing tech-
niques are introduced in 2.3. Finally, in section 2.4 some segmentation algorithms are
explained.

2.2 Notation and definitions

The input data for these segmentation algorithms will be images denoted byI. There
are several mathematical definitions that can formally describe images, for our pur-
poses, we will define an image as a function of pairs of coordinates(x, y) which define
a position in the plane associated with the scaled scene represented in the image. In the
case of a grey tone image, this definition can be written as,

I : {N×N→ {0...255}} (2.1)

Colour and multispectral images are arrays of grey tone images and may be defined
as,

I : {N×N→ {0...255}c} (2.2)

beingc the dimensions of the imageI.
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Coordinates of a pixel(x, y) define a pixel. These coordinates may be summarized
asp for brevity, and so will done in following sections wheneverpixel coordinates are
meaningless.

Previous definitions however, do not reveal the neighbouring properties of the pix-
els of the image. We define a graphG = (V,E), beingV a set ofnodesandE a set of
archesconnecting nodes.G is associated to the imageI, in such a way that nodes in
V correspond to pixels inI andE is the set of arches connecting neighbouring pixels
in I.

With these definitions, we can define the set of8-connected neighbours, denoted
by N8, of a pixelp as,

N8(p) = {q ∈ V/(p, q) ∈ E} (2.3)

Abusing notation,I(x, y) will refer both to the element inI with coordinates(x, y)
and to the node inG with the same coordinates.

The segmentation process aims to divide the image into regions according to any
given criterion. The output of a segmentation process is always expected to be a classi-
fication of pixels, and extensively, of the regions to which these pixels belong to in the
input image, either as foreground or as background. Pixels classified as foreground are
expected to be of interest for further steps of the vision system; background pixels, on
the other side, are discarded.

The output of a segmentation algorithm will always be a binary imageS of the
same dimensions asI defined as,

S(I) : {N×N→ 0, 1} (2.4)

WhereS(x, y) = 1 if the pixelI(x, y) has been classified as foregound andS(x, y) =
0 if the pixel has been classified as background. The regions are then sets of pixels or
subgraphs of imageS.

As pointed out before, in the segmentation of an image we are not just interested
on individual pixels, but on the groups they form, which may be, or not, relevant areas
for further processing. We define aregionR as a set of connected pixels ofS, which
are classified as foreground. These regions are known asblobs.

Connectivity in a graph is defined as follows: two nodes in a graphG are connected
if each pair of nodes ofV that belong to the path, are joined by an arch ofE. Two
different pixels belong to the same region if there is a path that connects them.

By path fromp to q ∈ S it is understood a set of nodesδ(p, q) = {z0, z1...zk} ∈ S
such that each pointzi ∈ N8(zi−1), 0 ≤ i ≤ k, beingz0 = p andzk = q.

The following equation defines a regionR as a set of connected pixels,

R = {p0, p1...pn : S(pi) = 1 ∧ δ(pj , pi) 6= ∅,∀ 0 ≤ j, i ≤ n ∧ i 6= j} (2.5)

The intersection of regions will be empty,

Ri ∩Rj = ∅ ⇐⇒ i 6= j ∧Ri, Rj ⊂ S(I) (2.6)

Let’s suppose we have two regionsRi andRj which share a pointp andi 6= j. By the
definition of region, we would then have a path fromp to every pointq ∈ Ri. On the
other side, there would be a path fromp to any pointv ∈ Rj . This means, that we can
connect any pointq ∈ Ri to any pointv ∈ Rj with pathsδ(q, v) = δ(q, p) ∪ δ(p, v),
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which is the definition of region given before, so both regionsRi andRj are the same
and thusi = j.

Also, the union of all regionsRi will cover, partially or completely, the original
image,

⋃

Ri ⊆ S(I),∀i (2.7)

2.3 Preprocessing techniques

Preprocessing is a common name for operations with images atthe lowest level of
abstraction; it is really a set of techniques whose aim is improving in some sense the
input image to make it easier to process by the segmentation step.

There are four categories of image preprocessing methods according to the size of
the pixel neighbourhood that is used for the calculation of anew pixel intensity,

• pixel brightness transformations

• geometric transformations

• preprocessing methods that use a local neighbourhood of theprocessed pixel

• image restoration that requires knowledge about the entireimage

Though the list of techniques is very large and a complete description is out of the
scope of this thesis, there are some which are worth to be mentioned because they are
used later through this work.

2.3.1 Sobel operator.

The Sobel operator [gonzalez93], is an edge detection algorithm. Technically, it is a
discrete differentiation operator, computing an approximation of the gradient of the
image intensity function. At each pixel in the image, the result of the Sobel operator is
either the corresponding gradient vector or the norm of thisvector. The Sobel operator
is based on convolving the image with a small, separable, andinteger valued filter
in horizontal and vertical direction and is therefore relatively inexpensive in terms of
computations.

In simple terms, the operator calculates the gradient of theimage intensity at each
point, giving the direction of the largest possible increase from light to dark and the rate
of change in that direction. The result shows how "abruptly"or "smoothly" the image
intensity changes at that pixel, and therefore how likely itis that part of the image
represents an edge, as well as how that edge is likely to be oriented. In practice, the
magnitude (likelihood of an edge) calculation is more reliable and easier to interpret
than the direction calculation.

Mathematically, the gradient of a two-variable function isat each point a2D vector
with the components given by the derivatives in the horizontal and vertical directions.
At each image point, the gradient vector points in the direction of largest possible in-
tensity increase, and the length of the gradient vector corresponds to the rate of change
in that direction. This implies that the result of the Sobel operator at an image point
which is in a region of constant intensity is a zero vector andat a point on an edge is a
vector which points across the edge, from darker to brightervalues.
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The operator uses two3 × 3 kernels which are convolved with the original image
to calculate approximations of the derivatives, one for horizontal changes, and one for
vertical. If we defineI as the source image, an estimation of the horizontal (∇x) and
the vertical (∇y) derivatives in each point is obtained as follows,

∇x =





+1 0 −1
+2 0 −2
+1 0 −1



⊕ I and ∇y =





+1 +2 +1
0 0 0
−1 −2 −1



⊕ I (2.8)

where⊕ here denotes the 2-dimensional convolution operation.
At each point in the image, the resulting gradient approximations is given by the

vector

∇(x,y) =

[

∇x(x, y)
∇y(x, y)

]

(2.9)

and its gradient magnitude can be easily obtained as,

|∇| =
√

∇x
2 +∇y

2 (2.10)

Using this information, we can also calculate the gradient’s direction,

α(∇) = arctan

(

∇y

∇x

)

(2.11)

2.3.2 Top-hat transform.

Top-hat operator ([gonzalez93],[soille99]), is useful for enhancing details in complex
backgrounds. This operator transforms a grey-level image into a binary image by us-
ing a rectangular structural element, and the morphological operations ofclosingand
opening. See appendix A for more details about morphological operators and structural
elements.

This technique is really two techniques into one, as it may beapplied either to
enhance clear or dark areas, depending on the application. In the case clear regions
have to be enhanced, the original image is subtracted to the result of applying the
opening operator to the own image with the structural element. In the other case, if
dark regions have to be enhanced, then it is the original image which is subtracted from
the closing of the image with the structural operator. Both the operations of opening
and closing in the case of grey-level images are defined as,

φ(I(x, y)) = min(i,j)∈b(max(i,j)∈b(I(x + i, y + j) + b(i, j))) (2.12)

ω(I(x, y)) = max(i,j)∈b(min(i,j)∈b(I(x + i, y + j)− b(i, j))) (2.13)

Bearing in mind previous definitions, top-hat for clear regions, called "white top-
hat", may be expressed mathematically as,

WTH(I) = I − ω(I)

and for dark regions, called "black top-hat" as,

BTH(I) = φ(I)− I
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It must be noted, that in the case the wrong top-hat is chosen,the significant areas
of the image are wrongly preprocessed. For instance, figure 2.1 shows a sample image
preprocessed with both top-hat techniques. Figure 2.1c shows the result of choosing
the wrong top-hat operator, the significant areas of the image are lost.

(a) Original image (b) White top-hat (c) Black top-hat

Figure 2.1: Sample execution of top-hat technique. a) An imageI representing a truck
container. b) Final image (WTH(I)) looking for clear areas. c) The same for dark
areas (BTH(I)).

2.4 Segmentation algorithms

Several approaches to image segmentation are available in the literature. One class of
algorithms are the thresholding methods, which seek for a valid threshold, either global
or local, to separate foreground regions from background regions. Otsu’s method
[otsu79], tries to calculate a global threshold for the complete image. A sample of a
segmentation algorithm calculating local thresholds is LAT, acronym of local variation
algorithm, [kirby79]. Both are discussed later.

Another approach are the growing regions methods; these grow regions using seeds
in the image as basis. There are several ways of choosing these seeds, either manually
or automatically. In the local variation algorithm [felzen98], authors propose using the
graph interpretation of the image and choose as seeds those groups of pixels whose
difference in grey tones are zero. Watershed algorithm for instance, [beucher79], seeks
for pixels with the lowest (or highest) grey tone and takes these pixels as seeds.

Figure 2.2 shows the taxonomy of segmentation algorithms with the sample algo-
rithms chosen. Growing regions algorithms with supervisedseeds were not considered
in our developments, due to the fact, that the goal was obtaining a method that did not
need human supervision.

In this section we describe the algorithms used to segment static images and we
give a formal introduction to each one. These algorithms are: the global thresholding
algorithm [gonzalez93], otsu’s method [otsu79], LAT [kirby79], the watershed algo-
rithm [beucher79] and local variation algorithm [felzen98].

2.4.1 Global thresholding

Global thresholding [gonzalez93] is the simplest approachto image segmentation.
Foreground pixels are assumed to have different colours or grey tones to background
values, so a threshold is supposed to be enough to separate both classes. Different
approaches may be found in the literature with this idea in the basis, either for colour
images as for grey tone images.
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Figure 2.2: The taxonomy of segmentation algorithms used inthis work. Classification
is performed from the point of view whether thresholds or growing regions techniques
are used. In the case of using thresholds, these may be local or global. For each
approach, a sample algorithm representative of the approach is named.

The basic version of the algorithm works taking as input an imageI and the output
is a binary imageS(I) which represents the segmentation ofI. In a single pass, each
pixel in the image is compared with a given thresholdT . If the pixel’s intensityI(x, y)
is higher than or equal to the thresholdT , the pixelS(x, y) is set to foreground in the
output. If it is underT , thenS(x, y) is set to background. In this case, segmented
imageS(I) is made up of pixels which,

∀(x, y) ∈ I, S(x, y) =

{

1, if I(x, y) ≥ T
0, otherwise

(2.14)

A sample execution of this algorithm for a complete image, may be found in figure
2.3. One of the drawbacks of this algorithm is the election ofthe parameterT ; which
can be made by using the Otsu’s method described in section 2.4.2.

(a)I (b) S(I) (c) Bounding boxes limiting the
connected regions represented
over the original image

Figure 2.3: Figure 2.3a represents an image of a truck container. The result of applying
global thresholding to this image withT = 170 is shown in figure 2.3b. Figure 2.3c
shows the connected regionsRi over the original image. This illustrates the need of
gathering foreground pixels into regions in the segmentation result.
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2.4.2 Otsu’s method

Otsu’s method ([otsu79]) is used to automatically perform histogram shape-based im-
age thresholding or, the reduction of a grey-tone image to a binary image. The al-
gorithm assumes that the image to be thresholded contains two classes of pixels (e.g.
foreground and background) and calculates the optimum threshold separating those
two classes so that their within-class variance is minimal.The extension of the original
method to multi-level thresholding is referred to as the multi Otsu method [huang09].

In Otsu’s method we exhaustively search for the threshold that minimizes the within-
class variance, defined as a weighted sum,σ2

w(T ), of variances of the two classes,

σ2
w(T ) = ω1(T )σ2

1(T ) + ω2(T )σ2
2(T ) (2.15)

Weightsωi a are the probabilities of the two classes separated by a thresholdT and
σ2

i the variance of classi. Otsu shows that minimizing the within-class variance is the
same as maximizing between-class variance,

σ2
b (T ) = ω1(T )ω2(T )[µ1(T )− µ2(T )]2 (2.16)

which is expressed in terms of class probabilitiesωi and class meansµi which in
turn can be updated iteratively. This idea yields an effective technique. The algorithm
starts by computing the image histogram and the probabilities of each intensity level.
The algorithm steps through all possible thresholds from 1 to the maximum intensity.
At the end, the desired thresholdT corresponds to the maximumσ2

b (T ). The image
segmentationS(I) is calculated then using the computed threshold as in equation 2.14.

2.4.3 Local Adaptive Thresholding (LAT)

This algorithm was proposed by Kirby and Rosenfeld in [kirby79]. LAT is an acronym
which stands for Local Adaptive Thresholding. For each pixel p ∈ I a thresholdµ(p)
is calculated. If the pixel value is below the threshold it isclassified as background,
otherwise it is classified as foreground; or vice versa. Authors based their work on the
supposition that neighbouring pixels would be similarly illuminated.

The algorithm uses the neighbourhood of pixelp, Nm(p), to calculate statistics to
examine the intensityI(p) of the local neighbourhood of eachp. This neighbourhood
is usually a square window ofm = n × n elements. In most cases, the computed
statistic is the mean of the local intensity, computed as,

µ(p) =
1

O(Nm(p))
∗

∑

q∈Nm(p)

I(q) (2.17)

The size of the considered neighbourhood is important, it has to be large enough to
cover sufficient foreground and background pixels, otherwise a poor threshold is cho-
sen. On the other hand, choosing regions which are too large can violate the assumption
of approximately uniform illumination.

A constant factorc can be used to adjust the comparison of the mean with the pixel
intensity value. This factor multiplies the grey level of the pixel when comparing it to
the mean grey level of its neighbourhood.

On the other hand, a level terml can be added to eliminate salt and pepper noise.
Input imageI is then converted into output imageS(I) by applying the following

formula,
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∀p ∈ I, S(p) =

{

1, if µ(p) ≥ c · I(p) + l
0, otherwise

(2.18)

Three parameters can be adjusted in this algorithm, on one hand, c which usually
takes values around1; l which takes values close to0 and the size of the neighbour win-
down, which, as mentioned before, must be set to be big enough as tocover sufficient
foreground and background pixels but small enough as not to violate the assumption of
uniform illumination.

A sample execution of this algorithm for a complete image, may be found in figure
2.4.

(a) Original image (b) Connected regions found after LAT
thresholding

Figure 2.4: Sample execution of LAT segmenting an image representing a truck con-
tainer.

2.4.4 Watershed

In [beucher79] and [beucher91] the application of the watershed transform to image
segmentation was proposed. The algorithm takes a grey scaleimage and considers it
as a topographic surface. A process of flooding is simulated on this surface; during
this process two or more floods coming from different basins may merge. To avoid
this, dams are built on the points where the waters flooding from different basins meet;
at the end of the algorithm, only dams are over water level. These dams define the
watershed of the image. The way this algorithm works and how it transforms imageI
into a set of segmented regionsS(I), is as follows.

Let l be the current grey tone under examination, being the first one l = 0. We
initialize the region set as,

S(I)−1 = ∅ (2.19)

The algorithm floods each time a grey level of the image by increasingl up toL−1,
beingL the total amount of grey levels,

∀(x, y) ∈ I, ifI(x, y) ≤ l→ I(x, y) = l (2.20)

After this flooding step, the algorithm searches for connected regionsRl. Being
S(I)l the set of all the connected regions found in flooding levell.
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In each new iteration, the algorithm checks whether regionsin previous level have
joined in the current level,

if ∃ Ri ∈ S(I)l−1/ ∧Rj ∈ S(I)l Ri ⊂ Rj → S(I)l = S(I)l
⋃

Ri (2.21)

S(I)L−1 , would be the final segmentation. A sample execution of this algorithm
for a complete image, can be found in figure 2.5.

(a) Original imageI (b) Different flooding levels Watershed

Figure 2.5: Sample execution of Watershed segmenting an image representing a truck
container. Image 2.3b represents the different flooding levels of Watershed algorithm
over the original image.

2.4.5 Local variation

This algorithm was introduced by Felzenswalb and Huttenlocher in [felzen98]. Its
approach consists in considering a criterion for segmenting images based on intensity
differences between neighbouring pixels. Figure 2.6 showsa sample execution of this
algorithm on an image representing a truck container.

The main idea is partitioning an image into regions, such that for each pair of
regions the variation between them is bigger than the variation inside each region. The
measure of the internal variation of a region is a statistic of the colour or intensity
differences between neighbouring pixels in the region. Themeasure of the external
variation between two regionsRi andRj is the minimum colour or intensity difference
between two neighbouring pixelsp ∈ Ri and q ∈ Rj along the border of the two
regions.

The algorithm uses two parameters, the minimum size of the regions in the final
result, and a constant used to smooth the image before processing it.

The algorithm starts by creating a graph that represents theimage. This graph
follows the structure introduced in section 2.2, with the particularity that arches in
the graph are given a weight that corresponds to the difference in intensity of pixels
represented by their nodes. The function used to calculate the weight of the arches is
defined as follows,

w(vi, vj) =

{

|I(vi)− I(vj)|, if(vi, vj) ∈ E
∞, otherwise

(2.22)

Arches are ordered by non-decreasing weight. To achieve thefastest ordering, authors
of [felzen98] recommend in their paper the bucket sort algorithm [cormen90].
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First step consists in taking arches between pixelsvi, vj such thatw(vi, vj) = 0.
These pixels determine the seeds used to grow regions. The algorithm then takes an
arch at a time and compare the regions it joins. Both regions will be merged if they
meet the established criteria. The output of the algorithm is a set of regions in which
the image is segmented.

(a) Original image (b) Connected regions found after local vari-
ation thresholding

Figure 2.6: Sample execution of the local variation algorithm segmenting an image
representing a truck container.

2.5 Conclusions

Several algorithms exist to segment images depending only on local features of the
image, as relationships of pixels with their neighbours, for instance. In this chapter we
have introduced well-known algorithms which are extensively used to segment images
in a wide range of applications. These techniques were chosen based on previous
knowledge of the algorithms and also on the comparison of theliterature describing
them.

As long as algorithms designed to segment images rely heavily on the light con-
ditions, images taken under non controlled light conditions become difficult to deal
with.

It must be noted, that no specific mechanism exist, which may be used to test the
performance of the segmentation algorithms. In chapter 4 a systematic method for
testing the performance of segmentation algorithms is proposed.
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Chapter 3

Background modelling and
motion segmentation

This chapter introduces the most representative techniques applied to background mod-
elling and motion segmentation available in the literature. Special attention is paid to
background subtraction and background modelling methods which are used in the de-
velopments discussed in chapter 5.

3.1 Introduction

Visual analysis of human motion [wang03] is currently one ofthe most active research
topics in computer vision. This strong interest is driven bya wide spectrum of promis-
ing applications in many areas such asvirtual reality, smart surveillanceandperceptual
interface, just to mention the most representative.

Visual analysis concerns the detection, tracking and recognition of objects in gen-
eral, and particularly, people; and the understanding of human behaviour in the case of
image streams involving humans. Visual analysis of a scene starts from a segmentation
of the scene in order to classify pixels as foreground or background; then, other steps
may be taken depending on the application, such as motion analysis, object detection,
object classification, human tracking, action recognitionand semantic decision. Figure
3.1 shows the general framework of human motion analysis proposed in [wang03].

Human motion analysis has been investigated under several large research projects
worldwide. For example, DARPA (Defence Advanced Research Projects Agency)
funded a multi-institution project on Video Surveillance and Monitoring (VSAM) in-
troduced in [vsam99], whose purpose was to develop an automatic video understanding
technology that enabled a single human operator to monitor activities over complex ar-
eas such as battlefields and civilian scenes.

In another project, the real-time visual surveillance system W4, an acronym for
Who? Where? What? When? is introduced in [haritaoglu00]. It employed a combina-
tion of shape analysis and tracking, and constructed the models of people’s appearances
to make itself capable of detecting and tracking multiple people as well as monitoring
their activity. Other examples of similar systems may be found in [hu04] and [wren97].

Visual analysis algorithms do usually assume a fixed camera without motion, though
some extensions to moving cameras are available in the literature [marcenaro00]. In
general, they take as input an image, or frame, from a video stream. These frames are

19
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Figure 3.1: Stages in the process of human motion analysis.

time shifted representations of what has happened in the scene under analysis; so a
temporal relationship between consecutive frames can be established.

Illumination changes produced by weather, indoor illumination, shadow and repet-
itive motion from clutter, make motion segmentation difficult to process quickly and
reliable. Thus, methods must be implemented to distinguishcarefully which regions
must be processed and which not.

Currently, most segmentation methods use either temporal or/and spatial infor-
mation of the images. Several general approaches used in motion segmentation are
outlined in the following paragraphs:temporal differencing, background subtraction,
statistical methodsandoptical flow. The final election depends greatly on the applica-
tion and the constraints to be met; for instance, for real-time applications it is totally
discouraged the use of optical-flow techniques which are very time-consuming.

We centre our interest in segmenting objects and distinguish them from the back-
ground of the scene. Following section introduces notationand definitions used further
in the chapter. Background modelling algorithms, which arecrucial if background
subtraction is used, are explained in section 3.3. Section 3.4 discusses motion segmen-
tation techniques. Finally, some techniques used to removeshadows are described in
section 3.5.

3.2 Notation and definitions

Visual analysis algorithms take as input a video stream which may be described as a
set of images or frames,F (0), F (1), ..., F (i), which represent the activity in a given
scene, beingi the order of thei-th frame in time. The time difference between two
consecutive frames is known and constant with a value of1

fps seconds, wherefps
stands forframes per second.

Segmenting each frameF (i) and stablishing relationships between consecutive
frames is known to be a difficult problem. Recalling the definitions introduced in sec-
tion 2.2, regionsRj , detected in the segmentation of eachF (i), provide a focus of
attention for later processes, such as tracking or activityanalysis, because only those
pixels belonging to these regions need to be considered.
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In order to segment frames, different approaches are available as will be further
explained in following sections. Some techniques, introduced in section 3.4.2, use a
model of the scenario, called background model, to perform their computations.

A general definition of background modelB in grey tones as a single image is given
by equation 2.1. In some cases, however, each pixel may be described with more than
one model. In general, a model can be seen as a set of overlaid images as,

B = {B0, B1, ..., Bm} (3.1)

where eachBi corresponds to the definition given above and the superindexi indi-
cates which description it refers to.Bm

x,y will refer to them-model of pixel in location
(x, y). It is straightforward to see that this definition includes the previous with just
settingm = 1.

The background model can be updated with a given periodT . Being B(i) the
background model updated in timei.

Each pixel in the input frame must be compared to at least, onebackground model
for it. This means that the following condition must always hold,

∀x, y,∈ Fx,y(i)→ ∃ Bx,y(i)m, i ≥ 0 ,m ≥ 1 (3.2)

The goal of segmenting scenes is finding objects, shadows andbackground of the
scene. Some important and precise definitions about what it is considered to be an
object, a shadow or background of a scene may be found in [shoushtarian05] and [xu05]
and are reproduced below.

• Moving object. A set of connected points in the input image which in compari-
son with the static camera, are currently characterised by non-null motion and a
different visual appearance from the background

• Static object. A set of connected points in the input image which, in comparison
with the static camera, are currently characterised by nullmotion but show a
different visual appearance from the background

• Ghost. A set of connected points in the input image detected as an object but not
corresponding to any real object

• Shadow. An area of the background on which light has been reduced by locating
an object which avoids light to arrive to it. In figure 3.2, some sample blobs with
and without shadows, along with the original grey-tone image may be found. It
may be remarked the effect of shadows in the segmentation of objects; joining
objects or enlarging objects dimensions. In [xu05] shadowsare distinguished in
two different types:

– Cast-shadows. Area of the background projected by the object in the di-
rection of the light rays producing inaccurate silhouettes

– Self-shadows. Parts of the object which are not illuminated. They are usu-
ally part of the silhouette and thus, pointless from the point of view of a
shadow removal scheme should not remove them

• Highlight. Areas of exceptional lightness in the input image.
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• Background. All pixels in the input image which belong neither to movingob-
jects nor ghosts. The former represents the current set of pixels which are not
considered for further analysis. On the other hand, the background model de-
scribes what the background of the scene is expected to be.

Figure 3.2: Sample blobs with and without shadows, along with the original
images. Each row corresponds to a different sample. First column shows the
original image, second column to the thresholded figure, including cast shad-
ows. The third column represents the result of applying the shadow removal
algorithm introduced in [rosin95] and the fourth column, the result of applying
the technique discussed in [xu05]. Both techniques are introduced in section 3.5

3.3 Background modelling

The construction and updating of background models is indispensable to visual surveil-
lance. In the literature, techniques either for2-D or 3-D background modelling can be
found. Due to their simplicity,2-D techniques have more applications. In fact, current
work with 3-D background modelling techniques is limited due to the difficulty of 3-D
reconstructions in outdoor scenes.

In any case, different scenarios may appear when building background models,
depending on whether the camera stays in a place or moves. In this chapter, we will
consider only techniques in which the camera is stationary.

According to the discussion made in [toyama99], an ideal background maintenance
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system would be able to avoid the following problems:

• Moved objects: A background object can be moved. These objects should not be
considered part of the foreground forever after.

• Time of day: Gradual illumination changes alter the appearance of the back-
ground.

• Light switch: Sudden changes in illumination and other scene parametersalter
the appearance of the background.

• Waving trees: Backgrounds can vacillate, requiring models which can represent
disjoint sets of pixel values.

• Camouflage: A foreground object’s pixel characteristics may be subsumed by
the modelled background.

• Bootstrapping: A training period absent of foreground objects is not available in
some environments.

• Foreground aperture: When a homogeneously coloured object moves, change in
the interior pixels cannot be detected. Thus, the entire object may not appear as
foreground.

• Sleeping person: A foreground object that becomes motionless cannot be distin-
guished from a background object that moves and then becomesmotionless.

• Waking person: When an object initially in the background moves, both it and
the newly revealed parts of the background appear to change.

• Shadows: Foreground objects often cast shadows which appear different from
the modelled background.

In their work, authors of [toyama99] propose a very useful benchmark which chal-
lenges background algorithms with the mentioned situations. This benchmark is widely
accepted by the community as a valid test and we will also use it when comparing our
proposals for background modelling with algorithms found in the literature in chapter
5.

In [piccardi04] and [benezeth08] a review of background modelling techniques and
a comparison among them may be found. Both papers discuss similar results regarding
performance and agree that no method outperforms the rest inall aspects.

The background subtraction technique used, should be carefully chosen according
to the scene where action will take place. Moreover, authorsof [benezeth08] point
out that, when dealing with videos under the fundamental background subtraction as-
sumption, i.e., fixed camera and static and noise-free background, the basic background
subtraction will perform reasonably good, and no better results may be expected from
other, more complicated, methods.

The techniques proposed in the literature show a fundamental difference in the
process followed to obtain the initial background modelB(0), and also in the criteria
followed to decide when and how creating a new model for a given pixel.

According to the reviewed literature, authors propose in their papers techniques for
background modelling with the capability of adapting the model to changes in the scene
background. Moreover, each pixel in the background may be represented by more than
one model.
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When background subtraction techniques are used, background update in timei
depends onB(i− 1), the previous model obtained in timei− 1, and on the difference
computed between the current frameF (i) and modelB(i − 1). Usually, this update
operation of a model is given by the following expression:

B(i) = α ·B(i− 1) + (1− α) · F (i) (3.3)

beingα an update factor in the range[0, 1], which controls the speed at which new
information is included in the model.

Tables 3.1 and 3.2 summarize information of the most populartechniques for back-
ground modelling found in the literature. In table 3.1, columns show at which level the
background model is computed, pixel or region level; if multi-modal support is con-
sidered in the original algorithm, the segmentation methodand if the algorithm may
work with grey tone images, colour images or may deal with both. Table 3.2 shows
the spatial complexity of each algorithm following the big Onotation considering an
image of sizen ×m, the capability of the algorithms to detect or react againstmodel
corruption and a reference paper for each algorithm.

Algorithm. Granularity Multimodal Segmentation method Color or grey tones
Adjacent frame difference pixel No frame differencing both
Running Gaussian average pixel No background subtraction both
Mixture of Gaussians pixel Yes background subtraction both
Kernel density estimation pixel Yes background subtraction both
Sequential kernel density approx. pixel Yes background subtraction both
Temporal median filter pixel No background subtraction both
Eigenbackgrounds region No background subtraction both
Cooccurrence of image variations region No background subtraction both
Textures pixel Yes background subtraction grey tone
Wallflower pixel Yes background subtraction grey tone
Edges histogram region No background subtraction both
Salient motion pixel No optical flow both

Table 3.1: Features of the most popular techniques for background modelling found
in the literature depending on which the background model granularity is, their multi-
modal support capability, whether they support grey tone images, colour images or
both, and the motion segmentation method employed.

Algorithm. Spatial complexity Model corruption detection References
Adjacent frame difference O(1) - -
Running Gaussian average O(1) No [wren97]
Mixture of Gaussians O(Knm) No [grimson99]
Kernel density estimation O(Knm) No [elgammal00]
Sequential kernel density approx. O(Knm) No [han04], [piccardi04a]
Temporal median filter O(Knm) No [yang92]
Eigenbackgrounds O(Knm) No [oliver00]
Cooccurrence of image variations O(Knm/N2) No [seki03]
Textures O(Knm/2P ) No [heikkila06] , [heikkila04]
Wallflower O(nmV ) Yes [toyama99]
Edges histogram O(mn) No [mason01]
Salient motion O(mn) - [wixson00]

Table 3.2: Other important features of background modelling techniques, the spatial
complexity of each algorithm following the big O notation considering an image of
sizen×m, the capability of the algorithms to detect or react againstmodel corruption
and a reference paper for each algorithm.

The spatial complexity of the Eigenbackgrounds depends onK the number of im-
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ages chosen to compute the background model. In the case of cooccurrence of im-
age variations, the memory complexity isO(nmK/N2) whereK is the number of
variations in the training model andnm their dimensions. At classification time, the
eigenbackground method requires a memory complexity per pixel O(M), with M the
number of the best eigenvectors. However, at training time the method requires allo-
cation of all theK training images, with anO(Knm) complexity. LBP complexity
depends on2P the size of each histogram, beingP the number of equally spaced pix-
els used to compute each LBP feature. Wallflower complexity only takes into account
the model’s complexity, as no model weights are considered in this algorithm. Its com-
plexity is thenO(n×m×V ), whereV is the sum of the number of coefficients and the
number of past values used to predict future values with the Wiener filter. Wallflower
considers a fixed number of models.

The problem of model corruption is discussed in very few papers; in [toyama99] it
is proposed to maintain a database with valid background models which may be chosen
for each situation. The background may become corrupt for several different reasons,
being sudden changes of light the most usual. It is not an easyproblem to solve as it is
not trivial determining when a model becomes corrupt and, when it does, recovering it
is very difficult even if models are stored in a database, as all stored models have to be
compared with current scenario and the best match is then chosen to keep the system
up and running.

In the following subsections, each of the techniques referenced in previous tables,
is briefly introduced.

3.3.1 Adjacent frame differencing

J(i) = |F (i)− F (i− 1)| (3.4)

Regions of interest are detected by using a single thresholdT ,

Sx,y(i) =

{

1, Jx,y(i) ≥ T
0, Jx,y(i) < T

(3.5)

This method is very sensitive to small light changes, generates a noisy segmentation
and does not find complete objects.

3.3.2 Running Gaussian average

Authors of [wren97] propose modelling the background independently at each location
(x, y). In this technique, each background pixelBx,y(i) is independently modelled,
trying to estimate its average value on the lastn frames. In order to avoid fitting a
gaussian distribution by using the lastn values of each previous frame, each time a
new frameF (i) is acquired in timei a cumulative averageBx,y(i) is computed as
stated in equation 5.2, that is, .

Bx,y(i) = αBx,y(i− 1) + (1− α)Fx,y(i) (3.6)

The learning factorα used in this equation is an empirical weight often chosen as
a trade-off between stability and quick update. The advantage of this method is its
simplicity and low memory requirements.

Pixels inF (i) can then be classified as a foreground pixel if the following inequality
holds,
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|F (i)− µ(i)| > kσ(i) (3.7)

wherek is a parameter set by user andσ(i) the computed standard deviation per
pixel is computed as,

σ2(t) = α(F (i)−B(i− 1))2 + σ2(i− 1)(1− α) (3.8)

Pixels for which the previous inequality does not hold are classified as background.
The model was initially proposed for grey tones images, but the extension to RGB

coordinates or other colour spaces is quite straightforward.
The main disadvantage of this method is that it cannot handleproperly scenarios

with clutter in the background and that the value of theα parameter is arbitrarily cho-
sen.

3.3.3 Mixture of Gaussians (MoG)

While previous models will adapt different background objects appearing over time,
sometimes the changes in the background are not permanent and appear at a rate faster
than that of the background update. A typical example is an outdoor scene with waving
trees partially covering a building, for instance. The samepixel in location(x, y) will
show values from the tree branches, tree leaves and the building. In [grimson99],
authors raised the case for a multi-valued background modelable to cope with multiple
background objects.

These are the guiding factors in the choice of model and update procedure in this
algorithm. The recent history of each pixel,Fx,y(1), ..., Fx,y(i), is modelled by a mix-
ture ofK Gaussian distributions. The probability of observing the current pixel value
is,

P (Fx,y(i)) =
K

∑

j=1

ωj(i) · η(Bj(i), Fx,y(i),Σ(j)(i)) (3.9)

whereK is the number of distributions,ωj(i) is an estimate of the weight (what
portion of the data is accounted for by this Gaussian) of thej-th Gaussian in the mixture
at timet, Bj(i) is the mean value of thej-th Gaussian in the mixture at timei, Σj(i)
is the covariance matrix of thej-th Gaussian in the mixture at timei, andη is the
Gaussian probability density function,

η(Bj(i),Xi,Σj(i)) =
1

2π|Σj(i)
1
2 |

e−
1
2
(Xi−Bj(i))T Σj(i)

−1(Xi −Bj(i)) (3.10)

K is determined by the available memory and computational power. Also, for
computational reasons, the covariance matrix is assumed tobe of the form,

Σj(i) = σ2 · F (3.11)

beingσ the variance of thei-th model. If the pixel process could be considered a
stationary process, a standard method for maximizing the likelihood of the observed
data is expectation maximization (EM). Unfortunately, each pixel process varies over
time as the state of the world changes, so they use an approximate method which essen-
tially treats each new observation as a sample set of size1 and uses standard learning
rules to integrate the new data.
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Because there is a mixture model for every pixel in the image,implementing an
exact EM algorithm on a window of recent data would be costly.Instead, authors im-
plement an on-lineK-means approximation. Every new pixel value,Xt , is checked
against the existingK Gaussian distributions, until a match is found. A match is de-
fined as a pixel value within2.5 standard deviations of a distribution, see equation 3.12

(xt −Bj , (i))

σj(i)
> 2.5 (3.12)

This threshold can be perturbed with little effect on performance. This is effectively
a per pixel/per distribution threshold. This is extremely useful when different regions
have different lighting, because objects which appear in shaded regions do not gen-
erally exhibit as much noise as objects in lighted regions. Auniform threshold often
results in objects disappearing when they enter shaded regions.

If none of theK distributions match the current pixel value, the least probable
distribution is replaced with a distribution with the current value as its mean value, an
initially high variance, and low prior weight. The prior weights of theK distributions
at timei, ωk(i) are adjusted as follows,

ωk(i) = α · ωk(i) + (1− α) ·Mk(i) (3.13)

whereα is the learning rate andMk(i) is 1 for the matched models and0 otherwise.
The Gaussians are ordered according to the valueω/σ. This value increases both as

a distribution gains more evidence and as the variance decreases. After re-estimating
the parameters of the mixture, it is sufficient to sort from the matched distribution
towards the most probable background distribution, because only the matched models
relative value will have changed. This ordering of the modelis effectively an ordered,
open-ended list, where the most likely background distributions remain on top and the
less probable transient background distributions gravitate towards the bottom and are
eventually replaced by new distributions.

Then the firstB distributions are chosen as the background model, where

B = argminb(

b
∑

k=1

ωk > C) (3.14)

beingC a measure of the minimum portion of the data that should be accounted for
by the background. This takes the best distributions until acertain portion,C, of the
recent data has been accounted for. If a small value forC is chosen, the background
model is usually unimodal. If this is the case, using only themost probable distribution
will save processing.

If C is higher, a multi-modal distribution caused by a repetitive background motion
(e.g. leaves on a tree, a flag in the wind, etc.) could result inmore than one colour
being included in the background model. This results in a transparency effect which
allows the background to accept two or more separate colours.

This model is able to handle clutter in the background by associating several mod-
els to each pixel. It fails when sudden changes in the background appear, because
the model takes a long time to stabilize again. Several othermethods are built tak-
ing the work of [grimson99] as a basis, for instance, [zeng08], [lee05], [varcheie08],
[zivkovic04] and [elbaf09].
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3.3.4 Kernel density estimation (KDE)

An approximation of the background probability density function, can be given by
the histogram of the most recent values classified as background values. However,
as the number of samples is necessarily limited, such an approximation suffers from
significant drawbacks: the histogram, as a step function, might provide poor modelling
of the true, unknown probability density function, with thetails of the true probability
density function often missing.

In order to address such issues, in [elgammal00] have proposed to model the back-
ground distribution by a non-parametric model based on Kernel Density Estimation
(KDE) on the buffer of the lastK background values. KDE guarantees a smoothed,
continuous version of the histogram.

In [elgammal00], the background probability density function is given as a sum of
Gaussian kernels centred in the most recentK background values,Ix,y(i)),

P (xi) =
1

K
·

K
∑

q=1

η(Ix,y(i)− Ix,y(q),Σq) (3.15)

whereη is a Gaussian probability density function,Fx,y(i) are the lastK observed
values of pixelx andΣq is the covariance matrix of theq-th Gaussian in the mixture at
time i. Likewise equation 3.9, this model seems to be dealing with asum of Gaussians.
However, differences are substantial: in equation 3.9, each Gaussian describes a main
mode of the probability density function and is updated overtime; here, instead, each
Gaussian describes just one sample data, withn in the order of100, andΣ(i) is the
same for all kernels. If background values are not known, unclassified sample data can
be used in their place; the initial inaccuracy will be recovered along model updates.
Based on 3.15 classification ofFIx,y(i), as foreground can be straightforwardly stated
if the following condition holds,

P (Ix(i)) < T (3.16)

beingT a user selected value.
Model update is obtained by simply updating the buffer of thebackground values in

fifo order by selective update; in this way, pollution of the model by foreground values
is prevented. However, complete model estimation also requires the estimation ofΣt,
which is assumed diagonal for simplicity. In [elgammal00],the variance is estimated
in the time domain by analysing the set of differences between two consecutive values.

The methods introduced so far model independently single pixel locations. How-
ever, it is intuitive that neighbouring locations will exhibit spatial correlation in the
modelling and classification of values. To exploit this property, various morphologi-
cal operations have been used for refining the binary map of the classified foreground
pixels. In [elgammal00], instead, this same issue is addressed at the model level, by
suggesting to evaluateP (Ix,y) also in the models from neighbouring pixels and use the
maximum value found in the comparison againstT .

3.3.5 Sequential kernel density approximation

Mean-shift vector techniques have been employed for various pattern recognition prob-
lems such as image segmentation and tracking. The mean-shift vector is an effective
gradient-ascent technique able to detect the main modes of the time probability den-
sity function directly from the sample data with a minimum set of assumptions, unlike



3.3. BACKGROUND MODELLING 29

the approach in [grimson99], the number of modes is unrestricted. However, it has a
very high computational cost since it is an iterative technique and it requires a study
of convergence over the whole data space. As such, it is not immediately applicable to
modelling background probability density functions at thepixel level.

There have been recent approaches trying to solve this problem. In [piccardi04a],
authors propose some computational optimisations promising to mitigate the compu-
tational drawback. Moreover, in [han04], the mean-shift vector is used only for an
off-line model initialisation. In this step, the initial set of Gaussian modes of the back-
ground probability density function is detected from an initial sample set. The real-time
model update is instead provided by simple heuristics coping with mode adaptation,
creation, and merging. In their paper, authors of [han04], compared the probability
density function obtained with their method against that ofa KDE approach over a
500-frame test video, finding a low mean integrated squared error in the order of10−4;
this justifies the name ofSequential Kernel Density approximation(SKDA) that the
authors gave to their method.

This method can effectively model a multimodal distribution without the need of
assuming the number of modes a priori, but at the cost of a veryhigh computational
cost.

3.3.6 Temporal median filter

Various authors argued that other forms of temporal averageperform better than the
one introduced in the previous section. For instance, in [cucchira01] a method using
the median of the lastn frames to calculate the background modelB(i), even if these
n frames are subsampled from the original frame rate by a factor of 10. A disadvantage
of this method is that its computation requires a buffer withthenK most recent values;
moreover, the median filter does not accommodate for a rigorous statistical description
and does not provide a deviation measure for adapting the subtraction threshold.

Authors of [yang92] proposed an algorithm for constructingthe background primal
sketch by taking the median value of the pixel colour over a series of images. The
median value, as well as a threshold value determined using ahistogram procedure
based on the least median squares method, was used to create the difference image.
This algorithm could handle some of the inconsistencies dueto lighting changes, etc.

3.3.7 Eigenbackgrounds

The approach proposed in [oliver00] is based on an eigenvalue decomposition, applied
to the whole image instead of blocks. Such an extended spatial domain can extensively
explore spatial correlation and avoid the tiling effect of block partitioning.

The method can be divided into two different phases, the learning phase, in which
the initial model is learned and the classification phase, inwhich pixels are classified
as background or foreground.

Learning phase:

• samples ofK images are acquired, each image withp pixels; the mean image,
µb, and the covariance matrixCb are computed.

• the covariance matrix is diagonalized via an eigenvalue decomposition. By ap-
plying PCA to the eigenvalues of the covariance matrix, onlyM eigenvectors,
eigenbackgrounds as called in the paper, are kept. These values are stored in an
eigenvector matrix,θMb

, of sizeM · p.
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• the mean value of the eigenbackground imagesµb is computed.

Classification phase:

• Every time a new frame,F (i), is available, it is projected onto the eigenspace as
F ′(i) = θMb

(F (i)− µb)

• By computing the euclidean distance between the input image, F (i) and the
projected image,F ′(i), moving objects may be detected,

Di = |F (i)−B(i)| > T (3.17)

beingB(i) = θMb
(F (i)− µb) andT a given threshold.

• F ′ is then back projected onto the image space asF ′′ = θMb
·F ′ +µb. Since the

eigenspace is a good model for the static parts of the scene, but not for the small
moving objects,F ′′ will not contain any such objects;

In [oliver00], however, it is not explicitly specified what images should be part of
the initial sample.

3.3.8 Coocurrence of image variations

Authors of [seki03] try to go beyond the idea of mere chronological averages by ex-
ploiting spatial cooccurrence of image variations. Their main statement is that neigh-
bouring blocks of pixels belonging to the background shouldexperience similar varia-
tions over time. Although this assumption proves true for blocks belonging to a same
background object (such as an area with tree leaves), it willevidently not hold for
blocks at the border of distinct background objects.

The method in [seki03] works on blocks ofN ·N pixels instead of on simple pixels.
This technique consists in two phases. A learning phase and aclassification phase. In
the first phase, for each block, a certain number of samples isacquired over time. The
temporal average is computed and the differences between the samples and the average
are called the image variations. In the classification stage, each block is classified as
background or foreground.

Instead of working at pixel resolution, the method in [seki03] works on blocks
of N · N pixels treated as anN2-component vector. This trades off resolution with
better speed and stability. Two phases may be distinguished: the learning and the
classification phase.

• Learning phase:

– for each block, a certain number of time samples is acquired;the temporal
average is first computed and the differences between the samples and the
average are called theimage variations

– In blocku, covariance matrixCu is computed from the image patternsiu,t

of the background image sequence and the average patternîu,

Su =

τ
∑

t=1

((iu,t − îu)(iu,t − îu))′ (3.18)

beingτ the learning time.
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– the covariance matrixCu is decomposed intoK eigenvectors.

– Image patternsiu,t of a background image sequence in blocku are trans-
formed into points in the eigen space and memorized with observation time,

zu,t = ET
u · (iu,t − îu) (3.19)

• Classification phase:

– new input patterns for eachu are transformed into pointszu in each eigen
spaceEu

– the L-nearest neighbours tozw in the eigenspace,zu,t, are found andzu

expressed as their linear interpolation

– the same interpolation coefficients are applied to the values of the current
block,b, which have occurred at the same time of thezu,i; this provides an
estimate,z′b, for its current eigen image variationzb

– Background subtraction is performed by calculating background-likelihood
in each block. The rationale of the approach is thatzb andz′b should be
close ifb is a background block.

In [seki03], the probability of background-likelihood when judging only based on
the input pattern in the focused block and the probability ofbackground-likelihood
when judging based on the patterns estimated from some neighbouring blocks, are
combined to dynamically narrow the range of background image variations in a focused
block.

Authors of the paper do not specify whether the learning phase should be repeated
over time to guarantee model update. As this model is based onvariations, it is likely
to show a natural robustness to limited changes in the overall illumination level. How-
ever, a certain update rate would be needed to cope with more extended illumination
changes.

3.3.9 Local Binary Patterns

Authors of [heikkila06] and [heikkila04] introduce a novelmethod in which textures
are used to perform background modelling and object detection. In this method, each
pixel is modelled as a group of adaptive local binary patterns (LBP) histograms, calcu-
lated over a circular region around the pixel to model. This method permits modelling
each pixel with several models if needed as the algorithm incorporates naturally the
extension to multimodels.

LBP is a grey-scale invariant texture primitive statistic.The operator labels the pix-
els of an image region by thresholding the neighbourhood of each pixel with the centre
value and considering the result as a binary number (binary pattern). The definition of
the texture is as follows,

LBPP,R(xc, yc) =

P−1
∑

p=0

s(gp − gc) · 2
p (3.20)

beings(x) defined as,

s(x) =

{

1, x ≥ 0
0, x < 0

(3.21)
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wheregc corresponds to the grey value of the centre pixel(xc, yc) of a local neigh-
bourhood andgp to the grey values ofP equally spaced pixels on a circle of radiusR.
See figure 3.3 for an illustration of the LBP operator. The value of neighbours which
do not fall exactly on pixels are estimated by bilinear interpolation.

Figure 3.3: Calculation of the binary pattern of a pixel. On the left, the region around
the pixel. On the right, the result of binarization. According to the arrow direction, the
resulting binary pattern would be in this case101100

The processing of each frame is performed in two phases: background modelling
and foreground detection. Each one of them is briefly discussed in the following para-
graphs.

Each pixel of the background is modelled identically, whichallows a high speed
parallel implementation if needed. In the following, the process of modelling the back-
ground is explained for just one pixel, but the procedure is identical for each pixel in
the model.

For each pixel, a number of LBP histograms{m0,m1, ...,mK−1} are maintained,
beingK a user settable parameter. Each model histogram has a weightbetween0 and
1 in such a way, that the weights of theK models of a pixel sum up to 1. The weight
of thek-th model histogram is denoted bywk. Let us denote the LBP histogram of the
given pixel computed from the new video frame byh.

Each LBP histogramh is computed using equation 3.20. The computation is per-
formed by considering a region of pixels around the centre and comparing them to
the same amount of pixels in a region around each neighbour. The binary patterns are
shifted to the left and cumulated. Finally the normalized histogram is computed by
diving all components by the maximum value.

At the first stage of processing,h is compared to the currentK model histograms
using a proximity measure. Authors use the intersection between histograms (as in
equation 3.31) because they claim that it has an intuitive motivation in that it calculates
the common part of two histograms.

Its advantage is that it explicitly neglects features whichonly occur in one of the
histograms. Another advantage, is that the complexity is very low as it requires very
simple operations only. The complexity is linear for the number of histogram bins.

A threshold for the proximity measure,Tp, a user-settable parameter, is used to
threshold this distance measure. If the proximity is below this threshold, then the
algorithm would replace the lowest-weighted histogram of the model withh. This new
histogram is given a low weight, in the experiments performed by the authors, the value
was0.01. In the paper, authors state that a match with the backgroundis treated in a
different way, however, there is no explanation about what is considered as a match.
Though authors state in their paper that the best match is themodel histogram with the
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highest proximity value (i.e. the lowest distance). This best matching model is adapted
with the data obtained from the image as follows,

mk = αb · h + (1− αb) ·mk (3.22)

whereαb ∈ [0, 1] is a user-settable learning rate. The weights of all models per
pixel is updated with the following expression,

wk = αw ·Mk + (1− αw) · wk (3.23)

beingMk = 1 for the best matching histogram and0 for the rest, andαw is a
user-settable learning rate which verifies thatαw ∈ [0, 1].

As a last stage of the updating procedure, the model histograms are sorted in de-
creasing order according to their weights, and the firstB histograms are selected as the
background histograms,

w0 + w1 + ... + wB−1 > TB (3.24)

whereTB ∈ [0, 1] is a user-settable threshold.
Finally, foreground pixels are detected by testing which pixels in current frame did

not match any histogram of the background model.

3.3.10 Wallflower

The approach introduced in [toyama99] is the only one which combines three different
processing layers; pixel, region and frame layer, in order to determine the regions of
interest of a frame. Instead of considering a model for the scene, each pixel is assigned
a Wiener filter. The algorithm is designed to work in grey tones.

In the first stage, the pixel level, a Wiener filter is used to compute predictions about
future values of a pixel. In the case predictions fails, the pixel is labelled as foreground.
Adaptation is achieved by recomputing the filter parametersfor each pixel.

The prediction for each pixel(x, y), denoted byF̂x,y(i), is computed as,

F̂x,y(i) =

P
∑

k=0

ak ∗ Fx,y(i− k) (3.25)

beingak the filter coefficients,P the total amount of coefficients used for predic-
tions andFx,y(i) are previous values of the pixel. The coefficients of the filter are
computed from the sample covariance values ofFx,y(i). Details of these computations
can be found in [makhoul75]. For each prediction,Ît(x, y), a expected squared error
is computed as,

E[e2
t ] = E[Fx,y(i)2] +

P
∑

k=0

ak ∗ E[Fx,y(i)Fx,y(i− k)] (3.26)

If the condition,

|Fx,y(i)− F̂x,y(i)| >= 4 ·
√

(E[e2
t ]) (3.27)

the pixel is considered foreground. The linear prediction works well for periodi-
cally changing pixels and produces large values ofE[e2

t ] for random changes.
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In order to reduce possible corruptions of the history values of a pixel, a history of
predicted values is also stored. For each new frame, two predictions are computed, one
based on the actual history and another one based on predictions. A pixel is considered
as background if any of both values is within the tolerance stated by inequality 3.27.

Model adaptation is achieved by computing the filter coefficientsak for each frame.
The new coefficients are kept if their corresponding expected error is less than1.1 times
the previous error.

The region level recovers foreground pixels whose prediction failed. This is achieved
by considering the intersection of moving regions in frameF (i− 1) and frameF (i).

For each frameF (i), the difference with previous frame is computed and thresh-
olded in a similar way to section 3.3.1. With the result of thedifference,J(i), the
previous differenceJ(i−1) and the previous foreground imageS(i−1), the candidate
regions for growing are computed as,

K = J(i− 1) ∧ J(i) ∧ S(i− 1) (3.28)

For each four connected regionsRi discovered inK a histogramH is computed
for all grey toness of imageRi as,

Hi(s) =
Card({p : p ∈ Ri ∧ (Fp(i− 1) = s)})

{Card({Ri})
(3.29)

The histogram is backprojected in frameF (i). For eachRi the intersectionRi ∧
St−1 is computed and each pointp in the intersection contributes to growS(i) as,

Sx,y(i) =

{

1, Hi(Ip) > ǫ
0, otherwise

(3.30)

In a third stage, the frame region considers information at frame level to decide
when a change in the overall background has occurred and the model must be recom-
puted for all pixels.

3.3.11 Edges histograms

Edge histograms are used in [mason01] to detect foreground objects in images. Authors
propose dividing a colour image into different cells and associate an edge histogram to
each cell. The background model is a set of colour and edges histograms.

Index of the edge histograms are computed using the edge orientation; the reso-
lution of the histogram is10◦ per bin. When the bin index is determined the bin is
incremented with the edge magnitude.

For each new frame, histograms for cells are computed in the same way and com-
pared to the background model.

Histogram comparison techniques are used in the paper to detect the foreground
objects. For two histogramsha andhb, the two comparison techniques are histogram
intersection 3.31 and chi-squared measure 3.32.

f(ha, hb) =
Σimin(ha(i), hb(i))

Σiha(i)
(3.31)

χ2(ha, hb) = 2 · Σi
(ha(i)− hb(i))

2

ha(i) + hb(i)
(3.32)

beingi the bin index in each histogram.
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Authors of [mason01] state that their method is tolerant to camera noise and illumi-
nation changes, however, they do not specify how the model may be updated in order
to deal with light evolution, for instance.

3.3.12 Salient motion

In [wixson00], authors state that motion detection can playan important role in many
vision tasks. Yet image motion can arise from uninterestingevents as well as interesting
ones. In their paper, they define salient motion as motion that is likely to result from
a typical surveillance target, for instance, a person or vehicle travelling with a sense
of direction through a scene as opposed to other distractingmotions, for instance the
oscillation of vegetation in the wind.

The proposed algorithm for detecting this salient motion isbased on intermediate-
stage vision integration of optical flow.

The salience field is a consistent measure of the distance travelled in thex- andy-
direction by a pixel. This measure takes into account that flow field is rarely perfectly
computed for every pixel and also that objects may temporarily pass behind small oc-
clusions.

This salience field is computed separately for thex- andy- components. In general,
it is computed as,

S′
j =

{

0, j = 0

∆j + warp(Sj−1,
j−1
j E), otherwise

(3.33)

where∆j is the contribution to the cumulative flow of the frame-to-frame flow
from framej − 1 to framej, warp(I, F ) is a function that computes the warp imageI
by applying to it the flow fieldF and finally,j−1

j E is the extended flow field.
The extended flow field is computed to achieve robustness to errors in computed

flow and temporal gaps created when a moving object temporarily passes behind small
occlusions. It is derived from the flow filed by checking for each pixelp in the flow
field, whether there exists an scalar multiples of the original vectorj−1

j F (p) that ex-
tends the vector so that it connects to a location with large salience.

After the salience field is computed, the maximum cumulativeflow field B in the
x andy directions are computed as,

Bj,x(p) =

{

S′
j,x(p), if sign(S′

j,x(p)) == sign(mx) ∧ |S′
j,x(p)| > |mx|

mx, otherwise
(3.34)

beingmx the value of thex-component of the maximum cumulative flow vector at
locationp in frameIj−1,

mx = Bj−1,x(p +j−1
j E(p)) (3.35)

The componentBj,y is updated anlogously with an equivalent definition ofmy.
Image segmentation is performed as follows,

Sj.x(p) =

{

0, if |Bj,x(p)| > (ks ∧
|S′

j,x(p)−Bj,x(p)|

|Bj,x(p)| ) > kr

S′
j,x(p), otherwise

(3.36)

In the case thatSj.x(p) is equal to 0, thenBj,x(p) is naturally also set to0. Authors
of [wixson00] state that typically, the minimum salienceks is set to8 to ensure that
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some minimal salience has a chance to accumulate before it can be reset to0. The frac-
tional changekr is typically set to0.1, indicating that if the cumulative flow drops to
90% of the largest value previously observed, a direction change is occurring. The pre-
cise setting, however, is not important, since in general pixels on vegetation will exhibit
direction reversals that represent large percentage changes relative to their maximum
value.

Empirical results are presented that illustrate the applicability of the proposed meth-
ods to real-world video. Unlike many motion detection schemes, no knowledge about
expected object size or shape is necessary for rejecting thedistracting motion.

3.4 Motion segmentation algorithms

There are three general techniques used when it comes to motion segmentation: tempo-
ral differencing, background segmentation, and optical flow. In the following subsec-
tions, each basic technique is introduced along with refinements proposed in different
works to improve their performance.

3.4.1 Temporal differencing

The approach of temporal difference makes use of pixel-wisedifference between sev-
eral consecutive frames in an image sequence to extract moving regions. Temporal
differencing is very adaptive to dynamic environments, butgenerally does a poor job
extracting the entire relevant feature pixels, e.g., possibly generating holes inside mov-
ing entities and also missing static objects, which may be ofinterest in some applica-
tions.

As an example of this method, authors of [vsam99] detected moving targets in real
video streams using temporal differencing. After the absolute difference between the
current and the previous frame was obtained, a threshold function was used to deter-
mine change. By using a connected component analysis, the extracted moving sections
were clustered into motion regions. These regions were classified into predefined cat-
egories according to image-based properties for later tracking.

Generally, givenF (i) the frame captured in timei, the temporal differencing is
calculated as,

J(i) = |F (i)− F (i− 1)| (3.37)

and the binary image representing the segmentation is easily computed as,

∀(x, y) ∈ F (i), S(x, y) =

{

1, if Jx,y(i) ≥ µx,y

0, otherwise
(3.38)

Whereµ is a threshold which can, in turn, adapt itself to changes in the scene or
keep constant.

In [vsam99], this threshold varies according to changes in the scenario. In this
paper, authors propose using three consecutive images to calculate the motion in the
scene, beingJ1(i) = |F (i)−F (i− 1)| andJ2(i) = |F (i)−F (i− 2)|, the expression
used is as follows,

∀(x, y) ∈ It, S(x, y) =

{

1, if J1(i) ≥ µx,y(i) ∧ J2(i) ≥ µx,y(i)
0, otherwise

(3.39)



3.4. MOTION SEGMENTATION ALGORITHMS 37

The threshold is computed in a pixel per pixel basis in each timei, according to the
following expression,

µx,y(i) = α · µx,y(i− 1) + (1− α) · 5 · (Fx,y(i)− Fx,y(i− 1)) (3.40)

whereα is a learning rate which ranges in[0, 1]. In image 3.4, an example of frame
differencing may be seen.

Authors of [vsam99] justify their equations by consideringeach non moving pixel
position as a time series,Bx,y(i) is analogous to a local temporal average of intensity
values andµx,y(i) is analogous to5 times the local temporal standard deviation of
intensity, both computed using an infinite impulse response(IIR) filter.

(a)F (i) (b) F (i + 1) (c) Frame differencing resultS

Figure 3.4: Example of frame differencing. Figure 3.4a and 3.4b are subtracted and the
result is shown on Figure 3.4c, note that only pixels which are very close to the border
of the objects are marked as foreground.

This technique has the drawback that cannot find all foreground pixels, but only
those which have changed from one frame to the next. Of course, static objects are
not detected and are considered as background. On the other side, they are easy to
implement, do not need the maintenance of a background modelas following methods
and do easily detect the silhouette of moving objects.

3.4.2 Background subtraction

Background subtraction is a particularly popular method for motion segmentation, es-
pecially under those situations with a relatively static background. It attempts to detect
moving regions in an imageF (i) by differencing between current image and a refer-
ence background imageBt−1 in a pixel-by-pixel fashion. This technique relies on an
accurate background used in the subtraction operation; by means of this subtraction,
relevant areas are found and further processing may follow in them.

However, this technique is extremely sensitive to changes of dynamic scenes due to
lighting and extraneous events. The numerous approaches tobackground subtraction
differ in the type of background model used and the procedureused to update it. The
simplest background model is the temporary averaged image,a background approxi-
mation that is similar to the current static scene.

The subtraction performed thus, depend on the exact type of background computed.
In general, background subtraction methods start with a background modelB(0) in
time i = 0. It is a representation of the background of the scene. The subtraction is
performed as,
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∆(i) = |F (i)−B(i− 1)| (3.41)

and the segmentation is given by,

∀(x, y) ∈ F (i), Sx,y =

{

1, if ∆x,y(i) ≥ µ
0, otherwise

(3.42)

beingµ the segmentation threshold. Figure 3.5 shows the typical result of subtract-
ing the background from an scene.

(a) Background modelB(i − 1) (b) Incoming frameF (i) (c) Result of background subtrac-
tion S

Figure 3.5: Example of background subtraction, on the left,the background model; on
the centre, the incoming frame; on the right, the result of performing the subtraction of
both images and thresholding the result.

Model B may be adapted over time to cope with light or scenarios changes (an
object being set or removed) or not. In the case it is not, these changes may corrupt the
background.

In the case the model is adapted over time, pixels in the modelare updated in order
to cope with light changes. The simplest way of doing this, isby using the following
equation, which computes an average of the input,

Bx,y(i) = α ·Bx,y(i− 1) + (1− α) · Fx,y(i) (3.43)

Whereα is a learning parameter which ranges in[0, 1]. Both α and the model’s
adaptation period are parameters which must be tuned together. The model’s adaptation
period is a parameter that controls when the background model is adapted to cope with
light changes; and it may be static or dynamic for each individual pixel or for the entire
image.

On the other side,α can also be static or dynamic and even defined individually for
each pixel or be fixed for the entire image. In [porikli03] an interesting work on how
to adapt this value is discussed. In their work, the authors propose a method, in which
each pixel(x, y) in the incoming image is given a value ofαx,y and an update period
Tx,y, providing a method for illumination compensation.

Different subtraction methods are used depending on how themodel is built, be-
sides the basic 3.41. For instance, in [grimson99], see section 3.3.3, each pixel is
compared to the variance of several Gaussian distributionsto perform the background
subtraction. Other approaches based on [grimson99], perform similar subtraction with
slight differences as for instance, in [elbaf09], where foreground detection is performed
by means of fuzzy gaussian distributions.
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In the algorithm introduced in [heikkila06], section 3.3.9, the subtraction consists
of an histogram comparison by means of histogram intersection.

In the work introduced in [toyama99], see section 3.3.10, the value of each pixel is
predicted by means of a Wiener filter. The background subtraction is verified by com-
puting the difference between the current value of the pixeland its prediction. This
difference is compared with an error computed taking into account the coefficients of
the filter. An study discussed in [haritaoglu00], presents astatistical model by rep-
resenting each pixel with three values; is minimum and maximum intensity values,
and the maximum intensity difference between consecutive frames observed during
the training period. The model parameters were updated periodically.

3.4.3 Optical flow

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion betweenan observer (an eye or a
camera) and the scene.

Optical flow methods can be used to detect independently moving objects even in
the presence of camera motion. However, most flow computation methods are compu-
tationally complex and very sensitive to noise, and cannot be applied to video streams
in real-time without specialized hardware.

In [rowley97], authors also focused on the segmentation of optical flow fields of
articulated objects. Its major contributions were to add kinematic motion constraints to
each pixel, and to combine motion segmentation with estimation in EM (Expectation
Maximization) computation.

3.4.4 Other methods

In addition to the basic methods described above, there are some other approaches
to motion segmentation. Authors of [friedman97] implemented a mixture of Gaussian
classification model for each pixel. This model attempted toexplicitly classify the pixel
values into three separate predetermined distributions corresponding to background,
foreground and shadow. Meanwhile it could also update the mixture component au-
tomatically for each class according to the likelihood of membership. Hence, slow-
moving objects were handled perfectly, meanwhile shadows were eliminated much
more effectively.

Authors of [stringa00] also proposed a novel morphologicalalgorithm for scene
change detection. This method allowed obtaining a stationary system even under vary-
ing environmental conditions. From the practical point of view, the statistical methods
are a far better choice due to their adaptability in more unconstrained applications.

3.5 Shadow removal techniques

As mentioned in section 3.2, shadows may become a problem when detected objects
must be separated accurately. Removing shadows is important in order to improve
object disambiguation and classification.

Usually algorithms aim to remove those shadows which are prone to affect the
blob’s shape, the so-called cast-shadows. Self-shadows orshadows that form part of
the background are not relevant as they do not affect the tracking process.

Research on shadow detection focuses on two main uses:
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• disambiguation for object recognition

• recovery of the underlying surface detail

The first problem is the most important when it comes to surveillance applications,
because it is necessary to disambiguate which pixels belongto the blob representing
the real object and which do not.

In [prati01] an extensive comparison among different shadow removal techniques
is performed, see figure 3.6. The different algorithms are divided into deterministic
approaches and statistical approaches. In the former, an on/off decision process is
used to decide whether a pixel belongs to background or to foreground; in the later, a
probabilistic function is used to describe the class membership.

Figure 3.6: A taxonomy of shadow removal techniques as foundin [prati01]

In the statistical-based methods the parameter selection is an issue. The work re-
ported in [mikic00] is an example of the parametric approach, whereas [elgammal00]
and [horpraset99] are examples of the non-parametric approach.

Within the deterministic class, another sub-classification can be based on whether
the on/off decision can be supported by model based knowledge as in [koller93] or not,
as in [cucchira01], [rosin95] or [xu05].

Choosing a model based approach achieves undoubtedly the best results, but is,
most of the times, too complex and time consuming compared tothe non-model based.
Moreover, the number and the complexity of the models increases rapidly if the aim
is to deal with complex and cluttered environments with different lighting conditions,
object classes and perspective views. Due to their better time response, only the deter-
ministic non-model based approaches are considered in thiswork.

3.5.1 Non-model deterministic methods

For instance, the algorithm discussed in [rosin95] would beclassified in the determin-
istic approach set. Authors state that shadows can be interpreted in images and the
effect they have on the pixels in the scene is as a semi-transparent region in which the
scene reflectance undergoes a local attenuation.

Provided that the imaging sensor is stationary, it is feasible to identify those re-
gions within shadows by analysing their photometric properties. The photometric gain
computed as,

∀(x, y) ∈ F (i), gain(x, y) =
Fx,y(i)

Bx,y(i− 1)
(3.44)
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shows that, firstly, shadow pixels will have a photometric gain with respect to the
background imageBt−1, smaller than unity. Secondly, this gain will be reasonably
constant over all the shadow region, except at the edges, where the effects of a finite
size illumination source will tend to reduce the attenuation, i.e. the penumbra.

In this case, shadows are modelled as a constant contrast change between the back-
ground model image and the current image, and are detected byexpanding the region
to locate areas of constant photometric gain in the image. Heuristic rules are then used
to cue possible shadow regions.

The algorithm proposed in [xu05] belongs also to the deterministic approaches, in
this case RGB coordinates are used, instead of grey tones. According to this approach,
a shadow is an area that is not, or is only partially, irradiated or illuminated because of
the interception of radiation by an opaque object between the area and the source of
radiation.

Authors state that, assuming that the irradiation consistsonly of white light, the
chromaticity of a shadowed region should be the same as when it is directly illuminated.

This also applies to lightened areas in the image. Based on a similar assumption,
a normalised chromatic colour space,r = R/(R + G + B), g = G/(R + G + B),
b = B/(R+G+B) for instance, is immune to shadows, but the lightness information
is unfortunately lost. Keeping lightness information is important in order to avoid some
simple errors such as confusing a white car with a grey road.

Based on the fact that both brightness and chromaticity are very important, a good
distortion measure between foreground and background pixels should account for the
discrepancies in both their brightness and chromaticity components, as in [horpraset99].

Brightness distortion(BD) can be defined as a scalar value that brings the expected
background close to the observed chromaticity line, being−→pi,j and−→qi,j vectors repre-
senting the RGB values of a pixel as expressed in [horpraset99],

BD = argminα(−→pi,j − α · −→qi,j) (3.45)

BD can be easily computed as,

BD =
−→pi,j ·

−→qi,j
−→qi,j

2
(3.46)

Similarly,colour distortion(CD) can be defined as the orthogonal distance between
the expected colour−→qi,j and the observed chromaticity line−→pi,j ,

CD = ||−→pi,j − α · −→qi,j || (3.47)

beingCDi,j the colour distortion between foreground and background for a pixel
in coordinates(i, j) andBDi,j is the bright distortion for the same pixel.

A set of thresholds can be defined to assist the classificationinto foreground, high-
lighted, or shadowed pixel. Authors of [xu05] propose usinga decision tree in order to
classify pixels according to the computedCD andBD.

Experiments performed with these two algorithms may be found in appendix B.

3.6 Conclusions

Different techniques proposed in the literature and aimed to extract regions of interest
in sequences of frames have been introduced in this chapter.Deciding which method
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should be used to model the background and detect regions of interest, depends greatly
on the problem to solve and the constraints under which the system should work.

Despite a big amount of algorithms exist in the literature, they all miss the capa-
bility of working in conditions in which they cannot be provided with a background
model, or in which their working conditions cannot be set up at start by a human op-
erator. Also, some of the algorithms introduced in this chapter require a big amount
of memory for their operation, and that makes them difficult to run in special devices,
such as smart cameras.

Authors of [toyama99], propose a very useful benchmark which challenges back-
ground algorithms with different situations aimed to test specific features that back-
ground modelling algorithms should posses. This benchmarkis widely accepted by
the community as a valid test for new algorithms.

Background subtraction techniques are the most popular in the literature. They
have proved to achieve a good performance in scenarios with small changes in the
background. The basic technique consists on obtaining a model of the scenario, several
methods may be found in the literature to build this background model. Adaptive
background models or with a multi-modal support are the mostsuitable to be used in
scenarios in which background motion may appear, still achieving a good performance.

Light conditions also have an influence on the performance ofthese algorithms,
as most of them rely on thresholds to distinguish which pixels belong to foreground
and which belong to background. Algorithms may be sort into two groups, regarding
the threshold used. One group uses fixed thresholds and another group uses thresholds
which depend on statistical computations.



Chapter 4

Character identification in
containers

This chapter introduces the developments performed with segmentation techniques, in
order to design a system that identifies and recognizes the identification codes of con-
tainers. Selection of the most suitable segmentation scheme together with the experi-
ments that support this selection are shown. In the approachdiscussed in this chapter
[rosell06], [rosell06a], [rosell06b]), we propose using several segmentation algorithms
to achieve a robust segmentation under uncontrolled light conditions and object fil-
tering in order to reduce oversegmentation. Moreover, we extend the processing of
one image and describe an algorithm that identifies the container’s code by using a
sequence of images.

4.1 Introduction

In this chapter, an application of segmentation techniquesto a real-life problem is in-
troduced. In chapter 2, image segmentation and some segmentation techniques were
discussed. Recalling what was introduced then, the segmentation of an image is the
process of separating an image in regions according to some predefined criteria.

Our goal is locating and recognizing the identification codeof containers in the
entrance of a trading port. Controlling the entrance of truck containers inside the port
is crucial in order to control the stuff entering the docks. Currently in most trading
ports, gates are controlled by human inspection and manual registration. This process
can be automated by means of computer vision and pattern recognition techniques.

Such a system can be built by developing different techniques, such as image pre-
processing, image segmentation, feature extraction and pattern classification. The pro-
cess is complex, because it has to deal with outdoor scenes, days with different clima-
tology, changes in light conditions (day, night) and dirty or damaged containers.

Images were acquired by means of a system installed in the gates of the port of
Valencia, the schema of the system can be seen in figure 4.1. The system works with
a sensor that detects an incoming truck in the admission gateand triggers a signal that
starts the process of taking pictures.

43
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(a) Port’s entrance (b) Acquisition system

Figure 4.1: a) Port’s gate. b) Acquisition system scheme.

4.1.1 Related work

There are several papers in the literature that deal with locating and recognising vehi-
cles’ plates, and some of them do solve this problem with a high degree of productivity.
For instance, methods discussed in [brad01],[barroso97] and [hegt98] work efficiently
with cars’ plates. However, these algorithms expect characters to be arranged in the
plate in conditions which are not posible to expect in truck containers. Also, most
of these algorithms are focused on the arrangements for a given country, reducing the
variability the algorithm has to face, and making the platesprocessing easier.

In the case of truck containers, no theoretical uniform location of the code may be
expected nor the colour of the sought objects is known in advanced. From now on, we
will call symbolseither the letters or the numbers in a code for the sake of simplicity.

ISO 6346 is an international standard managed by the International Container Bu-
reau (BIC) for coding, identification and marking of intermodal containers (shipping
containers) used within intermodal freight transport as part of containerization. It es-
tablishes:

• an identification system with: an owner code, commonly knownas BIC code, an
equipment category identifier, a serial number and a check digit

• a size and type code

• a country code

• operational marks

Codes are formed by several letters and numbers arranged either in columns or in
rows. Moreover, the colour of the codes may vary, being possible that not all symbols
in the same code are drawn using the same colour. Symbols on a container are not
constrained to appear in a concrete area of the container as,for instance, cars’ plates
are, though they usually appear close to the upper corners ofthe container if arranged
in rows, or close to the backmost edge if arranged in columns.
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The maximum amount of symbols in the code is limited to18, though usually, there
are among13 and15. Some samples (in grey tones) may be seen in figure 4.2. It is
very difficult to export solutions for cars’ plates to this problem, a different solution is
obviously needed.

Figure 4.2: Some sample images representing truck containers. As explained in the
text, note the wide variability of possible situations, that the designed algorithm has to
face.

A first approach to the process of code detection in truck containers is presented
in a previous work [salva01] and the overall process is discussed also in [salva02].
In these works, authors use the top-hat morphological operator (see section 2.3.2 for
more details) to preprocess images before segmenting them with a multi-thresholding
algorithm. Though this method had good results, we tried to improve their performance
by using the methods we propose later in this chapter.

On the other hand, in [atienza05], authors aim to use the optical flow (see section
3.4.3) applied to a sequence of images representing the samecontainer, in order to
shrink the area where the container code could be found and speed up the segmentation
process; however, the method is very time consuming and an effort should be done in
order to optimize it.

4.1.2 Goals and constraints

Our goal is finding a suitable successful segmentation algorithm for the process of code
detection mentioned previously. To achieve this goal, several segmentation algorithms
found in the literature are tested. The constraints that should be met by the selected
technique are:

• It must detect all characters in the code, or as much as possible
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• It must find characters independently of their colour (whitecharacters on a dark
background and vice versa)

• It must run without human intervention, as the gates are supposed to be automat-
ically driven

• It must be independent of image light conditions

• It must create the minimal list of found objects; as segmentation algorithms will
always find objects which are not relevant (see figure 4.3), the optimum will
be the one which creates a list that only contains objects which correspond to
characters in the code

In the following study several algorithms are tested in order to find out which algo-
rithm could fit better the constraints of the process, and, ifit was the case, which could
be used together, producing better results than any other algorithm on its own.

One of the problems that a system working outdoors has to faceis the environmen-
tal conditions. These conditions translate,from the pointof view of vision systems, into
sudden and uncontrolled changes of light that imply changeson the parameters of the
segmentation algorithms.

A usual constraint that these systems must sometimes meet isthe limited amount
of time for image processing they may have, as most of them aresupposed to give a
real-time response. Though it is not a critical issue in mostcases, it is always desirable
to produce an answer in a short period, if possible. In the system developed in this
chapter, for instance, it is not necessary an immediate answer but trucks cannot wait
infinitely for an answer.

Taking into account these constraints, we propose using a set of standard segmenta-
tion algorithms ranging their parameters in intervals as wide as possible; thus covering
different environmental situations. This solution could be criticized because a lot of
wrong regions of interest, denoted as false positives from now on, will be generated in
the output. Being this true, we propose the use of specific filters to remove from the
process output all objects which do not meet the expected constraints. We achieve this
way a general schema that may be applied in any application inwhich segmentation
must be performed.

Section 4.2 outlines the schema followed. The preprocessing algorithms used are
described in section 4.3. Section 4.4, discusses the implementation and experiments
made with some well-known segmentation algorithms. Section 4.5 introduces the
techniques used to reduce the false positives generated in the segmentation process,
together with the experiments performed with these techniques. Finally, section 4.6
explores the use of sequences of images to improve the fault tolerance of the process.

4.2 Proposed schema

The schema proposed in this chapter is illustrated in figure 4.4. For an imageI we
define the result of applying a set of segmentation techniques Σ to I with a set of
parametersK, as the setS(I,Σ,K).

The connected regionsRi ∈ S(I,Σ,K), shown in figure 4.3, are filtered ac-
cording to a set of constraintsΦ. Those which meet these constraints form the set
Υ(S(I,Σ,K),Φ) which will be called the final segmentation ofI. Finally, once the
tone of symbols is detected, the setΓ(I) will contain the truck container code.
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Figure 4.3: Connected regionsRi surrounded by the bounding boxes that enclose them
and drawn on the original image. Note that there are more regions than symbols in the
code. These regions are the result of applying a segmentation algorithm to one image
representing a truck container.

4.3 Preprocessing

As introduced in section 2.3, the aim of preprocessing images is improving in some
sense the input image to make it easier to be processed by the following stages.

In the case of truck containers, it was taken into account that symbols may be
drawn on the container in different colours. One solution for this problem, could be
using a growing-region algorithm to segment the image in different regions according
to their colour and then, classify regions. However, an easier approach is taking profit
that, if images are converted into grey tones, no colours have to be searched for. By
applying the top-hat technique the obtained grey-tone image will contain only dark or
light regions. This reduces the complexity of the problem.

Despite the complexity of the problem is smaller, still two different symbol tones
have to be distinguished: light and dark symbol tones. As no further information may
be obtained with this transform, light and dark preprocessing must be done and the two
images are treated in parallel.

If we consider as the input of the process an imageI in grey tones, the process
starts by applying the top-hat transform toI in order to enhance dark and light regions.
This produces two output images calledIdark andIlight, as seen in figure 4.4. Figure
4.5 shows an example with truck containers.

4.4 Testing different segmentation approaches

Choosing the segmentation technique that better fits the problem’s constraints is not an
easy task. Depending on the aim of the application and the constraints it has to meet,
different algorithms will suit it better than others. In ourcase, five algorithms with
different approaches to segmentation were tested [rosell06]. These algorithms, already
introduced in section 2.4, areOtsu’s method, LAT, thresholding method, Watershedand
an adaptation of thelocal variationalgorithm.
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Figure 4.4: Different phases in the proposed processing schema. After preprocessing
I, the segmentation stage provides the system with a set of regions of interest. These
regions are filtered according to problem dependent criteria. Finally, a decision step
tests which is the correct set of regions.

It must be remarked that experiments were performed with thechosen segmentation
techniques in order to test their performance in the specificproblem we wanted to solve;
not to compare their general performance. The most important factor to be measured
was the number of found symbols from the code.

4.4.1 A new version for local variation algorithm

The original local variation algorithm, introduced in 2.4.5, is a growing region algo-
rithm which works either with colour or with grey tone images. It requires several
parameters which are difficult to set in the general case, dueto the high variability of
the images; for instance, the expected number of regions. Inorder to avoid using the
final number of regions because not all containers have the same amount of symbols in
the code, an adaptation of the algorithm was designed.

In the adapted version, it was decided that two different regions should join into
one if the mean intensity of both regions is similar. Anotherdifference is that no
minimum size of region was used to force regions to merge. Regions were merged
until the process reached a situation in which no more regions could be merged. The
only parameter was the percentage of similarity (k) that allowed two regions to be
merged into one.

4.4.2 Data set

In order to be able to extract conclusions about the behaviour of the algorithms and
techniques applied, a previous work was done. We manually labelled all the characters
in the images to be used in the experiments. This process was done by drawing the
bounding box for each symbol as accurate as possible. Its coordinates along with the
class of the symbol were stored in a file indexed with the name of the image. A sample
handcrafted bounding box is shown in figure 4.6. Then, the process of checking results
was done automatically with the help of these files.

The experiments were done as close to real conditions as possible, thus, algorithms
were not provided with information about light conditions in the images or about the
colour of symbols. This way, it could be tested how they wouldbehave under real con-
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(a) Original imageI

(b) White top-hatIlight

(c) Black top-hatIdark

Figure 4.5: Sample execution of top-hat technique. a) An imageI representing a truck
container. b) Final image (WTH(I)) looking for light areas. c) The same for dark
areas (BTH(I)).



50 CHAPTER 4. CHARACTER IDENTIFICATION IN CONTAINERS

Figure 4.6: Bounding boxes labelled manually. Image is zoomed in in order to show
only the container code area.

ditions. For this reason, images used in the tests represented real containers acquired in
the entrance gate of a port. We tried to join in this data set asmuch variety as possible.
It was assured that the test set contained images taken during day, night, during cloudy
days and combining dark or light symbols on the containers. Atotal amount of309
images were used in the tests. In average, each image represented a container with15
symbols, resulting in about4635 symbols to recognize. The quality of the symbols,
that is, how easy to see they were for a human eye is difficult toquantify. However, we
estimate that about a10% of them was difficult or very difficult to recognize at a first
glance.

Preliminary experiments took us to test only four of the five chosen algorithms.
These experiments consisted on testing, for a reduced set ofimages, the performance
on detecting symbols of each algorithm and the computational cost.

The performance was measured quantitatively checking how many true positives
were obtained, that is, how many symbols were properly segmented. At this stage, no
action was expected to take with false positives, which are the regions of the image
which contain no interesting objects but are labelled by thesegmentation algorithm as
regions of interest.

After these experiments, the Otsu’s algorithm was discarded because it proved to
be faster executing the thresholding algorithm with different thresholds than computing
the threshold by means of the Otsu’s algorithm and more important, some images need
to be thresholded several times in order to find all symbols. Only LAT, watershed,
thresholding and the adaptation we made of the local variation algorithm were used in
the following experiments.

4.4.3 Parameter set

At this stage, it is necessary to know which are the best fitting parameters for each
algorithm. Because they have to adapt to different light conditions, bearing in mind the
temporal constraint.

In the preliminary experiments, it was concluded that for LAT algorithm, a value
of c ranging in[0.9; 1.6] with an step of0.03 andl = 0, for a total amount of23 iter-
ations, would yield good results. For the thresholding algorithm, a value ofT ranging
in [20; 220] with a step of5 was considered to be enough, for a total amount of40
iterations. For the local variation algorithm, the likelihood percentagek ranging in
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[70%; 85%] with an step of5 was used, yielding a total amount of4 iterations of the
algorithm. Watershed algorithm has no parameters to adjust.

Figure 4.7 illustrates the execution of the thresholding technique on a sample im-
age. The effect of shadows on the container makes it difficultto find a single threshold
that successfully detects all characters. By using different thresholds, regions may be
discovered and joined together in a single solution.

4.4.4 Evaluation criterion

The response of the segmentation algorithms, modelled as the setsS(Idark,Σ,K) and
S(Ilight,Σ,K) is obtained. The elementsRi of the sets, correspond to regions with
homogeneous grey tones. Some of these regions will be relevant for the container’s
code seek, but others will not. As shown in figure 4.3, the number of objects found
in the segmentation, is always greater than the number of symbols in the code. For
the sake of brevity, in next paragraphs we will denoteS(Idark,Σ,K) by S(Idark) and
S(Ilight,Σ,K) by S(Ilight).

The good or bad performance of each algorithm was evaluated depending on the
total amount of symbols of the code, that could be found in thelist of found objects;
independently of the total amount of found objects. This is so, because those irrelevant
objects of the list could be removed from the final set by meansof the filters introduced
later in this chapter.

Only a lax geometric filter, based on height and width, was applied with the aim
of reducing the number of irrelevant objects in the solution, without the danger of
removing valid objects. At this stage, applying other processes to the output would
mean masking out the segmentation algorithms’ performance, hiding errors or adding
errors of other procedures.

A method was designed to compare automatic segmentation to human’s results.
The algorithm was considered to be successful if the bounding box it calculated for
an object and the bounding box drawn by a human operator did overlap in a given
percentage. This percentage was set, after some manual tune, to 65%.

In order to proceed with comparisons, for each algorithm thetotal amount of suc-
cessfully segmented symbols (the true positives), the number of missing symbols (the
false negatives), the total amount of objects found and total amount of time spent in the
process was obtained.

4.4.5 Experiments

First results of applying the segmentation algorithms to the309 images in the database
are found in table 4.1. In this table, under the column"missed", the total amount of
objects that belong to the container’s code but the algorithms were not capable to find,
is shown. First row shows the number of images from which successfully, the container
code symbols were obtained.

According to data in the column corresponding to LAT, it may be seen, that this is
the algorithm which achieves best results. It is the one withmore images between0
and1 lost symbols. Watershed is the second in performance.

On the other side, the adaptation of local variation has an erratic behaviour, maybe
due to the fact that only the grey tone average was used to decide whether regions
should be merged or not, due to its poor performance.

Values shown in table 4.1 are plotted in figure 4.8. The plot shows the number
of images that each algorithm can find according to the numberof missing symbols.
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(a) Original image

(b) T= 50

(c) T= 170

(d) T= 220

Figure 4.7: Different segmentations of image a) using the thresholding algorithm with
different values ofT . Note that depending on the threshold used, some characterscould
be lost or detected.
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For instance, if2 mistakes are affordable, LAT could be able to find up to287 images
correctly out of the initial309, which represents a high percentage.

Missed LAT Watershed Thresolding Local variation

0 189 173 143 88
1 68 68 78 84
2 30 32 32 49
3 12 12 20 24
4 4 10 11 19
5 2 4 2 11

6 or more 4 10 23 34

Total 309 309 309 309

Table 4.1: Performance of the segmentation algorithms. Amount of images depending
on the number of missed characters. Each column shows results for an algorithm; in
each row, the characters missed per image.

Figure 4.8: Cumulated plot of images depending on the numberof missed characters.
For instance, in the case2 missed characters could be tolerated, LAT could be able to
find around93% of the codes correctly.

In table 4.2, the average execution time of each algorithm isshown (measured in
seconds). LAT, as it may be seen, is the quickest algorithm. Global thresholding has a
good execution time, though results are poorer than those ofWatershed or LAT.

Mean time\ Alg. LAT Watershed Thresolding Local variation

seconds 1.31 7.11 1.78 26.54

Table 4.2: Average execution time of the implemented algorithms. Algorithms were
run in a Pentium4 at3 Ghz.

After these results, the possibility of combining different algorithms was consid-
ered. It is quite likely to be a good solution if we think that,in theory, one algorithm
could correct the errors of another or just find objects that another algorithm, whichever
the reasons, cannot segment properly. The process of combining the algorithm must be
understood as parallelizing their executions and merging their final results.
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New experiments were performed joining the results of LAT and Wahtershed, be-
cause they are the two with best performance. Also, LAT and Thresholding algorithm
were joined, despite the second one has not very good resultsbut it is fast and that
could mean best results than with LAT alone with a reasonableexecution time. Also
a test merging the three algorithms was performed. Though inprevious paragraph it
was mentioned that these algorithms could be parallelized in order to overlap their
execution, in the experiments algorithms were run in sequence.

In table 4.3 we compare results of the LAT-Thresholding algorithm, the LAT-
Watershed algorithm, and the algorithm LAT-Watershed-Thresholding (summarized as
LWT in the table). It may be seen that the union of LAT and Watershed outperforms
any other combination of algorithms when0 or 1 missed symbols are allowed, achiev-
ing the same results as the union of LAT, Watershed and Thresholding. In the case2
symbols may be missed, then the union of LAT and Thresholdingperforms identically
to LAT and Watershed.

Figure 4.9: Cumulated plot of images depending on the numberof missed characters
for the improved techniques. For instance, in the case2 missed characters could be
tolerated, LAT-Thresholding technique could be able to findaround97% of the codes
correctly. Note that plots of LAT-Watershed and LAT-Watershed-Thresldoing collapse
in the same line.

Missed symbols LAT-Thr. LWT LAT-Wat.

0 237 253 253
1 53 44 44
2 11 5 5
3 6 5 5
4 0 0 0
5 2 2 2

6 or more 0 0 0

Total 309 309 309 309

Table 4.3: Performance of the joined algorithms. Amount of images depending on the
number of missed symbols. Each column shows results for an algorithm; in each row,
the characters missed per image.

In the table 4.4, execution time of the joined algorithms maybe seen; the union of
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LAT and thresholding algorithm is quite faster than the other two algorithms. In figure
4.9, a plot comparing the different unions of algorithms is shown.

Mean time LAT-Thr. Lat-Wat-Thr. Lat-Wat

seconds 2.67 10.18 8.19

Table 4.4: Average execution time of the improved versions.

Though in next section, techniques aimed to reduce the amount of false positives
are introduced, the most false positives generated, the most effort will have to be done
to remove them. Table 4.5 shows the average amount of false positives found per im-
age depending on the algorithm used and the symbols under seek. As it may be seen,
all algorithms produce a big amount of objects, due to the method of joining together
segmentations with different parameters. Specially, LAT and Watershed algorithms
multiply by a factor of10 the amount of objects found by Thresholding or local varia-
tion algorithms.

LAT Watershed Thresholding
Light Dark Light Dark Light Dark

Objects found 73806.9 68032.5 41609 33510 1843.2 2195.3
Average false positives 73792.3 68017.9 451594.4 33495.4 1828.6 2180.7

Table 4.5: Average amount of false positives found per imagedepending on the algo-
rithm used.

In the case algorithms are merged, the total amount of detected elements corre-
sponds to the sum of the elements found by each algorithm on its own.

4.5 Filters proposed for noise reduction

As seen in previous section, segmentation algorithms produce always a big amount
of false positives. These false positives could be, in part,removed by constraining
the ranges of their segmentation algorithms parameters, atthe expense of probably
covering a narrower spectrum of light conditions, which is not our aim.

We propose instead, to remove objects which do not meet certain features as, for
instance, an expected geometry or a minimum contrast with background. These con-
straints, or restrictions, can be defined by taking into account the environment of the
system. By applying them to the output set of symbols of the segmentation algorithms,
the number of false positives can be dramatically reduced.

These restrictions will be called filters in the remaining sections. One of the restric-
tions that objects must meet, for instance, is that their dimensions should range within
certain limits, or that their contrast should be greater than a given value.

Also a classifier could be used in order to filter out all those objects that cannot
be classified into some predefined classes, and are thus considered as noise. In the
case of container codes, objects could be classified as either letter or noise. Any object
classified as noise would be rejected and could not be part of the final result.

We define mathematically filters as functions that operate onsets, by selecting ob-
jects which do meet given properties. BeingS(I,Σ,K) a set result of a segmentation
algorithm, the functionf defined as,

f : S(I,Σ,K)→ {0, 1} (4.1)
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associates a value1 to objecto if it meets an specific constraint, or0 otherwise.
With the help of this function, a set can be built, containingthe objects which verify
f(o) = 0 as,

∆ = {o ∈ S(I,Σ,K) : f(o) = 0} (4.2)

it is straightforward to see that∆ ⊆ S(I,Σ,K) and that filtering the setS(I,Σ,K)
is just subtracting the objects in∆ from S(I,Σ,K) as follows,

Υ(I) = {S(I,Σ,K)−
⋃

∆i} (4.3)

After applying the segmentation techniques, two solution sets are available,S(Idark)
andS(Ilight); applying filters to both sets, one of the sets should be left ideally empty
and the other one, should contain the code of the container; the final result will be
denoted byΥ(Idark) or Υ(Ilight), depending on the image considered in the process.

In the following subsections the designed filters are introduced.

4.5.1 Size filter

This filter, as may be deduced by its name, will set the minimumand maximum dimen-
sions of objects considered as valid. It is the first filter to be executed as it is the filter
which more objects remove and it is one of the fastest. For each objecto ∈ S(I,Σ,K),
bounded by a rectangleRo,

fshape(o) =







1 if height(Ro) ∈ [hmin, hmax]
∧ width(Ro) ∈ [wmin, wmax]

0 any another case
(4.4)

Being the functionsheight(Ro) andwidth(Ro) functions whose results are the
height and width, respectively, of the rectangleRo. On the other side,hmin, hmax,
wmin, wmax represent the maximum and minimum dimensions in height and width of
a valid object.

The set associated with this filter is formally defined as,

∆shape = {o ∈ S(I,Σ,K) : fshape(o) = 0} (4.5)

4.5.2 Contrast filter

This filter removes all objects whose contrast is very low. Regions which do not show
enough variability are not considered for further processing because it is quite unlikely
that they contain a character of the contained code. If the variance of the grey tones of
the pixels of objecto ∈ S(I,Σ,K) is defined asµ(o). The filter may be mathematically
defined as:

fcontrast(o) =

{

1 if µ(o) >= µmin

0 any another case
(4.6)

Beingµmin a constant which determines the minimum variance that an object must
show, in order to be considered as valid.

And the set∆contrast defined as:

∆contrast = {o ∈ S(I,Σ,K) : fcontrast(o) = 0} (4.7)
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4.5.3 Classification

The use of a classifier may also help when filtering undesired symbols in the output of
segmentation algorithms. By training a classifier with a setof valid symbols and a set
of non-valid symbols, false positive symbols may be removedfrom the output reducing
the load in further processes.

A big amount of different classifiers exist, but all of them may be modelled in this
case as a functionclass(o) that gives the class to which the objecto belongs, being
o ∈ S(I,Σ,K). Along with the class, each object is given a value of confidence that
measures how confident the classification is. This confidencevalue is used in other
filters.

As explained in appendix B, this filter was implemented with ak-nn classifier
trained with a corpus of654 images, with an approximate total amount of9810 sym-
bols.

A function fnoise(o) that determines if an object is classified as noise or not is
defined as follows,

fnoise(o) =

{

0 if class(o) =Noise
1 in another case

(4.8)

and the set∆noise,

∆noise = {o ∈ S(I,Σ,K) : fnoise(o) = 0} (4.9)

4.5.4 Confidence filter

An indicator of the goodness of the solution provided is counting how many elements
have a classification confidence over a given threshold (confmin). The bigger the
number of objects with a high confidence degree, the bigger the likelihood that the
result set is valid. The classification confidence is calculated at classification time as
explained in appendix B.

The confidence assigned by the classifier to each classification is also borne in
mind, this way, only objects with a high confidence are considered in the final decision.
Beingconfidence(o) the confidence of objecto ∈ S(I,Σ,K), the filter is defined as,

∆confidence = {o ∈ S(I,Σ,K) : confidence(o) < ǫ} (4.10)

whereǫ is the minimum confidence considered valid.

4.5.5 Fusion filter

Bearing in mind that segmentation algorithms are applied several times on the same
image, just ranging their parameters within a given set; it is quite likely that several
objects are found with similar coordinates. It is quite likely also that objects found
with similar coordinates are really the same object. This filter eliminates objects which
are replicated.

Given two bounding boxesRp y Rq enclosing objectsp andq, such thatp, q ∈
S(I,Σ,K); the overlap ofRp andRq, denoted byRp⊙Rq, is defined as the percentage
of surface thatRp overlaps onRq. We define the fusion filter function as,
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ffusion(p) =







0 if ∃ q ∈ S(I,Σ,K) :
Rp

T

Rq

Rp
≥ 0.65

∧ p 6= q
1 any another case

(4.11)

and the set∆fusion as,

∆fusion = {o ∈ S(I,Σ,K) : ffusion(o) = 0} (4.12)

4.5.6 Position filter

Characters are arranged either by columns or by rows on the container and thus, the
location of objects on the container and its relative position from to other objects is
quite important. Also, characters are always arranged into2 or 3 columns or rows
containing similar amount of objects.

This filter detects the position of objects on the image and tries to determine whether
objects are arranged in rows or columns. With this information, it should be easy to
remove all objects which are not in the correct row or column just by inspecting the
coordinates of its centre, for instance.

The algorithm works as follows, it seeks the two columns withmore elements,col1
andcol2 beingc the total amount of elements of both columns. Then, it it seeks for
the 2 rows with more elementsrow0 y row1, beingf the total amount of elements
in both rows. Ifc > f verifies, then elements are arranged in rows; Ifc < f , in
columns. Otherwise nothing can be decided. Two functions are defined,col(o) denotes
the column to which objecto belongs to androw(o) denotes on which objecto is
located.

Once the arrangement of objects is detected, the algorithm removes all objects
which do not lay in the valid columns or rows. Depending on thecase, one of the
following two functions would be used,

fcolumn(o) =

{

1 if col(o) ∈ [col0, col1]
0 in another case

(4.13)

frow(o) =

{

1 if row(o) ∈ [row0, row1]
0 any another case

(4.14)

and the set∆ is built depending if the arrangement is done in columns or rows as,

∆rows = {o ∈ S(I,Σ,K) : frows(o) = 0} (4.15)

∆columns = {o ∈ S(I,Σ,K) : fcolumns(o) = 0} (4.16)

4.5.7 Decision of the tone of the characters

If we recall both expressions forγ(Iwhite) and γ(Iblack), with the filters designed
before we have:

γ(Iwhite) = (((((S(Iwhite)−∆shape)

−∆contrast)−∆classifier)−∆confidence)

−∆fusion) (4.17)
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γ(Iblack) = (((((S(Iblack)−∆shape)

−∆contrast)−∆classifier)−∆confidence)

−∆fusion) (4.18)

A decision can be taken in order to decide which is the valid set. If the constraint
4.19 is met, the valid set will be the one containing the lightsymbols. If, otherwise, the
constraint 4.20 is met, the valid set is the one containing the dark symbols and if 4.21
nothing can be decided.

|γ(Iwhite)| > |γ(Iblack| (4.19)

|γ(Iwhite)| < |γ(Iblack)| (4.20)

|γ(Iblack| = |γ(Iblack| (4.21)

being|γ(Iwhite)| the cardinality of setγ(Iwhite).
It must remarked that, though it may seem that the order in which filters are applied

does not matter, it really does. Some filters may be applied inany order as, for instance,
size and contrast filters; this is due to the fact, that they just consider geometric or sta-
tistical properties of an object at a time. They are used first, also because they remove
a big percentage of irrelevant objects, and because they execute very fast, compared to
others.

Classification also takes one object at a time, but it is much more time consuming
that the previous. This is one of the reasons to execute it in the last stages of filtering,
to avoid losing time.

On the other hand, the fusion filter is executed at the end of the process because it
takes the area shared by several objects. If it was applied inthe first stages, we would be
at risk of removing valid objects of the contained code, as long as these valid objects
could be fused with others which would be later removed by anyof the other filters
(geometric, contrast...). Also, the execution time would be affected by the number of
comparisons.

4.5.8 Code extraction

The codes of containers are extracted by appending all symbols which successfully
went through all the filters. The class of each remaining symbol is obtained in the
classification step, see appendix B, and corresponds to the character it represents.

4.5.9 Filtering segmentation results

As with segmentation algorithms alone, experiments were performed to test the be-
haviour of these filters.

The position filter was not used because preliminary experiments did show, that
it was very sensitive to noise. Even just a few objects appearing in any part of the
container, did mislead this filter taking it to remove most of(if not all) valid objects of
the code. Thus, it was not considered for further processing.

Values for filters’ parameters were set manually and tuned with a reduced set of
images. For the contrast filter a valueµmin = 200 was chosen; being low enough as to
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avoid losing symbols due to shadows, but keeping the number of noisy symbols low.
For size, constraints are: width in the range[20, 50] and height in the range[6, 30].
We established a confidence level of80%. Table 4.6 shows how the amount of objects
decreases as filters are applied.

Algorithm Tone Initial amount Size filter Contrast filter Noise filter Fusion filter
LAT Dark Total 73806.9 978.5 222.7 205.2 14.5

Left 0.013 0.22 0.92 0.07
Light Total 68032.5 825.5 216.4 158.7 16.4

Left 0.012 0.25 0.73 0.10
Watershed Dark Total 41609 1236.7 868.7 822.7 14

Left 0.03 0.70 0.94 0.01
Light Total 33510 1173.9 902.5 795 16.5

Left 0.03 0.76 0.88 0.02
LAT Dark Total 1843.2 218.1 207.1 191 13.2

Left 0.12 0.95 0.92 0.07
Light Total 2195.3 189.3 183.1 160.2 13.5

Left 0.09 0.97 0.87 0.08

Table 4.6: Average computation of the amount of remaining symbols after each filter is
applied, depending on the segmentation algorithm used. In row total, the total amount
of symbols left after the filter is applied to the input. The row Leftshows the percentage
amount of objects left by the filter with respect to previous step.

4.5.10 Code extraction results

Experiments aimed to analyse the performance of the method extracting codes, were
made with309 images. Results are shown in figure 4.10 and table 4.7. First row in the
table shows the amount of images in each segmentation which were successfully recog-
nized (i.e., with zero errors). Columns show the result of the complete process for each
algorithm, ordered according to the number of symbols not recognized successfully.

Missed characters LAT Wat. Thr.

0 25 13 22
1 55 25 39
2 47 37 46
3 55 44 40
4 28 49 39
5 26 38 29
6 14 27 19

more than 6 59 76 75

Table 4.7: Performance of the recognition process, using stand-alone segmentation
algorithms and filters.

In these experiments, results are measuring not only the performance of the seg-
mentation algorithms, but also the performance of the filters implemented. One of the
most sensitive steps in the process is the classifier used. After reviewing which symbols
had been missed, it was decided to improve the classifier by adding more instances of
the different expected symbols.

The incorrectly classified symbols of the first experiments were used to improve
it as explained in appendix B. Results of this new classifier applied to a new set of
312 images is shown in figure 4.11 and table 4.8. As it may be seen, improving the
classifier improves significantly results.

As proposed in previous section, performance could be improved by using several
segmentation algorithms. Filters are applied to each segmentation algorithm’s results
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Figure 4.10: Cumulated plot of images according to the number of lost symbols , using
stand-alone segmentation algorithms and filters.

Missed characters LAT Wat. Thr.

0 48 13 41
1 62 35 69
2 62 35 52
3 41 36 32
4 17 33 23
5 14 28 28
6 16 36 21

more than 6 52 96 46

Table 4.8: Performance of the recognition process with the improved classifier.
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Figure 4.11: Cumulated plot of images according to the number of lost objects using
the algorithms and the improved classifier.
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separately and then, results are joined into one only list. Results of these experiments
can be seen in table 4.9 and figure 4.12.

Missed characters LAT+Thr. LAT+Wat. LAT+Thr.+Wat.

0 102 91 163
1 87 90 72
2 49 43 19
3 23 30 6
4 10 8 7
5 11 10 2
6 11 8 1

more than 6 18 31 41

Table 4.9: Performance of the merged algorithms. Number of images correctly de-
tected depending on the amount of missed symbols.
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Figure 4.12: Results of merged algorithms.

Execution time of the process with segmentation techniquestogether with filters, is
shown in table 4.10. The process becomes very time consumingwhen it is Watershed
the chosen segmentation technique. On the other side, LAT orthe thresholding algo-
rithm used together improve results with a low penalizationin time execution. From
result plots may be seen that, for instance, in case2 symbols could be missed, using
LAT plus the thresholding technique nearly76, 28% of images could be successfully
recognized. A sample application of this schema to an image representing a container
may be seen in figure 4.13.

Mean time\ Alg. LAT Water. Thres. LAT-THR LAT-WAT LAT-WAT-THR

seconds 2.99 14.81 1.53 4.36 16.56 18.33

Table 4.10: Mean execution time. From left to right, the three implemented algorithms
and the results of joining them.

Finally, in table 4.11, the percentage of successfully character tones detection in
images, see section 4.5.7, is shown.
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Mean time\ Lg. LAT Water. Threes. LAT + Threes. LAT + WAT LAT + Threes. + WAT
Colour detected 0.93 0.85 0.94 0.96 0.93 0.95

Table 4.11: Percentages of successfully detected colours using the segmentation al-
gorithms together with filters. Columns determine the algorithm used, and rows the
percentage of successfully detected container codes.

(a) Segmented image. (b) Shape filter applied.

(c) Contrast filter. (d) Classifier based filter

(e) Fusion filter

Figure 4.13: Sample evolution of the process applied to an image searching for light
characters. a) The result of segmenting the image with LAT. b) After applying the
shape filt er. c) After applying the contrast filter. d) After removing noisy regions. e)
After fusing regions.
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4.6 Use of sequences of images

Results obtained so far may be considered satisfactory, from the point of view that just
one image was used to obtain the truck code. Analysing results, it may be seen that in
some occasions, symbols of the container code are lost. Three causes are detected as
the most important:

• Shadows which become confused with symbols or do totally or partially cover
them.

• Classification errors, for instance, classifying noise as avalid symbol.

• Confusions in the classification, for instance, a symbol "B"confused with an "8".

It is possible taking advantage that several pictures per container are available. Each
one of these images was taken as the truck was approaching theport’s gate. The time
span between two consecutive images may be enough to change the light conditions on
the container, revealing symbols that could be affected previously by shadows (maybe
shadows of the own texture of the container or casted by external factors), which were
not visible in previous images. Some sample sequences may beseen in figure 4.14.

For the first problem, shadows, we trust that, by taking several pictures of the con-
tainer, we will be able to find the characters of the code in most of the cases. If eventu-
ally a character is shadowed in an image, it is likely that it was found in other images,
so, by checking all them together, we can have it in the final solution. The second issue,
is easier to achieve, noisy objects classified as characterswill appear only in a small
amount of images, thus, if we set the constraint of appearingin a minimum number of
images, noisy objects will be removed from the final solution.

The last problem has to do with characters which are misclassified due to, for in-
stance, a bad segmentation of the image or a classification error. As in the first case,
if such a problem appears, we can still know which is the correct one by keeping only
characters which appeared in a minimum number of images of the sequence.

In this section we explain how we process a sequence of imagesto extract the
container’s code from it. We first try to group objects (whichare the result of applying
the previous algorithm to each image in the sequence) in eachimage into clusters of
close objects. This way, we can use properties of clusters such as the centre of mass
of the cluster to faster overlap objects of a reference imagewith the objects in the
following images.

4.6.1 Clustering objects

The algorithm used to process images is divided into two steps; first, the cluster identi-
fication in each image and second, the processing of the sequence itself. Both steps are
described thoroughly in the following sections.

Code symbols in the container appear following a defined structure. Though we do
not know before taking the picture what kind of lay-out the characters will have and
either the amount of valid objects in the image, it is true that after the processing, we
can apply some knowledge on the resulting objects in order toget rid of those which
are not likely to be in the code, but have gone trough up to thisstage of the processing.
For instance, symbols belonging to the code appear close oneto each other; we can use
this feature to group objects in clusters and use only the valid cluster, i.e. the cluster
with the code, to perform further calculations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: Some sequences of truck containers, taken in different day-times. In each
row, a different sequence is represented. Brights and shadows may be appreciated in
images, on different parts of the container.
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Given an imageI, we obtain the setγ(I) = {r0, r1..rn}, the set of objects found
in the segmentation of image I that do meet some constraints (as mentioned in the
previous section). We calculate the clusters ofγ(I), denoted by{κk}, as sets contain-
ing objectsri ∈ γ(I) whose euclidean distance must be less or equal to a givenǫ.
Algorithm 1 illustrates this process.

Algorithm 1 Algorithm for sequence processing

1: ∀ ri ∈ γ(I) : κ0
i ← {ri} , t← 0

2: repeat
3: t← t + 1
4: ∀i κt

i ← κt−1
i

5: ∀ κt
i, κ

t
j ∧ i 6= j , if ∃ rp ∈ κt

i ∧ rm ∈ κt
j : distance(rm, rp) < ǫ ⇒ κt ←

κt
i ∪ κt

j ∧ κt
j ← ∅

6: until ∀ i, κt
i = κt−1

i

7: κ← κi : i = argmaxj(|κj |)

After running this algorithm, it is assumed that the clusterκ with the biggest amount
of objects will contain the truck container code. We calculate the centre of mass of this
cluster. This centre of mass will be useful in the following algorithm, when we try to
match objects in one image with objects in another.

The centre of mass of a clusterκ is computed as the average coordinates in the
x andy axes of the centres of each of the objectsrp ∈ κi. By using this value, the
translation between the objects of different clusters can be done easily by computing
the translation between centres of masses. This is proposedso because clusters will
probably have a similar lay-out on the image.

4.6.2 Processing a sequence

A sequence of imagesΨ is a set of images ordered in timeΨ = {I0, I1, ...In−1}. The
result of segmenting the sequenceΨ is a set denoteb byγs(Ψ).

Each objectp in the solution setγs(Ψ) has an associated counter that tells how
many times it appears in different images, accessed asp.counter. An auxiliary func-
tion overlap(p, q) is used, this function returns1 in case objectsp andq overlap and
0 otherwise. Functionsymbol(q) returns the symbol associated to this object by the
classifier. The functioncentreOfMass(γ) computes the centre of mass of the objects
belonging to the setγ. Each objectp in the solution setγs(Ψ) which was not found at
least in half of the images of the sequence is discarded. The process is formalized by
algorithm 2.

4.6.3 Experiments

We used 51 real images to perform our experiments, corresponding to17 containers.
These images represent truck containers and have a size of720 × 574 pixels in grey
levels. They were acquired under real conditions in the admission gate of the port of
Valencia; in several days under different light conditions. Digits and characters can
be clear or dark and they appear in both plain and non-plain surfaces. We selected
randomly a set from a large amount of pictures and assured allvariability was repre-
sented in this set of pictures (sunny or cloudy days, daytimeor night-time, damaged
containers...).
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Algorithm 2 Algorithm for sequence processing
1: Given a set of imagesΨ = I0, I1, I2, ...In−1, we take a reference imageI0.
2: γs(Ψ)← γ(I0)
3: c0

x,y ← CentreOfMass(γ(I0))
4: ∀ p ∈ γs(Ψ) p.counter ← 1
5: for all Ii ∈ Ψ, i > 0 do
6: ci

x,y = CentreOfMass(γ(Ii))

7: ComputeT translation between pointc0
x,y andci

x,y

8: Apply T to γ(Ii)
9: ∀ p ∈ γs(Ψ), p.counter ← p.counter + 1 ⇐⇒ ∃ q ∈ γ(Ii) :

overlap(p, q) = 1 ∧ symbol(p) = symbol(q)
10: γ ← {q ∈ γ(Ii) : ∄ p ∈ γs(Ψ) : overlap(p, q)}
11: ∀ p ∈ γ′ : p.counter ← 1
12: γs(Ψ) = γs(Ψ)

⋃

γ′

13: end for
14: γs(Ψ) = γs(Ψ)− {p ∈ γs(Ψ) : p.counter ≤ n

2 }

In table 4.12, results are shown for some sequences. Under the column objects,
we show the number of valid objects in the container, that is,the number of characters
in the container’s code. Under columns image0 to image2, we show results for each
image on its own, first number stands for the number of valid objects found in this
image, and the second number stands for the number of noisy objects that could not
be removed; the addition of both numbers gives the amount of objects found in the
picture. In case a sequence had less than3 images, we filled the corresponding cells
with dashes. The last column, gives the same information after applying the sequence
algorithm.

Sequence Objects Img0 Img1 Img2 Process
H N H N H N H N

1 15 15 6 15 3 11 0 15 0
2 17 14 5 12 3 11 6 15 1
3 15 12 22 12 10 11 5 12 0
4 15 14 2 14 2 4 0 11 1
5 15 15 5 15 10 9 6 13 3
6 15 10 10 13 5 14 4 11 3
7 15 13 16 10 9 0 5 5 0
8 15 13 3 15 0 14 1 12 0
9 15 14 6 14 6 11 4 13 2
10 15 15 6 15 4 11 3 15 1
11 16 13 4 15 4 12 2 11 2
12 15 10 13 11 3 11 0 11 0
13 17 12 10 14 10 11 7 12 4
14 15 15 16 15 4 - - 15 0
15 15 14 13 14 12 13 9 14 2
16 17 16 1 16 9 - - 15 1
17 15 15 18 15 13 - - 15 2

Table 4.12: Comparison of results looking symbols in just one image or merging the
results of the complete sequence.

In each row we show results for each image of a sequence and theresult for the
sequence by applying the sequence algorithm. For instance,first row corresponds to
first sequence. For first image of this sequence, we obtain15 correct objects and6
noisy objects, that is,30% of the objects are noisy objects; for the second image we
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obtain again15 correct objects and3 noisy objects; on the other side, by applying
the sequence algorithm we obtain15 objects that correspond exactly to the container’s
code. In sequence8 however, the sequence algorithm loses3 characters of the solution,
and in any of the images of the sequence on their own we would have more hits, but,
on the other side, the result of the algorithm has no noisy object and it is difficult to
choose which picture in any sequence would have the best results.

Though using the sequence algorithm may be seen as adding a time penalty to the
execution, it may bee seen that, it is impossible to find all objects just with one image.
In addition, the process itself can be implemented in such a way, that time penalty
does not influence the final result. It could, for instance, bedivided into two different
processes, one taking pictures, segmenting them and locating objects on them; and
the other one, taking these objects and comparing them with the previous following the
sequence algorithm presented now. These two processes follow the producer-consumer
paradigm and that can be easily parallelized.

4.7 Conclusions

In this chapter, a process developed to segment and detect container codes in images
is proposed ([rosell06], [rosell06a], [rosell06b]. In order to detect the symbols of the
code with the highest precision, meeting real-time constraints, a system using the top-
hat operator, several segmentation techniques and filters is designed and tested.

In the experiments it is shown that parallelizing several segmentation techniques
has the benefit of reducing the number of lost objects due to the limitations of the
techniques, enhancing results.

After performing experiments, three well-known algorithms were chosen to seg-
ment images, merging afterwards their outputs.

The problem of a large amount of false positives is solved by using filters which
remove all the symbols in the output which do not meet problem-specific constraints.

Image processing is performed in two different processing branches, one for light
symbols and another one for dark symbols. By filtering the output of each processing
branch, we can determine which the correct tone was and obtain the container’s code.

Finally, fault tolerance is improved by performing this individual process on several
images representing the same truck container in different time snaps. An algorithm is
proposed which processes a sequence of images individually, and then gathers all this
information to extract the container’s code.



Chapter 5

Low level vision developments
for SENSE project 1

This chapter introduces the low-level video processing algorithms developed for an
intelligent node that is part of a distributed intelligent sensory network for surveillance
purposes (within the SENSE project). Details of the software architecture developed
for this node are given, together with the low-level video processing algorithms used,
and the results obtained after their implementation, as well.

The low-level software includes acquisition, segmentation, tracking and classifica-
tion of detected objects into three main categories [rosell08]: person, group of people
andluggage. The experiments performed with the aim of finding the best set of features
for classifying the objects are discussed in this chapter. The unit has to communicate
the classification results and the main features obtained using XML streaming to upper
levels, as well as the processed frames, using a JPEG stream.All these functionalities
are currently running in the built prototypes [benet10].

5.1 Introduction

Visual surveillance is an active research topic in computervision and some differ-
ent surveillance systems have been proposed in recent years:[wren97], [haritaoglu00],
[vsam99]. The aim is to develop intelligent systems that give support to humans in-
volved in surveillance, by calling their attention when abnormal situations are detected.
In order to achieve this goal, a real time analysis of input video is needed. In general,
the processing framework of visual surveillance in dynamicscenes includes the follow-
ing stages: modelling of environments, detection of motion, classification of moving
objects, tracking, understanding and description of behaviours, human identification,
and fusion of data from multiple cameras. Recent developments and general strategies
for all these stages are reviewed in [hu04].

Distributed smart cameras have received increasing focus in the research commu-
nity over the past years [fuentes03], [nguyen03], [hengstler07]. The notion of cam-
eras combined with embedded computation power and interconnected through wireless
communication links opens up a new realm of intelligent vision-enabled applications
[foresti05].

1Sixth framework programme priority IST 2.5.3 Embedded systems. Project 033279.
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Real-time image processing and distributed reasoning madeby distributed smart
cameras can not only enhance existing applications but alsoinstigate new applications
[mckenna00], [sacchi01]. Potential application areas range from home monitoring and
smart environments to security and surveillance in public or corporate buildings. Crit-
ical issues influencing the success of smart camera deployments for such applications
include reliable and robust operation with as little maintenance as possible.

In this line, the SENSE [sense04] project undertakes the task of developing a dis-
tributed intelligent network of sensory units that aid to describe their environment in a
cooperative way.

5.1.1 Goals and constraints

The goal of the process introduced in this chapter is to propose vision techniques aimed
to detect, track and give a first rough classification of people and objects standing or
moving in images acquired in areas of an airport. Specifically, the objectives are:

• To study vision techniques capable of detecting objects which do not belong to
background and producing the most accurate segmentation possible.

• To study the most suitable features in order to classify objects automatically into
one of the classesperson, group of peopleor luggagein images obtained in the
surveillance context.

The main challenges to cope with are,

• Cameras are stationary.

• The background is dynamic, it is affected by light changes but also by objects
that may be left intentionally in the background and must be,after a reasonable
period of time, considered as background as well.

• System must response to stimuli in real-time.

5.1.2 SENSE project

This section describes the video node in this SENSE architecture, together with the
results obtained with the algorithms developed for the video modality. Figure 5.1,
shows an schema of the general framework of video modality.

SENSE intends to overcome problems with current centralized networks. SENSE
uses a completely decentralized approach. The system consists of a number of identi-
cal, autonomous acting entities, or nodes, mounted at fixed locations. Each entity has
sensors with static sensing parameters (i.e. intelligent camera and microphones mod-
ules), gathers information from its surroundings, and interprets it. Consequently, each
entity can be seen as a standalone system. However, entitiescan share their knowledge
with neighbouring nodes, acquiring information indirectly from other sensors. By fus-
ing it with its own information, a global view is created autonomously.

Each node within the overall SENSE system will be able to process its own sensory
data and communicate with other local nodes to build a sharedunderstanding of objects
and events how they are related across nodes and modalities,and how they are related
to the environment. Key to this distributed intelligence isthe concept of a node inter-
acting with its neighbours. For example, as figure 5.2 shows,if a person walks in front
of a sensor in a given direction, then that person may also walk in front of a neighbour
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Figure 5.1: General framework of video modality.

sensor a short time later, in a direction influenced by the positioning of the node sensors
relative to each other. Frequent repetition of this patternwill result in the two sensors
detecting this correlation, and using it both to increase the dependability of their own
observations, and to establish common views which finally should help to learn about
for instance usual paths over sensor boundaries. The topology of the network is thus
developed over time, and reflects the degree to which nodes can correlate their obser-
vations and thus help each other to draw conclusions about their environment, rather
than a designer-defined notion of neighbourhood.

Figure 5.2: Two different cameras whose fields of view overlap. Note that the person
in the field of view of camera1 is also seen by camera2.

The components of a SENSE node are organized modularly in terms of their func-
tionality [benet10]. These components are:

• RDU (Reasoning and Decision-making Unit): This module correlates informa-
tion from all sensorial components in the node as well as information received
from other SENSE nodes working in the neighbourhoods. This module is the re-
sponsible of triggering alarms and selecting which information is offered to the
rest of SENSE nodes. It decides the working mode (e.g. indoors, parking area,
etc.) and propagates this modality to the sensorial components.
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• EVS (Embedded Video Subsystem): It acquires and processes video images
extracting features in a modal way. The features extracted are communicated
to the RDU to enrich the perceived state of SENSE node surroundings. This
component offers an interface with higher level software tocontrol the modality,
QoS and other special features.

• EAS (Embedded Audio Subsystem): It acquires and processes multiple audio
signals extracting features in a modal way. As the previous module, it sends its
computed features to the RDU and offers an interface to higher level software.

• WCS (Wireless Communication Subsystem): This module controls the wire-
less communications flow in a neighbourhood of SENSE nodes.

• CIM (Communications and Interface Module): This module is the hardware
and software communication interface that provides the wayto share information
and control among modules in a SENSE node.

Following sections outline the proposed system and the experiments performed
with it. Section 5.2 explains the algorithm used to segment images and section 5.3
describes the creation and update of the background model, section 5.4 shows the seg-
mentation schema followed, the following section discusses how the output of the seg-
mentation is filtered to remove as much noise as possible. Theprocess followed to
classify objects is explained in section 5.6. The tracking system is discussed in section
5.7 and finally, the experiments performed with the classification features, which are
the central contribution of this chapter, are discussed in section 5.9.

5.2 Proposed processing for video modality

The system proposed, in the SENSE context, will process images representing different
scenes, such as halls, corridors, different views of check-in desks and other facilities.
The main two issues to control are the motion of people and thelocation of unattended
luggage. In figure 5.3, some sample frames showing normal situations in an airport are
shown.

The process of detecting objects and providing them with a first rough classification
is called, in this application,video modality. This video modality passes information
to upper levels and is not focused to directly solve the problem of video surveillance.

The three classes of objects which this system deals with areperson, group of
peopleand luggage. Being classpersona single person with or without luggage and
group of peopleis a group of2 or more people with or without luggage.

An outline of the different steps involved in the scene processing is represented in
figure 5.4. Images will be captured by a camera and processed to detect differences
with the background, in order to locate objects in the image.

The technique chosen to segment objects in frames is background subtraction (see
chapter 3), which is a popular technique in video surveillance.

In order to remove false positives, regions detected in the segmentation step are
filtered by size. Afterwards, the remaining regions are classified and tracked.
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(a) (b)

(c) (d)

Figure 5.3: Sample images of typical recordings from the airport aim of the surveil-
lance.

Figure 5.4: The different phases of the proposed processingschema. After preprocess-
ing F (i), the segmentation stage provides the system with a set of regions of interest.
These regions are filtered according to problem dependent criteria and then classified
and tracked.
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5.3 Background modelling

The system acquires a sequence of framesF (0), F (1), ..., F (i) ordered in time with a
given rate of frames per second. At start time or after a restart the system computes
a background model denoted byB(i), using the median of the lastm frames, and the
system starts normal operation from framem + 3.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: First row shows background models built with, from left to right, mean
(figure 5.5a), median (figure 5.5b) and mode (figure 5.5c) of a set of consecutive frames
with activity. Note that some areas of the model are blurred due to this activity. Bottom
row shows models which were built with frames with low or nullactivity, from left to
right, mean (figure 5.5d), median (figure 5.5e) and mode (figure 5.5f); these models are
more accurate than those shown in the row above. In all cases,30 consecutive frames
were used to compute the models.

There are several methods proposed in the literature to construct a background
model as explained in chapter 3. In the first developments of the system, the mean,
mode and median of several images were used to compute background models of the
scenes. These models are characterized because they are unimodal, i.e., only one model
per pixel is considered. Usually, for indoor scenes it is thebest method, as authors of
[benezeth08] point out.

In our system, we model an initial backgroundB(k) taking a set of frames at start-
up,F (0), F (1), ..., F (k − 1) and computing,

B(k) = mean(F (0), F (1), ..., F (k − 1)) (5.1)

The background model is updated over time in a frame by frame basis, though for
indoor scenarios the update can be delayed several frames. The expression used to
update the model is,

Bx,y(i) = α ·Bx,y(i− 1) + (1− α)Fx,y(i) ,∀x, y (5.2)

beingα an update factor in the range[0, 1], which controls the speed at which new
information is included in the model.
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One of the problems of unimodal methods, is that they cannot determine whether a
suitable background model is built or not. If moving objectsare present in the frames
used to construct the background, blurred areas may appear as a mixture of the values
of the objects and the values of the background will be done. Figure 5.5 illustrates this
problem with some sample background models.

The quality of the background model determines dramatically how good or bad the
segmentations will be; thus, it is crucial being able to provide the system with a good
background model.

Current techniques rely on building a first model which will not ever become cor-
rupt, that is, the model gives up working correctly. Authorsof [toyama99] propose
maintaining a database of background models and choose the most suitable for the sit-
uation. However this may take to maintain an extremely huge database with different
models, though in their paper, authors consider only two different models per scenario.

This lack of control over the quality of the model is not addressed currently in the
related literature. In next chapter, section 6.2 introduces the concept of model’s quality
as defined in our algorithms.

5.4 Segmentation

Once the background is modelled, objects moving in the scenemay be found by using
background subtraction. Each incoming frameF (i) is subtracted from the background
modelB(i− 1). Instead of using the classical background subtraction,

dx,y(i) = |Fx,y(i)−Bx,y(i− 1)| (5.3)

we favour detecting pixels in dark areas by using,

d̄x,y(i) =
|Fx,y(i)−Bx,y(i− 1)|

Bx,y(i− 1)
(5.4)

ImageSx,y(i) is the thresholded version of̄dx,y(i) and can be defined as,

Sx,y(i) =

{

1, d̄x,y(i) > T
0, d̄x,y(i) ≤ T

(5.5)

The binary imageSx,y(i) contains the pixels which are different from the back-
ground model. Sets of connected pixels inSx,y(i) are considered as a global entity
called blob from now on, each blob represents a segmented object.

5.5 Filters

After segmenting the incoming frame and grouping pixels into blobs, blobs are filtered
in order to reduce the overhead of following steps, as shown in figure 5.4. A size
filter is applied to blobs discarding those which could represent noise. This is done
by removing all blobs whose area is under a given threshold orwhose dimensions are
small. For each blob the following two features are computed,

• BlobArea : number of pixels of the blob.

• Bounding box (Bbox): minimal rectangle that encloses the blob.
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Every object, whose dimensions are considered as valid by this filter, is classified in
the next step as belonging to the three classes considered inthe system:person, group
of peopleandluggage.

5.6 Feature selection

The extraction of meaningful features is an important issuefor any image processing
algorithm. In order to choose a suitable feature set, we tookin mind two important
considerations:

• The feature set should permit a quick computation and classification.

• Appearence, properties and differences between the three considered classes:
person, group of peopleandluggage.

After reviewing the literature and performing some informal laboratory tests, we
finally decided to work with two feature sets,geometric featuresandforeground pixel
density.

Both sets of features, geometric and foreground pixel density, attempt to extract the
essence of shapes and blob’s silhouettes. Unfortunately, shadows can connect separate
blobs, deform values associated with shapes and confuse classifiers. A previous work
was performed to determine whether removing shadows was useful in order to obtain
a higher classification rate even with the evident time penalty that would suppose.

After analysing the experimental results of the feature sets aforementioned, a new
feature,number of heads, was proposed in order to improve performance.

The following subsections discuss the features outlined inthe previous paragraphs.

5.6.1 Geometric features

Geometric features are mentioned in the literature discussing surveillance systems
[vsam99] and those which seemed to be the most efficient, suchas dispersedness,
aspect ratio, and others were chosen. The constraint of real-time response can only
be met if the most efficient in classification success rate andcomputational cost are
chosen. The selected features were the following:

• Dispersedness: this feature is computed for each blob as,

BlobPerimeter2

BoundingBoxArea
(5.6)

• Inverse dispersedness: The inverse of the previous one. It is computed as,

1

4π

BoundingBoxArea

BlobPerimeter2
(5.7)

in order to normalize it in the range[0, 1].

• Extent: the proportion of the pixels in the bounding box thatare also in the
region, computed as,

BlobArea

BoundingBoxArea
(5.8)
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• Solidity: the proportion of pixels in the convex hull that are also in the region;
computed as,

BlobArea

ConvexArea
(5.9)

Geometric features reduce the complexity of a blob’s silhouette into a simple result
that may be the same for very different silhouettes, which can be a disadvantage when
classifying different objects whose silhouettes are similar or produce similar results.

Figure 5.6: Samples of blobs representing objects of classes person, groups of people,
andluggageand their bounding boxes with a4×4 grid with a total amount of16 cells.

5.6.2 Foreground pixel density

Following ideas found in [gepperth05], a classifier based onthe average density of
foreground pictures in areas of the blobs was developed.

Paying attention to figures; either a person, groups of people, or luggage show a
different pattern of occupancy. It can be seen that, for instance, blobs representing
people exhibit a pattern of low foreground pixels density inthe areas of the bounding
box close to its borders; while luggage usually has a greaterdensity of foreground
pixels in nearly all the bounding box except in the top areas.This leads us to think that
the density of foreground pixels measured in a regional basis could be a good feature
set for classifying the blobs.

We compute these features by dividing each bounding box containing a blob into
a grid of n × m cells. For each cellCi, the amount of foreground pixels (Pi) and
background pixels (Bi) is calculated and the result of the division is stored in a vector
C = {C0, ..., Ci, ....Cn×m−1} where,

Ci =
Pi

Pi + Bi
(5.10)

As each bounding box is always divided into the same number ofcells, this method
already incorporates the requirement of scale invariance.This way, we have a set of
values pointing out where the majority of foreground pixelsis likely to be. For in-
stance, people are expected to have their maximum densitiesin the area of the body.
On the other hand, luggage is expected to have its foregroundpixels more uniformly
distributed. For groups, foreground pixels are expected tobe spread all over the bound-
ing box, but as for single people, they should be more concentrated in the mid-area of
the blob, where the bodies should be found. An example can be seen in figure 5.6.
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The features described so far can be used to train a classifierin order to distinguish
which class a blob belongs to, according to its silhouette. This works reasonably well
when blobs are very different. In our case, however, experiments will show that classes
personand group of peoplehave silhouettes which are difficult to model using the
previous features and, depending on how people inside the group is arranged and seen
by the camera, the silhouette of a person and of a group may be quite similar.

Figure 5.7: An illustration of the symmetry axis of a person approximated by the axis
that crosses through the maxima of the blob.

5.6.3 Number of heads

Considering the fact that some of the sought objects are people, either alone or in
group, the idea of detecting people is also considered, following approaches already
discussed in [cheng00] a [haritaoglu00]. In both works, vertical projections are used to
detect pedestrians and people standing in public areas. Other approaches can be found
in the literature, as the work discussed in [viola03] to detect pedestrians, but the aim of
simplicity induced us to try new methods.

In the case of a single person, figure 5.7 shows that an approximate vertical sym-
metry axis can be computed as the axis that crosses the body through its maximum.
Moreover, this axis can be related with the position of the head, if the person is stand-
ing. Following this approach, we use the superior part of theblob together with the
vertical projection to detect the vertical symmetry axes because, when people walks,
they create empty spaces between their legs that may misleadthe search of maxima.

For a given blob, the algorithm computes the vertical projection and the maxima
and minima of the superior silhouette. It ensures that each selected maximum is fol-
lowed by a minimum and vice versa. Figure 5.8 shows the superior silhouette of a
given blob and its maxima and minima. It can be seen that the superior silhouette is
computed only in the top third of the blob, which, approximately, corresponds to the
height where shoulders are expected to be. In order to avoid errors such as local max-
ima or minima because of noise, minima are not allowed to appear in a higher position
that any maximum and vice versa. In addition, each axis is associated with a value,

porV erti =
hX(i)

BlobHeight
(5.11)
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Figure 5.8: Vertical projection and superior part of the silhouette, showing some local
maxima and minima. On the right, the vertical projection of the blob. Points labelled
with anx are the same, the difference in the shape of each figure comes from the fact
that the one in the middle of the figure is the superior silhouette and the figure on the
right, the vertical projection of the blob.

beinghX(i) the value of the vertical projection in the coordinate of theaxis and
BlobHeight the height of the blob.

The valueporV erti measures the relative amount of blob located under each max-
imum, this way, maxima result of raised hands are removed if the value is conveniently
thresholded, as shown in the figure 5.9. It can be seen in the figure that the raised fist of
the person is detected as a maximum and neglected later due tothe its low associated
hX(i). Any maximumm which verifies thatporV ertm > 0.5, is considered a valid
maximum.

Figure 5.9: For a person with a raised hand the algorithm detects two possible max-
ima in the superior silhouette labelled with the symbol "x" in the figure, but when the
vertical projection is computed and the coefficientsportV erti are computed for each
possible maxima, the maximum located in the hand is discarded and only one maxi-
mum is considered as valid.

As mentioned previously, the position of each valid maxima can be considered as
the approximate location of a head, thus, it is easy to infer how many heads are visible
in the blob by counting how many valid maxima are discovered by the algorithm.

5.7 Object tracking

After motion detection, the next step is to track objects, that is being able to know
which objects of previous scene have moved and where to. Tracking over time typically
involves matching objects in consecutive frames using features such as points, lines or
blobs. In our system, each segmented blob is considered an object to track.
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We have implemented a tracking system based on the bounding box region. For
each blobx obtained in the motion segmentation process, its bounding box Rx

t is cal-
culated. We assume that the movement of the object in two successive frames is such
that the bounding boxes surrounding it in two successive frames will overlap each
other. Tracking is performed by checking which bounding boxes in the current frame
overlap with those in the previous one. This way, we can detect easily and with a good
confidence degree which blob has moved and where to, without any further test. This
method has been found to be effective in other approaches anddoes not require the
prediction of the blob’s position [fuentes03].

The function used to detect whether two different regionsR1 andR2 overlap can
be defined as,

O(R1, R2) =

{

1, if R1

⋂

R2 6= ∅
0, otherwise

(5.12)

whereR1

⋂

R2 represents the bit-wise logical and operation.
The following situations are considered:

• Blob stayed in the scene: when a bounding boxRx
i in the current scene over-

laps only one bounding box of previous sceneRy
i−1, then it is assumed thatRx

i

andRy
i−1 contain the same object. Figure 5.10 illustrates this case,expressed

mathematically as,

∃Ry
i−1 ,O(Rx

i , Ry
i−1) = 1 ∧O(Rz

i , R
y
i−1) = 0 ,∀z 6= y →

Rx
i stayed in the scene (5.13)

Figure 5.10: Object stays in the scene, though it moves, fromframe to frame
there is still the possibility of finding a temporal overlapping between consecu-
tive frames.

• New blob in the scene: When a BboxRx
i in the current scene does not overlap

with any otherRy
i−1 in the previous scene,Rx

i is supposed to be new blob. Figure
5.11 illustrates this case. Mathematically, this case can be expressed as follows,

∀Ry
i−1, O(Rx

i , Ry
i−1) = 0→ Rx

i is a new blob (5.14)
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Figure 5.11: An object enters the scene. Note that the frame in timei− 1 shows
an empty scene, in the following frame, there is a person thatentered the scene.

• A blob leaves the scene: When a blob of the previous sceneRy
i−1 does not

overlap any otherRx
i in the current scene, it is supposed thatRy

i−1 left the scene.
This case is the opposite to the previous one and figure 5.12 shows an example.
Mathematically, this case can be expressed as,

∀Rx
i , O(Ry

i−1, R
x
i ) = 0→ Ry

i−1 left the scene (5.15)

Figure 5.12: An object leaves the scene. Note that in the frame in time i − 1
there is a person in the scene and in the following frame it is not there any more.

• Two or more blobs join: When two or more different bounding boxes Ry0

t−1,
Ry1

t−1, ... ,Ryn

t−1, n ≥ 1 segmented in frameF (t − 1) overlapped a single blob
Rx

t segmented in the frameF (t), we say that they have joined. Joints happen
when people are picking a suitcase up or people are crossing or joining. Figure
5.13 shows an example with two people that move close one to each other and
finally, collapse into one only object.

∃{R
yj

i−1}
n
j=0 /

n
∏

j=0

O(Rx
i , R

yj

i−1) 6= 0→

{R
yj

i−1}
n
j=0 joined in Rx

i (5.16)
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Figure 5.13: Two people which are moving close one to each other in frame
F (i− 1) finally collapse into one in frameF (i).

• Two or more blobs split: When a single BboxRy
i−1 in frameF (t−1) overlapped

with two or more different blobsRx0

i , Rx1

i ... Rxn

i , n ≥ 1 in current scene, we
say that they have split. Splits happen when someone leaves asuitcase or a
group of people unravels. Figure 5.14 illustrates this casewith two objects. This
situation can be expressed as,

∃{R
xj

i }
n
j=0 /

n
∏

j=0

O(R
xj

i , Ry
i−1) 6= ∅ →

{R
xj

i }
n
j=0 splited from Ry

i−1 (5.17)

Figure 5.14: Two people which were considered as one move apart and reveal
themselves as two different objects.

The joint/split of blobs corresponds to situations such as people crossing, people
interchanging material or people leaving or picking up something, for instance.

A Kalman filter [kalman60] is also used in order to perform object disambiguation
when objects cross in the scene. The prediction of new position is compared to object’s
position in the case of two or more blobs splitting.

Once blobs are located in the scene, they are given a unique label or keep the one
they had previously. This label is used by higher levels to identify them in each camera.
Blobs are called from now then objects. In the next step, for each object a membership
probability for each class are calculated in order to ease the final classification done by
higher processing levels.
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Figure 5.15: Some of the blobs included in the dataset used inthe experiments. There
are samples of the three considered classes,person, group of peopleandluggagerepre-
sented in the figure. These blobs were manually labelled after automatic segmentation.

5.8 Blob dataset

The database used in the experiments was designed to containimages of the objects
which were expected to be found in the airport. The data consist of blobs extracted
from several videos of different lengths recorded in the hall of our university in different
days with different light conditions. Each blob is associated with a bitmap crop of its
bounding box from the real video in RGB space and in grey levels. Together with each
blob, we kept the coordinates of its bounding box in the imageand the frame in which
it was captured, so it was easy locating in the sequence each image. Each object was
labelled manually by us as belonging to one of the classes;person, group of people,
andluggage. Blobs were classified according to the following rules:

• Blobs are classified according to the object it represents, as person, group of
people, andluggage.

• Every blob representing a person with or without luggage is labelled asperson.

• Only objects with at least2/3 of their upper part of the figure were included in
the database.

• A blob representing more than two people is considered to be agroup of people,
provided that at least2/3 of the people are visible.

We kept a database of2369 images extracted from the sequences, corresponding
to 1371 images of classsingle people, 367 of classgroup of peopleand631 images of
classluggage.

In order to apply both algorithms, we kept a background modeleither in RGB and
grey tone. The background model was updated, for each coordinate, following the
running Gaussian average approach discussed in section 3.6in chapter 3. RGB and
grey tone distances were computed using euclidean distances and a single threshold to
decide how to classify pixels as foreground or background.
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Person Group of people Luggage Total
Blob dataset 1371 367 631 2369

Training data.80% 1097 294 504 1895
Test data.20% 274 73 127 474

Table 5.1: Distribution of objects per class and approximate size of the training and
test sets used in the experiments.

Figure 5.15 shows some sample blobs from the database. Table5.1 shows the
distribution of blobs per class in the dataset, it can be seenthat the size of class person
is larger than the others, this reflects the proportion of theobjects of different classes
in the sequences.

5.8.1 Evaluation of features with blob dataset

In order to evaluate which of the features proposed in section 5.6 is the best that can be
used to classify objects, a set of experiments was performed. Several experiments were
made considering only the objects in the blob database, the aim of these experiments
was:

• test the suitability of the dataset.

• check that the chosen features were, at least, consistent.

• find out the best configuration for the number of features to beused.

The evaluation criteria for the features are:

• the success in the classification of objects and the interclass confusion.

• the time needed to compute each set of features.

• the time needed to classify objects.

The experiments were performed with the features describedin section 5.6 using
a k-NN classifier in all cases, therefore, the most suitable value of k is sought for.
Experiments may be divided into off- and on-line, as some were performed with the
database and others with real sequences. With the geometricfeatures, the experiments
were aimed to test the validity of the considered features toclassify blobs. Experiments
with foreground pixel density features are twofold. A first goal was obtaining a measure
of how many cells would be necessary to classify correctly the blobs in the database.
On the other hand, once the amount of cells was fixed, it was also necessary to obtain
the optimal amount of neighbours for thek-NN classifier used. In both cases, the
experiments were performed with the database of blobs and also using the shadow
removal algorithms. They were performed by building a training set using the80% of
the total amount of samples randomly chosen and a test set with the remaining20% of
samples. For each value ofk, the experiment was performed100, recomputing each
time the training and test set in order to achieve statistical independency.

Grid density features were extended in order to allow different granularity in spe-
cific parts of the blob. In this case, the experiments performed were also aimed to find
the optimal configuration of cells with the blobs in the database, without considering
shadow removal algorithms.
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Finally, experiments were performed with the head detection algorithm described
in section 5.6.3 together with the features inversed dispersedness and extent. Results
of this combination are better than the previous in time consumption and memory re-
quierements.

Figure 5.16: Classification rate of the blob dataset with andwithout shadows using
geometric features for different values ofk.

5.8.2 Experiments with geometric features

Each blob is represented with a vector of3 features: dispersedness, extent and solidity
of the blob. As said before, classification is performed by using ak-NN classifier. The
training set was built choosing randomly samples of the database up to a size equal to
80% of the total amount of samples, the remaining20% was kept for testing. For each
value ofk, each experiment was performed100, recomputing each time the training
and test set in order to achieve statistical independency.

In figure 5.16 we show the global results of object classification for different val-
ues ofk and for each feature set. Each value in the plot corresponds to the average
of 100 experiments performed with a given value ofk. Results are computed using
geometric features with shadows left and with shadows removed. It can be seen for
geometric features that fork = 1 the classification rate is68%, for higher values ofk,
the classification rate rises and stays between87% and90%.

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Person 36.25% 48.39% 48.39% 50.73% 51.69% 54.51% 54.51% 54.51%

Luggagge 0.22% 0.09% 0.02% 0.17% 0.12% 0.08% 0.09% 0.08%

Table 5.2: Comparison of the confusion rates between classgroups of peopleand
classespersonandluggageclasses using geometrical features.

From figure 5.16 can be also seen removing shadows, either using grey tone images
or RGB images, has not a deep impact in classification performance, about5% in the
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Figure 5.17: Classification success rates withk-NN using geometric features, each line
correspond to results for one class. In this case, shadows were not considered. For
classespersonand luggagethe chosen features perform quite well but, on the other
side, It can be seen that forgroup of peopleclass shows low values.

best case using the proposed geometric features. It is considered that the effort devoted
to remove shadows is not worth, considering the time penaltyintroduced by the shadow
removal algorithms.

Though global results seem promising, it also necessary to test what the behaviour
for each single class is. It can be seen in figure 5.17 that classespersonand luggage
have a good classification success rate for both feature sets, but thegroup of people
class shows low values.

Table 5.2 shows the confusion between classespersonandluggagewith classgroup
of peoplefor different values ofk. It can be seen that classpersonhas a big rate of
confusion withgroup of people. This could justify the low success rate shown for class
group of peoplein figure 5.17.

5.8.3 Experiments with foreground pixel density features

Some experiments were performed aimed to establish the optimal number of cells in
which a blob should be divided before performing experiments with this feature. This
experiments were conducted by dividing the bounding box of ablob into an identical
number of rows and columns, different sets of2 × 2, 4 × 4, .., 10 × 10 cells and
classifying objects using ak-NN classifier, as in previous section, experiments for each
grid configuration and value ofk are represented in the plot with the average of100
repetitions of the experiment.

In figure 5.18 results for different values ofk and different sizes of square grids
are shown. Though the7 × 7 yields the best results, we considered that the4 × 4
grid was the one that best fitted our needs, because it is the smallest grid from which
classification rate starts stabilizing having the same behaviour for all the values ofk
used in the experiments.
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Figure 5.18: Results of classification experiments withk-NN, with different values of
k and different cell configurations. The valuen is the number of cells in which the
blob was divided, the same vertically and horizontally. Thus the grid considered range
from 1× 1, 2× 2 up to9× 9 cells. As expected, the best values are obtained fork = 1
with a difference of only6% between the best values and the worst, corresponding to
k = 6.

In figure 5.19, we show results for foreground pixel density with shadows and with
shadows removed, using a grid size of4× 4 with different values ofk. As it happened
with geometrical features, in this case the low increase in classification rate does not
justify the time penalty introduced by the shadow removal algorithms.

Comparing figure 5.19 to figure 5.16, it can be noted that foreground pixel den-
sity behaves completely different to geometric features and show a good success rate
(95%− 92%) for values ofk between1 and5 and then decreases ask grows.

Another issue that must be compared, is how the features perform for each of the
considered classes as done in previous section. Figure 5.20shows the performance of
foreground pixel density features for each individual class. Classpersonandluggage
have a good classification success rate for both feature sets, while classgroup of people
behaves better than with geometric features.

Table 5.3 shows the confusion between classespersonandluggagewith classgroup
of peoplefor different values ofk. It can be seen that classpersonhas a big rate of
confusion withgroup of people.

Summarizing the information in tables 5.3 and 5.2, we can conclude that the highest
confusion occurs between classespersonandgroup of peopleand increases ask grows.
Confusion betweengroup of peopleandluggageis very low. In general, results point
out, in any case, that both feature sets are valid for classifying classespersonand
luggagewith a good degree of accuracy. With geometric features we obtain a high level
of stability and with foreground pixel density a slightly higher percentage of success.

It may be seen in figures 5.16 and 5.19, that by removing shadows we increase the
classification success rate; although the gain does not justify the computational effort
required. For instance, for a movie in which the complete segmentation-tracking loop
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Figure 5.19: Classification rate usingk-NN of blobs with, and without shadows, using
the matrix of foreground pixels density. Grid size was4× 4. It can be seen that using
the shadow removal algorithms does not improve significantly the performance of the
features.

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Person 0.48% 0.89% 11.06% 13.79% 15.76% 16.33% 15.93% 16.11%

Luggage 0.02% 0.02% 0.01% 0.04% 0.14% 0.27% 0.56% 0.89%

Table 5.3: Comparison of the confusion rates between classgroups of peopleand
classespersonandluggageclasses using foreground pixel grid density features.
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Figure 5.20: Classification success rates withk-NN using foreground pixels density
features and grid size4 × 4. Each line corresponds to results for one class. Results
are obtained withk ranging in [1, 15]. It can be seen the the amount of objects of
classpersoncorrectly classified is about95%, in this case, the class with the worst
classification rate isgroup of people.

takes up to0.91 seconds, and there are an average of1.8 objects per frame, the shadow
removal algorithm in grey levels takes up to14.03 seconds on average per frame; and
the shadow removal algorithm in RGB space takes up to30.10 seconds on average per
frame. From these results, removing shadows in both cases isimportant if we want to
achieve optimal accuracy, but, as plots and time results show, maybe the gain will not
be worth the effort.

Figure 5.21: Sample division of the silhouette of a person, agroup of people and a
suitcase in the three unequal regions, head, body and legs.
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5.8.4 Foreground density with different granularity

A step forward with foreground density features is giving more importance to some
parts of the object over others. This is due to the fact that some parts of the blob may
be more significant when distinguishing it from blobs of other classes. This justifies
that a bigger amount of cells can be used to represent a concrete area of the blob, having
this way a more accurate representation of this area. For instance, the central part of
the blob of a person will be quite similar to the central part of the blob of a suitcase,
however, the lowest parts will have difference occupancy patterns.

Having different granularities can be achieved by dividingeach object in three un-
equal regions, which we will call from now on,head, bodyand legs, being the head
region the top of the object, legs region will correspond to the bottom of the object and
body region will be the rest. Figure 5.21 shows an example of the silhouette of blobs
representing a person, a group of people and a suitcase divided into three different
regions.

Figure 5.22 shows some blobs with different granularity of cells for regionshead,
bodyandlegs. Stripped lines separate the three different regions and straight lines de-
limit cells in regions. It is clear that head region may be more useful for distinguishing
instances, for example, of classespersonandluggage.

Figure 5.22: Samples of person, group of people, and luggagewith different divisions
in the3 regions defined as head (granularity4 × 2), body (granularity2 × 2) and legs
(granularity3× 3).

With this schema, we divide each region into a grid ofnr×mr cells, wherer stands
for the region (head, body or legs), being the grid size of each region independent of
the rest. We then perform the same calculations for each cellas in expression 5.10.

Off-line experiments were made in order to test the validityof having more gran-
ularity in some parts of the blob over others. In separated tests, we decided that the
top20% blob would correspond to the head region, the bottom40% blob would corre-
spond to legs, and the rest to the body. Then we made experiments varying the values of
nhead, mhead, nbody, mbody, nlegs andmlegs in the range1..20, these values represent
the number of cells in which each region is divided into.

As in previous experiments, ak-NN classifier was trained using80% of the database
and the test set was composed of the other20%. The experiments were repeated100
times to ensure statistical independence of the selected samples. In table 5.4 we show
confusion tables for different values ofnr, mr, andk = 5, these results shown are
the best obtained with these experiments. Results point outthat not always a bigger
granularity in any of the regions yields better results thanhaving an equal distribution
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of cells.

Features 93 features 101 features 27 features
Cells 3 × 4, 7 × 8, 5 × 5 5 × 2, 8 × 7, 5 × 7 3 × 1, 4 × 3, 4 × 3
Class Person Group Luggage Person Group Luggage Person Group Luggage
Person 98.1% 4.5% 0% 98.5% 3.3% 0% 98.2% 7.3% 1.0%
Group 1.9% 95.5% 0% 1.5% 95.2% 0% 1.8% 92.7% 0%

Luggage 0% 0% 100% 0% 1.5% 100% 0% 0% 99.0%

Table 5.4: Confusion tables for different division granularities with k = 5. The di-
agonal of each table represents the rate of successful classifications. The number of
features that the different granularities handle is specified by the rowFeatures, row
Cells specifies how they are organized. For instance, the first classifier computes93
different granularities.

The main issue we took into account when selecting the best arrangement, was the
performance with classgroup of people. As we learned in the previous work, objects
belonging to this class are easily confused with instances of classperson, and it is
easy to see that, depending on how people are arranged insidethe group (for instance,
with occlusions), a group may be confused with a person. The arrangement of cells
(nhead = 3,mhead = 4, nbody = 7,mbody = 8, nlegs = 5,mlegs = 5) was the chosen
one, with a total amount of93 features. Results shown in table 5.4 improves slightly
the performance with the classgroup of peopleover the performance of the classifier
with the arrangement3× 1, 4× 3, 4× 3.

Confusion betweenluggageandgroup of peopleis nearly reduced to zero with this
new schema and confusion of classespersonand group of peopleis also very low;
improving results obtained without forcing different granularities in different areas of
the object.

The performance of the foreground pixel density features toseparate objects of
classespersonand group of peoplehas the disadvantage of using a big number of
features, which can be expensive to compute if a big number ofblobs are in the scene.

Figure 5.23: Some of the blobs included in the new database used in the experiments.
There are samples of the three considered classes,person, group of peopleandluggage
represented in the figure. These blobs were manually segmented before inserting them
in the database.
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5.8.5 Experiments with head detection algorithm

Figure 5.24: Statistical distributions of feature inversedispersedness for classeslug-
gageandpersonfor blobs in the database.

Either with geometric features or with foreground density features, confusion be-
tween classespersonandgroup of peopleis reduced but at the expense of computing
a big amount of features, with its associated time penalty. Previous experiments show
that using shadow removal algorithms does not improve significantly the classification
rate of the features considered.

Figure 5.25: Statistical distributions of feature extent for classesluggageandperson
for blobs in the database..

A new database was built segmenting by hand the objects belonging to the con-
sidered classes. Figure 5.23 shows some sample objects of this database. The aim
of this database was providing us with more accurate blobs onwhich new features
could be tested. This database contained631 blobs corresponding to classperson, 101
blobs corresponding to classgroup of peopleand991 blobs of classluggagefor a total
amount of1723 objects. Table 5.5 shows the distribution of objects according to the
represented classes.

An alternative approach to classification of the three classes at a time, is taking
advantage of individual and exclusive features that may help classifying one type of
object. For instance, classesgroup of peopleandpersonare easily distinguished by the
number of heads of the blobs.

The features inverse dispersedness and extent were computed all the blobs in the
new dataset, figures 5.24 shows the probability density function of objects depending
on their values of inverse dispersedness. For instance, if ablob yields an extent value
of 0.6 it is quite more probable that the blob belongs to classpersonthan to class
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Figure 5.26: Statistical distributions of feature inversedispersedness for classesgroup
of people, luggageandpersonfor blobs in the database.

luggage. On the other side, figure 5.25 shows the probability densityfunction of objects
depending on their values of extent. Figures 5.26 and 5.27 show the probability density
of objects for all classes, it can be seen that for both features, classgroup of people
overlaps areas belonging either to classpersonor classluggage.

Person Group of people Luggage Total
Blob dataset 631 101 991 1723

Training data.80% 504 80 792 1378
Test data.20% 127 21 199 345

Table 5.5: Distribution of objects per class and approximate size of the training and
test sets used in the experiments.

The information obtained from the four plots discourages the use of these features
to distinguish the three classes, but induce to think that a classifier can be built to
separate classespersonandluggageusing the features extent and inverse dispersedness.
Using such a classifier has the advantage that only contains two features, being very
fast to compute. Moreover, the feature vectors of inverse dispersedness and extent
were reduced using the multiedit-condensing [hart68], [devijver82] technique. The
final database contained11 blobs of classpersonand7 blobs of classluggage. Blobs
of classgroup of peoplewere not considered any longer in this database.

On the other hand, in order to separate classespersonand group of people, the
head detection algorithm proposed in section 5.6.3 is used.The algorithm described
in section 5.6.3 for counting the number of heads in a blob wastested with a set of
experiments. The goal of these experiments was knowing how accurate the algorithm
is and in which cases it could be expected to fail. Before the experiments, all the
blobs in the database corresponding to the classgroup of peoplewere labelled with the
number of heads that they contained. Then the results obtained with the experiment
were checked against the real amount of heads.
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Figure 5.27: Statistical distributions of feature extent for classesgroup of people, lug-
gageandpersonfor blobs in the database..

The amount of heads expected to be detected in the groups ranged between2 and
4, having60 blobs of2 members,30 blobs of3 members and11 blobs of4 elements.
The error rate of the head detection algorithm is shown in table 5.6. It can be seen that
for blobs of2 members the success is complete. As the number of members increase,
the accuracy decreases. As figure 5.28 shows, occlusions andexcessive separation of
head heights inside the blobs are the main sources of inaccuracy. In both cases, the
algorithm detects one head less than the real number.The gapbetween the bottom of
the bounding box and the legs of the person whose head is missed, is responsible of the
failure, producing a number of maxima lower than expected. This effect occurs mainly
in big groups (groups containing more than6 people) making it difficult the accurate
computation of the number of heads with the information of just one camera.

(a) (b)

Figure 5.28: Some blobs representing groups, it is remarkable that separation of head
height inside the blob (blob on the left), and excessive overlapping (blob on the right),
avoid the algorithm to detect exactly the amount of people inthe blob. In both cases,
however, the error was just a person left.
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Number of heads found Group of 2 people Group of 3 people Group of 4 people
Total amount 60 30 11

1 head 0% 0% 0%
2 head 100% 40% 9.1%
3 head 0% 60% 63.6%
4 head 0% 0% 27.3%

Table 5.6: Percentage of successfully detection of heads for blobs representing groups
of people, depending on the amount of heads expected. Groupsin the database vary
from 2 to 4 members.

They were performed by building a training set using the80% of the total amount of
samples randomly chosen and a test set with the remaining20% of samples. For each
value ofk, the experiment was performed100, recomputing each time the training and
test set in order to achieve statistical independence.

Then, with the aim of classifying objects using the featuresnumber of heads, ex-
tent and inverse dispersedness a classification algorithm is designed joining the head
detecting algorithm to the reduced training set of geometric features, see algorithm 3.
Performance of this algorithm with the objects of the database can be found in table
5.7. This performance is measured by dividing the database into two disjoint sets, the
training set built with the80% of the total amount of samples randomly chosen and a
test set with the remaining20% of samples. For each value ofk, the experiment was
performed100, recomputing each time the training and test set in order to achieve sta-
tistical independence. Results in this case are more satisfactory either for the database
as for real-videos shown in table 5.8.

Algorithm 3 A two step decision tree combining the feature number of heads in the
root to distinguish objects of classgroup of peoplefrom the rest and, at a second level,
ak-NN classifier trained with features extent and inverse dispersedness to classify ob-
jects of classpersonandluggage.

1: if headNumber(blob) >= 2then
2: blobClass← GROUP
3: else
4: blobClass← k-NN( blob.inverseDispersedness(), blob.extent() )
5: end if

k-NN k-NN + number of heads
Person Group Luggage Person Group Luggage

Person 89.5% 59.2% 16.3% Person 97.4% 4.0% 6.3%
Group 2.5% 22.9% 0.01% Group 0% 96.0% 0%

Luggage 7.9% 17.9% 83.5% Luggage 2.6% 0% 93.7%

Table 5.7: Columns underk-NN classifier were classified using only ak-NN trained
with the features extent and inverse dispersedness andk = 1. On the right, the results
of classifying the new database using also the feature number of heads as described in
the algorithm 3. It is quite evident the improvement in the classification of the three
classes, specially regarding classgroup of people, if the k-NN classifier together with
the number of heads feature is used.

Performance of algorithm 3 with the objects of the database shown in 5.23 can be
found in table 5.7. After visual analysis of the results we must emphasize that most
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of the errors found in the classification phase are caused by poor segmentations that
distort the shape of blobs.

5.9 Experiments with sequences

Also experiments with sequences were performed using the algorithm 3. Working data
are videos recorded in different days and hours in an european airport. These videos
show different areas of the airport taken from one or two vision angles, partially cov-
ering the same area and do usually have between900 and 8000 frames. An effort
was done to extract background models for each scene in orderto process it simulat-
ing real-time surveillance. In section 5.3, more details about how these models were
created may be found. The sequences have been chosen trying to capture different
real life operation situations. Figure 5.29 shows one of theframes processed in these
experiments.

Figure 5.29: Image obtained from a client application showing information provided
by low level video processing services. Each detected object has a label with the object
identifier number and the assigned membership probability.Each BoundingBox is
drawn with a colour that represents the class (green for class luggage, red forgroup
and blue forperson) and the detected heads have been marked with a cross.

Experiments are evaluated at the end of the process, that is,only if an object is
successfully segmented and classified, it is considered to be a success. In any other
case, it is accounted as a failure.

Also, measuring the validity or not of the thresholds used inthe segmentation is
very difficult due to the variety of scenarios that may be faced by the system. These
thresholds should be set manually for each individual situation.

Table 5.8 shows the classification results obtained with thealgorithm 3. Experi-
ments were performed using two different values fork in thek-NN classifier. Results
seem to be slightly better for classluggageif k = 1 is used.

Taking into account the great variety of scenes and working conditions under which
have been made these tests the results of the low-level classification can be considered
as reasonably good.



5.10. CONCLUSIONS 97

K = 1 K = 3
Person Group Luggage Person Group Luggage

Person 86.8% 15.2% 6.8% Person 86.8% 15.5% 8.2%
Group 13.0% 84.5% 0.0% Group 13.0% 84.5% 0.0%

Luggage 0.2% 0.0% 93.2% Luggage 0.2% 0.0% 91.8%

Table 5.8: Results of experiments for test videos using the decision tree described in al-
gorithm 3. Results are given relative to the total amount of objects correctly segmented
and expected to be found of each class.

5.10 Conclusions

A surveillance system was developed in this chapter based onframe differencing and
background subtraction with a per-frame classification of objects. The output is filtered
to remove noisy blobs. Blobs in the scene are tracked over frames by the application.
In this case the classification process is more difficult thanthe one discussed in chapter
4, due to the fact that objects move and may vary their shape, making it very difficult
to train a classifier based directly on shapes. The main contribution of the chapter is
the features used to classify the blobs [rosell08], [benet10].

In order to classify objects in the scene, different featuresets were tested: geo-
metric features, foreground pixel density and a head detection algorithm. Experiments
were performed in order to quantify if reducing shadows in blobs could improve clas-
sification results, but results made us conclude that using shadow removal algorithms
does not improve significantly the classification rate of thefeatures considered.

Geometric features showed a poor global performance due to the fact that thegroup
of peopleclass is often misclassified asperson, althoughluggageandpersonclasses
are classified satisfactorily. Foreground pixel density had a better performance with
less interclass confusion, although performance decreases whenk increases, leading to
a poor performance in bothgroups of peopleandluggageclasses. Geometric features
seem to be more stable than the foreground pixel density.

New experiments were considered in order to improve resultsfor foreground pixel
density feature. In these experiments, different granularities were assigned to three
different parts of the blob. In this case, contrary to the what was expected, results
point out that not always a bigger granularity in any of the regions yields better results
than having a equal distribution of cells. In fact, the distributions with best results had
the disadvantage that their performance separating objects of classespersonandgroup
of peopleused a big number of features, which can be expensive to compute if a big
number of blobs are in the scene.

Finally, a solution based on joining a head detection algorithm together with ak-
NN classifier trained with the features extent and inverse dispersedness performs better
than the rest. In this case, the features were sought to find the most notable differences
between each pair of classes. For instance, the head detection algorithm provides the
system with a clean and reliable method to separate classespersonandgroup of people.
On the other side, inverse dispersedness and extent discriminate well objects of classes
personandluggage. By using the algorithm 3 the rate of object recognition in, both off-
line and on-line experiments, is quite high. Objects of class personandluggagefrom
the database obtain, respectively, a classification rate of97.4% and93.7%, for objects
of classgroup of peoplethe classification rate is about96.0%. In on-line experiments
rates are also equally promising in the tested sequences, with a minimum rate of84.5%
of successfully classified objects of classgroup of people.
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Chapter 6

Background modelling and
object detection

In this chapter we develop two algorithms designed to model scenarios and detect ob-
jects, with the aim of being able to give a good performance indemanding scenarios.
BAC algorithm [rosell08a] creates or restores a backgroundmodel based on the be-
haviour of pixels in successive frames and, at the same time,performs a segmentation
of objects in the scene. BAC has the novelty that yields a confidence value for the
obtained background. BAC is extended with two versions developed with the aim
of permitting colour processing [rosell09] or multi-modalsupport (MBAC [rosell10]).
Also, a novel background subtraction method is discussed, called fuzzy background
subtraction. This later approach eludes the use of fixed or probabilistic thresholds
usually found in the traditional background subtraction methods and use of per pixel
foreground and background probabilities which can be useful for further processes. Fi-
nally, we propose a method that by means of BAC computes automatically the input
parameters for a background modelling algorithm [rosell10b]. The performance of the
proposed algorithms are evaluated and compared to well-known techniques.

6.1 Introduction

In chapter 3, section 3.3 offers a thorough description of different background mod-
elling algorithms available in the literature. Although the methods mentioned there
obtain good results in the tested scenarios, in general, allof them expect working in
scenarios with low or null activity to build their first background model. One of as-
pects which we miss in these approaches is that there is no measure of when a suitable
background is achieved.

Most of the methods proposed in the literature for background subtraction operate
mainly in two steps. The first step consists in subtracting aninput frameF (i) from
a background modelB(i − 1) and, the following step consists in obtainingB(i), the
background model in timei. Usually, both steps expect several parameters to be tuned.
For instance, the subtraction method needs a criterion to decide when two pixels are
considered equal or not. This criterion is usually a comparison between the difference
and a given threshold. In the case of the update step, decisions about how often should
the model be updated or how often should previous backgroundvalues be forgotten are
also parameters to be taken into account.

99



100 CHAPTER 6. BACKGROUND MODELLING AND OBJECT DETECTION

Besides the different approaches to background modelling,another issue related to
this technique is the detection of corrupt models, that is, models which are not useful
any more for surveillance purposes. A corrupt model yields false segmentations and it
is important being able to detect and correct them. Few papers in the literature address
this issue, as far as authors of this chapter are concerned. In the literature it is generally
assumed that changes in the background will occur smoothly and abrupt changes are
not considered. In [toyama99], authors propose maintaining a database of models. In
the case the background model is considered to be corrupt, a search in the database
should be enough to find the most suitable model.

6.1.1 Goals and constraints

In this chapter we propose techniques aimed to answering thequestions mentioned
above:

• develop techniques that permit obtain a good background model no matter if
there is activity in the frames used to build it and without previous assumptions
about the scene

• design a measure of quality of the background models. This measure would indi-
cate how confident or reliable a background model and could used to determine
when a background model is useless. A background model whichdoes not yield
a proper segmentation of the input frame.

The main constraints that the algorithms have to face is,

• they must work with minimal human intervention, that is, as autonomously as
possible and with a minimal set of parameters

• they should work with minimal resource needs

• they should build a background model without human intervention even in scenes
with high activity

• they should detect automatically if the background model isnot valid any longer
and reconstruct it, avoiding the storage of background models as in [toyama99]
as it would be incompatible with the memory constraint

In BAC we study the effect of changing the classical measure of distance for a
similarity function, discussed further in section 6.2. Based on this algorithm, two ex-
tensions are proposed in sections 6.3 and 6.4. The former is an extension of BAC to
allow the use of several models per pixel and the latter an extension of BAC using RGB
coordinates to describe each pixel with just one model.

The second, section 6.5 introduces a background subtraction algorithm that com-
putes a global threshold on the fly based on the intuitive ideathat similar images should
yield, in average, low distances when subtracted. For both algorithms, a measure of
confidence, at pixel and model level, is defined and a way to detect corrupt models is
also described.

Finally, in section 6.6 the performance of the proposed algorithms are evaluated
and compared to well-known techniques. The algorithms introduced in this paper are
combined with the classifier discussed in chapter 5. It is also explored the possibility of
using BAC as an algorithm to compute properties of the scene and an initial background
model that can be further used by other algorithms.
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6.2 Background adaptive with confidence (BAC)

In this section, we propose an algorithm that does not use only statistical properties of
pixels, but also their behaviour, to build the model. As stated in the introduction, the
aim is reconstructing or creating a background model from the scratch, with no previ-
ous assumption about the scene activity. Similarity with the background and motion
criteria are used to determine how the model must be updated.

Our algorithm considers a sequenceF (0), ..., F (n) of consecutive grey scale frames,
in which any pixelp ∈ F (j) must belong either to foreground or to background and
builds a background modelB(i). In the first frameF (0) it is impossible to classify pix-
els as background or foreground, as no further information is given. To decide which
pixels may be used to update the background model and which not, a new similarity
and motion criteria is defined in section 6.2.1.

The quality of the background model is computed according toa pixel-wise value,
that indicates in the range[0, 1] how stable the background model in that location is.

Figure 6.1: Plot of function similarity with different slopes, slope1 corresponds to
κ = 10, slope2 corresponds toκ = 20 and slope3 toκ = 30.

6.2.1 Similarity criteria between two grey pixels

Similarity between two pixels is usually tested by comparing the difference of their
grey levels with a threshold. We propose to translate into a function the intuitive idea
behind "very similar" or "similar" by using a continuous function defined as, b

S(p, q) = e−
|p−q|

κ : ℜ− > [0, 1] (6.1)

beingp andq grey levels of two pixels,κ is a constant determined experimentally.
This way, a difference degree and not an absolute differencevalue is calculated for
pixels similarity, having values ofS(p, q) close to1 for similar pixels and close to0
for very different pixels.

Figure 6.1 shows the plot ofS(p, q) for distances in grey tones in the range[0, 255]
for different values ofκ. It can be seen that increasing the value ofκ, increases the
amount of distances values which yield similar values for function S(p, q). In our
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case, we find it better to use a restrictive value forκ for two reasons, first, because
small regions induced by camera noise can easily be removed aposteriori from the
segmentation result and second, because it is better havinga noisy input that confusing
very distant grey tones.

6.2.2 Motion and similarity with the background

By using equation 6.1, it can be measured the similarity of each pixel with the back-
ground. Similarity between a pixelpx,y ∈ F (i) with a background pixelbx,y is then
given byS(px,y, bx,y), beingbx,y ∈ B(i) the pixel in the background model.

Also, motion can be computed using equation 6.1. Motion of a pixel can be defined
in terms of its dissimilarity with previous values of the pixel, that is, the more similar a
pixel is with its previous values in previous frames, the less motion it has. According
to the equation 6.1 motion of pixelpx,y ∈ F (i) with respect torx,y ∈ F (i− 1) could
be defined as,

1− S(px,y, rx,y) (6.2)

This equation is equivalent to frame difference as in equation 3.4.1. In order to
reduce the effect of noise in the computation of motion,M(px,y) can be filtered by
computing the motion of a pixel with respect to two previous values and averaging
the result. Beingpx,y ∈ F (i) a pixel in the current frame,rx,y ∈ F (i − 1) and
qx,y ∈ F (i− 2); we define the motion ofpx,y as,

M(p) =
(1− S(px,y, qx,y)) + (1− S(px,y, rx,y))

2
(6.3)

This way, motion in the scene is detected by considering similarities of three con-
secutive frames.

6.2.3 Segmentation process

Using the similarity criterion discussed in section 6.2.1 and the motion criterion dis-
cussed in section 6.2.2, we segment a frame and separate the pixels into two sets, based
on their computed probabilities of belonging to foregroundor background.

We define then the probability that any pixelp ∈ F (i) belongs to foreground as,

Pfore(p) = max(M(p), 1− S(p, b)) (6.4)

because pixels will belong to foreground if either their motion value is high or their
difference with the background is high. This way, we can include in the foreground set
all pixels which, even being similar to the background but show significant motion and
vice versa. On the other side, the following expression,

Pback(p) = max(1−M(p), S(p, b)) (6.5)

defines the probability that a pixelp ∈ F (i) belongs to background if both its
motion value is low and its similarity to current backgroundis high, as stated in the
constraints described before. It must be noted that the relationship,

Pback + Pfore = 1 (6.6)
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does not necessary verify, because the values ofM(p) andS(p, b) are not related
one to each other.1

The background algorithm with confidence (BAC) starts by taking a frameF (i) to
be the initial background modelB(i) (the model in timei), and sets,

∀bx,y ∈ B(i), cx,y(i) = 0, σx,y(i) = 0 (6.7)

beingcx,y(i) the confidence value of pixelbx,y andσx,y(i) the filtered probability
in time i.

The valuecx,y(i) measures how many times a background pixelBx,y has been
continuously classified as background. This value is enclosed into the range[0, 1] after
its update by computing cx,y(i)

cx,y(i)+1 . On the other side, the value ofσx,y(i) measures
how good the background classification of that pixel has beenover the time. Values
of σx,y(i) are a measure over time of the confidence of the pixelbx,y ∈ B(i) and
how close to previous values of the background model is. Thisvalue will be reduced
in the case a pixelpx,y ∈ F (i) is continuously classified as foreground. As soon as
this changes, and the pixel is again classified as background, the value ofσx,y(i) will
increase again. The filtered probability is defined as a function of the confidencecx,y

and the probabilityPback,

∀bx,y ∈ B(i) : σx,y(i) =
σx,y(i− 1) · cx,y(i) + Pback(px,y)

cx,y(i) + 1
(6.8)

This filtered probability is used, together with other parameters, to avoid that an
object captured in the first model stays forever in the model if it moved.

Figure 6.2 shows the evolution ofσx,y for a pixel which is continuously classified
as background. Its background probability is modelled witha normal distribution.

Figure 6.2: Simulated evolution of the filtered probabilityof a pixel (see equation 6.8)
in the case it is always classified as background and its background probability follows
a normal distribution.

Next two frames,F (i+1) andF (i+2), are ignored and used only to detect motion
in frameF (i + 3). For all the next incoming framesF (i), motion and similarities with
B(i− 1) are sought for, to segment frameF (i).

1Equation 6.6 would verify if the definition forPback = min(1 − M(q), S(q, b))
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OnceF (i) is segmented, the modelB(i−1) must be updated to obtainB(i), using
pixels inF (i). Not all pixelsbx,y ∈ B(i− 1) are updated in the same way, it depends
onPback(px,y), cx,y(i− 1) andσx,y(i).

After background subtraction pixels of frameF (i) are separated into four sets; the
foreground setfSet, the background setbSet, dSet for doubtful pixels and finally
cSet for pixels inB(i) whose grey level will be replaced by the grey level of pixels in
F (i). Formally, these sets are defined as follows,

fSet = {px,y ∈ F (i) : Pfore(px,y) > τ, being 1 > τ ≥ Pback(px,y)} (6.9)

bSet = {px,y ∈ F (i) : px,y /∈ fSet} (6.10)

dSet = {px,y ∈ fSet : σx,y(i) < 0.8 ∧
cx,y(i− 1)

cx,y(i− 1) + 1
≥ 0.75} (6.11)

cSet = {px,y ∈ fSet : σx,y(i) < 0.8 ∧
cx,y(i− 1)

cx,y(i− 1) + 1
< 0.75} (6.12)

Pixels will be classified as foreground in thefSet only if their foreground probabil-
ity is high. A restrictive probability thresholdingτ can be used in equation 6.9 in order
to consider as foreground only those pixelspx,y with very high values ofPfore(px,y).
This way, it is possible reducing some of the shadows of the objects.

Doubtful pixels,dSet, are those whose filtered background probability is less than
0.8 (not high enough as to be decisive), but whose confidence is still over the third
quartile (0.75), so high that makes doubt. Recalling that the algorithm starts with zero
knowledge about the scene, special care must be taken with such behaviour, in order
to quickly change pixels which do not describe the background properly. On the other
side, pixels in the cSet represent pixels, whose confidence does not arrive to the third
quartile, and will be replaced by values from the current frame. Elements of these two
sets are in fact extracted from thefSet.

Values defining the previous sets should be chosen to be very restrictive, this way,
pixels which may yield low background similarity are quickly replaced. In section 6.6,
an study on different values ofτ is performed.

The regions of interest of frameF (i) are then defined by fSet. We define the
following set for convenience,

Λ = bSet
⋃

dSet (6.13)

6.2.4 Model update

We update background pixels in a different way, depending ontheir observed be-
haviour. Pixels which belong to the cSet are directly changed by values inF (i). Pixels
in the dSet will be forced to update strongly than those in thebSet in order to be more
similar to the expected background. Beingpx,y ∈ F (i) a pixel in current frame, the
modelB(i) is updated as follows,

∀bx,y ∈ cSet : bx,y(i) = px,y(i) (6.14)
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∀bx,y ∈ Λ : bx,y(i) = bx,y(i− 1) + (1− α) · px,y(i) (6.15)

Confidence of pixels is also updated distinguishing the set to which each pixel
belongs to. In this case, pixels which describe the background increase their confidence
and for the others, the confidence is decreased. On the other side, pixels which are
copied from the frame, take a confidence equal to zero. The confidence of pixels in
B(i) is updated according to the following expressions,

∀px,y ∈ bSet : cx,y(i) = cx,y(i− 1) + 1 (6.16)

∀px,y ∈ dSet : cx,y(i) = cx,y(i− 1)− 1 (6.17)

∀px,y ∈ cSet : cx,y(i) = 0 (6.18)

As this operation is performed in a frame by frame basis, and pixels are classified
after segmentation, any pixel whose confidence is reduced bya temporal occlusion by a
foreground pixel will recover its previous confidence as soon as the occlusion finishes.

The valuecx,y is never lower than0 because, should the confidence of a pixel be
under0.75, the pixel would be classified in thecSet, see equations 6.12 and 6.18, and
thus, its confidence will be set tocx,y = 0.

This definition of confidence, which is further used to compute the adaptation co-
efficient of the model, allows a pixel to change very quick when its confidence is low
and become more static as time elapses. In figure 6.3 the simulated evolution of the
confidence of a pixel, constantly classified as background, is shown. The plot shows
that initially the value is small but quickly saturates.

Figure 6.3: Simulated evolution ofcx,y(i)
cx,y(i)+1 for a pixel which is continuously classified

as background.

A difference with respect to other algorithms is that we propose using a different
adaptation coefficientαx,y(i) for each pixel depending oncx,y(i) they show. This way,
we expect pixels which strongly described the scenario to update smoothly. On the
other side, pixels whose confidence diminishes, recalling this means their background
probability is descending, take a lowerαx,y(i).
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The adaptation coefficient for pixelpx,y is computed taking into account the confi-
dence of the pixel in timei according to the following equations,

∀px,y ∈ Λ : αx,y(i) = 0.98 ·
cx,y(i)

cx,y(i) + 1
(6.19)

∀px,y ∋ Λ : αx,y(i) = 0 (6.20)

This coefficientαx,y, takes values in the range[0, 0.98). Being 0.98 the value
which corresponds to pixels with a high confidence and0 the value which corresponds
to pixels which have been changed. We used the value0.98 as the maximum value
for the adaptation confidence in order to force all pixels to cope with light conditions,
except those which received a new value.

6.2.5 Segmentation confidence

As said before, together with its grey level value, each pixel provides a confidence
value which may be used to weight the quality of the segmentation. We define the
segmentation confidence of the modelB(i) as,

sc =
1

M ·N
·
∑ cx,y(i)

cx,y(i) + 1
,∀b ∈ B(i) (6.21)

beingM ∗N the number of pixels of the model. The segmentation confidence sc
can be calculated for a target of frameF (i), by particularizing this expression consid-
ering only the pixels segmented for this target.

The segmentation provided by model pixelbx,y ∈ B(i) will depend of its confi-
dence as said before. We can calculate the segmentation confidence (sc) for a region
of interestRi with an areaa of frameF (i) segmented using modelB(i) as:

sc(Ri) =
1

a

∑ cx,y

cx,y + 1
,∀px,y ∈ Ri (6.22)

The valuesc(Ri) measures only the quality of the pixels segmented as foreground,
not the segmentation itself. This means that it does not measure if pixels are correctly
segmented but the confidence that we can have on the pixels that are labelled as fore-
ground. There is no direct relationship between the amount of segmented pixels of an
object and the confidence of their segmentation.

Finally, in order to test when the background model is stablethe mean square
quadratic difference (msqd) of the difference between two consecutive models is cal-
culated. An stop condition for the algorithm could depend onthe verification of the
following condition,

msqd(B(i), B(i− 1)) < 10−3 ∧ sc > 0.995 (6.23)

6.2.6 Corrupt model

Once pixels are classified as foreground or background, a simple criterion to detect
corrupt models is used.

The hypothesis is made, that scenarios contain more background than foreground
pixels. The number of foreground pixelsP is computed at this stage and compared
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with the total amount of pixelsN ·M in the scene. Following the hypothesis, it should
verify thatP < N ·M . In fact, a real numberµ < 1 can be found thatP = µ ·N ·M .

The valueµ can be used to detect corrupt models, in the caseP
N ·M > µ then the

model can be considered as corrupt. Pixel motion is implicitly considered, as long as
foreground pixels are defined in terms of their discrepancy with background or with
motion in their location. The valueµ should be set experimentally depending on back-
ground clutter.

In the case the process is restarted in timei, model values are set∀b ∈ B,B1
b (0) =

Fb(i), cb = 0). With this initialization, we assume that most pixels whichwere con-
sidered as background are still background, but with different values.

(a)B(0) (b) B(89) (c) B(389) (d) B(550)

(e)F (1) (f) F (90) (g) F (390) (h) F (550)

(i) Segmented imageF (1) (j) Segmented image
F (90)

(k) Segmented image
F (390)

(l) Segmented image
F (550)

(m) Control image forF (1)(n) Control image for
F (90)

(o) Control image for
F (390)

(p) Control image for
F (550)

Figure 6.4: Sequence of background model reconstruction with BAC. From top to
bottom, in columns, background model, incoming frame, automatic and hand segmen-
tation for frames int = 1, 90, 390 and550. Output of automatic segmentation is filtered
with a size filter to remove noise.
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6.2.7 Results obtained with a particular sequence

A representative situation aim of our developments is evaluated in this section, see
figure 6.4.

Results of the experiments are analysed, considering the amount of true positives
(TP ) obtained in the segmentation process for each object in some frames, see table
6.1. And the goodness of the background model built by the BACalgorithm, consid-
ering the amount of true negatives (TN ) is shown in figure 6.5. Also, the evolution of
model’s confidence is considered. The evolution of the model’s construction and how
object behaviour influences it, is discussed through concrete situations in which objects
enter or leave the scene or stay still.

In order to evaluate quantitatively the evolution of BAC, wefirst segmented manu-
ally 22 frames randomly selected of a sequence that starts inF (0) with several people
in a scene, simulating a surveillance system, in that momentB(0) is created with tar-
gets andsc = 0, see figure 6.4.

The objects present in the scene are segmented using the model obtained with BAC
and with the mean. The segmentation using the background model obtained with the
mean was performed subtracting the background and thresholding it with a unique
threshold (T = 15).

In table 6.1, segmentation results for framesF (90), F (390) andF (550) obtained
with BAC and mean are compared;sc of pixels found in each target’s segmentation
with BAC is shown under columnsc The original frames, together with segmentation
result and the background model built by BAC, may be found in figure 6.4.

Target Frame90 Frame390 Frame550
mean BAC sc mean BAC sc mean BAC sc

1st target 0.74 0.69 0.95 0.88 0.96 0.99 0.75 0.71 0.71
2nd target 0.70 0.90 0.98 0.71 0.89 0.99 0.74 0.83 0.82
3rd target 0.49 0.37 0.99 0.69 0.51 0.99 - - -
4th target 0.49 0.47 0.92 - - - - - -

Table 6.1: Rate ofTP found for each target using different methods to obtain the
background model, BAC and mean. In control frame90 a total amount of four objects
were found, in390 only three and in frame550, two objects were found. Targets are
not the same in frames.

In F (90), a low rate ofTP is obtained for both algorithms, due to the fact that
they are far in the field of view of the camera are segmented more poorly (target3);
something similar happens with target4, which is a group of two people moving still
in the same area they occupied at the beginning of the movie.

In figure 6.4a and 6.4bB(0) andB(89) are shown, it may be seen that inB(89),
background model has achievedsc = 0.982 and some targets have been removed.
Improvement over time is evident asB(389) contains no target. This improvement
manifests inF (390) andF (550 with a better segmentation.

Evolution of model’s confidence obtained for each input frameF (i), TP andTN ,
of BAC and mean can be seen in figure 6.5 for the manually segmented frames. Objects
standing still for long periods of time influence negativelythe value ofTP for both
algorithms. Figure 6.5 shows that BAC obtains higher valuesof TP than mean. In
F (201) several objects leave the scene and others start coming in and in F (680) some
objects stand still; this explains that some foreground pixels are not found. On the
other side,TN , easily reach a high level as area of quiet targets is small compared to
the image. It can be seen that BAC keeps an stable value forTN during its execution,
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background modelling using the mean loses accuracy due to the objects that stood still
at the beginning of the process.

Figure 6.5: Evolution of confidence,TP andTN for the discussed video. Spots cor-
respond to control frames.

This experiment shows that BAC obtains background models comparable to those
obtained by using any statistical technique; with the addedbenefit of permitting seg-
mentation from the very beginning of the process.

6.3 BAC with colour coordinates

In this section we extend the algorithm presented in previous section to work with
colour coordinates, by adding the use of RGB coordinates. Bydoing this, better results
for foreground and background are expected.

Choosing a colour coordinates model depends on several factors. On one side,
usually, cameras can produce images in RGB or YUV coordinates and though mathe-
matical methods exist that can convert coordinates of one system to another, this con-
version may be time consuming and have a severe impact on the system performance.
Other systems exists, such asCIEL∗a∗b∗, for instance, which could be claimed to
have better properties than RGB.

We chose the RGB system because it is a widely used system and it is easy to find
cameras which reproduce images using this system. RGB has the drawback that it is
not perceptually uniform because it was designed from the perspective of devices and
not from a human perspective.

6.3.1 Extension to RGB

We extend first the similarity criteria introduced in section 6.2.1 using RGB coordi-
nates. The similarity between two pixels,p andq is now given by an extended version
of equation 6.1. The only difference is that the distance between the pixels is extended
to use the three RGB coordinates where the colour distance iscomputed as the Eu-
clidean distance of two colour vectors andκ is a constant determined experimentally.
In this case, equation 6.1 is modified and the similarity function is given by,

S(p, q) = e−
dist

κ (6.24)
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dist =
√

(pR − qR)2 + (pG − qG)2 + (pB − qB)2) (6.25)

As in previous section, motion can be computed using equation 6.24. Motion of a
pixel can be defined as its similarity with previous values ofthe pixel. Beingqx,y ∈
F (i) a pixel in the current frame with three colour components,px,y ∈ F (i − 1) and
rx,y ∈ F (i− 2); we define the motion ofqx,y as,

M(q) =
(1− S(px,y, qx,y)) + (1− S(rx,y, qx,y))

2
(6.26)

The remaining processes are kept the same, as they all involve only computations
with probabilities or are easily extended to the three RGB coordinates. A comparison
of this process with the original BAC is made by using the Wallflower benchmark in
section 6.6.

6.4 MBAC

The BAC algorithm is designed to maintain one model per pixeland it encounters
difficulties when it has to deal with clutter in the background or outdoor scenes in
which there is a significant amount of motion in the background, for instance, scenarios
with waving trees. The use of just one model to describe the background limits the
capabilities of the algorithm for such scenes.

In order to cope with this problem, we add the possibility of describing the back-
ground with more than one model. Each model will contain the pixel’s colour descrip-
tion and a confidence value used to discard models. This confidence value measures
how the model matched the pixel in the last frames, and will beclose to one if the
model matches closely the pixel’s value, and close to zero ifit does not.

The extension to multiple models per pixel is quite straightforward. Recalling equa-
tion 3.1, comparing the value ofpx,y with thev models that describe it in the model
can be reduced to find the model which yields the maximum similarity with Fx,y as
computed in equation 6.1.

Following the approach introduced by [grimson99], after background segmentation
and model adaptation, the models for each pixel are then ordered in descending order
according to their confidence. Then, the firstK models whose confidence sums equal
or more than a thresholdµ are kept and the rest are removed. We employed a valueK
to indicate the number of models considered per pixel.

Figure 6.6 shows the distribution of pixels which took different colour values due
to motion in the background. BAC is unable to handle this situation and this justifies its
extension in order to handle several models per pixel. The distribution is represented
in grey tones, black pixels did never change their initial model; white pixels indicate a
heavy rate of model changes.

Figure 6.6 illustrates the suitability of using a differentamount of models per pixel
instead of setting a unique value for the entire image and that maybe this information
could be used to decide which pixels need more models, or less, than initially expected.

6.4.1 Segmentation process with MBAC

The algorithm MBAC starts by taking a frameF (i) to be the initial background model
B(i) (the model in timei), and sets,
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Figure 6.6: On the left, image showing the areas in which background models were
changed in order to adapt to changes in the background. The frame corresponds to an
outdoor sequence of the Wallflower benchmark. On the right, one frame of the original
sequence.

∀b ∈ B,∀ 1 ≤ m ≤ K : c1
b(0) = 0.01 (6.27)

beingc1
b(0) the confidence value of them-th model of pixelb in time i = 0. This

confidence value measures how good the model describes the pixel. As pixel b may
have more than one mode, a parameterK, limits the maximum number of models for
pixel b.

Next two frames,F (i + 1) and F (i + 2), are ignored and used only to detect
motion in frameF (i + 3). For all the following framesF (j), j ≥ i + 3, motion and
similarities withB(i − 1) are sought for. We define the probability that any pixelq
belongs to background as,

pBack(q) = max(1−M(q),max(S(q,Bm
b ))) (6.28)

analogously, the probability of belonging to the foreground is computed as,

pFore(q) = max(M(q), 1−max(S(q,Bm
b ))) (6.29)

beingS(q,Bm
b ) the similarity between pixelq and them-th background model of

pixel b ∈ B(i− 1) andM(q) the motion of a pixel as defined in equation 6.3 .
It must be noted that the relationship,

pFore(q) + pBack(q) = 1 (6.30)

does not necessary verify, according to the definitions of both probabilities.
It is also straightforward to see, that equation 6.28 describes mathematically the

intuitive idea that pixels similar to background or which are reasonably stationary have
a bigger probability of belonging to background.

On the other side, equation 6.29 states that pixels very different to background or
very different to previous values will have a bigger probability of belonging to fore-
ground.

The segmentation separates pixels in two different sets; the foreground set (fSet)
and the background set (bSet), defined as,

fSet = {p ∈ F (i) : pFore(p) > τ, being 1 > τ ≥ pBack(p)} (6.31)



112 CHAPTER 6. BACKGROUND MODELLING AND OBJECT DETECTION

bSet = {p ∈ F (i) : p /∈ fSet} (6.32)

By changing the value ofτ , we restrict the criteria to keep only pixels with high
foreground probability in order to remove possible shadows. Anything which is not
considered to be foreground, is classified as background.

A notable difference with BAC, is that in this case nocSet nor dSet sets are built
after segmentation. This is due to the fact, a more flexible schema using the confidences
of models was used to decide whether one of theK possible descriptions of a pixel in
the background model should be kept or removed.

6.4.2 Corrupt model

Once pixels are classified as foreground or background, a simple criterion to detect
corrupt models is used.

The hypothesis is made, that scenarios contain more background than foreground
pixels. The number of foreground pixelsP is computed at this stage and compared
with the total amount of pixelsN ·M in the scene. Following the hypothesis, it should
verify thatP < N ·M . In fact, a real numberµ < 1 can be found thatP = µ ·N ·M .

The valueµ can be used to detect corrupt models, in the caseP
N ·M > µ then the

model can be considered as corrupt. Pixel motion is implicitly considered, as long as
foreground pixels are defined in terms of their discrepancy with background or with
motion in their location. The valueµ should be set experimentally depending on back-
ground clutter.

In the case the process is restarted in timei, model values are set∀b ∈ B,B1
b (0) =

Fb(i), c1
b = max(cm

b ). With this initialization, we assume that most pixels whichwere
considered as background are still background, but with different values.

6.4.3 Model update

In the case the model is not restarted (P
N ·M ≤ µ), it is updated with information of

frame F (i). For every pixelbx,y ∈ bSet, the confidences and colour information
are updated. In order to cope with light changes, the modelm which matched the
background is updated as,

Bm
x,y(i) = α ·Bm

x,y(i− 1) + (1− α) · Fx,y(i) (6.33)

and its confidence is updated according to the following expression,

cm
x,y(i) = α · cm

x,y(i− 1) + (1− α) · pBback(px,y) (6.34)

Note that this computation of confidence is similar to equations 6.16, 6.17 and 6.18
used for BAC, but simplified in order to reduce computation time when several models
are considered. Also, provided that several models are considered per pixel and only
one is adapted per frame, the adaptation factor can be alwaysthe same.

Any other modell describing pixelb which did not match the background model is
updated according to equation 6.35,

cl
x,y(i) = α · cl

x,y(i− 1), ∀l 6= m (6.35)
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whereα is a learning rate factor in the range[0, 1]. The difference with equations
6.16, 6.17 and 6.18 and the general process followed in BAC isthat it is easier to
control the quality of each model for each pixel if they are pondered the same way.

For every pixelpx,y ∈ fSet, theK background models describing it are ordered in
descending order according to their confidences. The sum of the confidences of pixel
px,y is given by,

sx,y = Σcm
x,y(i), 1 ≤ m ≤ K (6.36)

In the casesx,y < γ, a value set by user, a new modelv will be added or the worst
model will be replaced by the current value of pixelpx,y ∈ F (i). For the new model
v, the algorithm setsBv

x,y(i) = px,y andcv
x,y(i) = 0.01.

The parameterγ controls the speed at which new models are included in pixels’
descriptions. Ifγ is very close to1, the algorithm will try to maintain always the most
accurate possible description of each pixel. In the caseγ is close to0, it will show a
bigger resistance to change the model.

Thus,γ should be kept big for scenarios with a relatively quiet background and
small for scenarios with background clutter.

The confidence computed for each pixel is an indicator of how good its models
describe the background, in this case, MBAC computes the confidence of a regionRi

as,

sc =

∑

x,y max(cm
x,y(i))

|Ri|
∀1 ≤ m ≤ K (6.37)

being|Ri| the total amount of pixels in the regionRi.
Thus, an overall estimation of the background’s model quality in time i is given by,

Q(i) =

∑

∀b,∀m max(cm
x,y(i))

N ·M
(6.38)

recalling thatN ·M is the total amount of pixels in the background. Values ofQ(i)
close to1 indicate a model which describes the scene accurately, on the other side,
values ofQ(i) close to0 indicate the opposite.

Experimental results using the Wallflower benchmark are discussed in section 6.6.

6.5 Fuzzy background subtraction (FBS)

BAC and MBAC compute the segmentation of frameF (i) by considering its similari-
ties with background modelB(i − 1) and the motion in each pixel. This computation
has some drawbacks. First, a fixed threshold must be set in equations 6.1 and 6.9.

Also, the MBAC extension can produce wrong results if computations are not accu-
rate. For instance, one potential problem occurs when a pixel is oscillating in different
values. It is possible that very close values are consideredto be different and thus, the
pixel could have several models very similar among them.

A different line in our research is opened when the uncertainty in threshold se-
lection is faced. In this section we introduce an study of howthis uncertainty in the
threshold selection can effectively be faced using fuzzy-like techniques. The back-
ground subtraction method introduced in this section is based on the common sense
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fact that background pixels should yield small distances when subtracted from back-
ground. Thus, a per-frame threshold can be computed if a method is obtained to deter-
mine when a distance is sufficiently small.

In section 6.5.1 we discuss the empirical results on which webased the design of
our method for threshold computation. Two membership functions are built per frame
according to the distances of pixels to the background model.

Based on the threshold computation algorithm described in section 6.5.2 we pro-
pose an algorithm for background modelling and object detection, which considers
consecutive framesF (0), F (1), ...F (n), expressed in CIEL*a*b* coordinates, repre-
senting either outdoor or indoor scenarios. Pixels in the background model are de-
scribed with several models in order to cope with clutter in the background of the
scene.

Besides, we propose a mathematical definition of model corruption based on the
values of the membership functions.

The background subtraction of each frame is divided into three different stages
following a similar schema as the one introduced in [toyama99]. In the first one, a
pixel-wise subtraction as explained in section 6.5.3 is performed. The following stage,
discussed in section 6.5.4, recovers foreground pixels which could be erroneously con-
sidered as background by taking into account spatial relationships with their neigh-
bours. In a third step, if the background is not corrupted seesection 6.5.5, it is updated
6.5.6.

By calling our technique fuzzy, we want to stress the fact that our algorithm is
inspired in the results obtained in fuzzy logic. As explained later in this section, instead
of generating a threshold based on a priori statistics, the algorithm computes a threshold
based on an empirical rule applied to actual data.

6.5.1 Empirical results

We base our approach in the idea that background pixels of frameF (i) should yield
small distances when subtracted from an accurate background modelB(i− 1). In this
section, we introduce the empirical results that lead us to build an algorithm based on
this simple idea.

We performed two kind of off-line experiments with about2000 frames of differ-
ent sequences representing different scenarios, among them, some of the Wallflower
benchmark [toyama99] used later in the experiments.

In the first set of experiments, the pixels of two consecutiveframes of a sequence
are pixel-wise subtracted. The aim of these experiments wastesting what is the dis-
tribution of pixels according to their distance to a background model and according to
distances to the previous frame. No foreground regions wereconsidered.

Figures 6.7, 6.8 show the results for two frames of differentsequences. Frames
are also subtracted from a background model built using a frame by frame update
using the algorithm discussed in section 3.6. Both frames are very similar and small
differences are expected. In the left column, from top to bottom, it can be seen frame
F (i − 1), frameF (i), on the right column, from top to bottom, the plot of pixels of
the subtraction result grouped by distance to background model, built in a frame by
frame basis as the average of previous background values, and the plot of pixels of
F (i) grouped by distance toF (i− 1).

Another set of experiments was performed taking an initial background model,
updated in a frame by frame basis using the algorithm discussed in section 3.6, and
subtracting each frame from it. In this case, the distribution of distances of foreground
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and background pixels to the background were considered. Inorder to know which
pixels belong to background and which to foreground, pixelswere manually labelled.
Figures 6.9, 6.10 and 6.11 show the results for a selected group of frames of different
sequences, top left image the current frameF (i), the image bottom left represents the
manual segmentation of the frame, on the right column, imageat top shows the plot
of background pixels according to distance to the background modelB(i − 1) and on
bottom the plot of foreground pixels according to distance to the background model
B(i− 1).

From the results shown in figures 6.7, 6.8, 6.9, 6.10 and 6.11,it can be seen that
there is a similarity in how background curves behave. Thereis a fast grow of the curves
of background pixels for small distances, which becomes smoother as the distance
increases. In the case of foreground pixels the behaviour isquite different, having the
curve small values for small distances and raising to high values when the distance to
background is big. This behaviour can be modelled with two membership functions as
those depicted in figure 6.12.

In this figure,d is the distance between two pixels and theY -axis represents the
membership value. Two functions are represented, on the left, the background member-
ship function (MB) and on the right, its inverse, the foreground membership function
(MF ). The assumption can be made, that up to a distancec′, pixels have a background
membership value of1. If the distance takes values greater thanc′, then the background
membership decreases and, inversely, foreground membership increases.

The decrease of membership value can be modelled in several ways, one of the
easiest is using a straight line with an slope proportional to the probability decrease.
The cross of the straight line with theX axis marks the distance at which membership
is zero. In our case, the pointc marks the distance at which any pixel will be considered
as foreground with a membership value of1 and background with a value0.

The conditionMB < MF could be considered a valid threshold to classify image
pixels according to their distance to background. Unfortunately, it is quite difficult
knowing in advance which the shape of the distances of background pixels will be. In
the following section, we introduce a method to approximateMB andMF .

6.5.2 Computation of membership functions

In this section we explain how the background membership function MB is built.
Provided that we only classify elements into two different classes, background and
foreground, the following relationship must meet for any pixel Fx,y(i),

MB(dx,y) + MF (dx,y) = 1 (6.39)

We start by considering the euclidean distancedx,y(i) between pixelFx,y(i) and
Bx,y(i− 1) as,

dx,y = |Fx,y(i)−Bx,y(i− 1)|, ∀Fx,y(i) (6.40)

In order to ease the following explanations, we define the normalized cardinality of
a distanced as,

Card(d) =
Card({Fx,y(i) : dx,y ≤ d})

M ·N
(6.41)

That is, the amount of pixelsFx,y(i) which yield a distance to background less than
d divided by the total amount of pixels in the imageM ·N .
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Figure 6.7: From top to bottom, the left column shows frameF (i−1) and frameF (i).
And the right column shows a plot of the accumulated percentage of pixels according
to their distance to the background model, and a plot of the accumulated percentage of
pixels according to their distances toF (i − 1). As expected, a big amount of pixels
yield small values and the curve reaches the total amount of pixels in the image with
small distances. Plots on the right measure distances in CIELAB coordinates.
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Figure 6.8: From top to bottom, the left column shows frameF (i−1) and frameF (i).
And the right column shows a plot of the accumulated percentage of pixels according
to their distance to the background model, and a plot of the accumulated percentage of
pixels according to their distances toF (i − 1). As expected, a big amount of pixels
yield small values and the curve reaches the total amount of pixels in the image with
small distances. Plots on the right measure distances in CIELAB coordinates.
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Figure 6.9: The distribution of pixels according to the distance to background model.
From top to bottom the left column shows the original frame, the manually segmented
image, the column on the right shows the plot of the accumulated percentage of back-
ground pixels grouped according to their distance to the background model and finally
the plot of accumulated percentage of foreground pixels according to their distance to
background model. As expected, background pixels yield small values and the curve
reaches the total amount of pixels and the curve for foreground pixels starts raising at
further distances. Plots on the right measure distances in CIELAB coordinates.
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Figure 6.10: The distribution of pixels according to the distance to background model.
From top to bottom the left column shows the original frame, the manually segmented
image, the column on the right shows the plot of the accumulated percentage of back-
ground pixels grouped according to their distance to the background model and finally
the plot of accumulated percentage of foreground pixels according to their distance to
background model. As expected, background pixels yield small values and the curve
reaches the total amount of pixels and the curve for foreground pixels starts raising at
further distances. Plots on the right measure distances in CIELAB coordinates.
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Figure 6.11: The distribution of pixels according to the distance to background model.
From top to bottom the left column shows the original frame, the manually segmented
image, column on the right shows the plot of the accumulated percentage of back-
ground pixels grouped according to their distance to the background model and finally
the plot of accumulated percentage of foreground pixels according to their distance to
background model. As expected, background pixels yield small values and the curve
reaches the total amount of pixels and the curve for foreground pixels starts raising at
further distances. Plots on the right measure distances in CIELAB coordinates.

Figure 6.12: Representation of two membership functions,MB andMF . The point
labelled witha corresponds to the last value which verifiesMB = 1 andMF = 0.
The decrease of functionMB is modelled by the line with slopem, crossingX axis at
d = c. It may be seen that both functions are symmetrical.
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Figure 6.12 shows that the membership functions may be approximated by using a
straight line between two points with distancesd0 andd1 parametrized as,

m =
MB(d1)−MB(d0)

d1 − d0
(6.42)

consideringd0 the maximum distance at which it is verifiedMB(d0) = 1, the
parameterb of the straight line can be obtained as,

b = 1−m d0 (6.43)

where distancesd0 andd1 are computed algorithmically.
Observing previous plots in figures 6.7, 6.8, 6.9, 6.10 and 6.11 it can be seen that

there is a big amount of pixels which yield very small distances to background. Em-
pirical results show that this amount is around30% of the total amount of background
pixels in the image. Recalling figure 6.12, we can set the point (1, d0) to be at the
distanced0 that meets the constraintCard(d0) < Card0, beingCard0 a constant
value.

Onced0 is determined, the crossing point of both functions at distanced1 is com-
puted. In order to do this, again from figures 6.7, 6.8, 6.9, 6.10 and 6.11, it can be noted
that the distribution of distances of background pixels tends to raise very quickly. In
the absence of noise, this means that the constraintCard(di) < Card(di+1) will be
met if di < di+1. We can approximate the angle of the curve with theX axis between
pointsdi anddi+1 as,

β = atan(
Card(di)− Card(di+1)

di+1 − di
) (6.44)

However, the curve stops raising when the distance begins being considerably big
and there are few background pixels to be added to the set. It can be appreciated,
that the angle of the curve with theX axis takes values close to zero. Usually, at this
point the plot for foreground pixels start to take high values. However, real curves
have irregularities due to noisy inputs and that sometimes,small angles are obtained
for consecutive points of the curve because there is a few increase of pixels between
two neighbouring distances.

Bearing all this in mind, we propose testing that the constraint β ≤ β0 is met a
number of times before computing the crossing point ofMB andMF , beingβ0 a
constant determined empirically. The distanced1 for whichβ ≤ β0 is met for the third
time, is the last distance for whichMB(di) > MF (di),∀di ≤ d1.

The background membership function can be then written as a function of distance
dx,y, as follows,

MB(dx,y) =







1, if 0 ≤ dx,y ≤ d0

m dx,y + b, if d0 < dx,y ≤
−b
m

0, if −b
m < dx,y

(6.45)

Algorithm 4, formalizes the previous method to computed0 andd1, the threshold
that separates background and foreground, is computed. Thesaturation of the curve is
modelled by comparing the angle of the slope between two consecutive points of the
curve with a constant angleβ0.
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Algorithm 4 Membership function algorithm for computing the thresholdd1 that sep-
arates background and foreground pixels following the knowledge acquired with the
experiments of section 6.5.1. Theǫ used in this algorithm is an small value set in our
experiments toǫ = 0.1.

1: dx,y ← |Fx,y(i)−Bx,y(i− 1)|
2: d0 ← 0
3: ǫ← 0.1
4: β0 ← 1◦

5: while (Card(d0) < Card0) do
6: d0 ← d0 + ǫ
7: end while
8: di ← d0

9: detections← 0
10: while (detections < 3) do
11: di+1 ← di + ǫ

12: β ← atan(Card(di)−Card(di+1)
di+1−di

)

13: if (β < β0) then
14: detections← detections + 1
15: end if
16: i← i + 1
17: end while
18: d1 ← di

6.5.3 Pixel level processing

Background subtraction methods depend basically on a threshold which acts as a high-
pass filter removing from the output all pixels whose difference from the background
is smaller than a given value. Instead of relying on a single predefined threshold, we
propose computing a background membership function to find out the suitable thresh-
old that separates background and foreground after each background subtraction. This
threshold is computed following the algorithm 4 and expression 6.45.

For each frameF (i), the background subtraction is computed as the euclidean
distance of the colour coordinates of each pixelFx,y(i) from eachBv

x,y(i), being
Bv

x,y(i − 1) thev-th model for pixel in coordinatesx, y in time i − 1. This distance,
denoted bydv

x,y, is computed as,

dv
x,y = |Fx,y(i)−Bv

x,y(i− 1)|, ∀Fx,y(i) (6.46)

The distance finally considered is,

dx,y = min(d1
x,y, d2

x,y...dv
x,y),∀v (6.47)

Thus eachdx,y stores the smallest distance betweenFx,y(i) and theBv
x,y(i− 1).

Following the algorithm 4, we compute a thresholdd1 that separates background
and foreground pixels. Background pixels are labelled witha 0 and foreground pixels
with 1 by means of a binary imageS built as follows,

∀Fx,y(i), Sx,y(i) =

{

0, if dx,y < d1

1, otherwise
(6.48)
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6.5.4 Foreground recovery

The aim of this stage is recovering foreground pixels that may have been lost due to
inaccurate segmentation. We followed a similar approach inthis stage as authors of
[toyama99] and fuse previous segmentations and motion information to locate pixels
that may be recovered as foreground. In our research, we usedhowever a colour list
for each region instead of building a histogram of grey tonesas in [toyama99].

The frame difference between framesF (i) andF (i− 1) is computed as,

d1
x,y(i) = |Fx,y(i)− Fx,y(i− 1)|, ∀Fx,y(i) (6.49)

With these distances a binary imageS1(i) is obtained by applying equation 6.48 to
d1

x,y(i). Then, the intersection of adjacent pairs of differenced images and the previous
foreground image is computed as,

P = S1(i) ∧ S1(i− 1) ∧ S(i− 1) (6.50)

ImageP contains the coordinates of the seeds that can be used to recover fore-
ground pixels erroneously classified. Connected regionsRi of P with less thanpmin

pixels are discarded. Colourscj of eachRi are discovered and stored in a setCi. Two
colourscp andcq such thatcp, cq ∈ Ri are considered to be the same if their euclidean
distance is less than a constantcmin.

For eachRi in P , we check the values of each pixel(x, y) ∈ Ri in frameF (i) and
compute a binary imageLx,y(i) as follows,

Lx,y(i) =

{

1, if ∃c ∈ Ci / dist(c, Fx,y(i)) ≤ cmin

0, otherwise
(6.51)

beingdist(c, Fx,y(i)) the distance between colourc and colour of pixelFx,y(i).
ImageLx,y(i) contains all the pixels considered initially as backgroundwhose colour
is similar enough to neighbouring pixels which were considered foreground, and thus,
are labelled as foreground as well.

Binary imageS(i) is grown by performing the following operation,

Se(i) = S(i) ∨ L(i) (6.52)

whereSe(i) is a binary image in which foreground pixels are labelled with 1 and
background pixels are labelled with0.

6.5.5 Model corruption detection

Few methods exist in the literature to detect background model corruption. In [toyama99],
finding an unusual percentage of foreground pixels is considered to be enough as to de-
cide that the model is no longer valid.

In our approach, model corruption is detected by testing if the constraintd0 >
dcorrupt is met. This means that a small amount of pixels yield small distances to the
background values, breaking the assumption that most pixels should be similar to the
background model.

In the case of background model corruption, the process restarts and keeps only
one model per pixel, as made in section 6.4.2. It sets

Bx,y(0) = Fx,y(i), c1
x,y = max(cv

x,y) (6.53)
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The difference with the usual approach is that the confidencecx,y of the new model
is inherited from previous frames. In our opinion, this allows the system to keep the
knowledge about the scene dynamics, but does not prevents itfrom changing the values
of the model, if needed. Observing the differences between very different images, the
limit dcorrupt = 10 seems to be safe.

6.5.6 Model update

In this section, the process of background modelling using functionsMF andMB is
explained. The model is initialized without assumptions about the observed scene and
is updated in a frame by frame basis.

The algorithm takes as input a sequence of framesF (0), F (1), ..., F (n) and starts
by setting,

∀x, y , B1
x,y(0) = Fx,y(0), c1

x,y(0) = 0.01 (6.54)

whereB1
x,y(0) corresponds to the first model of pixel(x, y) in time 0 andc1

x,y(0)
is the confidence value of the first model. This confidence value measures how good
the model describes the pixel.

Two parameters are set by user,K the maximum amount of models allowed per
pixel, andγ a value in the range[0, 1] that controls the speed at which models of a
pixel are replaced or added, the higher the value, the fastermodels are replaced.

After each background subtraction and foreground recovery, the model is updated
depending on information ofSf (i). Model v for pixel bx,y matches the inputpx,y ∈
F (i), denoted byvmatch, if Sf

x,y = 0 anddvmatch
x,y = min(dv

x,y), ∀v 6= vmatch.
In a similar way as in sections 6.2.4 and 6.4.3, for every pixel that verifies that

Sf
x,y = 0, description and confidence of modelvmatch are updated as follows,

Bvmatch
x,y (i) = α ·Bvmatch

x,y (i− 1) + (1− α)Fx,y(i) (6.55)

cvmatch
x,y (i) = α · cvmatch

x,y (i− 1) + (1− α) ·MB(dvmatch
x,y ) (6.56)

The remaining modelsv 6= vmatch, for pixel bx,y also update their confidences as,

cv
x,y(i) = α · cv

x,y(i− 1) (6.57)

whereα is a learning rate factor in the range[0, 1] andBv
x,y(i − 1) is the value in

time i− 1 of v-th model of pixel atx, y.
The models of each pixel are ordered in descending order according to their confi-

dences. If the sum of the confidences verifies that,

γ >
∑

v≤K

cv
x,y(i) (6.58)

then a new model will be added or theK-th model be replaced. For the replaced
model, the algorithm setsBK

x,y(i) = Fx,y(i) andcK
x,y(i) = 0.01. Algorithm 5 shows

this process algorithmically.
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Algorithm 5 The process of background modelling. The function
matchedModel(x, y) returns vmatch, the index of the model for pixelbx,y that
matched the input. On the other hand, the functionchooseModelToUpdate(x, y)
returns the index of the model chosen to be updated for pixelbx,y after ordering them.

1: ∀ px,y

2: if Sf
x,y == 0 then

3: cv
x,y(i)← αcv

x,y(i− 1), ∀v
4: else
5: vmatch ← matchedModel(x, y)
6: Bvmatch

x,y (i)← αBvmatch
x,y (i− 1) + (1− α)Fx,y(i)

7: cvmatch
x,y (i)← αcvmatch

x,y (i− 1) + (1− α)MB(dvmatch
x,y )

8: cv
x,y(i)← αcv

x,y(i− 1);∀v 6= vmatch

9: end if
10: if γ >

∑

v≤K cv
x,y(i) then

11: vlast ← chooseLastModel(x, y)
12: Bvlast

x,y (i)← Fx,y(i)
13: cvlast

x,y (i)← 0.01
14: end if

6.6 Experiments

Several experiments were performed in order to estimate thebest set of parameters
for the algorithms introduced and compare their results with other well-known algo-
rithms found in the literature. In the experiments, we compared the true negatives
TN that is, the amount of pixels classified as background by the algorithm which are
truly background and the true positivesTP , the amount of pixels classified as fore-
ground by the algorithm which are truly foreground. False positives (FP ) and false
negatives (FN ) can be inferred by subtracting previous values from1, respectively.
This measure served to compare the results of algorithms. Quantitative and qualita-
tive results were obtained by performing experiments usingthe Wallflower benchmark
[toyama99], which seems to be accepted by the scientific community as a common
validity test for background modelling algorithms.

We compared the performance of several well-known algorithms proposed in the
literature with the techniques introduced in this chapter using the Wallflower bench-
mark. The algorithms are introduced in section 3.3, a brief summarize follows:

• Frame Difference (FD) : Each image is subtracted from the previous image
in the sequence. Absolute differences greater than a threshold are marked as
foreground.

• Mean and Threshold (MT) : Pixel-wise mean values are computed during a
training phase, and pixels within a fixed threshold of the mean are considered
background.

• Mixture of Gaussians (MoG) [grimson99]: A pixel-wise mixture of3 Gaus-
sians models the background. Each Gaussian is weighted according to the fre-
quency with which it explains the observed background. The most heavily
weighted Gaussians that together explain over50% of past data are considered
background. Two different versions of the algorithm were tested, the grey tone
and the RGB versions.
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• Textures (LBP) [heikkila06]: textures in the neighbourhood are modelled by
means of LBP histograms. Several histograms may be assignedto each pixel, in
order to consider several models.

• Wallflower (WLL) [toyama99]: a combination of three different processing
layers which operate at different levels, pixel, region andframe.

The algorithms introduced in this chapter are:

• Background Adaptive with Confidence (BAC) [rosell08]: motion and back-
ground subtraction are considered in order to segment background pixels from
foreground pixels. A confidence value is used for each model.Two extensions
of this algorithm are also tested BACc, which is an extensionof BAC to colour
coordinates and MBAC, a multimodal extension of BAC.

• Fuzzy background subtraction (FBS) [rosell10b]: a background membership
function is computed taking into account the distances at which pixels of incom-
ing frame lay from the background. This function permits thecomputation of a
segmentation threshold.

Table 6.2 summarizes the differences and similitudes between the compared algo-
rithms. In each row, the most representative features of each algorithm are shown. For
instance, frame difference is not adaptive, does not need a training period to start work-
ing, does not offer multimodal support, thus in themultimodal supportcolumn a dash
appears in the corresponding cell, and uses a user settable segmentation threshold.

In the case of the mixture of gaussians, the threshold is established by their authors
as2.5 times the variance of the background model. In our opinion, this prevents it from
being classified as a manual threshold, however, it is also true that the threshold is not
computed directly from data, so it is classified as semi-automatic.

Needing a training period or not, makes a difference if the algorithm is expected to
work under any kind of circumstances. For instance, the temporal median filter algo-
rithm needs a set of frames in order to start processing new frames, otherwise, it cannot
build a reliable model. The Wallflower algorithm also needs to perform intensive and
time consuming computations before starting its normal operation.

On the other side, the other algorithms discussed in this section assume an initial
frame as a starting model and update it over time.

Algorithm. Adaptive Training period Multimodal support threshold computation
Frame difference N N - Manual

Mean and threshold Y Y N Manual
Mixture of Gaussians Y N Y Semi-automatic

LBP Y N Y Manual
Wallflower Y Y Y Automatic

BAC Y N N Manual
BACc Y N N Manual
MBAC Y N Y Manual
FBS Y N Y Automatic

Table 6.2: Summarize of the features of the different compared background modelling
techniques.
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6.6.1 The Wallflower benchmark

We used the Wallflower benchmark in our experiments with the aim of comparing the
performance of the techniques listed in table 6.2. It has theadvantage that it seems to be
established as a de facto benchmark for background modelling algorithm’s comparison.

This benchmark is composed of seven sequences in which different challenging
situations are represented, each situation is motivated bya different problem, fore-
ground aperture, sudden changes of illumination, constantmotion, background clutter
and background adaptation over time.

Authors of the benchmark took one sequence of images to represent each of first
seven problems listed in section 3.3. Each test sequence begins with at least200 back-
ground frames for training the algorithms, except for the bootstrap sequence (the first
200 frames of the bootstrap sequence were nevertheless used fortraining algorithms
that require a training phase). Also, each sequence has a control frame, used to test the
performance of the background modelling algorithm, this control frame corresponds to
a manual segmentation of the scene. The sequences are:

• 1. Bootstrapping: The sequence consists of several minutesof an overhead view
of a cafeteria. There is constant motion, and every frame contains people.

• 2. Camouflage: A monitor sits on a desk with rolling interference bars. A person
walks into the scene and occludes the monitor.

• 3. Foreground Aperture: A person is asleep at his desk, viewed from the back.
He wakes up and slowly begins to move. His shirt is uniformly coloured.

• 4. Light Switch: First, there is a training period in which the camera sees a
room with the lights both on and off. Then, during the test sequence, the room
starts with the lights off. After a few minutes a person walksin, turns on the
light, and moves a chair. We stop the algorithms shortly after the light comes on,
leaving the various pixel-level adaptation mechanisms inadequate time to adapt.
In addition to the person, the recently moved chair is considered foreground.

• 5. Moved Object: A person walks into a conference room, makesa telephone
call, and leaves with the phone and a chair in a different position. The back-
ground is evaluated50 frames after the person leaves the scene, giving those
algorithms that adapt time to do so.

• 6. Time of Day: The sequence shows a darkened room that gradually becomes
brighter over a period of several minutes. A person walks in and sits on a couch.

• 7. Waving Trees: A person walks in front a swaying tree.

6.6.2 Analysis of BAC and MBAC parameters

In this section, we evaluate the parameters of BAC and MBAC algorithms before com-
paring their results to other algorithms. With these experiments the impact of parame-
ters on results can be discussed. The parameters studied, together with the reference of
the equation where they are employed, are listed in table 6.3. Due to the vast amount of
combinations of values, only the most significant experiments and results are discussed
in the following paragraphs.

In equation 6.1, the parameterκ determines how strict or loose the comparison with
the background will be, in order to determine the most suitable value for this parameter.
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equation. Expression Parameter

Eq. 6.1 S(p, q) = e
−|p−q|

κ κ
Eq. 6.9 fSet = {px,y ∈ F (i) : Pfore(px,y) > τ, being 1 > τ ≥ Pback(px,y)} τ
Eq. 6.36 γ >

P

v≤K cv
x,y(i) γ

Table 6.3: Description of parameters influencing BAC and MBAC execution.

Tables 6.4 and 6.5 show the results obtained by varying the values ofκ in equation 6.1
and its impact depending on the value ofτ used. In general, the lower the value ofκ the
lower the difference between two pixels should be, in order to be considered similar.
This effect is specially significant in sequencewavingTrees, in which the percentage
of TN improves as the value ofκ increases, being better in the case ofτ = 0.6. As
expected, forκ = 20 the values ofTN are higher than the others; this is explained by
the fact that asκ increases, pixels must be more separated to be considered different.

BAC
τ = 0.4 κ = 5 κ = 10 κ = 15 κ = 20

Seq. TP TN TP TN TP TN TP TN
bootstrap 0.87 0.43 0.59 0.92 0.55 0.94 0.50 0.95

camouflage 0.74 0.74 0.77 0.90 0.72 0.90 0.70 0.93
foregroundAperture 0.90 0.60 0.49 0.98 0.24 0.99 0.20 0.99

lightSwitch 0.82 0.15 0.30 0.86 0.48 0.90 0.47 0.91
movedObject - 0.97 - 1.00 - 1.00 - 1.00
timeOfDay 0.83 0.77 0.42 0.98 0.35 0.98 0.30 0.98

wavingTrees 0.96 0.32 0.86 0.67 0.81 0.73 0.75 0.79

Table 6.4: Rate ofTP andTN obtained for the Wallflower benchmark using equation
6.9 to detect foreground regions withτ = 0.4. Dashed results mean that no foreground
pixels were labelled in the control image.

BAC
τ = 0.6 κ = 5 κ = 10 κ = 15 κ = 20

Seq. TP TN TP TN TP TN TP TN
bootstrap 0.67 0.82 0.55 0.93 0.48 0.96 0.41 0.97

camouflage 0.40 0.89 0.15 0.95 0.72 0.91 0.70 0.92
foregroundAperture 0.72 0.30 0.53 0.80 0.49 0.90 0.47 0.99

lightSwitch 0.43 0.98 0.33 0.97 0.26 0.98 0.21 0.98
movedObject - 1.00 - 1.00 - 1.00 - 1.00
timeOfDay 0.70 0.95 0.48 0.97 0.37 0.98 0.31 0.98

wavingTrees 0.91 0.56 0.86 0.68 0.80 0.76 0.74 0.80

Table 6.5: Rate ofTP andTN obtained for the Wallflower benchmark using equation
6.9 to detect foreground regions withτ = 0.6. Dashed results mean that no foreground
pixels were labelled in the control image.

The parameterτ is intimately linked to the value ofκ in equation 6.1. Different
slopes for the curve represented by equation 6.1, will yielddifferent values which are
then filtered depending onτ . This means that the higher the value ofτ the more re-
strictive the segmentation is. We considered that best parameters are those which offer
a good balance between values ofTP andTN , giving more importance to theTN val-
ues than to theTP values. Using the Wallflower benchmark offered us the possibility
of testing the behaviour of the algorithm facing a rich set ofsituations with different
parameters. Thus, the parameter valuesκ = 5 andτ = 0.6 seem to be the best option
according to the obtained results, values ofTN ≥ 0.8 in the Wallflower sequences
which has no clutter in the background nor sudden changes of the scene, in these se-
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quences, we obtained a rateTP ≥ 0.6.

The value ofτ is also linked to the value ofγ in the case of the MBAC algorithm.
In some cases, it may seem that some results do not follow the expected improvement
or deterioration of rates, the cause of this effect is the corrupt model detection, that in
some cases forces a new model to be build and distorts results.

Tables 6.6, 6.7, 6.8 and 6.9 show the results of varying the the values ofτ in equa-
tion 6.31 forγ = 0.4 andγ = 0.6 andκ = 5. On the other side, tables 6.10, 6.11,
6.12 and 6.13 show the results for the configurationγ = 0.4 andγ = 0.6 andκ = 10
with different values ofτ . Comparing the values represented in tables 6.6, 6.7, 6.8,
6.9, 6.10, 6.11, 6.12, 6.13 6.14, 6.15, 6.16 and 6.17, it can be seen that in the case of
the MBAC algorithm, the value ofκ does not influence largely the obtained results. In
some sense, this is not an unexpected result, as long as having several models permits
the algorithm to respond to different background configurations.

κ = 5 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.66 0.62 0.59 0.53 0.48 0.38 0.30

camouflage 0.31 0.12 0.73 0.73 0.70 0.70 0.69
foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.45

lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.64 0.51 0.43 0.32 0.29 0.27 0.25

wavingTrees 0.95 0.94 0.87 0.79 0.69 0.56 0.45

Table 6.6: Rate ofTP obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.4 and κ = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

κ = 5 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.89 0.91 0.92 0.96 0.97 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.92 0.92 0.93 0.92

lightSwitch 0.97 0.97 0.97 0.99 0.99 0.16 0.21
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.95 0.97 0.97 0.97 0.97 0.97

wavingTrees 0.43 0.49 0.59 0.72 0.79 0.86 0.92

Table 6.7: Rate ofTN obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.4 and κ = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

Tables 6.10, 6.11, 6.12 and 6.13 show the results of varying the the values ofτ in
equation 6.31 forγ = 0.4 andγ = 0.6 andκ = 10. It may be seen, that increasing the
value ofτ yields a smaller rate ofTP , on the other hand, it has the effect of achieving
a higher rate ofTN . Tables 6.14, 6.15, 6.16 and 6.17 show the results of varyingthe
the values ofτ in equation 6.31 forγ = 0.4 andγ = 0.6 andκ = 15. As wish previous
combinations of parameters, increasing the value ofτ yields a smaller rate ofTP , on
the other hand, it has the effect of achieving a higher rate ofTN . But results seem to
be worse, specially forTP , asκ increases.



130 CHAPTER 6. BACKGROUND MODELLING AND OBJECT DETECTION

κ = 5 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.62 0.55 0.50 0.44 0.37 0.31 0.23

camouflage 0.31 0.12 0.74 0.71 0.71 0.69 0.68
foregroundAperture 0.58 0.48 0.47 0.46 0.46 0.47 0.45

lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - -
timeOfDay 0.64 0.52 0.43 0.32 0.29 0.29 0.25

wavingTrees 0.95 0.92 0.87 0.77 0.66 0.51 0.37

Table 6.8: Rate ofTP obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.6 and κ = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

κ = 5 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.87 0.93 0.94 0.97 0.98 0.99 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92

lightSwitch 0.97 0.97 0.97 0.97 0.99 0.18 0.23
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.94 0.97 0.97 0.97 0.97 0.97

wavingTrees 0.45 0.51 0.60 0.73 0.81 0.85 0.93

Table 6.9: Rate ofTN obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.6 and κ = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

κ = 10 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.67 0.69 0.63 0.61 0.54 0.47 0.35

camouflage 0.31 0.11 0.74 0.73 0.71 0.70 0.69
foregroundAperture 0.58 0.60 0.56 0.53 0.48 0.47 0.47

lightSwitch 0.50 0.45 0.37 0.28 0.22 0.17 0.37
movedObject - - - - - - -
timeOfDay 0.65 0.57 0.47 0.36 0.31 0.29 0.28

wavingTrees 0.96 0.94 0.88 0.79 0.68 0.56 0.44

Table 6.10: Rate ofTP obtained applying MBAC for the Wallflower benchmark, de-
pending on the value assigned to the minimum foreground probability with γ = 0.4
andκ = 10. Dashed results indicate that no foreground pixels were labelled in the
control image.

κ = 10 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.83 0.88 0.92 0.95 0.97 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.57 0.74 0.84 0.90 0.92 0.93

lightSwitch 0.97 0.97 0.98 0.98 0.99 0.99 0.18
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.95 0.96 0.98 0.98 0.98 0.98

wavingTrees 0.44 0.50 0.55 0.67 0.73 0.79 0.86

Table 6.11: Rate ofTN obtained applying MBAC for the Wallflower benchmark, de-
pending on the value assigned to the minimum foreground probability with γ = 0.4
andκ = 10. Dashed results indicate that no foreground pixels were labelled in the
control image.
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κ = 10 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.63 0.62 0.59 0.54 0.48 0.39 0.30

camouflage 0.31 0.13 0.73 0.73 0.70 0.72 0.69
foregroundAperture 0.58 0.49 0.48 0.48 0.47 0.47 0.46

lightSwitch 0.50 0.44 0.36 0.27 0.20 0.63 0.55
movedObject - - - - - - -
timeOfDay 0.65 0.51 0.43 0.32 0.30 0.28 0.26

wavingTrees 0.96 0.94 0.88 0.79 0.69 0.58 0.46

Table 6.12: Rate ofTP obtained applying MBAC to the Wallflower benchmark de-
pending on the value assigned to the minimum foreground probability with γ = 0.6
andκ = 10. Dashed results mean that no foreground pixels were labelled in the control
image.

κ = 10 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.88 0.89 0.91 0.92 0.96 0.97 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.93

lightSwitch 0.97 0.97 0.97 0.97 0.99 0.17 0.22
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.95 0.96 0.98 0.98 0.98 0.98

wavingTrees 0.45 0.50 0.59 0.73 0.79 0.86 0.92

Table 6.13: Rate ofTN obtained applying MBAC to the Wallflower benchmark de-
pending on the value assigned to the minimum foreground probability with γ = 0.6
andκ = 10. Dashed results mean that no foreground pixels were labelled in the control
image.

κ = 15 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.66 0.62 0.59 0.53 0.48 0.38 0.30

camouflage 0.31 0.12 0.73 0.73 0.70 0.70 0.69
foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.46

lightSwitch 0.50 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.64 0.52 0.43 0.32 0.29 0.27 0.25

wavingTrees 0.95 0.94 0.87 0.79 0.69 0.57 0.45

Table 6.14: Rate ofTP obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.4 andκ = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

κ = 15 MBAC
γ = 0.4 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.89 0.91 0.92 0.96 0.97 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92

lightSwitch 0.97 0.97 0.97 0.99 0.99 0.16 0.21
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.94 0.97 0.97 0.97 0.97 0.97

wavingTrees 0.43 0.49 0.59 0.72 0.79 0.86 0.92

Table 6.15: Rate ofTN obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.4 andκ = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.
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κ = 15 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.62 0.55 0.50 0.44 0.37 0.31 0.23

camouflage 0.31 0.12 0.74 0.71 0.71 0.69 0.67
foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.46

lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.65 0.52 0.43 0.32 0.29 0.29 0.25

wavingTrees 0.95 0.92 0.87 0.77 0.66 0.51 0.37

Table 6.16: Rate ofTP obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.6 andκ = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

κ = 15 MBAC
γ = 0.6 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.87 0.93 0.94 0.95 0.98 0.99 0.99

camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92

lightSwitch 0.97 0.97 0.97 0.99 0.99 0.18 0.23
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.94 0.97 0.97 0.97 0.97 0.97

wavingTrees 0.45 0.51 0.60 0.73 0.81 0.85 0.93

Table 6.17: Rate ofTN obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimum foreground probability
with γ = 0.6 andκ = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

In general, it can be seen that the MBAC algorithm improves slightly results of
BAC, specially in the sequences in which using several models is an advantage, for
instance, when there is clutter in the background. If the valuesκ = 5, τ = 0.6 and
γ = 0.4 are selected, theTN rate is over0.70 in all cases in tables 6.7 and 6.6 . On the
other hand, it is difficult finding a combination of parameters for MBAC which yield
values ofTP over 0.8 in all cases. The use of an exponential to detect differences
between background and foreground together with multiple values per pixel has the
disadvantage that several models can represent tight grey tone values, whose difference
is amplified by the exponential. Also, using motion to model the background has an
impact in the way models are swaped. This issue produces thatthe MBAC algorithm
does not reach a higher rate ofTN in thewavingTreessequence.

6.6.3 Analysis of FBS parameters

The parameter that seems to have the biggest influences in theFBS algorithm isCard0,
which measures which pixels will be considered undoubtedlybackground, as shown in
line5 of algorithm 4. Table 6.18 shows the experiments performed in order to detect the
influence of this parameter in the segmentation results. As it can be seen, the bigger
the value, the worse the results, although the worsen is sometimes mimicked by the
availability of several models per pixel.

However, differences are usually quite small. This may be due to several facts, as
the following:

• The cumulative effect of having several models which may eventually be dropped
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off and replaced with others.

• The evidence that for some frames, the real value ofCard0 could be set to values
greater than0.5.

FBS
Card0 0.1 0.2 0.3 0.4 0.5 0.6
Sequence TP TN TP TN TP TN TP TN TP TN TP TN
bootstrap 0.54 0.97 0.54 0.97 0.55 0.96 0.56 0.96 0.54 0.95 0.55 0.96

camouflage 0.75 0.90 0.74 0.92 0.73 0.92 0.74 0.92 0.28 0.95 0.06 0.95
foregroundAp. 0.59 0.90 0.61 0.91 0.58 0.91 0.60 0.90 0.59 0.91 0.62 0.91

lightSwitch 0.63 0.86 0.68 0.86 0.66 0.85 0.76 0.79 0.80 0.84 0.79 0.85
movedObj. - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00

time. 0.70 0.97 0.72 0.96 0.72 0.96 0.71 0.96 0.69 0.96 0.74 0.97
wavingTr. 0.85 0.88 0.86 0.87 0.85 0.88 0.89 0.86 0.90 0.85 0.37 0.79

Table 6.18: Evaluation of parameterCard0 by computing the rate ofTP andTN
obtained ranging the value ofCard0 in [0.1, 0.6] the FBS algorithm. Note that there is
an slight decrease in the percentages ofTP , for Card0 ≥ 0.3.

Empirical results, as those represented in the figures 6.7, 6.8, 6.9, 6.10 and 6.11,
induce to think that a low value is desirable. If line5 in algorithm 4 is considered
with attention, the inequality searches for all the values which are under a given limit,
looking for a, presumably, small set. If this set was expected to be larger, maybe
it would affect negatively the slope of the curve thus, changing the location of the
threshold. This fact, together with the empirical results aforementioned and the results
obtained in table 6.18, it was decided finally to setCard0 = 0.3.

6.6.4 The FBS algorithm versus the BAC, MBAC algorithms

For a quantitative comparison of results of these algorithms, we used theTP andTN
for each control image of the benchmark.

BAC and BACc were executed takingτ = 0.6 andκ = 5. For MBAC, a value
K = 3 andτ = 0.8, γ = 0.4.

For fuzzy background subtraction, parameter’s values areK = 3, pmin = 8 as
suggested in [toyama99],β0 = 1◦, cmin = 7 andγ = 0.6. Only in the sequence
camouflagea valueγ = 0.4 was chosen.

BAC BACc MBAC FBS
Sequence TP TN TP TN TP TN TP TN
bootstrap 0.67 0.90 0.68 0.89 0.59 0.91 0.56 0.96

camouflage 0.72 0.76 0.75 0.69 0.73 0.86 0.74 0.92
foreAperture 0.40 0.87 0.43 0.96 0.47 0.90 0.67 0.83
lightSwitch 0.43 0.90 0.54 0.85 0.41 0.36 0.97 0.86

movedObject - 1.00 - 0.95 - 1.00 - 1.00
timeOfDay 0.70 0.95 0.42 0.74 0.43 0.97 0.72 0.88

wavingTrees 0.91 0.56 0.93 0.57 0.87 0.59 0.86 0.88

Table 6.19: Results of the compared algorithms. Each row in the table corresponds to
an algorithm and shows theTP andTN achieved for a given sequence. The numbers
of the sequences, correspond to the numbers in the list in section 6.6.1.

In table 6.19, the rates achieved in the Wallflower benchmarkof the four algorithms
introduced in this section is shown. BAC has a poor performance if there is motion in
the background, as it is not able to respond to different values of the background as
may be seen in the sequencewavingTrees.
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BACc seems to improve slightly results considering theTP values in nearly all
sequences. However, for sequencetimeOfDaythe similarity function seems to perform
poorly in the RGB case yielding a very low rate ofTP , lower than that obtained for
BAC. This may be due to the fact that the RGB space is no uniformly distributed and,
in some cases, some distances yield wrong probability values.

MBAC improves results over BAC and BACc, specially in the case of clutter in
the background as in the sequencewavingTrees. But using motion to detect regions of
interest at the same time that several models are handled does not produce the expected
results, as pointed out in section 6.6.2. The use of motion todetect regions of interest,
for instance, produces poor results in thelightSwitch.

It can be seen that, in all cases, the FBS algorithm outperforms the others if we
consider the balance ofTP andTN rates. Due to its ability to manage several models
per pixel, it is quite obvious its advantage over the BAC or BACc algorithms, which
just consider one model per pixel. On the other side, the threshold computation of the
FBS algorithm is more accurate than the one computed by the MBAC algorithm.

6.6.5 Our proposal compared to the literature algorithms

Six algorithms, or versions of algorithms, were compared: frame difference, temporal
median filter, textures, mixture of gaussians, wallflower and FBS.

For frame difference and the temporal median filter algorithms a segmentation
threshold equal to10 was used.

As an example of the mixture of Gaussians, the Stauffer’s algorithm was chosen. It
was executed withK = 5 andT = 0.6.

The LBP algorithm was executed with the suggestions found in[heikkila06],R =
6, P = 2, TB = 0.8, TP = 0.7 andαb = αw = 0.01.

Analogously, for the Wallflower algorithm the parameters were set as the authors
propose in their paper,30 coefficients for the Wiener filter and50 past values.

FBS was executed as discussed in section 6.6.4. For all algorithms, we usedα =
0.99.

The comparison of algorithms is made from the point of view ofthe results achieved
with the Wallflower benchmark and also, taking into account their time and spatial cost.
Table 6.20 shows the global results for each algorithm with the complete benchmark.
Qualitative results of the compared algorithms are shown infigure 6.13. In this figure,
on the left column, we show the hand segmented versions of thecontrol frames. On the
right, the result obtained by fuzzy background subtraction. The fact that no unexpected
noises appear on result frames and that objects seem to be segmented quite accurately,
makes us think that these results are quite promising.

The LBP algorithm obtainsTN rates over0.8 in all cases but in thelightSwitch,
because it is not able to manage sudden corruptions of the background model. For this
challenge, theTN rate falls to0.7.

The comparison between the Stauffer’s approach using grey tones and RGB coor-
dinates shows that adding colour to the processing improvesslightly results. However,
the time penalty has to be considered. In both cases, the approach fails when sudden
changes in the background occur, as in thelightSwitchsequence withTP = 0.05 and
TP = 0.07 respectively. This happens mainly because the algorithm takes a lot of
time to react to changes in pixel’s values, moreover, if the pixel has several different
descriptions modelling it.

Frame difference (FD), as expected, has a good behaviour detecting moving re-
gions, but fails when objects stay still. Also, It usually fails to detect the complete
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Algorithm boots. camouf. foreApert. lightSw. moved. timeOfDay wav.

LBP
TP 0.71 0.73 0.79 0.62 - 0.86 0.85
TN 0.90 0.86 0.66 0.91 1.00 0.97 0.77

MoG
TP 0.44 0.92 0.54 0.75 - 0.46 0.75
TN 0.91 0.67 0.74 0.05 1.00 0.99 0.86

MoGs RGB
TP 0.44 0.92 0.50 0.73 - 0.41 0.86
TN 0.95 0.73 0.85 0.07 1.00 0.98 0.90

FD
TP 0.48 0.20 0.25 0.29 – 0.25 0.70
TN 0.95 0.96 0.94 0.98 1.00 0.98 0.62

MT
TP 0.79 0.97 0.60 0.98 – 0.52 0.91
TN 0.81 0.28 0.52 0.06 1.00 0.88 0.56

WLL
TP 0.77 0.97 0.99 0.70 – 0.79 0.85
TN 0.99 0.98 0.90 0.98 1 0.79 0.85

FBS
TP 0.56 0.74 0.67 0.60 - 0.72 0.86
TN 0.96 0.92 0.83 0.86 1.00 0.88 0.88

Table 6.20: Results of the compared algorithms. Each row in the table corresponds to
an algorithm and shows theTP andTN achieved for a given sequence.

area of objects and just detects their edges. Its quantitative results for the Wallflower
benchmark can be seen in table 6.20, for all the sequences thevalue ofTN is over0.90
except in thewavingTreessequence, in which the clutter in the background is quite
significant. However, the values ofTP do not reach the80% of the total amount of
foreground pixels.

Mean and threshold (MT) algorithm yield very poor results when it has to deal with
clutter in the background, due to the fact that it only storesa model of the scene. This
problem is evident in thewavingTreesor camouflagesequences. Sudden background
corruption is not easily dealt by these algorithms, as shownin the results obtained in
the sequencelightSwitchwith TN = 0.06. In the rest of cases, theTN rate is always
under0.8.

Wallflower algorithm has the best performance in all sequences, achieves the high-
est rate ofTP andTN . It effectively responds to all the challenges proposed by the
benchmark. However, as will be discussed later, this efficiency is obtained at the cost of
an enormous temporal and spatial cost. It can be seen that therate ofTN is in all cases
but one over0.85, and also the rate ofTP is over0.7, a result which is not obtained by
any other algorithm.

Finally, the FBS algorithm also achievesTN rates over0.83 for all sequences,
and handles appropriately the challenge in thelightSwitchchallenge, achieving aTP
similar to that obtained by the LBP algorithm.

In general, the values ofTP are over those obtained by the mixture of Gaussians
and a little bit worse than those of the textures algorithm orthe Wallflower algorithm.

In general, results point out that adaptive, multimodal algorithms handle suitably
all situations. Specifically, the Wallflower algorithm is the one with best overall results,
followed by the LBP algorithm, FBS algorithm and the Stauffers’ approaches.

6.6.6 Temporal analysis of algorithms

In this section we introduce an analysis of the time consumption of each algorithm
in order to process a complete sequence of the Wallflower algorithm. Average time
responses of each algorithm are shown in table 6.21. In this table, the time invested in
segmentation is separated from the time invested in background adaptation.

The segmentation time includes time spent on any operation which involves sub-
tracting, comparing values or extending areas, as in the region stage of the Wallflower
algorithm and the fuzzy background subtraction algorithm.On the other hand, the
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Algorithm boots. camouf. foreApert. lightSw. moved. timeOfDay wav.

LBP
Segm. 33.6 26.89 21.26 22.28 20.32 31.87 23.16
Model 5.41 3.97 3.22 3.12 3.00 5.00 3.33

MoG
Segm. 0.08 0.05 0.05 0.05 0.05 0.04 0.05
Model 5.13 3.71 3.43 3.45 3.44 2.73 3.35

MoG RGB
Segment. 0.08 0.05 0.05 0.05 0.05 0.05 0.06

Model 5.13 3.72 3.42 3.45 3.44 3.52 4.23

FD
Segm. 3.5E-4 3.4E-4 2.8E-4 2.8E-4 2.9E-4 2.5E-4 4.2E-4
Model 0 0 0 0 0 0 0

MT
Segm. 5.5E-4 4.7E-4 4.4E-4 4.2E-4 4.1E-4 2.8E-4 5.9E-4
Model 0.72 0.71 0.78 0.74 0.79 0.79 0.70

BAC
Segment. 0.73 0.48 0.36 0.73 – 0.44 0.51

Model 0.86 0.96 0.99 0.74 0.99 0.98 0.95

BACc
Segment. 0.67 0.78 0.58 0.46 – 0.53 0.93

Model 0.85 0.70 0.87 0.97 0.99 0.98 0.59

MBAC
Segment. 0.56 0.49 0.40 0.39 0.50 0.33 0.55

Model 0.48 1.74 2.19 2.69 2.48 3.02 1.11

WLL
Segment. 0.35 0.34 0.34 0.34 0.34 0.34 0.34

Model 55.5 55.5 55.5 55.5 55.5 55.5 55.5

FBS
Segment. 0.8 0.2 0.7 0.1 0.1 0.1 0.6

Model 2.5 2.8 2.8 2.2 2.0 2.0 2.7

Table 6.21: Mean time for frame segmentation and backgroundmodeling of each of
the studied algorithms.

background adaptation time includes the operations of creating, updating or removing
background descriptions.

LBP algorithm and wallflower algorithms have a very high temporal cost if not
parallelized; however, experiments were made from the point of view of the constraints
stated in section 5.1.1. These were the approaches with better segmentation results, but
at the expense of a bigger amount of time per frame in average.

FBS requires more time in average to segment a single frame than Stauffer’s ap-
proach, however its model update time is lower. BAC and MBAC have also a slow
segmentation, influenced probably by the exponential used in the segmentation.

6.6.7 Space complexity of the algorithms

To analyse an algorithm is to determine the amount of resources (such as time and
storage) necessary to execute it. Most algorithms are designed to work with inputs of
arbitrary length. Usually the efficiency or running time of an algorithm is stated as a
function relating the input length to the number of steps (time complexity) or storage
locations (space complexity). Algorithm analysis is an important part of the computa-
tional complexity theory, which provides theoretical estimates for the resources needed
by any algorithm, as the complexity function for an arbitrarily large input.O notation,
ω notation andθ notation are used to this end. Space complexity of algorithms is of
crucial importance if the algorithm is designed to run in environments in which tasks
will be given a small amount of memory to work with. In this section, the complexity
analysis of the algorithms considered in the experiments isperformed from the point
of view of their space consumption.

In order to compare the space complexity of the algorithms tested in our exper-
iments, we supposed an image of sizen · m. Table 6.22 shows the comparison of
algorithms’ space complexity.

BAC and BACc have similar space complexities, so they are allconsidered in the
row corresponding to BAC. In the case of MBAC, its complexityis bigger because it
needs to store the models. Frame difference uses no model andof course, no model
weights, so its space complexity reduces only to input and output variables. LBP com-
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Algorithm weight model
LBP O(n · m · K) O(n · m · K · 2P )

Mix. Gauss. O(n · m · K) O(n · m · K)
Frame difference O(n · m) O(n · m)

Mean and threshold O(n · m) O(n · m)
Wallflower - O(n · m · V )

BAC - O(n · m)
MBAC O(n · m · K) O(n · m)
FBS O(n · m · K) O(n · m · K)

Table 6.22: Space complexity for each algorithm consideredin the experiments, taking
as reference an image ofn ·m pixels.

plexity depends on2P the size of each histogram. Wallflower complexity only takes
into account the model’s complexity, as no model weights areconsidered in this al-
gorithm. Its complexity is thenO(n · m · V ), whereV is the sum of the number of
coefficients and the number of past values used to predict future values with the Wiener
filter. The Wallflower algorithm considers a fixed number of models. Finally, the space
complexity of fuzzy subtraction algorithm isO(n ·m ·K) for weights andO(n ·m ·K)
for the model.

Considering the results obtained in tables 6.20, 6.21 and 6.22, it can be stated that
FBS yields results comparable to other approaches with the lowest total time consump-
tion and the lowest space complexity. The BAC algorithm provides with a method to
compute a reliable background model but it fails if there’s clutter in the background or
in the contrast between objects and background is very small.

Figure 6.14 shows the background models considered by the proposed algorithms
and the two implemented versions of Stauffer’s algorithm when the control frame was
about to be segmented. Note that BAC or BACc produce a noisy background model
for sequences with clutter in the background such as the waving tree sequence. On
the other side, the model used by Stauffer’s algorithm for the light switch sequence is
wrong as the algorithm cannot adapt itself to sudden changesin the scene.

6.6.8 Combining BAC and the FBS algorithm

Most of the multi-modal algorithms introduced in this work,usually expect user to pro-
vide the algorithm with the values ofK, number of models, andγ, model replacement
speed. After the experiments performed to compare the performance of the algorithms
on their own it can be seen that BAC, when provided with strictvalues in order to force
it creating a reliable background model, can be used to provide with an estimate of
both parametersK andγ. This section discusses another set of experiments performed
using BAC to compute an initial background model that could be used by the FBS
algorithm as the first model.

BAC computes the confidence of a pixel in such a way, that it reaches easily values
around0.9, over a maximum of1, after10 or 20 consecutive frames without changes,
recall figure 6.3. If we apply this algorithm to the input sequence until the computed
background model achieves a certain confidenceθ, we obtain an initial modelBx,y(0)
and for each pixel(x, y), h(x, y),the number of times the model was modified, and
g(x, y), the confidence obtained at the end of the process.

It is easy to see that the values ofK andγ have an strong relationship with the
values ofh andg. The bigger the value ofh(x, y), the most models pixelBx,y may
need, and the higher the confidenceg(x, y) obtained, the lowest its need of changing
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Figure 6.13: Quantitative results for the Wallflower benchmark. The first row shows
the original control frames captured from the sequence. Thesecond row shows the
control frames segmented by hand. Remaining rows show the result of each algorithm
for each sequence.
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Figure 6.14: Background models computed by the the proposedalgorithms together
with Stauffer’s approach in grey tones and RGB coordinates.
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quickly. As models should show flexibility to changes,K may be estimated following
the rule:

∀(x, y), K(x, y) =

{

2, if h(x, y) ≤ 2, ∀(x, y)
min(5, h(x, y)), if h(x, y) > 2,

(6.59)

and,

γ(x, y) = 1− g(x, y) (6.60)

γ(x, y) is restricted to the interval[0.3, 0.6], in order to avoid that a pixel never
changes or never arrives to an stable state. ModelBx,y(0) is set to the model obtained
by BAC. When an stability condition is reached, the FBS algorithm continues with the
segmentation and background update.

Table 6.23 shows quantitative results, we measured the foreground and background
pixels classified successfully,TP andTN . Results improve slightly those obtained by
BAC or by the FBS algorithm on their own.

Algorithm bootstrap camouflage fore. lightSwitch movingObj. timeOfDay wavingTrees
TP 0.44 0.50 0.92 0.73 - 0.41 0.86

Mix. Gauss. TN 0.95 0.85 0.73 0.07 1.00 0.98 0.90
TP 0.71 0.62 0.73 0.79 - 0.86 0.85

LBP TN 0.90 0.91 0.86 0.66 1.00 0.97 0.77
TP 0.60 0.75 0.56 0.48 - 0.30 0.83

BAC TN 0.90 0.76 0.87 0.90 1.00 0.98 0.67
TP 0.47 0.81 0.67 0.65 - 0.82 0.87

FBS TN 0.96 0.92 0.83 0.86 1.00 0.88 0.88
TP 0.56 0.74 0.67 0.60 - 0.72 0.86

Wallflower TN 0.99 0.98 0.90 0.98 1.00 0.99 0.85
TP 0.61 0.81 0.69 0.68 - 0.70 0.94

BAC + FBS TN 0.95 0.91 0.93 0.85 0.99 0.98 0.87

Table 6.23: Results (in %) of the compared algorithms when faced to the different
situations represented in the Wallflower benchmark.

6.6.9 Combining the algorithms with a classifier

In this section we discuss an experiment performed with the BAC, MBAC and FBS al-
gorithms together with the classifier discussed in chapter 5. The aim of this experiment
is showing that the algorithms developed in this chapter canbe effectively used with a
classifier, for instance in a surveillance application. We used a sequence recorded by
ourselves of456 frames in which we simulate the behaviour of people in a public fa-
cility. In order to extract conclusions from results, objects in the frames were manually
labelled as belonging to classpersonor group of people. There were350 objects of
classpersonand38 objects of classgroup of peoplein the sequence.

Results of this experiment can be seen from two different points of view: the seg-
mentation and the classification process. In the first place,segmentation depends ex-
clusively of the background subtraction method chosen.

Table 6.24 compares the total amount of expected objects to be correctly segmented
to those really found by BAC, MBAC and FBS. From the segmentation point of view, it
can be seen, that MBAC shows a poor performance because it takes longer to produce
an stable model, as long as some objects are included into themodel until it becomes
robust enough. FBS is also affected by the problem of multimodality. However, in
MBAC the use of several models per pixel and the segmentationusing equation 6.1
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produces a less accurate segmentation, and this effect reflects over time in a poorer
background model.

Total BAC MBAC FBS
Objects 388 325 135 239

Table 6.24: Comparison of successfully segmented objects obtained by BAC, MBAC
and FBS. Under the columntotal, the total amount of objects expected to be found in
the sequence, regardless of their class.

On the other side, classification results for the three algorithms are shown in table
6.25. In general, there is no confusions of classespersonor group of peoplewith class
luggage. Confusions between classespersonand group of peopleare due to some
configurations of groups in the scenario, which are difficultto deal with. In this case, it
is not important however the performance of the classifier, but to see that the algorithms
produce an output.

BAC MBAC FBS
Person Group Luggage Person Group Luggage Person Group Luggage

Person 282 25 0 102 11 0 202 21 0
Group 9 9 0 14 8 0 11 5 0

Luggage 0 0 0 0 0 0 0 0 0

Table 6.25: Confusion rates for a sequence with objects of classespersonandgroup of
people, there were no objects of classluggagein the sequence. Results are obtained
by applying BAC, MBAC and FBS algorithms to the sequence and classifying the
obtained objects with the classifier discussed in chapter 5.

6.7 Conclusions

In this chapter we develop three algorithms designed to model scenarios and detect ob-
jects, with the aim of being able to give a good performance indemanding scenarios.
These scenarios are characterized by having always a significant activity level, mak-
ing it difficult to obtain a clean model with traditional techniques. These algorithms
were developed to respond to some issues that arised while building the system (BAC
[rosell08a], [rosell09], MBAC [rosell10] and FBS [rosell10b]).

The algorithms were developed with the aim of giving an answer to the problem of
system recovery after model corruption and the computationof a model’s quality over
time.

The addition of colour to BAC did not improve results, yielding in some cases a
poor response in some situations. MBAC improves the resultsof BAC when there
is motion in the background because it considers several models per pixel, however,
the use of motion to detect degratations in the background model affect seriously its
performance in certain situations. The FBS algorithm, which usedCIEL∗a∗b∗ colour
coordinates because of their perceptual uniformity, had a better response than BAC and
MBAC.

The algorithms developed in this chapter detect corrupt models easily. Model cor-
ruption is an issue not usually covered by other algorthims,in our opinion, if a system
is expected to be autonomous, it should consider the posibility that the model may be-
come useless by whichever reason and that it must be eventually restarted. BAC and
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MBAC consider that a background model is corrupt if a sudden increase of foreground
pixels is detected. In FBS detection is defined in a mathematical way derived from the
algorithm’s assumptions.

The FBS algorithm proved to be reliable and permits the detection of regions of in-
terest with great accuracy thanks to the frame-by-frame threshold computation. Results
obtained by the FBS algorithm are as good as those obtained byMixture of Gaussians
or the LBP approach for the sequences in the Wallflower benchmark. Indeed, this re-
sults are obtained with a lower spatial consumption, this way we meet the constraints
stated for the developed algorithms.

Traditionally, background modelling algorithms expect users to specify, at least,
the amount of models used to describe the each pixel in the model and the speed at
which these models will be changed, if needed. This configuration is performed by
user relying on previous experiences. We have shown that BACcan be combined with
other methods [rosell10b] in order to permit facing the problem of self-configuring
units that can work with autonomy. Experiments with the Wallflower benchmark and
with our own sequences make us think that our solution is robust when facing different
scenarios and challenges.



Chapter 7

Conclusions and future works

7.1 Conclusions

In this thesis, techniques for object segmentation in situations in which light conditions
cannot be controlled are developed and discussed. The developed techniques have
been successfully applied to two different problems of the real world, the location,
segmentation and identification of container codes and the location and tracking of
people in a closed environment as an airport.

The proposed schemas try to apply the most suitable segmentation algorithms to the
problem to solve, in an effort to cope with as many different environmental situations
as possible. In case algorithms need to be supplied with parameters, these are ranged
in intervals as wide as needed, whenever possible. This, as seen, has as a consequence,
that output will contain very likely the expected objects together with noise. This
noise is reduced by means of filters applied to the segmentation output. In certain
applications, time performance is a high priority constraint, in this thesis, comparisons
about the time consumption of algorithms is done in order to extract conclusions about
their suitability to each of the considered applications.

Experimental results were obtained by using real images obtained in the entrance
gate of Valencia trading port and, on the other hand real video sequences. In order to
evaluate the performance of the algorithms proposed in thisthesis or obtained from the
literature, we measured with different methods the location of the detected objects. In
chapter 4 and 5 we considered the location of the centre of thelocated object, in chapter
6 a pixel-wise comparison is performed.

In chapter 2 a review on segmentation techniques is done. This techniques are
designed in such a way, that they rely heavily on the light conditions and images taken
under non controlled light conditions become difficult to deal with.

In chapter 3, it can be seen that background subtraction techniques are the most
popular in the literature. They have proved to achieve a goodperformance in scenarios
with small changes in the background. The basic technique consists on obtaining a
model of the scenario, several methods may be found in the literature to build this
background model. Light conditions also have an influence onthe performance of these
algorithms, as most of them rely on thresholds to distinguish which pixels belong to
foreground and which belong to background. Algorithms may be sort into two groups,
regarding the threshold used. One group uses fixed thresholds and another group uses
thresholds which depend on statistical computations.
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To develop the method of chapter 4 to detect and recognize container’s codes, sev-
eral algorithms were used to segment image and, by the use of filters, the initial re-
sponse is reduced to a smaller set. This is achieved by using the top-hat operator, a
combination of segmentation techniques, classifiers and filters.

Objects expected to be found by segmentation techniques mayalways be charac-
terized by specific features, which describe them. Simple geometric features such as
height or width, but also location in the image or a class assignment given by a clas-
sifier are useful to circumscribe objects in a closed set. We use these features, besides
from describing objects, also as discriminators. Objects in the output of the segmen-
tation step may be filtered out by checking which expected features do not meet. In
the case of characters, specific height and width may be expected and any object not
meeting these constrains may be removed from the output. Thekind of filters used
depend extremely of the application to be developed; thougha general schema may be
given, the specific needs and particularities of the system will demand one set of filters
or another.

The algorithm discussed in chapter 4 finds objects with the highest probability of
belonging to the container’s code. Sequences of images representing the same con-
tainer in different moments of time, are used. These sequences are used in an algorithm
that tries to reduce the number of errors in the processing ofeach single image. Com-
mon errors are induced by shadows or damaged containers and may be corrected using
sequences, as has been proved. This way, a more reliable and fault-tolerant algorithm
is obtained.

Different experiments were performed using the single techniques or a combination
of them. Finally, experiments were made with309 images, from the results it may be
concluded that is prererable using LAT and the thresholdingtechnique together over
the techniques alone, as better results can be obtained.

With our system, a high degree of success can be achieved. Thealgorithm needs
no parameter to be adjusted. However, it does depend on how the classifier was trained
as its performance depends directly of the classifier’s performance and how it detects
noisy objects. The better the classifier is trained, the better the process will work.

Our works within the SENSE project are discussed in chapter 5and 6. In this case,
real video sequences were used in the experiments, we used the Wallflower benchmark
together with sequences recorded by ourselves. In chapter 6we compare the results
obtained by our algorithms with other from the literature.

The application discussed in chapter 5, is a system aimed to locate and track people
and luggage in the halls of an airport has also been developed. In this case, time
constraints are much more restrictive than in previous system; also, in surveillance
systems accuracy is an important factor. This implies the necessity of more accuracy
when determining whether a given object is noise or not; as noobject may be lost under
any circumstance.

We proposed a solution that uses background subtraction in order to locate the
objects in the scenario and a process of background update within a given period of
time. In the discussed system, we built a classifier in order to separate detected objects
into three different classes. Several experiments were performed with different features
with the goal of achieving the maximal classification confidence in the minimal time.
Finally, a solution using ak-NN classifier and a head detection algorithm is the solution
chosen.

As a different way of interpreting background subtraction,we have proposed the
use of probabilities in chapter 6. During the development ofthe surveillance system,
a lack of literature about recovering or constructing background models have been de-
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tected. Two algorithms aimed to perform background subtraction using probabilities.
One of them, BAC, performs a pixel-wise computation of similarity with the back-
ground. The other one, FSB, performs a global threshold computation for the entire
image, using two membership functions computed on the fly.

In chapter 6 we have discussed three algorithms for background modelling: BAC,
MBAC or FSB. As a novelty, we developed the concept of background quality in BAC,
being this quality a measure of the confidence of the background model. This measure
was extended to the other two algorithms. BAC also considersobjects’ motion when
building the background model. MBAC is an extension of BAC inorder to support
several models per pixel, with the aim of supporting clutterin the background. On
the other hand, FSB computes a global threshold by building on the fly two member-
ship functions for background and foreground, eluding the use of fixed or probabilistic
thresholds usually found in the traditional background subtraction methods.

BAC, FSB or MBAC detect corrupt models easily. Model corruption is an issue
not usually covered by other algorithms, in our opinion, if asystem is expected to be
autonomous, it should consider the possibility that the model may become useless by
whichever reason and that it must be eventually restarted. BAC and MBAC consider
that a background model is corrupt if a sudden increase of foreground pixels is de-
tected. In FSB detection is defined in a mathematical way derived from the algorithm’s
assumptions.

Also research was performed in this thesis about the initialization of the background
modelling algorithms. We proved that BAC can be combined with other methods in or-
der to permit facing the problem of self-configuring units that can work with autonomy.
Experiments using a combination of BAC+ FSB were performed with the Wallflower
benchmark and with our own sequences yield promising results about the robustness
of this combination when facing different scenarios and challenges.

Summarizing, the conclusions of this thesis are:

• In this thesis we have developed a reliable technique to detect and identify the
symbols of truck containers.

• Research has been done in techniques to characterize objects. Specially, different
features have been tested for object recognition in the fieldof surveillance appli-
cations, these features were tested on a database of objectsmanually segmented
by ourselves.

• In order to perform experiments, we have recorded and processed real-life se-
quences.

• In this thesis three novel techniques for background modelling have been pro-
posed. An important issue from our point of view, is the independence of the
algorithms to environmental conditions, thus, the proposed techniques are able
to restart the background models if errors are encountered.Moreover, the al-
gorithms compute a quality measure of the background model,which is also a
novelty in this field.

• The comparison of results obtained with the FSB proposed in this thesis with
other works found in the literature, show that our proposal is robust when facing
different scenarios and challenges.
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7.2 Future works

Further efforts will focus on improving execution times by parallelizing parts of the
process of locating and recognizing container’s codes. Thevery nature of the solution
proposed clearly points in the direction of parallelizing the execution of the different
algorithms and the different processing flows. Moreover, itis possible obtaining a
compact and reduced implementation of the system in order toimplement the system
in low cost, low consumption systems as, for instance, systems-on-chip (SoC).

Better results can also be obtained if the classifier is improved by adding more
images to train the system. Specially, improving the description of the class noise by
adding more instances would benefit the global results.

Also, following with the truck containers application, designing a fast process that
could roughly locate the container’s code in the image wouldbe helpful in order to
diminish time execution of the algorithm.

The use of sequences can be improved if images are segmented at the same time
new images are captured. By using this pipeline structure, the improvements obtained
by using sequences can be obtained at a low temporal cost. An open line is also re-
searching new methods to fuse the information obtained fromthe different images
considered in the sequence.

Surveillance system may also be improved by improving the classifier, finding a
more robust set of features or a new approach to classify objects. Specially when it
is about separating classespersonandpeople. Experiments with thek-NN classifier
show that both classes are not easy to separate and, though the use of symmetry axes
improves results, maybe other methods should be explored. Aclassifier based on other
features, different from shape or silhouette is also desirable.

Crowd estimation is also a challenge, either by using directly the results of the
classification method introduced in this thesis is an open line or by applying statistical
estimations to the gathered data.

Research is still to be done with the background modelling methods using colour
constancy [gevers97]. Also, using colour invariance seemsto be a way to obtain a better
tracking system able to manage with occlusions [nguyen02].In any case, an open line
is still obtaining better background descriptions that yield better segmentations.

Finally, the background modelling algorithms discussed inthis thesis have an im-
mediate application to AAL (Ambient Assisted Living) [sunand09]. In this case, the
aim of the applications is not locating threats or lost objects but constructing safe envi-
ronments around assisted peoples and helping them maintainan independent live.
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Morphological operators

In this chapter, a quick review to morphological operators is shown. These operators
form an algebraic system of operators. They may be combined among them in or-
der to extract the most significant parts of complex images. According to authors in
[soille99], this operators allow identifying essential parts of figures in order to recon-
struct them optimally from distorted images. Morphological operators can simplify an
image, keeping its essential features and removing any information which is not useful.

The basic unit of information in a morphological approximation is the binary im-
age; although the operators may be extended to work analogously with grey-level im-
ages. GivenA, a binary image, andB an structural element (a binary sub-image),ω
a universal binary image (that is, an image which has all its pixels set to1), the four
basic morphological operators are defined as follows:

• intersection :A
⋂

B = {p ∈ A ∧ p ∈ B}

• union :A
⋃

B = {p ∈ A ∨ p ∈ B}

• complementation :Ac = {p ∈ Ω ∧ p /∈ A}

• traslation : beingp a pixel, the traslation ofA by p is given byAp = {a + p :
a ∈ A}

By combining these morphological operators, other operators may be obtained, as,
for instance, the top-hat operator. Two important operations which have to be defined
before using this operator are the dilation and erosion operation.

• Dilation: beingAb1, Ab2, Ab3, ..., the union traslation of a binary imageA by the
set of pixels with value equal to1 of the binary imageB = {b1, b2...}; is called
dilation ofA by B, expressed as :

A⊕B =
⋃

bi ∈ BAbi

Dilation verifies both the commutative and associative properties. ImageB is
usually a regular shaped figure known as Structural Element (SE for short).

• Erosion: the dual operation of dilation, defined as :

A⊖B = {p : Bp ⊆ A}
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BeingI a grey-level image with dimensionsM ×N andI(x, y) the grey level for
pixel located in coordinates(x, y), and the structural elementb(i, j) with dimensions
m× n. The dilation and erosion operations for grey-level imagesare defined as :

(f ⊕ b)(x, y) = maxi,j{f(x− i, y− j)+ b(i, j)},∀0 <= i < m−1, 0 <= j < n−1

(f ⊖ b)(x, y) = mini,j{f(x+ i, y + j)− b(i, j)},∀0 <= i < m−1, 0 <= j < n−1



Appendix B

Object classification

Vision systems do not only perform a task of detecting objects in a scene, but also
are expected in most occasions to give a classification of these objects. There are
several methods to classify objects, for instance,k-NN classifiers, neural networks,
self-organizing feature maps, support vector machines, just to mention some.

Geometrical or statistical classification methods have been used with success in a
big amount of real systems. Objects are represented by a set of d numerical values
that ease the process of representing them as points in ad dimensional space. Ideally,
objects that belong to the same class will be represented by points located in narrow
areas in the representation space. The distribution of eachof these areas and their
organization in the space can be defined by the probability density function associated
to the points that compose it. Geometrical methods decide the class of new objects
by considering these probability density functions. Thesefunctions are, in general,
not easy to compute. Usually they can be estimated by means ofparametric or non-
parametric methods from an initial set of points (the so called training set).

The performance of the classification methods depends on thenumber of values
used to represent objects and also of the number of elements used in the training set.
Representing objects with a big amount of values (features from now on) does not
assure a better performance. By increasing the amount of features used to represent
objects, the complexity of the space increases exponentially. This will force to also
increase the number of objects used in the training set, which is not always feasible,
with the aim of defining correctly the space areas that belongto each of the classes
(non-parametric methods) or being able to estimate the extra parameters that appear
(parametric methods). This phenomenon is known in the literature as thecurse of
dimensionality[devijver82]. On the other side, the use of a high number of features
will influence the temporal and spatial cost when computing the features for an object
and when classifying it, as well.

Another important issue to consider is the possibility thatnoisy features appear.
These features have no real influence in the classification process and confuse clas-
sifiers. At the same time, the existence of features with a high degree of correlation
that introduce no new information and increase the dimensionality of the space are
problems to face.

Summarizing, it is crucial to reduce as much as possible the amount of features
used to represent objects; reduce the cost to compute them, speed up the classification
process, ease the classification task and improve its precision.

In order to work with the smallest amount of features, there are two steps which are
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included in the process of developing a recognition system (see figure B.2):

• Feature selection: in this step the goal is obtaining the minimal set of features
that maximize the performance of the classifier. As an additional advantage,
when reducing the number of features the time invested in obtaining them does
also reduce.

• Feature extraction: this step is also aimed to reduce the number of features. In
this case, the reduction is made by combining the original features in several
ways in order to obtain new features that, in a reduced number, obtain the same
classification results or even improve them. Feature extraction is aimed to obtain
new features from the hidden relationships between the original features.

Figure B.1: Stages of a geometrical recognition system.

Thek-NN [fukunaga90] is a method for classifying objects based on closest train-
ing examples in the feature space.k-NN is a type of instance-based learning, or lazy
learning where the function is only approximated locally and all computation is de-
ferred until classification. Thek-NN algorithm is amongst the simplest of all machine
learning algorithms: an object is classified by a majority vote of its neighbours, with
the object being assigned to the class most common amongst its k nearest neighbours
(k is a positive integer, typically small). Ifk = 1, then the object is simply assigned to
the class of its nearest neighbour. Nearest neighbour rule in effect compute the decision
boundary of classes in an implicit manner.

The neighbours are taken from a set of objects for which the correct classification is
known. This can be thought of as the training set for the algorithm, though no explicit
training step is required.

Thek-NN classifier was used in the applications discussed throughout the thesis.
In this appendix, the feature sets built for symbols appearing on truck containers along
with experimental results.

B.1 Feature sets for characters recognition

Symbols on truck containers are a mixture of characters and numbers. The classifier
built for this problem thus, was made collecting images of numbers and characters
appearing on images representing truck containers.

B.1.1 Database preprocessing

In [salva02], ak-NN classifier was trained with a corpus of654 images, with an ap-
proximate total amount of9810 symbols. The image set was acquired in several days
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with different lighting conditions. Moreover digits and letters can be light or dark and
they appear in both plain and non-plain surfaces. The non-plain surfaces can produce
deformations in the code characters and shades. These situations make difficult the
recognition task. From each symbol288 features were obtained, representing the grey
tones for each normalized symbol (12 × 24 pixels). In the following subsections the
schema followed to preprocess the database image and obtainthe k-NN classifier is
outlined.

First, a segmentation process is applied as explained in chapter 4 in order to obtain
objects from images. These segmented objects are preprocessed as shown in figure
B.2 to obtain the feature vector representing them. For the training set, objects are
labelled using the manually segmented symbols in the way described in section 4.4.2.
Objects overlapping manual segmented symbols are labelledwith the suitable symbol,
the others are labelled as noise.

Figure B.2: The stages into which the preprocessing of the database divides.

The feature extraction process is carried out on each of the sub-images obtained
by the segmentation process. In order to obtain the characteristics of these objects the
following steps are carried out: top-hat (see appendix A), equalization, cropping and
scaling.

B.1.2 Equalization

After applying top-hat to the sub-image a grey level image isobtained, it usually has a
very poor dynamic range and the background is always darker than the object. Next, by
means of an equalization [gonzalez93] the grey levels of this image are spread out and
reach white. This technique increases the dynamic range andconsequently produces an
improvement in the image contrast, see figure B.3. Consequently this process increases
distance between the grey values of the object pixels and thebackground pixels.

Figure B.3: Steps carried out to extract features for each object present in the seg-
mented sub-image

B.1.3 Cropping

The bounding box obtained in the segmentation step may contain the character and
some spots. Thus, if we have two characters of the same class,one with a little noise
and other without it, their feature vectors can be quite different after rescaling them.



152 APPENDIX B. OBJECT CLASSIFICATION

Therefore, the cropping process has been applied in order toassure that in the consid-
ered sub-image the character is touching the edges of the same one.

Figure B.4: Result of cropping in a noisy character

Given the equalized imageE(p, q) with pixelse(i, j) for i = 0...p−1, i = 0...q−1
the minimumg1 and the maximumg2 grey tones ofE(p, q) are computed as follows,

g1 = min(e(i, j) ∈ E(p, q)) (B.1)

g2 = max(e(i, j) ∈ E(p, q)) (B.2)

The rowî is cropped if all of their pixels satisfy the following condition,

∀e(̂i, j) ∈ [g1,m× (g2− g1) + g1] (B.3)

wherem ∈ [0, 1]. In a similar way, the column̂j is cropped if all of their pixels
fulfil the following condition,

∀e(i, ĵ) ∈ [g1,m× (g2− g1) + g1] (B.4)

The cropping process begins in the first row, or column, and stops when it finds
a row which does not fulfil the condition stated in equation B.3 or, in the case the
processing is performed per columns, in a column, in case thecondition equation B.4
is not met. Similar steps are carried out beginning by thep − 1 row, orq − 1 column,
to continue analysingp − 2 row, theq − 2 column, etc. The result of this step can be
seen in figure B.4.

B.1.4 Scaling

After cropping, the obtained sub-images are scaled or quantified with a grid of12× 24
obtaining288 grey tones. These288 features were used to represent the objects.

B.1.5 PCA

After scaling the images and obtaining the features, the PCAtechnique [fukunaga90]
was used in order to reduce the amount of features. This speeds up the classification
process as explained previously. Experiments were performed with different amount
of features out of the288 obtained in the previous step. A set of60 features revealed
as the minimum set of features that maintains the original recognition rate.
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B.2 Training

In this task47 classes were considered,26 for letters,10 for digits, 10 for control
digits (digits surrounded by a square) and1 for the noise class which contains the
most frequent errors as labels, mirrors, tires and some background objects. A total
of 7848 samples, the80% of the total amount of samples, have been used for the
training corpus. The test set has1962 samples, the20% of the total amount. In order
to perform the search we have used the approximatedk-NN (ANN) [arya98], which
get good results in a very short time. ANN combines the simplicity and performance
of classicalk-NN with the kd-tree structure [bentley80].

An initial recognition rate of92.37% was obtained. The corpus can be grown
artificially by adding some transformations of the originalobjects [salva02], such as
translations in the8 directions, rotations and several borders.

After several experiments [salva02], the new corpus was composed of the following
sets: the original training corpus (border0), its translations of1 and2 pixels, rotations
of 2, 4 and6 degrees, border1 with translations of1 pixel and rotations of2, 4 and6
degrees.

This new corpus gets a93.92% of recognition rate. These results were obtained
with m = 0.0. The next step is to explore which cropping value gets the best result.
Table B.1 shows that form = 0.4 the recognition rate achieves a value of94.81%,
which is approximately2.5% better than the best one with the original corpus.

m Recognition rate (%)
0.0 93.92
0.25 94.33
0.30 94.54
0.35 94.78
0.40 94.81
0.45 94.26
0.50 93.92
0.55 93.54

Table B.1: Recognition rate for the mixed corpus

In this work, the classifier was improved by means of bootstrapping. With this
technique, the classifier is used to classify a sequence of new objects, the objects whose
classification is wrong are used to grow the classifier. As explained in chapter 4, a
bootstrapping process was performed inserting objects erroneously classified into the
classifier. This process led to obtain a performance of95.69% of classification success.

B.3 k-NN confidence computation

The confidence of the classification is used by the confidence filter explained in section
4.4.2. The confidence value given by ak-NN classifier is computed as an estimation
of the maximum likelihood of thea posterioriprobability of classes by means of the
expression:

P̂ (ωi|x) =
ki

k
(B.5)

wherek is the total amount of neighbours ofx considered by the classifier andki

is the number of neighbours that belong to classωi. The Bayes error estimation using
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the P̂ (ωi|x) yields an optimistic estimation of error, though quite adjusted in the case
thek-NN classifier was designed using the following convergenceconditions:

1. k →∞

2. k/n→ 0 whenn→∞

beingn the number of elements in the set used to design thek-NN classifier. As
long as the number of samples cannot be, usually, arbitrarily large, these constraints
will not be met and thus, the error estimation must be computed following a different
strategy.

When estimatinĝP (ωi|x), it is also possible to use the expression:

P̂ (ωi|x) =

∑

u∈θKi

1
d(u,x)

∑

v∈θK

1
d(v,x)

(B.6)

beingθK the number of neighbours ofx, θKi
represents the number of neighbours

of x that belong to classωi and the functiond(., .) corresponds to the distance between
two observations [arlandis02]. As it can be seen, expression B.6 takes into account the
distance at which neighbours lay. This additional information can be useful in the case
the design of the classifier does not meet the convergence constraints.

The confidence measure computed by equation B.6 is used to assign a confidence
value to the classified symbols.
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