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Abstract

The developments introduced in this thesis belong to the afeomputer vision and
are aimed to provide with ideas to solve the problem of autmaiyy segmenting ob-
jects in images acquired in environments with activity,.j.tkose in which objects are
moving and the illumination is not controlled. In order tovdiop the ideas and evalu-
ate their performance, two different problems, from thenpof view of requirements
and environment conditions, are given a solution. Both efgtoblems are considered
as challenges by the research community in the area of cemyiston.

The first problem to be considered consists on segmentiddaser identifying, the
container’s codes of trucks. For this challenge, imagesrtak the entrance of a com-
mercial port were used. In this case, segmentation techsitjiat allow the extraction
of concrete objects fom indidivual images, charactersimathse, were implemented.
Natural light is not the only challenge in this case, but alsoconditions of the con-
tainers themselves. In this context, we study differentitpees from the literature as
LAT, Watershed, Otsu’s algorithm, local variation and #irelding algorithm, using
them to segment gray-tone images. Based on this study, tiosois proposed com-
bining several different techniques as an approach to safidfy extract characters
regardless of the environmental conditions.

Joining several segmentation techniques into a singleadgthoduces noisy seg-
mentations. The knowledge of the features of the seekedtshbjelps designing filters
which can discriminate the valid objecs from noise, avaidihis way to relay only
on a classifier. The proposed system does not need any paranneng in order to
adapt to light variations and achieves a high level of segatiem and identification
of characters, although the system performance dependtygoa the classifier’s ca-
pacity. Afterwards, experiments with sequences of imagegarformed in order to
improve system’s response. Each sequence contains sewagds of the same truck
in consecutive moments of time.

The second problem considered in this thesis, is extragtiintipe objects which
do not belong to an scene, using streams of sequences andigyidg background
models which can adapt to changes in the scene, specighydhanges.

Based on thecniques proposed in the literature for backgrsubtraction and bear-
ing in mind the memory and computational time constraintsdsed by some intelli-
gent systems, in this thesis several techniques are proposabtain adaptive back-
ground models with requirements specially suited to autmnsarveillance systems.
The proposed techniques, called BAC (Background Adamatith Confidence) and
FBS (Fuzzy Background Subtracion), use a measure of sitgilnd a computation
of probability based on experimental studies and are abladdel the background
adapting it to changes in the environment providing at tineestime with a confidence
measure of the built model. BAC and FSB subtract a frame fitoernbackground by
assigning each pixel with a possibility of belonging eitteeforeground or background.



At this point, our developments are evaluted with sever@d@oisequences obtained
indoors where problems shadows or sudden light changes pmsag and also the
Wallflower benchmark, accepted in the literature as a googhsiéo test background
modelling techngiues. Results obtained by BAC and FSB aseging when com-
pared to those obtained by other algorithms accepted byotmentinity as representa-
tive.



Resumen

La presente tesis esta enmarcada en el area de visién poutamtapy en ella se
realizan aportaciones encaminados a resolver el problensegmentar automatica-
mente objetos en imagenes de escenas adquiridas en erdormiesse esta realizando
actividad, es decir, aparece movimiento de los elementesagcomponen, y con ilu-
minacién variable o no controlada. Para llevar a cabo loardgtos y poder evaluar
prestaciones se ha abordado la resolucién de dos problestiatod desde el punto de
vista de requerimientos y condiciones de entorno, ambosiderados como retos por
los investigadores en el area de la visién por computador.

En primer lugar se aborda el problema de segmentar, pararjposiente identi-
ficar, los cédigos de los contenedores de camiones con ireagemadas en la entrada
de un puerto comercial que se encuentra ubicada a la inten{per natural). En este
caso se trata de proponer técnicas de segmentacion quegreaxiraer objetos con-
cretos, en nuestro caso caracteres en contenedores,grdoasiagenes individuales.
No s6lo supone un reto el trabajar con iluminacién natunad, ademas el trabajar con
elementos deteriorados, con contrastes muy diferented)ehtro de este contexto, en
la tesis se evaluan técnicas presentes en la literatura cAmaVatershed, algoritmo
de Otsu, variacion local o umbralizado para segmentar imggen niveles de gris. A
partir de este estudio, se propone una solucién que comanes\we las técnicas an-
teriores, en un intento de abordar con éxito la extracci¢radacteres de contenedores
en todas las situaciones ambientales de movimiento e iagidn.

El aunar varias técnicas de segmentacion en un Unico métodajp segmenta-
ciones ruidosas. El conocimiento a priori del tipo de oljet@egmentar nos permitié
disefiar filtros con capacidad discriminante entre el ruiths yaracteres, evitando con
ello que toda la responsabilidad de esta decision recaperbotasificador. El sistema
propuesto tiene el valor afiadido de que no necesita el ajegparametros, por parte
del usuario, para adaptarse a las variaciones de ilumimacnbientales y consigue un
nivel alto en la segmentacion e identificacién de caractarggjue las prestaciones del
sistema dependen en gran medida de la capacidad del cldsifidan un paso pos-
terior, se realizan experiencias con secuencias de imagkneada contenedor para
refinar la respuesta del sistema.

El segundo problema analizado en la tesis, aborda la teand¢icextraer todos
los objetos que no forman parte del fondo en una escenzaniilo secuencias de
imagenes y diseflando modelos de fondo capaces de adaptasseambios en la
escena, especialmente a los cambios de iluminacion.

A partir de las técnicas propuestas en la literatura paresthdo de fondo (back-
ground subtraction) y teniendo en cuenta restriccionesataaria y computo impues-
tas por algunos sistemas inteligentes, en esta tesis, ger@o técnicas para obtener
modelos de fondo adaptativos con requisitos propios dedtensas de vigilancia au-
tomatica (surveillance system). En concreto, mediantedefiaicion propia de simili-
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tud y utilizando un computo de probabilidad basado en urdasaxperimental, se pro-
ponen dos algoritmos denominados BAC (Background Adagtatith Confidence) y
FBS (Fuzzy Background Subtracion) capaces de modelar@bfoon capacidad adap-
tativa y de proporcionar una medida de confianza. BAC y FB&tiex cabo el restado
de fondo asignando a cada pixel una probabilidad de pedgeagondo o de ser parte
de un objeto (foreground).

En este punto nuestros desarrollos se evalian con secsidedimagenes adquiri-
das en interiores donde aparecen problemas de sombraspsaieliluminacion, asi
como con el benchmark Wallflower aceptado en la literatyrae@alizada para testear
técnicas de modelado de fondo. Los resultados obtenidosptécnicas propuestas
BAC y FBS se muestran prometedores al ser comparados cobtiasidos por otras
técnicas presentes en la literatura.



Resum

La present tesi pertany a I'ambit de la visié per computadealitza aportacions amb
| 'objectiu de resoldre el problema de segmentar autontagcd objectes en imatges
adquirides en entorns amb activitat, és a dir, on apareixmeu dels elements que
les composen i amb il.luminaci6 variable. Per a poder dumadels desenrollatments
i poder evaluar les prestacions des de’l punt de vista dejgisiés i condicions de

I'entorn, ambdds considerats com a reptes pels investigadol'area de la visié per
computador.

Primerament, s’aborda el problema de segmentar, i postegit identificar, les
matricules dels contenidors de camions amb imatges pra$sesrada d'un port com-
ercial que es trova situada a I'intemperie (llum naturalj ekt cas, es tracta de proposar
tecniques de segmentacié que permitisquen extraure ebjeshcrets, caracters de les
matricules, processant imatges individuals. No és tramt@és de superar el repte de
treballar amb il.luminacié natural, si no, a més, trebadlarth imatges deteriorades,
amb contrastos molt diferents.... Dins d'est context, &s$#stse evaluen técniques de
la literatura com ara LAT, Watershed, I'algoritme d’Otsatécnica de variacié local o
'umbralitzat per a segmentar imatges en nivells de grisaipde I'estudi, es proposa
una solucié que combina varies de les tecniques presergadesintent d’abordar amb
exit I'extracci6 de caracters de la matricula en totes tessions ambientals possibles.

Unir varies técnigues de segmentacié en un sol métode pgsodagmentacions
sorolloses. El coneiximent a priori del tipus d’objects gresentar ens permiteix dis-
senyar filtres amb capacitat discriminant entre el soll&s Veritables caracters, evitant
gue tota la responsabilitat d’esta separacio caiga solstasificador. El sistema pro-
posat té un valor afegit en tant que no necesita ajustar par@snexterns per part de
l'usuari per a adaptar-se a les variacions d’iluminacioiamtal i aconsegueix un nivell
alt tant en la segmentacié com la identificacié de caraateagrat que les prestacions
del sistema depenen en gran mesura de la capacitat deloadsifiutilitzat. En un pas
posterior, es realitzen experiéncies amb secuénciestij@sae cada contenidor per a
refinar la resposta del sistema.

El segon problema que s’analitza és el d’extraure tots elm@hts que no formen
part del fons d’'una escena, utilitzant secuéncies d'insitgessenyant models de fons
capacos d’adaptar-se als cambis en I'escena, especiaisamtnvis d’il.luminacid.

Prenint com a base les técniques proposades en la litefzui@ restat de fons
(background subtraction) i tenint presents les restritcide memoria i comput im-
posades per alguns sistemes inteligents, en esta tesigssprotecniques per a obtin-
dre models de fons adaptatius amb requeriments propis @&snes de vigilancia
automatica (surveillance systems). Concretament, ngdjainuna definicié propia de
similitut i utilitzant un comput de probabilitat bassat estuglis experimentals, es pro-
posen dos algorismes anomenats BAC (Background AdaptiveGanfidence) i FSB
(Fuzzy Background Subtraction) que poden modelar el foaptativament i propor-
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cionar una mesura de confianga. BAC i FSB resten cada fotegdahions assignant a
cada pixel una probabilitat de pertanyer al fons o de sedjartobjecte (foreground).
En est punt, els nostres desenvolupaments s’evaluen amérses adquirides en
interiors on apareixen problemes amb sombres, canvitudiihiacié, aixi com també
utilizant el benchmark Wallflower acceptat per la comurgtantifica per a provar téc-
nigues de modelatje de fons. Els resultats obtesos percigs|tees proposades, BACy

FSB es mostren prometedors si es comparen amb els obtedes @aEniques presents
en la literatura.
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Chapter 1

Introduction

In this chapter we present the framework in which this thesis developed: the Com-
puter Vision Group of the DISCA department in the Technicaivérsity of Valen-
cia and the University Institute of Control Systems and btdal Computing (better
known with the acronym Al2). The goals of the projects whiobtivated our work in
these areas are outlined along with the contributions made.

1.1 Computer vision systems

Computer vision deals with extracting meaningful desaips of physical objects from
images. Tasks such as identifying a signature, locatingsfac recognizing objects in
a scene are considered to be within the scope of computenvisiumans can perform
these tasks effortlessly, but developing a system to parfbiem is a very difficult

process. Usually, for a given process, the whole task musliiviiged into easier-to-

solve stages, which perform one or more operations in theniireg data.

The design of a specific computer vision system consists dinfithe most suit-
able techniques in order to process the captured image®a€brconcrete problem, it
is necessary to select specific algorithms and techniqueigdre 1.1, the phases in
which a computer vision system may be divided are shown.

Each step in the vision process corresponds to:
e Acquisition : acquisition and digitalization of the image.

e Preprocessing : modify the image to improve it in some wayallg with the
aim of ease its manipulation.

e Segmentation : divide the image in a set of objects and backgt.

e Feature extraction : extract descriptors of the regionsréest of the image.
Some typical descriptors are shape descriptors, colatndriams...

e Classification : classify objects attending to the desoripéxtracted in previous
step.

e Interpretation: give a description of the image, in termthefapplication, taking
into account the results of previous stages.

1
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Acquisition
Preprocessing
Segmentation Low level
Feature
extraction
Clasification
High level
Interpretation

Figure 1.1: The vision process in its different steps.

Each one of these steps depends highly on the concrete iatiormwve look for in
images. This means, that a processing technique which Jiioksvith a concrete set
of images for a certain problem, probably will not perfornogdor another problem.

Thus, for each different problem, a different solution habé found. It is a chal-
lenge finding the best techniques for each step in the prdabassan give the best
possible result. Of course, not every step has to appeardalgrocess. Sometimes,
situations may be met, in which a certain step is not needew iAis also true, that
these steps are not always so clearly separate. It may docinstance, that we have
to apply different preprocessing techniques before sefinggror that one or more of
these steps are fused into one.

1.2 Image segmentation

Image segmentation, either in grey tones or in colour imageefined in the computer
vision literature as the process of dividing an image ingjadint regions in such a way,
that the union of all these regions results in the originaldgen This division is achieved
by grouping neighbouring pixels according to criteria obximity and/or similarity.
With this process, further processing steps on the imagetrmagntred only in certain
regions and not in the complete image. The classical defindf segmentation of an
imagel defined as a partition of into components or region®;, which verify that
R.NR;=0Ai+#jandthal JR; = I.

The task of finding the best segmentation method for an spexgifilication is still
a difficult challenge. One of the difficulties that any segmaéon technique has to
face is the illumination of the scene. Due to the fact thahahior shadows affect
dramatically the search of valid thresholds to segmentrttegg; it is always desirable
to control illumination and the kind of light used to captiumeages. However, this is
not always the case, and situations exist in which imageg brisaken under light
conditions out of control and processed in real time, whaltyeliminishes the amount
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of preprocessing that can be performed on the image andlaéscontrol on the capture
conditions.

As said, when images are taken under non controlled lighditions, it is very dif-
ficult to adjust algorithm’s parameters, in order to be ablddtect all regions of interest
in images. Applying an algorithm with the suitable param&ter some concrete envi-
ronmental conditions, would run fine for some conditionsane images, but would
fail in others, as images will contain shines or shadows widl be, unfortunately
in most cases, detected as regions of interest. As a restdtyacoarse segmentation
may be obtainedundersegmentatignor the opposite case, a segmentation with a lot
of regions (usually known asversegmentatign

Choosing among several elements always requires a settefi@rio ground the
decision on. In the case of choosing among several segrientathniques, to find
the best for a given problem, all available techniques shbelevaluated in the same
conditions.

Evaluation of the segmentation techniques, consists ieraéting if the regions
detected by the algorithms as regions of interest do reallsespond with regions of
interest according to what is expected in the applicatiorsudlly, a human opera-
tor labels which regions are expected to be the result of lda@rithm, the so called
ground-truth. This ground-truth is then checked with theoaatic result; optionally,
after applying any filter to remove noise in the output, fatamce. The quality of the
response may be evaluated in several ways, for instantiagéshe areas segmented
by the human operator and those detected by the algorithrfapvie a given percent-
age, or if centres of the regions are close one to each otlwés. niethod of a human
operator labelling images in order to test the segmentatigarithms is followed in
the experiments discussed later in this work.

1.3 Motivation

Visual information makes up an important amount of all thesseial information re-
ceived by a person during a lifetime. This information isqassed not only efficiently
but also transparently by the human brain.

The ultimate goal of computer vision is to mimic human visp@iception. There-
fore, in the broadest sense, robustness of a computer dkjonthm is judged against
the performance of a human observer performing an equivdshk. In this context,
robustness is the ability to extract the visual informatairelevance for a specific
task, even when this information is carried only by a smédiksst of the data, and/or is
significantly different from an already stored represeéarat

One of the components of visual information is informatidroat objects which
are actually seen. The information associated to each toisjéwige, estimations of
distance, height and width and other measures, along withdsries of regions and
relationships between these regions.

Being able to distinguish some regions from others, is vegful when a system
has to recognize some specific objects. Also, the relatipagietween regions may be
useful when the possibility exists that objects are compadifferent regions, which
are, by any means, connected between them.

Finding regions in images and the relationships between thg@erformed by seg-
mentation techniques in computer vision. The aim of theskriigues is finding the
different regions in which an image can be decomposed toaasturther processing
on them.
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First works of this thesis started the Computer Vision grofiA\l2 in a project
aimed to detect and recognize characters on containermsliogped with the support of
the grant FEDER-CICYT DPI2003-09173-C02-01. The goal &f phnoject was de-
veloping a system that could find containers identificatiombhers under uncontrolled
environmental situations.

In this project, a solution for the problem of segmentatioder different light con-
ditions was tested with success. The solution basicallg tlse fusion of information
of different algorithms to obtain an accurate result.

Following with a similar situation, the group started in @jpct within the sixth
framework programme priority IST 2.5.3 Embedded systenigdts&SENSE (Smart
Embedded Network of Sensing Entities). In this case, thélpro to face had some
similarities with the previous one, but also notable poiotdifference. The goal
was detecting people inside a scene, in which light was natralbed by the system.
Though similar techniques to those developed previoualjddeave been applied, one
of the constraints of the system was that besides locatijggtshin the scene, they had
to be tracked, as well.

1.4 Goals

Developments in this thesis are centred in the study ofraiffesegmentation methods
applied to images taken in environments in which light caroealways controlled.
As said before, segmentation algorithms try to separatgésanto independent re-
gions which meet some given properties, in order to easbdugrocessing. Under
these variant light conditions, for instance, it is diffictd set parameters for some
segmentation algorithms, as it is difficult that they couépassible situations.

The general goal of this thesis is segmenting images regaedis light condi-
tions. Techniques to achieve this goal have been developed fodiffezent real-life
applications. In the first one, the problem was recognizinght container codes with
images taken in the entrance of a commercial port. Imagessept the container as
it approaches the entrance and were taken as isolated infaigaitar systems may be
found in [brad01], [barroso97] and[hegt98] and previouatesl work with this issue
may be found in [salva01l], [salva02] and [atienza05].Irs thioject, developed with
the support of the grant FEDER-CICYT DPI12003-09173-C026t goals were:

e To implement and to test image segmentation algorithms froment literature

¢ To test best configuration of the implemented algorithm®maiing to problem
constraints

e To develop new techniques to detect regions of interestrdégss of the light
conditions

e To propose methods to determine which regions of intereswvalid from the
point of view of the application

The second project is proje@83279 within the sixth framework programme pri-
ority IST 2.5.3 Embedded systems SENSE. A surveillancesptdhat consists in seg-
menting and tracking people and luggage in an airport ino/gkguences. In this case,
illumination differences inside the same scene due to tfg toming from windows,
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doors and so on were in some cases important. Similar slaved systems are de-
scribed and discussed in [haritaoglu00], [vsam99], [wid®d [hu04]. Our goals for
this project were:

e Implement and test video analysis algorithms from litenatu

e Propose techniques to create background models withindhstraints of the
SENSE application

e Define a measure of the quality of a background model

e Develop sets of features which can be used to classify abjef three classes
of interest

1.5 Contributions

Bearing in mind the general goal of this work, and the chaiesnwhich motivated these
developments, several contributions were made eithecttiireelated to the problem
of object segmentation or to add new techniques to the egistorpus. A brief intro-
duction to our contributions is listed below:

e Merge different algorithms to segment images In [rosell06] we discuss the
use merging of the segmentation results of several algosifor the same image
as a way to improve segmentation performance.

e Apply filters to remove false positives In [rosell06a], we propose methods to
discard regions of interest obtained by using segmentatiethods which do not
represent valid elements from the point of view of the aggplan. Extending this
idea, in [rosellO6b] we explore the use of time-shifted iemgepresenting the
same object to obtain better segmentation results; thgratien of the informa-
tion obtained in each image to conclude a final segmentatipreisented.

e Background modelling. Having a background model that describes accurately a
scene is crucial when background subtraction techniqessad. In [rosell08a]
the BAC algorithm is introduced, this algorithm createsastores a background
model based on the behaviour of pixels in successive frameésad the same
time, performs a segmentation of objects in the scene, Wwegmbvelty that it
yields a confidence value for the obtained background. BA€xiended to use
colour [rosell09] and to support multiple model descriptiger pixel (MBAC
[rosell10]). The difficulty to find a method to determine segmation threshold
motivated the development in [rosell10b] of the FSB aldwont which eludes
the use of fixed or probabilistic thresholds usually founthim traditional back-
ground subtraction.

e Background model's confidence and corruption detection In [rosell08a],
[rosell09], [rosell10] and [rosell10b] we discuss alglnits that attach the back-
ground models they build with a measure of the confidenceefrthdel. With
this measure, the algorithms estimate how close to thetyehé model is. The
algorithms discussed also detect model’s corruption bynmeé different mea-
sures, this detection permits them recomputing the mod=dse of failure.
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e Person, group and luggage recognitionResearch was done in the recognition
of different objects in scenarios. A set of different tecjugs aimed to classify
objects in three groups are discussed in [rosell08] andrjas08].

1.6 Organization

The thesis has been organized ifitchapters an@ appendices. First chapter corre-
sponds to this introduction. In chapter 2, a review on différsegmentation methods
and preprocessing techniques is discussed and some latgsrdtre introduced in de-
tail. Chapter 3 shows the state of the art in segmentatidmtques for video streams;
as these are slightly different from those used to segmantistlone images, it seemed
better to write a chapter for each set of techniques. In enapt5 two different prob-
lems are solved using similar approaches, several segtisentachniques and filters
for the output. First problem, detecting and recognizingrabters on truck containers
is addressed in chapter 4. In chapter 5, the problem is degeand tracking people
and luggage in an airport. Chapter 6 presents the conwitsitnade if the field of
background modelling algorithms and a comparison withentrstate of the art. In
chapter 7, conclusions are discussed and future works apoged. In appendix A a
brief introduction to the top-hat operator may be found;emix B explains in more
detail the classifiers used during the development of thetisols for both problems.



Chapter 2

Image segmentation

This chapter is devoted to introduce the concept of imagprpoessing and segmen-
tation, and discuss well-known preprocessing technicgies) as Sobel or top-hat op-
erator, and segmentation techniques, such as Otsu’sthigptiocal Adaptive Thresh-
olding (LAT), Watershed, global thresholding or local eion algorithm. These tech-
nigues will be the basis for further developments introduicethis thesis.

2.1 Introduction

Image segmentation is the process of dividing an image iiffereint, non overlapping
regions with the aim of ease the processing of the image.r8ealgorithms have been
developed to segment images, though techniques may beegtaniw thresholding
techniqueswhich are those that calculate a threshold, either locglairal, to segment
the image angjrowing regions algorithmswhich create the regions by joining pixels
between them if some criteria is met.

In many applications of image processing, the grey tonesxaipbelonging to
searched objects are substantially different from the tegs of the pixels belonging
to background. Thresholding becomes a simple but effettiokto separate objects
from the background. Examples of thresholding applicatemredocument image anal-
ysis where the goal is to extract printed characters, logoglucal content, or musical
scores.Map processingwhere lines, legends, and characters are to be fo8edne
processingwhere a target is to be detected andhlity inspection of materialJsvhere
defective parts must be delineated. Other applicationsbealisted as follows:cell
imagesandknowledge representatipnltrasonic imagesthermal imagesx-ray com-
puted tomographyCAT endoscopic imagekaser scanningextraction of edge field
image segmentation in generapatio-temporal segmentation of video images

Various factors, such as non stationary and correlateanaisbient illumination,
distribution of grey tones within the object and its backgrd, inadequate contrast, and
object size not commensurate with the scene complicatétbstiolding operation.

Though thresholding algorithms assume no preprocessittaneing images by
applying preprocessing techniques on them is always wbegteffort. This way, in-
teresting features in images may be enhanced or differdretaseen background and
foreground pixels may be increased. Also reducing nois@éénimage may be help-
ful when thresholding it. There are a lot of preprocessirmfptégues which can help
achieving better results in the segmentation step by remgawise, enlarging contrast

7
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and so on.

Working under uncontrolled light conditions adds more diffiies to the segmen-
tation process. As different light configurations may beniun the images to be
processed, the task involves not only finding the most slaitaligorithm for the image
but also, finding which parameters, if any, have to be tuneakrdler to achieve best
results.

Most segmentation algorithms proposed in the literatuse ltlaeir work on suppo-
sitions about light distribution on an image. Most of therpent that light is smoothly
distributed on the captured surface and thus, differeribnsgare easily distinguished
by trying to find differences in the colour or grey levels okgls. This is not always
the case if the image has been taken outdoors. In this cadegtgyclouds and other
natural events may interfere with the light arriving to tleerse and induce shadows
and artefacts in the captured image. In this circumstanbessupposition of smooth
light distribution may not hold for the entire image.

The lack of objective measures to assess the performanaaiofis thresholding
algorithms, and the difficulty of extensive testing in a taslented environment, are
other major handicaps. It is true, that thresholding atgors which perform well in
a certain problem will not behave that good in another, fetance, algorithms that
apply well for document images are not necessarily the goed for medical images,
and vice versa, given the different nature of document ardicakimages.

We focus our attention on algorithms aimed to segment regimany kind of im-
ages without previous constraints. In this case, the prohb¢efinding areas in the
images which may be of interest for further processing. Th@ndifficulty affecting
this kind of images is that only information found in the ineagray be used to seg-
ment it; so it is crucial that algorithms are well tuned, id@rto achieve good results.
In the following sections, five different algorithms for ige segmentation are intro-
duced which are well known in the literature. They, and vagaf them, are widely
used to segment images depending only on the relationshigach pixel with their
neighbours.

In next section, notation and definitions are discussed. eSamprocessing tech-
nigues are introduced in 2.3. Finally, in section 2.4 songgrsntation algorithms are
explained.

2.2 Notation and definitions

The input data for these segmentation algorithms will begiesadenoted by. There
are several mathematical definitions that can formally iilesdmages, for our pur-
poses, we will define an image as a function of pairs of coatés{z, y) which define
a position in the plane associated with the scaled scenesemted in the image. In the
case of a grey tone image, this definition can be written as,

I:{Nx N = {0...255}} (2.1)

Colour and multispectral images are arrays of grey tone @magd may be defined
as,

I:{N x N — {0...255}} 2.2)

beingc the dimensions of the image
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Coordinates of a pixdlz, y) define a pixel. These coordinates may be summarized
asp for brevity, and so will done in following sections wheneyéxel coordinates are
meaningless.

Previous definitions however, do not reveal the neighbgypioperties of the pix-
els of the image. We define a graph= (V, F), beingV a set olnodesand E a set of
archesconnecting nodes is associated to the imade in such a way that nodes in
V' correspond to pixels ifh and E' is the set of arches connecting neighbouring pixels
inI.

With these definitions, we can define the seBafonnected neighbourslenoted
by Ng, of a pixelp as,

Ng(p) ={q€V/(p,q) € E} (2:3)

Abusing notation] (x, y) will refer both to the element ifh with coordinategz, y)
and to the node id7 with the same coordinates.

The segmentation process aims to divide the image intomegiocording to any
given criterion. The output of a segmentation process isydvexpected to be a classi-
fication of pixels, and extensively, of the regions to whishse pixels belong to in the
input image, either as foreground or as background. Pixaetsified as foreground are
expected to be of interest for further steps of the visionesys background pixels, on
the other side, are discarded.

The output of a segmentation algorithm will always be a bjriarage S of the
same dimensions dsdefined as,

S(I): {Nx N — 0,1} (2.4)

WhereS(z,y) = 1ifthe pixelI(z, y) has been classified as foregound &fid, y) =
0 if the pixel has been classified as background. The regianthan sets of pixels or
subgraphs of imags.

As pointed out before, in the segmentation of an image we airgust interested
on individual pixels, but on the groups they form, which may or not, relevant areas
for further processing. We defineregion R as a set of connected pixels 8f which
are classified as foreground. These regions are knowfolas

Connectivity in a graph is defined as follows: two nodes inapbi are connected
if each pair of nodes oV that belong to the path, are joined by an archbf Two
different pixels belong to the same region if there is a pla#h tonnects them.

By path fromp to ¢ € S'itis understood a set of nodé&, ¢) = {z0,21...2x} € S
such that each point € Ng(z;-1),0 < ¢ < k, beingzy = p andz;, = q.

The following equation defines a regidhas a set of connected pixels,

R ={po,p1.-pn : S(pi) = 1A 0(pj,pi) #O,VO0<j4,i <nAi#j} (2.5)

The intersection of regions will be empty,

Let's suppose we have two regioRs and R; which share a point and: # j. By the
definition of region, we would then have a path frgnto every pointy € R;. On the
other side, there would be a path frgnio any pointv € R;. This means, that we can
connect any poing € R; to any pointv € R; with pathsd(q,v) = d(¢g,p) U d(p,v),
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which is the definition of region given before, so both regi® andR; are the same
and thus = j.

Also, the union of all regiongz; will cover, partially or completely, the original
image,

JRi € S(1),vi (2.7)

2.3 Preprocessing techniques

Preprocessing is a common name for operations with imagdsedbwest level of
abstraction; it is really a set of techniques whose aim igawipg in some sense the
input image to make it easier to process by the segmentagpn s

There are four categories of image preprocessing methadsding to the size of
the pixel neighbourhood that is used for the calculation wéw pixel intensity,

¢ pixel brightness transformations
e geometric transformations
e preprocessing methods that use a local neighbourhood pftlcessed pixel

e image restoration that requires knowledge about the entinge

Though the list of techniques is very large and a completerg®mn is out of the
scope of this thesis, there are some which are worth to beionewlt because they are
used later through this work.

2.3.1 Sobel operator.

The Sobel operator [gonzalez93], is an edge detectionittigar Technically, it is a
discrete differentiation operator, computing an appration of the gradient of the
image intensity function. At each pixel in the image, thautesf the Sobel operator is
either the corresponding gradient vector or the norm ofwbetor. The Sobel operator
is based on convolving the image with a small, separable,isteder valued filter
in horizontal and vertical direction and is therefore rigky inexpensive in terms of
computations.

In simple terms, the operator calculates the gradient ointizge intensity at each
point, giving the direction of the largest possible incesftem light to dark and the rate
of change in that direction. The result shows how "abruptly"smoothly" the image
intensity changes at that pixel, and therefore how likelis ithat part of the image
represents an edge, as well as how that edge is likely to bated. In practice, the
magnitude (likelihood of an edge) calculation is more tdkaand easier to interpret
than the direction calculation.

Mathematically, the gradient of a two-variable functiomigach point 2D vector
with the components given by the derivatives in the horiabahd vertical directions.
At each image point, the gradient vector points in the dioecdf largest possible in-
tensity increase, and the length of the gradient vectoesponds to the rate of change
in that direction. This implies that the result of the Sobeéator at an image point
which is in a region of constant intensity is a zero vector anal point on an edge is a
vector which points across the edge, from darker to brigidgres.
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The operator uses twd x 3 kernels which are convolved with the original image
to calculate approximations of the derivatives, one foiZzwntal changes, and one for
vertical. If we definel as the source image, an estimation of the horizontal) @nd
the vertical V) derivatives in each point is obtained as follows,

+1 0 -1 +1 +2 41
Ve=[+2 0 —2|®I and V,=|0 0 0|l (2.8)
+1 0 -1 -1 -2 -1

whered here denotes the 2-dimensional convolution operation.
At each point in the image, the resulting gradient approxiona is given by the
vector

V(x,y) = [gzgi ‘Zﬂ (2.9)

and its gradient magnitude can be easily obtained as,

V] = /Va? 4+ 7,2 (2.10)

Using this information, we can also calculate the gradseditection,

a(V) = arctan (gy) (2.12)

xT

2.3.2 Top-hat transform.

Top-hat operator ([gonzalez93],[soille99]), is useful émhancing details in complex
backgrounds. This operator transforms a grey-level imatged binary image by us-
ing a rectangular structural element, and the morpholbgigarations ofclosingand
opening See appendix A for more details about morphological opesatnd structural
elements.

This technique is really two techniques into one, as it mayapglied either to
enhance clear or dark areas, depending on the applicatiothelcase clear regions
have to be enhanced, the original image is subtracted toethdtrof applying the
opening operator to the own image with the structural elémbnthe other case, if
dark regions have to be enhanced, then it is the originalémadgch is subtracted from
the closing of the image with the structural operator. Bbih @aperations of opening
and closing in the case of grey-level images are defined as,

o(I(z,y)) = ming jep(maz i jes(( + 4,y + J) + (i, 5))) (2.12)

wI(z,y)) = maz i jep(ming eI + 4,y + J) = b(i, 5))) (2.13)

Bearing in mind previous definitions, top-hat for clear oet, called "white top-
hat", may be expressed mathematically as,

WTH(I) =1 —w(I)

and for dark regions, called "black top-hat" as,

BTH(I) = ¢(I)— I
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It must be noted, that in the case the wrong top-hat is chdkersignificant areas
of the image are wrongly preprocessed. For instance, figarstbws a sample image
preprocessed with both top-hat techniques. Figure 2.1wshive result of choosing
the wrong top-hat operator, the significant areas of the @aag lost.

(a) Original image (b) White top-hat (c) Black top-hat

Figure 2.1: Sample execution of top-hat technique. a) Argedarepresenting a truck
container. b) Final imageX'T H(I)) looking for clear areas. c) The same for dark
areas BT H(I)).

2.4 Segmentation algorithms

Several approaches to image segmentation are availalile litdrature. One class of
algorithms are the thresholding methods, which seek folid traeshold, either global

or local, to separate foreground regions from backgrougibns. Otsu’s method

[otsu79], tries to calculate a global threshold for the ctatgimage. A sample of a
segmentation algorithm calculating local thresholds i3 La#cronym of local variation

algorithm, [kirby79]. Both are discussed later.

Another approach are the growing regions methods; theserggions using seeds
in the image as basis. There are several ways of choosing seesls, either manually
or automatically. In the local variation algorithm [fel&8], authors propose using the
graph interpretation of the image and choose as seeds thogpsgof pixels whose
difference in grey tones are zero. Watershed algorithrmigtaince, [beucher79], seeks
for pixels with the lowest (or highest) grey tone and takeséhpixels as seeds.

Figure 2.2 shows the taxonomy of segmentation algorithntis thie sample algo-
rithms chosen. Growing regions algorithms with supervissetls were not considered
in our developments, due to the fact, that the goal was dbhtammethod that did not
need human supervision.

In this section we describe the algorithms used to segmatit stnages and we
give a formal introduction to each one. These algorithms thre global thresholding
algorithm [gonzalez93], otsu’s method [otsu79], LAT [kiit®9], the watershed algo-
rithm [beucher79] and local variation algorithm [felzeih98

2.4.1 Global thresholding

Global thresholding [gonzalez93] is the simplest appro@cimage segmentation.
Foreground pixels are assumed to have different colourseyr tgnes to background
values, so a threshold is supposed to be enough to sepatatelasses. Different
approaches may be found in the literature with this idea énbtisis, either for colour
images as for grey tone images.
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global: global thresholding, Otsu's method
threshold
local: LAT
Segmentation
algorithms
supervised seed
growing
regions
unsupervised seed Watershed
Local Variation

Figure 2.2: The taxonomy of segmentation algorithms uséaisnwork. Classification
is performed from the point of view whether thresholds omgng regions techniques
are used. In the case of using thresholds, these may be Iocabloal. For each
approach, a sample algorithm representative of the apipisaamed.

The basic version of the algorithm works taking as input aageT and the output
is a binary image5(I) which represents the segmentation/ofin a single pass, each
pixel in the image is compared with a given threshbldf the pixel’s intensityl (z, y)
is higher than or equal to the threshdldthe pixelS(z,y) is set to foreground in the
output. If it is underT, thenS(x,y) is set to background. In this case, segmented
imageS (1) is made up of pixels which,

Loif I(x,y) =T
0, otherwise

Y(z,y) € I, S(z,y) = { (2.14)

A sample execution of this algorithm for a complete imagey mafound in figure
2.3. One of the drawbacks of this algorithm is the electiothefparametef’; which
can be made by using the Otsu’s method described in secdad 2.

@1 (b) S(I) (c) Bounding boxes limiting the
connected regions represented
over the original image

Figure 2.3: Figure 2.3a represents an image of a truck gutarhe result of applying
global thresholding to this image withi = 170 is shown in figure 2.3b. Figure 2.3c
shows the connected regioi% over the original image. This illustrates the need of
gathering foreground pixels into regions in the segmeonatesult.
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2.4.2 Otsu’s method

Otsu’s method (Jotsu79]) is used to automatically perfoigtdgram shape-based im-
age thresholding or, the reduction of a grey-tone image tmary image. The al-
gorithm assumes that the image to be thresholded contamslasses of pixels (e.g.
foreground and background) and calculates the optimunshiotd separating those
two classes so that their within-class variance is minifibk extension of the original
method to multi-level thresholding is referred to as thetisu method [huang09].
In Otsu’s method we exhaustively search for the threshe@lthttinimizes the within-
class variance, defined as a weighted suify(7"), of variances of the two classes,
03 (T) = w1 (1)o7} (T) + wa(T)o5(T) (2.15)

w

Weightsw; a are the probabilities of the two classes separated by shibldsl” and
o? the variance of class Otsu shows that minimizing the within-class variance & th
same as maximizing between-class variance,

oy (T) = wi(T)wa (1)1 (T) — po(T)) (2.16)

which is expressed in terms of class probabilitigsand class means; which in
turn can be updated iteratively. This idea yields an effedichnique. The algorithm
starts by computing the image histogram and the probaslaf each intensity level.
The algorithm steps through all possible thresholds from thé maximum intensity.
At the end, the desired threshdltcorresponds to the maximue® (T'). The image
segmentatiotd (1) is calculated then using the computed threshold as in exuati4.

2.4.3 Local Adaptive Thresholding (LAT)

This algorithm was proposed by Kirby and Rosenfeld in [ki#t®) LAT is an acronym
which stands for Local Adaptive Thresholding. For eachIpixe I a thresholdu(p)
is calculated. If the pixel value is below the threshold itlassified as background,
otherwise it is classified as foreground; or vice versa. Arghbased their work on the
supposition that neighbouring pixels would be similarlyrhinated.

The algorithm uses the neighbourhood of pixelV,, (p), to calculate statistics to
examine the intensity(p) of the local neighbourhood of eagh This neighbourhood
is usually a square window ofi = n x n elements. In most cases, the computed
statistic is the mean of the local intensity, computed as,

1) = 5 - L 1@ (2.17)

qE€ENm, (p)

The size of the considered neighbourhood is important stbde large enough to
cover sufficient foreground and background pixels, otheevéi poor threshold is cho-
sen. On the other hand, choosing regions which are too largeiolate the assumption
of approximately uniform illumination.

A constant factor can be used to adjust the comparison of the mean with the pixel
intensity value. This factor multiplies the grey level oéthixel when comparing it to
the mean grey level of its neighbourhood.

On the other hand, a level terhtan be added to eliminate salt and pepper noise.

Input imagel is then converted into output imag& ) by applying the following
formula,
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_ Lif pp) = c-I(p) +1
vp € 1,5(p) = { 0, otherwise (2.18)

Three parameters can be adjusted in this algorithm, on ome, havhich usually
takes values around [ which takes values close @cand the size of the neighbour win-
down, which, as mentioned before, must be set to be big enoughcaséw sufficient
foreground and background pixels but small enough as naotate the assumption of
uniform illumination.

A sample execution of this algorithm for a complete imagey tmafound in figure
2.4,

if W -+
1 L% E =

(a) Original image (b) Connected regions found after LAT
thresholding

Figure 2.4: Sample execution of LAT segmenting an imageasprting a truck con-
tainer.

2.4.4 \Watershed

In [beucher79] and [beucher91] the application of the v&ited transform to image
segmentation was proposed. The algorithm takes a grey iscatge and considers it
as a topographic surface. A process of flooding is simulatethis surface; during
this process two or more floods coming from different basiry merge. To avoid
this, dams are built on the points where the waters floodioig fifferent basins meet;
at the end of the algorithm, only dams are over water levelesEhdams define the
watershed of the image. The way this algorithm works and haramsforms imagée
into a set of segmented regiof$!), is as follows.

Let [ be the current grey tone under examination, being the first oa 0. We
initialize the region set as,

SH™t=0 (2.19)

The algorithm floods each time a grey level of the image bygasing up toL —1,
being L the total amount of grey levels,

V(z,y) e L, ifI(x,y) <l —I(z,y) =1 (2.20)

After this flooding step, the algorithm searches for cone@cegionsR;. Being
S(I)! the set of all the connected regions found in flooding Iével
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In each new iteration, the algorithm checks whether regiomsevious level have
joined in the current level,

if IR € S/ AR; € S(I)' Ri CR; — S(I)' =S JR: (221

S(I)E=1, would be the final segmentation. A sample execution of tigjsrdhm
for a complete image, can be found in figure 2.5.

(a) Original imagel (b) Different flooding levels Watershed

Figure 2.5: Sample execution of Watershed segmenting agemepresenting a truck
container. Image 2.3b represents the different floodingl$eof Watershed algorithm
over the original image.

2.4.5 Local variation

This algorithm was introduced by Felzenswalb and Huttdrdodn [felzen98]. Its
approach consists in considering a criterion for segmgritirages based on intensity
differences between neighbouring pixels. Figure 2.6 shmaample execution of this
algorithm on an image representing a truck container.

The main idea is partitioning an image into regions, such thaeach pair of
regions the variation between them is bigger than the vanatside each region. The
measure of the internal variation of a region is a statistithe colour or intensity
differences between neighbouring pixels in the region. measure of the external
variation between two regiorf8; andR; is the minimum colour or intensity difference
between two neighbouring pixejs € R; andg € R; along the border of the two
regions.

The algorithm uses two parameters, the minimum size of thoms in the final
result, and a constant used to smooth the image before ginget

The algorithm starts by creating a graph that representsmhbge. This graph
follows the structure introduced in section 2.2, with thetipalarity that arches in
the graph are given a weight that corresponds to the differém intensity of pixels
represented by their nodes. The function used to calclHateveight of the arches is
defined as follows,

o= { LSS

Arches are ordered by non-decreasing weight. To achieviagitest ordering, authors
of [felzen98] recommend in their paper the bucket sort atlyor [cormen90].
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First step consists in taking arches between pixgl®; such thatv(v;, v;) = 0.
These pixels determine the seeds used to grow regions. @hbdthim then takes an
arch at a time and compare the regions it joins. Both regiaiidoe merged if they
meet the established criteria. The output of the algorithm $et of regions in which
the image is segmented.

(a) Original image (b) Connected regions found after local vari-
ation thresholding

Figure 2.6: Sample execution of the local variation aldwnitsegmenting an image
representing a truck container.

2.5 Conclusions

Several algorithms exist to segment images depending anlpaal features of the
image, as relationships of pixels with their neighboursjristance. In this chapter we
have introduced well-known algorithms which are extergiused to segment images
in a wide range of applications. These techniques were chbased on previous
knowledge of the algorithms and also on the comparison ofitt@ture describing
them.

As long as algorithms designed to segment images rely lyeawnithe light con-
ditions, images taken under non controlled light condgidsecome difficult to deal
with.

It must be noted, that no specific mechanism exist, which neayded to test the
performance of the segmentation algorithms. In chapter ¥stesiatic method for
testing the performance of segmentation algorithms isqseg.
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Chapter 3

Background modelling and
motion segmentation

This chapter introduces the most representative techsigpiglied to background mod-
elling and motion segmentation available in the literatBpecial attention is paid to
background subtraction and background modelling methddshnare used in the de-
velopments discussed in chapter 5.

3.1 Introduction

Visual analysis of human motion [wangO03] is currently onéhaf most active research
topics in computer vision. This strong interest is driverebyide spectrum of promis-
ing applications in many areas suchvaitual reality, smart surveillancandperceptual
interface just to mention the most representative.

Visual analysis concerns the detection, tracking and neitiog of objects in gen-
eral, and particularly, people; and the understanding ofdrubehaviour in the case of
image streams involving humans. Visual analysis of a scems$rom a segmentation
of the scene in order to classify pixels as foreground or gamknd; then, other steps
may be taken depending on the application, such as motidpsisiaobject detection,
object classification, human tracking, action recognidod semantic decision. Figure
3.1 shows the general framework of human motion analysisqa®d in [wang03].

Human motion analysis has been investigated under seeggal tesearch projects
worldwide. For example, DARPA (Defence Advanced ReseandjeBts Agency)
funded a multi-institution project on Video SurveillanagdaMonitoring (VSAM) in-
troduced in [vsam99], whose purpose was to develop an atitonideo understanding
technology that enabled a single human operator to morgtasitées over complex ar-
eas such as battlefields and civilian scenes.

In another project, the real-time visual surveillance syst\4, an acronym for
Who? Where? What? When? is introduced in [haritaoglu00]. It eygal a combina-
tion of shape analysis and tracking, and constructed thetaofipeople’s appearances
to make itself capable of detecting and tracking multiplepde as well as monitoring
their activity. Other examples of similar systems may bentbin [hu04] and [wren97].

Visual analysis algorithms do usually assume a fixed camigh@ut motion, though
some extensions to moving cameras are available in thatliter [marcenaro00]. In
general, they take as input an image, or frame, from a videasst These frames are
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Figure 3.1: Stages in the process of human motion analysis.

time shifted representations of what has happened in theeseeder analysis; so a
temporal relationship between consecutive frames canthblished.

lllumination changes produced by weather, indoor illurtiorg shadow and repet-
itive motion from clutter, make motion segmentation difftde process quickly and
reliable. Thus, methods must be implemented to distingcgsbkfully which regions
must be processed and which not.

Currently, most segmentation methods use either tempofaha spatial infor-
mation of the images. Several general approaches used iomsg#gmentation are
outlined in the following paragraphsemporal differencingbackground subtractign
statistical methodandoptical flow The final election depends greatly on the applica-
tion and the constraints to be met; for instance, for reagtapplications it is totally
discouraged the use of optical-flow techniques which arg tiere-consuming.

We centre our interest in segmenting objects and distihgiiem from the back-
ground of the scene. Following section introduces notatimhdefinitions used further
in the chapter. Background modelling algorithms, which emecial if background
subtraction is used, are explained in section 3.3. Sect®di8cusses motion segmen-
tation techniques. Finally, some techniques used to rersbadows are described in
section 3.5.

3.2 Notation and definitions

Visual analysis algorithms take as input a video stream lvmay be described as a
set of images or frameg7(0), F(1), ..., F'(¢), which represent the activity in a given
scene, being the order of the-th frame in time. The time difference between two
consecutive frames is known and constant with a vaIu%gfseconds, whergps
stands foframes per second

Segmenting each framg(i) and stablishing relationships between consecutive
frames is known to be a difficult problem. Recalling the défimis introduced in sec-
tion 2.2, regionsRk;, detected in the segmentation of ea€li), provide a focus of
attention for later processes, such as tracking or activiilysis, because only those
pixels belonging to these regions need to be considered.
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In order to segment frames, different approaches are alaits will be further
explained in following sections. Some techniques, intoedlin section 3.4.2, use a
model of the scenario, called background model, to perftwir computations.

A general definition of background modglin grey tones as a single image is given
by equation 2.1. In some cases, however, each pixel may loeilaless with more than
one model. In general, a model can be seen as a set of ovenlagres as,

B={B" B!, .. B™} (3.1)

where eaclB’ corresponds to the definition given above and the superinihe-
cates which description it refers t&.”, will refer to them-model of pixel in location
(z,y). Itis straightforward to see that this definition includas previous with just
settingm = 1.

The background model can be updated with a given pefiodBeing B(i) the
background model updated in time

Each pixel in the input frame must be compared to at leastpankground model

for it. This means that the following condition must alwaysdd)

Va,y, € Fpy(i) = 3 By y(9)™,0>0,m>1 3.2

The goal of segmenting scenes is finding objects, shadowbaaidjround of the
scene. Some important and precise definitions about whatdbmsidered to be an
object, a shadow or background of a scene may be found ingsitemian05] and [xu05]
and are reproduced below.

e Moving object A set of connected points in the input image which in compari
son with the static camera, are currently characterisecbynull motion and a
different visual appearance from the background

e Static object A set of connected points in the input image which, in corguar
with the static camera, are currently characterised by mollion but show a
different visual appearance from the background

e Ghost A set of connected points in the input image detected as j@etdiut not
corresponding to any real object

e Shadow An area of the background on which light has been reduceddatihg
an object which avoids light to arrive to it. In figure 3.2, sosample blobs with
and without shadows, along with the original grey-tone imatay be found. It
may be remarked the effect of shadows in the segmentatiobje€ts; joining
objects or enlarging objects dimensions. In [xu05] shadareslistinguished in
two different types:

— Cast-shadowsArea of the background projected by the object in the di-
rection of the light rays producing inaccurate silhouettes

— Self-shadowsParts of the object which are not illuminated. They are usu-
ally part of the silhouette and thus, pointless from the pofrview of a
shadow removal scheme should not remove them

¢ Highlight. Areas of exceptional lightness in the input image.
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e Background All pixels in the input image which belong neither to moviolg-
jects nor ghosts. The former represents the current setefspivhich are not
considered for further analysis. On the other hand, thedrackhd model de-
scribes what the background of the scene is expected to be.

Original Thresholded Shadows Shadows
image image removed removed

[rosin95] [xu05]

Figure 3.2: Sample blobs with and without shadows, alondy Wit original

images. Each row corresponds to a different sample. Fitstrooshows the
original image, second column to the thresholded figurduding cast shad-
ows. The third column represents the result of applying tedew removal
algorithm introduced in [rosin95] and the fourth columrg tiesult of applying
the technique discussed in [xu05]. Both techniques arednted in section 3.5

3.3 Background modelling

The construction and updating of background models isjpatisable to visual surveil-
lance. In the literature, techniques either 2eD or 3-D background modelling can be
found. Due to their simplicity?-D techniques have more applications. In fact, current
work with 3-D background modelling techniques is limited due to thédalifty of 3-D
reconstructions in outdoor scenes.

In any case, different scenarios may appear when buildimgdgraund models,
depending on whether the camera stays in a place or movehislotapter, we will
consider only technigques in which the camera is stationary.

According to the discussion made in [toyama99], an idegk@ammind maintenance
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system would be able to avoid the following problems:

Moved objectsA background object can be moved. These objects shouldenot b
considered part of the foreground forever after.

Time of day Gradual illumination changes alter the appearance of #duk-b
ground.

Light switch Sudden changes in illumination and other scene paramaiters
the appearance of the background.

Waving treesBackgrounds can vacillate, requiring models which camesgnt
disjoint sets of pixel values.

Camouflage A foreground object’s pixel characteristics may be subsdity
the modelled background.

Bootstrapping A training period absent of foreground objects is not alzlé in
some environments.

Foreground apertureWhen a homogeneously coloured object moves, change in
the interior pixels cannot be detected. Thus, the entireatlohay not appear as
foreground.

Sleeping persanA foreground object that becomes motionless cannot bdist
guished from a background object that moves and then becaoisnless.

Waking personWhen an object initially in the background moves, both it and
the newly revealed parts of the background appear to change.

Shadows Foreground objects often cast shadows which appear eliffédrom
the modelled background.

In their work, authors of [toyama99] propose a very usefudmenark which chal-
lenges background algorithms with the mentioned situatidhis benchmark is widely
accepted by the community as a valid test and we will alsotusbén comparing our
proposals for background modelling with algorithms foundtie literature in chapter

5.

In [piccardiO4] and [benezeth08] a review of background etk techniques and
a comparison among them may be found. Both papers discusargiesults regarding
performance and agree that no method outperforms the reBtaspects.

The background subtraction technique used, should beutigrehosen according
to the scene where action will take place. Moreover, autbdidenezeth08] point
out that, when dealing with videos under the fundamentakdpraeind subtraction as-
sumption, i.e., fixed camera and static and noise-free lvaakg, the basic background
subtraction will perform reasonably good, and no betteultesnay be expected from
other, more complicated, methods.

The techniques proposed in the literature show a fundamdiitarence in the
process followed to obtain the initial background moB¢0), and also in the criteria
followed to decide when and how creating a new model for argpigel.

According to the reviewed literature, authors propose @irtpapers techniques for
background modelling with the capability of adapting thedeido changes in the scene
background. Moreover, each pixel in the background may peesented by more than
one model.
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When background subtraction techniques are used, bacldjquofate in timel
depends oB (i — 1), the previous model obtained in time- 1, and on the difference
computed between the current fratAi¢i) and modelB (i — 1). Usually, this update
operation of a model is given by the following expression:

B(i)=a-B@i—1)+(1—a)-F(i) (3.3)

beinga an update factor in the rand@ 1], which controls the speed at which new
information is included in the model.

Tables 3.1 and 3.2 summarize information of the most popetdmiques for back-
ground modelling found in the literature. In table 3.1, eohs show at which level the
background model is computed, pixel or region level; if mmbdal support is con-
sidered in the original algorithm, the segmentation method if the algorithm may
work with grey tone images, colour images or may deal withbdiable 3.2 shows
the spatial complexity of each algorithm following the bignGtation considering an
image of sizen x m, the capability of the algorithms to detect or react agaimstlel
corruption and a reference paper for each algorithm.

Algorithm. Granularity | Multimodal Segmentation method| Color or grey tones
Adjacent frame difference pixel No frame differencing both
Running Gaussian average pixel No background subtractior] both
Mixture of Gaussians pixel Yes background subtractior] both
Kernel density estimation pixel Yes background subtractior| both
Sequential kernel density approx. pixel Yes background subtractior both
Temporal median filter pixel No background subtractior both
Eigenbackgrounds region No background subtractiorn both
Cooccurrence of image variation region No background subtractior] both
Textures pixel Yes background subtractior] grey tone
Wallflower pixel Yes background subtractior] grey tone
Edges histogram region No background subtractior] both
Salient motion pixel No optical flow both

Table 3.1: Features of the most popular techniques for lvaokg modelling found
in the literature depending on which the background modshgarity is, their multi-
modal support capability, whether they support grey tonages, colour images or
both, and the motion segmentation method employed.

Algorithm. Spatial complexity | Model corruption detection References
Adjacent frame difference O(1) - -

Running Gaussian average O(1) No [wren97]
Mixture of Gaussians O(Knm) No [grimson99]
Kernel density estimation O(Knm) No [elgammal00]
Sequential kernel density approx. O(Knm) No [han04], [piccardiO4a]
Temporal median filter O(Knm) No [yang92]
Eigenbackgrounds O(Knm) No [oliver00]
Cooccurrence of image variations O(Knm/N?) No [sekiO3]
Textures O(Knm/2¥) No [heikkila06] , [heikkila04]
Wallflower O(nmV) Yes [toyama99]
Edges histogram O(mn) No [mason01]
Salient motion O(mn) - [wixson00]

Table 3.2: Other important features of background modgtéchniques, the spatial
complexity of each algorithm following the big O notationnsidering an image of
sizen x m, the capability of the algorithms to detect or react agaimstiel corruption
and a reference paper for each algorithm.

The spatial complexity of the Eigenbackgrounds depend&”ahe number of im-
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ages chosen to compute the background model. In the casecfwoence of im-
age variations, the memory complexity (5nmK/N?) where K is the number of
variations in the training model andn their dimensions. At classification time, the
eigenbackground method requires a memory complexity pet gi(M ), with M the
number of the best eigenvectors. However, at training timeenbethod requires allo-
cation of all theK training images, with a® (K nm) complexity. LBP complexity
depends or2” the size of each histogram, beifthe number of equally spaced pix-
els used to compute each LBP feature. Wallflower complexity takes into account
the model’s complexity, as no model weights are considardiis algorithm. Its com-
plexity is thenO(n x m x V'), whereV is the sum of the number of coefficients and the
number of past values used to predict future values with thengV filter. Wallflower
considers a fixed number of models.

The problem of model corruption is discussed in very few psida [toyama99] it
is proposed to maintain a database with valid backgroundeileachich may be chosen
for each situation. The background may become corrupt faeratdifferent reasons,
being sudden changes of light the most usual. It is not angadjem to solve as it is
not trivial determining when a model becomes corrupt ancemihdoes, recovering it
is very difficult even if models are stored in a database, lag@led models have to be
compared with current scenario and the best match is theseahto keep the system
up and running.

In the following subsections, each of the techniques refaxd in previous tables,
is briefly introduced.

3.3.1 Adjacent frame differencing
J(@)=|F(i)— F(i—1)| (3.4)
Regions of interest are detected by using a single threghold

L Ly, =T
S:Ln,y(z) - { 0, Jx,y(l) <T

This method is very sensitive to small light changes, gagast@noisy segmentation
and does not find complete objects.

(3.5)

3.3.2 Running Gaussian average

Authors of [wren97] propose modelling the background iredefently at each location
(z,y). In this technique, each background pixe} , (i) is independently modelled,
trying to estimate its average value on the laframes. In order to avoid fitting a
gaussian distribution by using the lastvalues of each previous frame, each time a
new frameF (i) is acquired in timei a cumulative averag®, ,(i) is computed as
stated in equation 5.2, that is, .

Bm,y(i) = aBz,y(i -+ (1~ C")Fm,y(i) (3.6)

The learning factorr used in this equation is an empirical weight often chosen as
a trade-off between stability and quick update. The adygnts this method is its
simplicity and low memory requirements.

Pixels inF(i) can then be classified as a foreground pixel if the followmegjuality
holds,
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|F' (i) = p(i)| > ko(i) 3.7)

wherek is a parameter set by user am(l) the computed standard deviation per
pixel is computed as,

o?(t) = a(F(i) — B(i — 1)) +0%(i — 1)(1 — a) (3.8)

Pixels for which the previous inequality does not hold aessified as background.

The model was initially proposed for grey tones images, Ingiteixtension to RGB
coordinates or other colour spaces is quite straightfaiwar

The main disadvantage of this method is that it cannot hamaiperly scenarios
with clutter in the background and that the value of thparameter is arbitrarily cho-
sen.

3.3.3 Mixture of Gaussians (MoG)

While previous models will adapt different background olgeappearing over time,
sometimes the changes in the background are not permarteappear at a rate faster
than that of the background update. A typical example is adamr scene with waving
trees partially covering a building, for instance. The saixel in location(z, y) will
show values from the tree branches, tree leaves and thertguildn [grimson99],
authors raised the case for a multi-valued background naddelto cope with multiple
background objects.

These are the guiding factors in the choice of model and epgaatcedure in this
algorithm. The recent history of each pixél, ,(1), ..., F;; ,(¢), is modelled by a mix-
ture of K Gaussian distributions. The probability of observing theent pixel value
is,

K
P(Fyy (i) = ng‘(i) - 1(Bj (1), Fuy (1), 2(5) (1)) (3.9)

where K is the number of distributionsy; () is an estimate of the weight (what
portion of the data is accounted for by this Gaussian) of ttleGaussian in the mixture
at timet, B; (i) is the mean value of thgth Gaussian in the mixture at timieX; (7)
is the covariance matrix of thgth Gaussian in the mixture at time andn is the
Gaussian probability density function,

1

_ U xBTS (-l X B
27, ()% )'85(0) 7 (X = Bj(i))  (3.10)

n(B;(i), Xi, 2;(1))
K is determined by the available memory and computationalepovilso, for
computational reasons, the covariance matrix is assumiee ¢b the form,

(i) =0 F (3.11)

beingo the variance of thé-th model. If the pixel process could be considered a
stationary process, a standard method for maximizing &editiood of the observed
data is expectation maximization (EM). Unfortunately,kepexel process varies over
time as the state of the world changes, so they use an apm@atexinethod which essen-
tially treats each new observation as a sample set ofisirel uses standard learning
rules to integrate the new data.
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Because there is a mixture model for every pixel in the imamelementing an
exact EM algorithm on a window of recent data would be codtigtead, authors im-
plement an on-lind{-means approximation. Every new pixel valdé, , is checked
against the existingd Gaussian distributions, until a match is found. A match is de
fined as a pixel value withi.5 standard deviations of a distribution, see equation 3.12

w >25 (3.12)
o;(i)

This threshold can be perturbed with little effect on parfance. This is effectively
a per pixel/per distribution threshold. This is extremebgful when different regions
have different lighting, because objects which appear adst regions do not gen-
erally exhibit as much noise as objects in lighted regionsinfform threshold often
results in objects disappearing when they enter shadedn®gi

If none of the K distributions match the current pixel value, the least plé
distribution is replaced with a distribution with the curteralue as its mean value, an
initially high variance, and low prior weight. The prior vgits of theK distributions
at times, wy (i) are adjusted as follows,

wr(t) = a-wi() + (1 — a) - Mg () (3.13)

whereq is the learning rate antl/;,(¢) is 1 for the matched models afidtherwise.

The Gaussians are ordered according to the valige This value increases both as
a distribution gains more evidence and as the variance asese After re-estimating
the parameters of the mixture, it is sufficient to sort frore thatched distribution
towards the most probable background distribution, bexan$/ the matched models
relative value will have changed. This ordering of the maselffectively an ordered,
open-ended list, where the most likely background distitims remain on top and the
less probable transient background distributions greevtiawvards the bottom and are
eventually replaced by new distributions.

Then the firstB distributions are chosen as the background model, where

b
B= argminb(z wi > C) (3.14)
k=1

beingC a measure of the minimum portion of the data that should bewsted for
by the background. This takes the best distributions unt#ain portionC, of the
recent data has been accounted for. If a small valu€’fa chosen, the background
model is usually unimodal. If this is the case, using onlyrtiest probable distribution
will save processing.

If C'is higher, a multi-modal distribution caused by a repetitiackground motion
(e.g. leaves on a tree, a flag in the wind, etc.) could resuthdne than one colour
being included in the background model. This results in asparency effect which
allows the background to accept two or more separate colours

This model is able to handle clutter in the background by@ating several mod-
els to each pixel. It fails when sudden changes in the backgr@ppear, because
the model takes a long time to stabilize again. Several atiethods are built tak-
ing the work of [grimson99] as a basis, for instance, [zefhgd8e05], [varcheie08],
[zivkovicO4] and [elbaf09].
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3.3.4 Kernel density estimation (KDE)

An approximation of the background probability density dtion, can be given by
the histogram of the most recent values classified as bagkdroalues. However,
as the number of samples is necessarily limited, such arozippation suffers from
significant drawbacks: the histogram, as a step functioghtirovide poor modelling
of the true, unknown probability density function, with ttaéls of the true probability
density function often missing.

In order to address such issues, in [elgammal00] have peddosmodel the back-
ground distribution by a non-parametric model based on &eRensity Estimation
(KDE) on the buffer of the lasK background values. KDE guarantees a smoothed,
continuous version of the histogram.

In [elgammal00], the background probability density fuoectis given as a sum of
Gaussian kernels centred in the most redértackground valued,, , (),

K
Pl) = - 3 0Ly (i) — Loy la), 5) (3.15)
qg=1

wheren is a Gaussian probability density functidf, , (¢) are the lasfC observed
values of pixelr andX, is the covariance matrix of thgeth Gaussian in the mixture at
timei. Likewise equation 3.9, this model seems to be dealing wétlma of Gaussians.
However, differences are substantial: in equation 3.9 €&aussian describes a main
mode of the probability density function and is updated dwee; here, instead, each
Gaussian describes just one sample data, with the order of100, and X (i) is the
same for all kernels. If background values are not knownlassified sample data can
be used in their place; the initial inaccuracy will be reaedktalong model updates.
Based on 3.15 classification 617, , (i), as foreground can be straightforwardly stated
if the following condition holds,

P(I(i) <T (3.16)

beingT a user selected value.

Model update is obtained by simply updating the buffer oftthekground values in
fifo order by selective update; in this way, pollution of theael by foreground values
is prevented. However, complete model estimation alsoiresjthe estimation of;,
which is assumed diagonal for simplicity. In [elgammalGBE variance is estimated
in the time domain by analysing the set of differences betve® consecutive values.

The methods introduced so far model independently singlel ppcations. How-
ever, it is intuitive that neighbouring locations will ekiti spatial correlation in the
modelling and classification of values. To exploit this pdp, various morphologi-
cal operations have been used for refining the binary mapeofltssified foreground
pixels. In [elgammal00], instead, this same issue is adedeat the model level, by
suggesting to evaluat®(1, ,) also in the models from neighbouring pixels and use the
maximum value found in the comparison agaifist

3.3.5 Sequential kernel density approximation

Mean-shift vector techniques have been employed for vapatiern recognition prob-
lems such as image segmentation and tracking. The meanssbibr is an effective
gradient-ascent technique able to detect the main moddwdfre probability den-
sity function directly from the sample data with a minimunh geassumptions, unlike
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the approach in [grimson99], the number of modes is unoéstti However, it has a
very high computational cost since it is an iterative tegheiand it requires a study
of convergence over the whole data space. As such, it is moeuliately applicable to
modelling background probability density functions at fiveel level.

There have been recent approaches trying to solve thisgarolh [piccardiO4a],
authors propose some computational optimisations pramisi mitigate the compu-
tational drawback. Moreover, in [han04], the mean-shifttee is used only for an
off-line model initialisation. In this step, the initial sef Gaussian modes of the back-
ground probability density function is detected from atigisample set. The real-time
model update is instead provided by simple heuristics gppiith mode adaptation,
creation, and merging. In their paper, authors of [hanOdingared the probability
density function obtained with their method against thahd€DE approach over a
500-frame test video, finding a low mean integrated squared artbe order ofl0~4;
this justifies the name dbequential Kernel Density approximati¢8KDA) that the
authors gave to their method.

This method can effectively model a multimodal distribatieithout the need of
assuming the number of modes a priori, but at the cost of a gty computational
cost.

3.3.6 Temporal median filter

Various authors argued that other forms of temporal avepagform better than the
one introduced in the previous section. For instance, indbira01] a method using
the median of the last frames to calculate the background mo#¥), even if these
n frames are subsampled from the original frame rate by afaftd). A disadvantage
of this method is that its computation requires a buffer whikn A most recent values;
moreover, the median filter does not accommodate for a rigostatistical description
and does not provide a deviation measure for adapting thesstion threshold.
Authors of [yang92] proposed an algorithm for constructimgbackground primal
sketch by taking the median value of the pixel colour overréeseof images. The
median value, as well as a threshold value determined ushigtagram procedure
based on the least median squares method, was used to treatiédrence image.
This algorithm could handle some of the inconsistenciestdlighting changes, etc.

3.3.7 Eigenbackgrounds

The approach proposed in [oliver00] is based on an eigeexd@aomposition, applied
to the whole image instead of blocks. Such an extended $gati@ain can extensively
explore spatial correlation and avoid the tiling effect wfdk partitioning.

The method can be divided into two different phases, thenlegiphase, in which
the initial model is learned and the classification phaseyhich pixels are classified
as background or foreground.

Learning phase:

e samples ofK images are acquired, each image withixels; the mean image,
1y, and the covariance matri, are computed.

e the covariance matrix is diagonalized via an eigenvaluemgosition. By ap-
plying PCA to the eigenvalues of the covariance matrix, allyeigenvectors,
eigenbackgrounds as called in the paper, are kept. Thasesvate stored in an
eigenvector matrixd,y, , of sizeM - p.
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¢ the mean value of the eigenbackground images computed.
Classification phase:

e Every time a new framef'(4), is available, it is projected onto the eigenspace as
F'(i) = O, (F (i) — )

e By computing the euclidean distance between the input image) and the
projected imagekF” (i), moving objects may be detected,

D;=|F(i)— B(i)| >T (3.17)
beingB(i) = O, (F (i) — 1) andT a given threshold.

e F’isthen back projected onto the image spacg&’as= 0,,, - F' + up. Since the
eigenspace is a good model for the static parts of the scahapbfor the small
moving objects " will not contain any such objects;

In [oliver00], however, it is not explicitly specified whahages should be part of
the initial sample.

3.3.8 Coocurrence of image variations

Authors of [sekiO3] try to go beyond the idea of mere chrogalal averages by ex-
ploiting spatial cooccurrence of image variations. The@imstatement is that neigh-
bouring blocks of pixels belonging to the background shaxiderience similar varia-
tions over time. Although this assumption proves true facks belonging to a same
background object (such as an area with tree leaves), itewitlently not hold for
blocks at the border of distinct background objects.

The method in [sekiO3] works on blocks &f- NV pixels instead of on simple pixels.
This technique consists in two phases. A learning phase atassification phase. In
the first phase, for each block, a certain number of sampkesgsired over time. The
temporal average is computed and the differences betweerathples and the average
are called the image variations. In the classification stageh block is classified as
background or foreground.

Instead of working at pixel resolution, the method in [s&kiQvorks on blocks
of N - N pixels treated as aW2-component vector. This trades off resolution with
better speed and stability. Two phases may be distinguistiexllearning and the
classification phase.

e Learning phase

— for each block, a certain number of time samples is acquirexitemporal
average is first computed and the differences between thplesuand the
average are called thmage variations

— In blocku, covariance matriX’,, is computed from the image patteris;
of the background image sequence and the average pattern

T

Su = Z((iu,t - iu)(iu,t - iu))/ (318)

t=1

beingr the learning time.
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— the covariance matrig’, is decomposed int& eigenvectors.

— Image patterns, ; of a background image sequence in bleckre trans-
formed into points in the eigen space and memorized withrehten time,

zup = By (ug — iu) (3.19)
e Classification phase

— new input patterns for eaahare transformed into points, in each eigen
spacek,,

— the L-nearest neighbours tg, in the eigenspace;, ;, are found and:,
expressed as their linear interpolation

— the same interpolation coefficients are applied to the gatiehe current
block, b, which have occurred at the same time of theg; this provides an
estimate;, for its current eigen image variatiasp

— Background subtraction is performed by calculating bagkgd-likelihood
in each block. The rationale of the approach is thaand z, should be
close ifb is a background block.

In [seki03], the probability of background-likelihood wih@idging only based on
the input pattern in the focused block and the probabilitpatkground-likelihood
when judging based on the patterns estimated from some baiging blocks, are
combined to dynamically narrow the range of background Enagiations in a focused
block.

Authors of the paper do not specify whether the learning @isasuld be repeated
over time to guarantee model update. As this model is basedrations, it is likely
to show a natural robustness to limited changes in the dvkuatination level. How-
ever, a certain update rate would be needed to cope with mteaded illumination
changes.

3.3.9 Local Binary Patterns

Authors of [heikkilaO6] and [heikkila04] introduce a nowakthod in which textures
are used to perform background modelling and object detectn this method, each
pixel is modelled as a group of adaptive local binary pattékfP) histograms, calcu-
lated over a circular region around the pixel to model. Thithnd permits modelling
each pixel with several models if needed as the algorithrarparates naturally the
extension to multimodels.

LBP is a grey-scale invariant texture primitive statistit\e operator labels the pix-
els of an image region by thresholding the neighbourhoodot @ixel with the centre
value and considering the result as a binary number (binaitgm). The definition of
the texture is as follows,

"
L

LBPp (e, yc) = s(gp — gc) - 2P (3.20)
beings(z) defined as,

s(x) = { Lo =0 (3.22)
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whereg,. corresponds to the grey value of the centre pfxgl y.) of a local neigh-
bourhood and, to the grey values aP equally spaced pixels on a circle of radilis
See figure 3.3 for an illustration of the LBP operator. Theigadf neighbours which
do not fall exactly on pixels are estimated by bilinear ipteation.

N S
@ e . gowe

]

Figure 3.3: Calculation of the binary pattern of a pixel. @a teft, the region around
the pixel. On the right, the result of binarization. Accaglito the arrow direction, the
resulting binary pattern would be in this casd 100

The processing of each frame is performed in two phases:gbagkd modelling
and foreground detection. Each one of them is briefly dissigsthe following para-
graphs.

Each pixel of the background is modelled identically, whidlows a high speed
parallel implementation if needed. In the following, thegess of modelling the back-
ground is explained for just one pixel, but the procedureéntical for each pixel in
the model.

For each pixel, a number of LBP histografisg, m, ..., mx_1} are maintained,
being K a user settable parameter. Each model histogram has a \beigeer) and
1 in such a way, that the weights of ti& models of a pixel sum up to 1. The weight
of the k-th model histogram is denoted ly,. Let us denote the LBP histogram of the
given pixel computed from the new video frame by

Each LBP histogrank is computed using equation 3.20. The computation is per-
formed by considering a region of pixels around the centit @mparing them to
the same amount of pixels in a region around each neighbderbihary patterns are
shifted to the left and cumulated. Finally the normalizestdgram is computed by
diving all components by the maximum value.

At the first stage of processing,is compared to the curre#f model histograms
using a proximity measure. Authors use the intersectiowden histograms (as in
equation 3.31) because they claim that it has an intuitivevation in that it calculates
the common part of two histograms.

Its advantage is that it explicitly neglects features whadly occur in one of the
histograms. Another advantage, is that the complexity ig i@v as it requires very
simple operations only. The complexity is linear for the tn@mof histogram bins.

A threshold for the proximity measuré,,, a user-settable parameter, is used to
threshold this distance measure. If the proximity is belbig threshold, then the
algorithm would replace the lowest-weighted histogranhefrnodel withi. This new
histogram is given a low weight, in the experiments perfaiimgthe authors, the value
was0.01. In the paper, authors state that a match with the backgrsundated in a
different way, however, there is no explanation about whatonsidered as a match.
Though authors state in their paper that the best match ikl histogram with the
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highest proximity value (i.e. the lowest distance). Thistbeatching model is adapted
with the data obtained from the image as follows,

mp = Qyp - h + (1 — Oéb) Mg (322)

whereq,, € [0, 1] is a user-settable learning rate. The weights of all modets p
pixel is updated with the following expression,

W = Q- Mg + (1 — ) - wy, (3.23)

being M; = 1 for the best matching histogram andor the rest, andy,, is a
user-settable learning rate which verifies thate [0, 1].

As a last stage of the updating procedure, the model histogeae sorted in de-
creasing order according to their weights, and the firfistograms are selected as the
background histograms,

wo +wy +...+wp_1 >Tg (324)

whereT’s € [0, 1] is a user-settable threshold.
Finally, foreground pixels are detected by testing whicte[s in current frame did
not match any histogram of the background model.

3.3.10 Wallflower

The approach introduced in [toyama99] is the only one wharhluines three different
processing layers; pixel, region and frame layer, in ordetetermine the regions of
interest of a frame. Instead of considering a model for tiemeceach pixel is assigned
a Wiener filter. The algorithm is designed to work in grey ®ne

In the first stage, the pixel level, a Wiener filter is used tmpate predictions about
future values of a pixel. In the case predictions fails, tixelps labelled as foreground.
Adaptation is achieved by recomputing the filter paramdtareach pixel.

The prediction for each pixélr, y), denoted by, , (), is computed as,

P
Foy(i) = ax % Fyyli — k) (3.25)
k=0

beingay, the filter coefficients P the total amount of coefficients used for predic-
tions andF; , (i) are previous values of the pixel. The coefficients of therfittee
computed from the sample covariance values,of (¢). Details of these computations

can be found in [makhoul75]. For each predictidy(;z, ), a expected squared error
is computed as,

P
Elef] = E[Fy y(i)*] + Y _ ay * E[Fy (i) Fy y (i — k)] (3.26)
k=0
If the condition,

| Fo,y (4) _Fx,u(lﬂ >=4- \ﬂE[etZ]) (3.27)

the pixel is considered foreground. The linear predictiarks well for periodi-
cally changing pixels and produces large value®&pf’] for random changes.
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In order to reduce possible corruptions of the history valofea pixel, a history of
predicted values is also stored. For each new frame, twagbi@us are computed, one
based on the actual history and another one based on poadicA pixel is considered
as background if any of both values is within the toleranagest by inequality 3.27.

Model adaptation is achieved by computing the filter coedfitsa,, for each frame.
The new coefficients are kept if their corresponding expketeor is less thamh.1 times
the previous error.

The region level recovers foreground pixels whose pregtidailed. This is achieved
by considering the intersection of moving regions in fraff{é — 1) and frameF (7).

For each framd(¢), the difference with previous frame is computed and thresh-
olded in a similar way to section 3.3.1. With the result of ti#erence, J (i), the
previous differencd (i — 1) and the previous foreground imagéi — 1), the candidate
regions for growing are computed as,

K=J@Gi—1)AJ@E)AS(G—1) (3.28)

For each four connected regiolis discovered inK a histogramH is computed
for all grey toness of imageR; as,

_ Card{p:p € R N(Fy(i—1)=s)})
{Card({R;})

The histogram is backprojected in frami&:). For eachR; the intersectior?; A
S;—1 is computed and each poipin the intersection contributes to grai(i) as,

H;(s)

(3.29)

1, Hl(Ip) > €
0, otherwise

20 = {

In a third stage, the frame region considers informatiorraié level to decide
when a change in the overall background has occurred andddelrmust be recom-
puted for all pixels.

(3.30)

3.3.11 Edges histograms

Edge histograms are used in [mason01] to detect foregrdpjedts in images. Authors
propose dividing a colour image into different cells andbagste an edge histogram to
each cell. The background model is a set of colour and edgasghams.

Index of the edge histograms are computed using the edgetatien; the reso-
lution of the histogram i40° per bin. When the bin index is determined the bin is
incremented with the edge magnitude.

For each new frame, histograms for cells are computed inghesvay and com-
pared to the background model.

Histogram comparison techniques are used in the paper éctdde foreground
objects. For two histograms, andh,;, the two comparison techniques are histogram
intersection 3.31 and chi-squared measure 3.32.

Simin(hg (1), hp(1))
Ziha(i)

f(hashy) = (3.31)

i) — hy(i))?
X (hayhy) =2 - EW (3.32)

beingi the bin index in each histogram.



3.3. BACKGROUND MODELLING 35

Authors of [mason01] state that their method is tolerantioera noise and illumi-
nation changes, however, they do not specify how the modglbeaipdated in order
to deal with light evolution, for instance.

3.3.12 Salient motion

In [wixsonQ0], authors state that motion detection can playmportant role in many
vision tasks. Yetimage motion can arise from uninteresirents as well as interesting
ones. In their paper, they define salient motion as motionishikely to result from
a typical surveillance target, for instance, a person oiclkelravelling with a sense
of direction through a scene as opposed to other distrantioigpns, for instance the
oscillation of vegetation in the wind.

The proposed algorithm for detecting this salient motiobased on intermediate-
stage vision integration of optical flow.

The salience field is a consistent measure of the distaneglgd in thez- andy-
direction by a pixel. This measure takes into account that field is rarely perfectly
computed for every pixel and also that objects may temdgragiss behind small oc-
clusions.

This salience field is computed separately forthandy- components. In general,
it is computed as,

, [0,5=0
Sj = { A 4+ warp(Sj_1, ;71E), otherwise (3.33)

where A; is the contribution to the cumulative flow of the frame-tasfre flow
from frame;j — 1 to frameyj, warp(I, F') is a function that computes the warp image
by applying to it the flow fieldF' and finally,?flE is the extended flow field.

The extended flow field is computed to achieve robustnessréosein computed
flow and temporal gaps created when a moving object tempppasses behind small
occlusions. It is derived from the flow filed by checking fockaixel p in the flow
field, whether there exists an scalar multiplef the original vecto@‘lF(p) that ex-
tends the vector so that it connects to a location with laadjersce.

After the salience field is computed, the maximum cumuldiive field B in the
2 andy directions are computed as,

St +(p), if sign(S] ,(p)) == sign(mz) NS} ,(p)] > [ma]
. - J,@ @ L
Bja(p) { mz, otherwise (3:34)

beingm, the value of thec-component of the maximum cumulative flow vector at
locationp in framel;_1,

me = Bj_1.(p+]" E(p)) (3.35)

The componenB; , is updated anlogously with an equivalent definitiomaf.
Image segmentation is performed as follows,

., S (p)=Bj..
S, o(p) =4 O i 1Bia(P)] > (ks A BB > by (3.36)
! S5 (p), otherwise

In the case tha$; ,(p) is equal to O, theB; . (p) is naturally also set t. Authors
of [wixson0Q] state that typically, the minimum salientgis set to8 to ensure that
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some minimal salience has a chance to accumulate beforelieceeset to. The frac-
tional changek.. is typically set to0.1, indicating that if the cumulative flow drops to
90% of the largest value previously observed, a direction chasgccurring. The pre-
cise setting, however, is not important, since in genesadlpion vegetation will exhibit
direction reversals that represent large percentage elamtptive to their maximum
value.

Empirical results are presented that illustrate the apbllity of the proposed meth-
ods to real-world video. Unlike many motion detection sckeymo knowledge about
expected object size or shape is necessary for rejectirgjgtracting motion.

3.4 Motion segmentation algorithms

There are three general techniques used when it comes tomsatjmentation: tempo-
ral differencing, background segmentation, and optical.flm the following subsec-
tions, each basic technique is introduced along with referemproposed in different
works to improve their performance.

3.4.1 Temporal differencing

The approach of temporal difference makes use of pixel-difference between sev-
eral consecutive frames in an image sequence to extractngoggions. Temporal
differencing is very adaptive to dynamic environments, generally does a poor job
extracting the entire relevant feature pixels, e.g., fahgsgjenerating holes inside mov-
ing entities and also missing static objects, which may biatefest in some applica-
tions.

As an example of this method, authors of [vsam99] detectedngdargets in real
video streams using temporal differencing. After the altsotlifference between the
current and the previous frame was obtained, a thresholtibbmwas used to deter-
mine change. By using a connected component analysis, tfeegsd moving sections
were clustered into motion regions. These regions weraitiked into predefined cat-
egories according to image-based properties for latekitrgc

Generally, givenF'(i) the frame captured in timg the temporal differencing is
calculated as,

J(i) = |F(i) — F(i —1)] (3.37)

and the binary image representing the segmentation isyeasiiputed as,

W(z.y) € F(i), S(z,y) = { ; i Jeli) 2 oy (3.38)

Wherey is a threshold which can, in turn, adapt itself to changesénscene or
keep constant.

In [vsam99], this threshold varies according to changeshdcenario. In this
paper, authors propose using three consecutive imagedctdata the motion in the
scene, being! (i) = |F (i) — F(i — 1)| andJ?(i) = |F(i) — F (i — 2)|, the expression
used is as follows,

V(m,y) el S(a:,y) _ { 1, Zf Jl(i) > /Lx,y(i) A J2(i) > ﬂw,y(i) (339)

0, otherwise
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The threshold is computed in a pixel per pixel basis in eank tj according to the
following expression,

Py (1) = - gy (i — 1) + (1 — ) - 5+ (Fy(3) — Fiy(i — 1)) (3.40)

wherea is a learning rate which ranges|in 1]. In image 3.4, an example of frame
differencing may be seen.

Authors of [vsam99] justify their equations by considergagch non moving pixel
position as a time serie®, , (i) is analogous to a local temporal average of intensity
values andu, , (i) is analogous t@ times the local temporal standard deviation of
intensity, both computed using an infinite impulse respghBy filter.

(a) F(7) (b) F(i +1) (c) Frame differencing resuff

Figure 3.4: Example of frame differencing. Figure 3.4a add Zre subtracted and the
result is shown on Figure 3.4c, note that only pixels whianaary close to the border
of the objects are marked as foreground.

This technique has the drawback that cannot find all foregtquixels, but only
those which have changed from one frame to the next. Of cpataBc objects are
not detected and are considered as background. On the ddleerttey are easy to
implement, do not need the maintenance of a background rasdellowing methods
and do easily detect the silhouette of moving objects.

3.4.2 Background subtraction

Background subtraction is a particularly popular methadiiotion segmentation, es-
pecially under those situations with a relatively statickggound. It attempts to detect
moving regions in an imagé€'(i) by differencing between current image and a refer-
ence background imag@, _; in a pixel-by-pixel fashion. This technique relies on an
accurate background used in the subtraction operation; danmof this subtraction,
relevant areas are found and further processing may foliawem.

However, this technique is extremely sensitive to chanfidgmamic scenes due to
lighting and extraneous events. The numerous approachesckground subtraction
differ in the type of background model used and the procedseel to update it. The
simplest background model is the temporary averaged inmfackground approxi-
mation that is similar to the current static scene.

The subtraction performed thus, depend on the exact typeobjpound computed.
In general, background subtraction methods start with &dracnd modelB(0) in
timei = 0. It is a representation of the background of the scene. Theesttion is
performed as,
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A(i) =|F(i) — B(i — 1)] (3.41)
and the segmentation is given by,
) 1, 0f Ay (i) >
V(z,y) € F(i), S0y :{ b Bewld) 2 p (3.42)

beingy the segmentation threshold. Figure 3.5 shows the typisaltref subtract-
ing the background from an scene.

(a) Background modeB(i — 1)  (b) Incoming frameF'(i)  (c) Result of background subtrac-
tion S

Figure 3.5: Example of background subtraction, on the tleé background model; on
the centre, the incoming frame; on the right, the result ofguening the subtraction of
both images and thresholding the result.

Model B may be adapted over time to cope with light or scenarios ctmifgn
object being set or removed) or not. In the case it is notgtlsbanges may corrupt the
background.

In the case the model is adapted over time, pixels in the nadalpdated in order
to cope with light changes. The simplest way of doing thidyisising the following
equation, which computes an average of the input,

Bay(i) = - Byy(i = 1) + (1 = @) - Fyy(2) (3.43)

Whereq is a learning parameter which ranges|inl]. Both o and the model's
adaptation period are parameters which must be tuned &gdihe model’s adaptation
period is a parameter that controls when the background hmddapted to cope with
light changes; and it may be static or dynamic for each inidial pixel or for the entire
image.

On the other sidey can also be static or dynamic and even defined individuatly fo
each pixel or be fixed for the entire image. In [porikli03] aweiresting work on how
to adapt this value is discussed. In their work, the authmpgse a method, in which
each pixel(z, y) in the incoming image is given a value @f ,, and an update period
Ty, providing a method for illumination compensation.

Different subtraction methods are used depending on howntbdgel is built, be-
sides the basic 3.41. For instance, in [grimson99], sedosedt3.3, each pixel is
compared to the variance of several Gaussian distributmpsrform the background
subtraction. Other approaches based on [grimson99], peonilar subtraction with
slight differences as for instance, in [elbaf09], wherefyound detection is performed
by means of fuzzy gaussian distributions.
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In the algorithm introduced in [heikkila06], section 3.3tBe subtraction consists
of an histogram comparison by means of histogram inteiscti

In the work introduced in [toyama99], see section 3.3.16 vddue of each pixel is
predicted by means of a Wiener filter. The background sutiracs verified by com-
puting the difference between the current value of the paxal its prediction. This
difference is compared with an error computed taking intmaot the coefficients of
the filter. An study discussed in [haritaoglu00], presentdadistical model by rep-
resenting each pixel with three values; is minimum and maxinintensity values,
and the maximum intensity difference between consecutamds observed during
the training period. The model parameters were updateddieailly.

3.4.3 Optical flow

Optical flow or optic flow is the pattern of apparent motion bfexts, surfaces, and
edges in a visual scene caused by the relative motion betareehserver (an eye or a
camera) and the scene.

Optical flow methods can be used to detect independentlyngabjects even in
the presence of camera motion. However, most flow computatiethods are compu-
tationally complex and very sensitive to noise, and caneafiplied to video streams
in real-time without specialized hardware.

In [rowley97], authors also focused on the segmentationptital flow fields of
articulated objects. Its major contributions were to adetkiatic motion constraints to
each pixel, and to combine motion segmentation with estomah EM (Expectation
Maximization) computation.

3.4.4 Other methods

In addition to the basic methods described above, thereame other approaches
to motion segmentation. Authors of [friedman97] implenseh& mixture of Gaussian
classification model for each pixel. This model attemptegiqalicitly classify the pixel
values into three separate predetermined distributiongegponding to background,
foreground and shadow. Meanwhile it could also update theéum@ component au-
tomatically for each class according to the likelihood ofmbership. Hence, slow-
moving objects were handled perfectly, meanwhile shadoereveliminated much
more effectively.

Authors of [stringa00] also proposed a novel morphologaigbrithm for scene
change detection. This method allowed obtaining a statjosystem even under vary-
ing environmental conditions. From the practical point igfy, the statistical methods
are a far better choice due to their adaptability in more netrained applications.

3.5 Shadow removal techniques

As mentioned in section 3.2, shadows may become a problem détected objects
must be separated accurately. Removing shadows is impantamder to improve
object disambiguation and classification.

Usually algorithms aim to remove those shadows which areeto affect the
blob’s shape, the so-called cast-shadows. Self-shadosisamlows that form part of
the background are not relevant as they do not affect thkitrggrocess.

Research on shadow detection focuses on two main uses:
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e disambiguation for object recognition

e recovery of the underlying surface detail

The first problem is the most important when it comes to sillaragie applications,
because it is necessary to disambiguate which pixels bettige blob representing
the real object and which do not.

In [pratiO1] an extensive comparison among different shadamoval technigues
is performed, see figure 3.6. The different algorithms avéddd into deterministic
approaches and statistical approaches. In the former, &nif alecision process is
used to decide whether a pixel belongs to background or &gfound; in the later, a
probabilistic function is used to describe the class mestbpr

model [Koller,93]
Deterministic
non-model [Cucchira, 01], [Rosin, 95], [Xu, 05]

Shadow removal
techniques
parametric [Mikic, 09]

Statistical

non-parametric [Elgammal, 00]

Figure 3.6: A taxonomy of shadow removal techniques as fouifioratiol]

In the statistical-based methods the parameter seledian issue. The work re-
ported in [mikic00] is an example of the parametric approadereas [elgammal00]
and [horpraset99] are examples of the non-parametric appro

Within the deterministic class, another sub-classificatian be based on whether
the on/off decision can be supported by model based knowlagdn [koller93] or not,
as in [cucchira01], [rosin95] or [xu05].

Choosing a model based approach achieves undoubtedly shedsalts, but is,
most of the times, too complex and time consuming compar#tetaon-model based.
Moreover, the number and the complexity of the models irsgaapidly if the aim
is to deal with complex and cluttered environments withed#ht lighting conditions,
object classes and perspective views. Due to their beter iesponse, only the deter-
ministic non-model based approaches are considered iwtils

3.5.1 Non-model deterministic methods

For instance, the algorithm discussed in [rosin95] wouldlassified in the determin-
istic approach set. Authors state that shadows can be ietetpin images and the
effect they have on the pixels in the scene is as a semi-taa@spregion in which the
scene reflectance undergoes a local attenuation.

Provided that the imaging sensor is stationary, it is fdadi identify those re-
gions within shadows by analysing their photometric prapsr The photometric gain
computed as,

Fay (1)

7BTy(z Y (3.44)

V(z,y) € F(i), gain(x,y) =
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shows that, firstly, shadow pixels will have a photometrimgaith respect to the
background image3;_,, smaller than unity. Secondly, this gain will be reasonably
constant over all the shadow region, except at the edgesewhe effects of a finite
size illumination source will tend to reduce the attenuatice. the penumbra.

In this case, shadows are modelled as a constant contragtechatween the back-
ground model image and the current image, and are detectexpaynding the region
to locate areas of constant photometric gain in the imagaristé rules are then used
to cue possible shadow regions.

The algorithm proposed in [xu05] belongs also to the deteistic approaches, in
this case RGB coordinates are used, instead of grey tonesrding to this approach,
a shadow is an area that is not, or is only partially, irraetiair illuminated because of
the interception of radiation by an opaque object betweeratka and the source of
radiation.

Authors state that, assuming that the irradiation consistg of white light, the
chromaticity of a shadowed region should be the same as wisatiniectly illuminated.

This also applies to lightened areas in the image. Based anilaisassumption,
a normalised chromatic colour space= R/(R+ G + B), g = G/(R+ G + B),
b= B/(R+ G+ B) for instance, is immune to shadows, but the lightness in&ion
is unfortunately lost. Keeping lightness information igiontant in order to avoid some
simple errors such as confusing a white car with a grey road.

Based on the fact that both brightness and chromaticity emgimportant, a good
distortion measure between foreground and backgroundspskeuld account for the
discrepancies in both their brightness and chromaticitymanents, as in [horpraset99].

Brightness distortiofBD) can be defined as a scalar value that brings the expected
background close to the observed chromaticity line, b@Trjganqu,} vectors repre-
senting the RGB values of a pixel as expressed in [horpraket9

BD = argmina(m —a- ql_;) (3.45)

BD can be easily computed as,

Bp = P 0y (3.46)
qi,j
Similarly, colour distortion(CD) can be defined as the orthogonal distance between
the expected colouy; ; and the observed chromaticity lipg;,

CD = ||pi; — a- qyl| (3.47)

beingC'D; ; the colour distortion between foreground and background foixel
in coordinatesi, j) andBD,; ; is the bright distortion for the same pixel.

A set of thresholds can be defined to assist the classificetiorioreground, high-
lighted, or shadowed pixel. Authors of [xu05] propose usrdgcision tree in order to
classify pixels according to the computé€d and BD.

Experiments performed with these two algorithms may bedaarappendix B.

3.6 Conclusions

Different techniques proposed in the literature and ainoesktract regions of interest
in sequences of frames have been introduced in this chdpéeiding which method
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should be used to model the background and detect regionteoést, depends greatly
on the problem to solve and the constraints under which thesyshould work.

Despite a big amount of algorithms exist in the literatuheytall miss the capa-
bility of working in conditions in which they cannot be proed with a background
model, or in which their working conditions cannot be set tiptart by a human op-
erator. Also, some of the algorithms introduced in this ¢bapequire a big amount
of memory for their operation, and that makes them difficultun in special devices,
such as smart cameras.

Authors of [toyama99], propose a very useful benchmark wititallenges back-
ground algorithms with different situations aimed to tgstdfic features that back-
ground modelling algorithms should posses. This benchnsawkidely accepted by
the community as a valid test for new algorithms.

Background subtraction techniques are the most populandriterature. They
have proved to achieve a good performance in scenarios witil €hanges in the
background. The basic technique consists on obtaining &habthe scenario, several
methods may be found in the literature to build this backgtbmodel. Adaptive
background models or with a multi-modal support are the raogable to be used in
scenarios in which background motion may appear, stilleaéhg a good performance.

Light conditions also have an influence on the performancihede algorithms,
as most of them rely on thresholds to distinguish which gixmlong to foreground
and which belong to background. Algorithms may be sort into §jroups, regarding
the threshold used. One group uses fixed thresholds andesugwthup uses thresholds
which depend on statistical computations.



Chapter 4

Character identification in
containers

This chapter introduces the developments performed wgmsatation techniques, in
order to design a system that identifies and recognizes émtifidation codes of con-
tainers. Selection of the most suitable segmentation setiegether with the experi-
ments that support this selection are shown. In the approiachssed in this chapter
[rosellO6], [rosell06a], [rosell06b]), we propose usimyaral segmentation algorithms
to achieve a robust segmentation under uncontrolled lightlitions and object fil-
tering in order to reduce oversegmentation. Moreover, wernekthe processing of
one image and describe an algorithm that identifies the owrta code by using a
sequence of images.

4.1 Introduction

In this chapter, an application of segmentation techniqaesreal-life problem is in-
troduced. In chapter 2, image segmentation and some segtianiechniques were
discussed. Recalling what was introduced then, the segimmiof an image is the
process of separating an image in regions according to soedefined criteria.

Our goal is locating and recognizing the identification cofieontainers in the
entrance of a trading port. Controlling the entrance ofkremntainers inside the port
is crucial in order to control the stuff entering the docksuri@ntly in most trading
ports, gates are controlled by human inspection and maaggtration. This process
can be automated by means of computer vision and pattergmitiom techniques.

Such a system can be built by developing different techrsigsiech as image pre-
processing, image segmentation, feature extraction amerpalassification. The pro-
cess is complex, because it has to deal with outdoor sceagswidth different clima-
tology, changes in light conditions (day, night) and dirtydamaged containers.

Images were acquired by means of a system installed in thes gdtthe port of
Valencia, the schema of the system can be seen in figure 4elsytem works with
a sensor that detects an incoming truck in the admissionagatériggers a signal that
starts the process of taking pictures.

43
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(a) Port's entrance (b) Acquisition system

Figure 4.1: a) Port's gate. b) Acquisition system scheme.

41.1 Related work

There are several papers in the literature that deal withtilog and recognising vehi-
cles’ plates, and some of them do solve this problem with b dagree of productivity.
For instance, methods discussed in [brad01],[barrosa®¥[leegto8] work efficiently
with cars’ plates. However, these algorithms expect charado be arranged in the
plate in conditions which are not posible to expect in truoktainers. Also, most
of these algorithms are focused on the arrangements forea givuntry, reducing the
variability the algorithm has to face, and making the platexessing easier.

In the case of truck containers, no theoretical uniform tioceof the code may be
expected nor the colour of the sought objects is known in@ck@ From now on, we
will call symbolseither the letters or the numbers in a code for the sake ofliiityp

ISO 6346 is an international standard managed by the Internatiooatainer Bu-
reau (BIC) for coding, identification and marking of interdab containers (shipping
containers) used within intermodal freight transport as phcontainerization. It es-
tablishes:

e an identification system with: an owner code, commonly knesBIC code, an
equipment category identifier, a serial number and a cheagik di

e asize and type code
e acountry code
e operational marks

Codes are formed by several letters and numbers arrandestt gitcolumns or in
rows. Moreover, the colour of the codes may vary, being pbesshat not all symbols
in the same code are drawn using the same colour. Symbols ontairer are not
constrained to appear in a concrete area of the containésraasstance, cars’ plates
are, though they usually appear close to the upper cornere afontainer if arranged
in rows, or close to the backmost edge if arranged in columns.
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The maximum amount of symbols in the code is limited&pthough usually, there
are amondl3 and15. Some samples (in grey tones) may be seen in figure 4.2. It is
very difficult to export solutions for cars’ plates to thiooptem, a different solution is
obviously needed.

1l vls
U sfa2t0

Figure 4.2: Some sample images representing truck comsaies explained in the
text, note the wide variability of possible situations,tttiee designed algorithm has to
face.

G
C
N
U
|
0
3
8
4
b
)

A first approach to the process of code detection in truckainats is presented
in a previous work [salva01] and the overall process is dised also in [salva02].
In these works, authors use the top-hat morphological ¢gefsee section 2.3.2 for
more details) to preprocess images before segmenting thémawnulti-thresholding
algorithm. Though this method had good results, we triethfarove their performance
by using the methods we propose later in this chapter.

On the other hand, in [atienza05], authors aim to use thealdtow (see section
3.4.3) applied to a sequence of images representing the camiainer, in order to
shrink the area where the container code could be found aredisgp the segmentation
process; however, the method is very time consuming andfart should be done in
order to optimize it.

4.1.2 Goals and constraints

Our goal is finding a suitable successful segmentation éhgoifor the process of code
detection mentioned previously. To achieve this goal, sdwgegmentation algorithms
found in the literature are tested. The constraints thatilshioee met by the selected
technique are:

e It must detect all characters in the code, or as much as pessib
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¢ It must find characters independently of their colour (wkhearacters on a dark
background and vice versa)

e It must run without human intervention, as the gates arecsgbto be automat-
ically driven

e It must be independent of image light conditions

¢ |t must create the minimal list of found objects; as segntentalgorithms will
always find objects which are not relevant (see figure 4.3),aptimum will
be the one which creates a list that only contains objectslwborrespond to
characters in the code

In the following study several algorithms are tested in otddind out which algo-
rithm could fit better the constraints of the process, anitiwhs the case, which could
be used together, producing better results than any otgeritdm on its own.

One of the problems that a system working outdoors has tagabe environmen-
tal conditions. These conditions translate,from the poiniew of vision systems, into
sudden and uncontrolled changes of light that imply chaogeke parameters of the
segmentation algorithms.

A usual constraint that these systems must sometimes méwt ignited amount
of time for image processing they may have, as most of thensigrposed to give a
real-time response. Though itis not a critical issue in noases, it is always desirable
to produce an answer in a short period, if possible. In théegysieveloped in this
chapter, for instance, it is not necessary an immediate enbut trucks cannot wait
infinitely for an answer.

Taking into account these constraints, we propose usingad sendard segmenta-
tion algorithms ranging their parameters in intervals adends possible; thus covering
different environmental situations. This solution coulel driticized because a lot of
wrong regions of interest, denoted as false positives from on, will be generated in
the output. Being this true, we propose the use of speciferdilto remove from the
process output all objects which do not meet the expectesticnts. We achieve this
way a general schema that may be applied in any applicatisrhich segmentation
must be performed.

Section 4.2 outlines the schema followed. The preprocgsdgorithms used are
described in section 4.3. Section 4.4, discusses the ingui&tion and experiments
made with some well-known segmentation algorithms. Secddid introduces the
techniques used to reduce the false positives generatda isegmentation process,
together with the experiments performed with these teahesq Finally, section 4.6
explores the use of sequences of images to improve the éellahce of the process.

4.2 Proposed schema

The schema proposed in this chapter is illustrated in figute &or an imagd we
define the result of applying a set of segmentation techsigué I with a set of
parameterss, as the se (I, %, K).

The connected region®; € S(I,%, K), shown in figure 4.3, are filtered ac-
cording to a set of constraints. Those which meet these constraints form the set
T(S(I,%, K),®) which will be called the final segmentation &6f Finally, once the
tone of symbols is detected, the §&f) will contain the truck container code.



4.3. PREPROCESSING 47

Figure 4.3: Connected regiofig surrounded by the bounding boxes that enclose them
and drawn on the original image. Note that there are morensghan symbols in the
code. These regions are the result of applying a segmemtatjorithm to one image
representing a truck container.

4.3 Preprocessing

As introduced in section 2.3, the aim of preprocessing irmagémproving in some
sense the input image to make it easier to be processed bylihwihg stages.

In the case of truck containers, it was taken into accourtt giienbols may be
drawn on the container in different colours. One solutiontfis problem, could be
using a growing-region algorithm to segment the image ifeéht regions according
to their colour and then, classify regions. However, anexagiproach is taking profit
that, if images are converted into grey tones, no colourg bae searched for. By
applying the top-hat technique the obtained grey-tone @waitj contain only dark or
light regions. This reduces the complexity of the problem.

Despite the complexity of the problem is smaller, still twifetent symbol tones
have to be distinguished: light and dark symbol tones. Asunihér information may
be obtained with this transform, light and dark preprocessiust be done and the two
images are treated in parallel.

If we consider as the input of the process an imége grey tones, the process
starts by applying the top-hat transformitin order to enhance dark and light regions.
This produces two output images calléd,, and/;;44:, as seen in figure 4.4. Figure
4.5 shows an example with truck containers.

4.4 Testing different segmentation approaches

Choosing the segmentation technique that better fits tHagmros constraints is not an
easy task. Depending on the aim of the application and thsticints it has to meet,
different algorithms will suit it better than others. In oteise, five algorithms with
different approaches to segmentation were tested [r@elliese algorithms, already
introduced in section 2.4, af@tsu’s method AT, thresholding methgdVatershednd
an adaptation of thiocal variationalgorithm.
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Figure 4.4: Different phases in the proposed processingnsah After preprocessing
1, the segmentation stage provides the system with a set iofinsegf interest. These
regions are filtered according to problem dependent cuitdfinally, a decision step
tests which is the correct set of regions.

It must be remarked that experiments were performed witbllbeen segmentation
techniques in order to test their performance in the spgmifiblem we wanted to solve;
not to compare their general performance. The most impoféator to be measured
was the number of found symbols from the code.

4.4.1 A new version for local variation algorithm

The original local variation algorithm, introduced in &4is a growing region algo-
rithm which works either with colour or with grey tone imagel requires several
parameters which are difficult to set in the general casetaltige high variability of
the images; for instance, the expected number of regionerder to avoid using the
final number of regions because not all containers have the sanount of symbols in
the code, an adaptation of the algorithm was designed.

In the adapted version, it was decided that two differenioregshould join into
one if the mean intensity of both regions is similar. Anothéference is that no
minimum size of region was used to force regions to merge.idRegvere merged
until the process reached a situation in which no more regoould be merged. The
only parameter was the percentage of similarity that allowed two regions to be
merged into one.

4.4.2 Dataset

In order to be able to extract conclusions about the behawibthe algorithms and
techniques applied, a previous work was done. We manudigfled all the characters
in the images to be used in the experiments. This process aves ly drawing the
bounding box for each symbol as accurate as possible. Itslicabes along with the
class of the symbol were stored in a file indexed with the naitteedmage. A sample
handcrafted bounding box is shown in figure 4.6. Then, thege® of checking results
was done automatically with the help of these files.

The experiments were done as close to real conditions agfmghus, algorithms
were not provided with information about light conditiomsthe images or about the
colour of symbols. This way, it could be tested how they wdidtiave under real con-
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(c) Black top-hatl 4%

Figure 4.5: Sample execution of top-hat technique. a) Argerdarepresenting a truck
container. b) Final image{T H(I)) looking for light areas. c) The same for dark
areas BT H (I)).
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|

Figure 4.6: Bounding boxes labelled manually. Image is zegin in order to show
only the container code area.

ditions. For this reason, images used in the tests repexbesdl containers acquired in
the entrance gate of a port. We tried to join in this data setash variety as possible.
It was assured that the test set contained images takergdiain night, during cloudy
days and combining dark or light symbols on the containerdotal amount of309
images were used in the tests. In average, each image refg@secontainer with5
symbols, resulting in about635 symbols to recognize. The quality of the symbols,
that is, how easy to see they were for a human eye is difficujtitmtify. However, we
estimate that about B0% of them was difficult or very difficult to recognize at a first
glance.

Preliminary experiments took us to test only four of the filsen algorithms.
These experiments consisted on testing, for a reduced s@iges, the performance
on detecting symbols of each algorithm and the computatmrst.

The performance was measured quantitatively checking hamyrtrue positives
were obtained, that is, how many symbols were properly satgde At this stage, no
action was expected to take with false positives, which haeerégions of the image
which contain no interesting objects but are labelled bystgmentation algorithm as
regions of interest.

After these experiments, the Otsu’s algorithm was dis@hlmbrause it proved to
be faster executing the thresholding algorithm with défdrthresholds than computing
the threshold by means of the Otsu’s algorithm and more itapgrsome images need
to be thresholded several times in order to find all symbolsly QAT, watershed,
thresholding and the adaptation we made of the local vanatigorithm were used in
the following experiments.

4.4.3 Parameter set

At this stage, it is necessary to know which are the bestditiarameters for each
algorithm. Because they have to adapt to different lightittions, bearing in mind the
temporal constraint.

In the preliminary experiments, it was concluded that foffLaigorithm, a value
of ¢ ranging in[0.9; 1.6] with an step 00).03 and! = 0, for a total amount o3 iter-
ations, would yield good results. For the thresholding atgm, a value ofl" ranging
in [20; 220] with a step of5 was considered to be enough, for a total amount(of
iterations. For the local variation algorithm, the likelid percentagé ranging in
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[70%; 85%)] with an step ofs was used, yielding a total amount dfterations of the
algorithm. Watershed algorithm has no parameters to adjust

Figure 4.7 illustrates the execution of the thresholdirgirggque on a sample im-
age. The effect of shadows on the container makes it diffiouflhd a single threshold
that successfully detects all characters. By using diffetieresholds, regions may be
discovered and joined together in a single solution.

4.4.4 Evaluation criterion

The response of the segmentation algorithms, modelledeasetsS (1441, X, K) and
S(Iight, 2, K) is obtained. The elemenf8; of the sets, correspond to regions with
homogeneous grey tones. Some of these regions will be rélémathe container’s
code seek, but others will not. As shown in figure 4.3, the nemd$ objects found
in the segmentation, is always greater than the number obelgin the code. For
the sake of brevity, in next paragraphs we will den8té...x, >, K) by S(Z441) and
S(Tiignt, %, K) by S(Liignt)-

The good or bad performance of each algorithm was evaluapdrdling on the
total amount of symbols of the code, that could be found inligteof found objects;
independently of the total amount of found objects. Thimid®cause those irrelevant
objects of the list could be removed from the final set by me#tise filters introduced
later in this chapter.

Only a lax geometric filter, based on height and width, wadiagwith the aim
of reducing the number of irrelevant objects in the solutiatithout the danger of
removing valid objects. At this stage, applying other peses to the output would
mean masking out the segmentation algorithms’ performarideng errors or adding
errors of other procedures.

A method was designed to compare automatic segmentationnaris results.
The algorithm was considered to be successful if the bognbox it calculated for
an object and the bounding box drawn by a human operator didagp/in a given
percentage. This percentage was set, after some manuatdaés.

In order to proceed with comparisons, for each algorithmtoie amount of suc-
cessfully segmented symbols (the true positives), the mambmissing symbols (the
false negatives), the total amount of objects found and anmt@unt of time spent in the
process was obtained.

4.4.5 Experiments

First results of applying the segmentation algorithms &83t9 images in the database
are found in table 4.1. In this table, under the columissed; the total amount of
objects that belong to the container’s code but the algostivere not capable to find,
is shown. First row shows the number of images from whichessflly, the container
code symbols were obtained.

According to data in the column corresponding to LAT, it ma&ydeen, that this is
the algorithm which achieves best results. It is the one witlte images betweeh
and1 lost symbols. Watershed is the second in performance.

On the other side, the adaptation of local variation has atiebehaviour, maybe
due to the fact that only the grey tone average was used toalediether regions
should be merged or not, due to its poor performance.

Values shown in table 4.1 are plotted in figure 4.8. The plawshthe number
of images that each algorithm can find according to the nuraberissing symbols.
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Figure 4.7: Different segmentations of image a) using thestfolding algorithm with

different values of". Note that depending on the threshold used, some charaotdos
be lost or detected.
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For instance, iR mistakes are affordable, LAT could be able to find u28@ images
correctly out of the initiaB09, which represents a high percentage.

[ Missed [ LAT | Watershed] Thresolding [ Local variation |

0 189 173 143 88
1 68 68 78 84
2 30 32 32 49
3 2 2 20 24
Z Z 10 11 19
5 2 Z 2 11
Gormore | 4 10 23 34
[ Toal | 300 | 309 | 300 | 309 ]

Table 4.1: Performance of the segmentation algorithms. rhof images depending
on the number of missed characters. Each column showsgdsukin algorithm; in
each row, the characters missed per image.
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Figure 4.8: Cumulated plot of images depending on the numberissed characters.
For instance, in the cagemissed characters could be tolerated, LAT could be able to
find around93% of the codes correctly.

In table 4.2, the average execution time of each algorithehdgvn (measured in
seconds). LAT, as it may be seen, is the quickest algorithlob#b thresholding has a
good execution time, though results are poorer than thogéatérshed or LAT.

[ Meantime\ Alg. [ LAT | Watershed] Thresolding [ Local variation |
[ seconds [131] 711 ] 1.78 [ 26.54 |

Table 4.2: Average execution time of the implemented allgors. Algorithms were
run in a Pentiumt at3 Ghz.

After these results, the possibility of combining differefgorithms was consid-
ered. Itis quite likely to be a good solution if we think that theory, one algorithm
could correct the errors of another or just find objects thatlzer algorithm, whichever
the reasons, cannot segment properly. The process of cogliire algorithm must be
understood as parallelizing their executions and merdiag final results.
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New experiments were performed joining the results of LA &vahtershed, be-
cause they are the two with best performance. Also, LAT amégholding algorithm
were joined, despite the second one has not very good rdsiilt$ is fast and that
could mean best results than with LAT alone with a reasonexdeution time. Also
a test merging the three algorithms was performed. Thouginewious paragraph it
was mentioned that these algorithms could be parallelinegrder to overlap their
execution, in the experiments algorithms were run in secglen

In table 4.3 we compare results of the LAT-Thresholding athm, the LAT-
Watershed algorithm, and the algorithm LAT-Watershede$holding (summarized as
LWT in the table). It may be seen that the union of LAT and Wdtedsoutperforms
any other combination of algorithms whéror 1 missed symbols are allowed, achiev-
ing the same results as the union of LAT, Watershed and Thidisly. In the case
symbols may be missed, then the union of LAT and Thresholperéprms identically
to LAT and Watershed.

1

0.95

09 /

0.85

Percentage of images
N\

08

0 1 2 3 4
Missed characters

Figure 4.9: Cumulated plot of images depending on the nuroberissed characters
for the improved techniques. For instance, in the casagissed characters could be
tolerated, LAT-Thresholding technique could be able to &nound97% of the codes
correctly. Note that plots of LAT-Watershed and LAT-Waterd-Thresldoing collapse
in the same line.

[ Missed symbols] LAT-Thr. | LWT | LAT-Wat. |

0 237 253 253
1 53 44 44
2 11 5 5
3 6 5 5
4 0 0 0
5 2 2 2

6 or more 0 0 0

[ Total 309 [ 309 [ 309 ] 309 |

Table 4.3: Performance of the joined algorithms. Amountedges depending on the
number of missed symbols. Each column shows results forgamitdm; in each row,
the characters missed per image.

In the table 4.4, execution time of the joined algorithms rhayseen; the union of
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LAT and thresholding algorithm is quite faster than the ot algorithms. In figure
4.9, a plot comparing the different unions of algorithmshiewn.

[ Meantime | LAT-Thr. | Lat-Wat-Thr. [ Lat-Wat |
[ seconds | 267 | 1018 [ 819 |

Table 4.4: Average execution time of the improved versions.

Though in next section, techniques aimed to reduce the antddalse positives
are introduced, the most false positives generated, theeffost will have to be done
to remove them. Table 4.5 shows the average amount of fatsgves found per im-
age depending on the algorithm used and the symbols under Asdt may be seen,
all algorithms produce a big amount of objects, due to thenotedf joining together
segmentations with different parameters. Specially, LA@ &Vatershed algorithms
multiply by a factor of10 the amount of objects found by Thresholding or local varia-
tion algorithms.

LAT Watershed Thresholding

Light Dark Light Dark Light Dark
Objects found 73806.9 | 68032.5 41609 33510 | 1843.2 | 2195.3
Average false positives 73792.3 | 68017.9 | 451594.4 | 33495.4 | 1828.6 | 2180.7

Table 4.5: Average amount of false positives found per indageending on the algo-
rithm used.

In the case algorithms are merged, the total amount of aéetezsiements corre-
sponds to the sum of the elements found by each algorithrnsawib.

4.5 Filters proposed for noise reduction

As seen in previous section, segmentation algorithms pedlways a big amount
of false positives. These false positives could be, in parhoved by constraining
the ranges of their segmentation algorithms parametenthieatxpense of probably
covering a narrower spectrum of light conditions, whichas our aim.

We propose instead, to remove objects which do not meeticde@atures as, for
instance, an expected geometry or a minimum contrast witkgsaund. These con-
straints, or restrictions, can be defined by taking into antthe environment of the
system. By applying them to the output set of symbols of tigenemtation algorithms,
the number of false positives can be dramatically reduced.

These restrictions will be called filters in the remainingtams. One of the restric-
tions that objects must meet, for instance, is that theiledisions should range within
certain limits, or that their contrast should be greatenthgiven value.

Also a classifier could be used in order to filter out all thobgects that cannot
be classified into some predefined classes, and are thusleogwias noise. In the
case of container codes, objects could be classified ag &tter or noise. Any object
classified as noise would be rejected and could not be panedfrial result.

We define mathematically filters as functions that operatsets, by selecting ob-
jects which do meet given properties. Beififf, Y, K) a set result of a segmentation
algorithm, the functiory defined as,

f:8(I1,%,K) — {0,1} (4.1)
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associates a valueto objecto if it meets an specific constraint, érotherwise.
With the help of this function, a set can be built, containihg objects which verify
f(o) =0as,

A={oeS(I,%,K): f(o) =0} (4.2)

it is straightforward to see that C S(I, ¥, K) and that filtering the sef(1, %, K)
is just subtracting the objects ik from S(I, %, K') as follows,

Y(I) = {S(I,3,K) - JA} (4.3)

After applying the segmentation techniques, two solut&is are available§ (14,1)
andS(I;;4n: ); @pplying filters to both sets, one of the sets should bedefilly empty
and the other one, should contain the code of the contaiherfial result will be
denoted byX' (I44rx) OF Y (I1;45:), depending on the image considered in the process.

In the following subsections the designed filters are intoedl.

45.1 Size filter

This filter, as may be deduced by its name, will set the mininamchmaximum dimen-
sions of objects considered as valid. It is the first filter écelzecuted as it is the filter
which more objects remove and it is one of the fastest. Fdrebjecto € S(I,%, K),
bounded by a rectanglg,,

1 if height(R,) € [hmin, hmax]
fshupe (O) - N width(RO) € [wmin’ wmam] (44)
0 any another case

Being the functionsieight(R,) andwidth(R,) functions whose results are the
height and width, respectively, of the rectandgtg. On the other sid€?,in, Amaz,
Winin, Wmaz FEPresent the maximum and minimum dimensions in height ddthwef
a valid object.

The set associated with this filter is formally defined as,

Ashape = {O € S(I, Z,K) : fshape(o) = O} (45)

45.2 Contrast filter

This filter removes all objects whose contrast is very lowgiBes which do not show
enough variability are not considered for further proaag$iecause it is quite unlikely
that they contain a character of the contained code. If thamnee of the grey tones of
the pixels of objech € S(I, %, K) is defined ag(0). The filter may be mathematically
defined as:

1 if p(o) >= tmin
feontrast(0) = { 0 any another case *.9)

Being u.min @ constant which determines the minimum variance that aecobjust

show, in order to be considered as valid.
And the setA .,,1rqs: defined as:

Acontrast - {O € S(Ia EaK) : fcontrast(o) = 0} (47)
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45.3 Classification

The use of a classifier may also help when filtering undesiyatbsls in the output of
segmentation algorithms. By training a classifier with acdefalid symbols and a set
of non-valid symbols, false positive symbols may be remdueuh the output reducing
the load in further processes.

A big amount of different classifiers exist, but all of themyniee modelled in this
case as a functionlass(o) that gives the class to which the objecbelongs, being
o € S(I,%, K). Along with the class, each object is given a value of confidethat
measures how confident the classification is. This confideatee is used in other
filters.

As explained in appendix B, this filter was implemented wittk-an classifier
trained with a corpus o854 images, with an approximate total amount9sf 0 sym-
bols.

A function f,,.:s.(0) that determines if an object is classified as noise or not is
defined as follows,

_ [ 0 ifclass(o) =Noise
froise(0) = { 1 in another case (4.8)
and the sef\,,,;s¢,
Apoise = {0 € S(I, %, K) : froise(0) = 0} (4.9)

45.4 Confidence filter

An indicator of the goodness of the solution provided is ¢mgnhow many elements
have a classification confidence over a given threshald f{,,;,). The bigger the
number of objects with a high confidence degree, the biggetikielihood that the
result set is valid. The classification confidence is catedlat classification time as
explained in appendix B.

The confidence assigned by the classifier to each classificatialso borne in
mind, this way, only objects with a high confidence are cagrsd in the final decision.
Beingcon fidence(o) the confidence of objeete S(I,3, K), the filter is defined as,

Aconfidence = {0 € S(I, X, K) : confidence(o) < €} (4.10)

wheree is the minimum confidence considered valid.

455 Fusion filter

Bearing in mind that segmentation algorithms are appliegrsé times on the same
image, just ranging their parameters within a given sets guite likely that several
objects are found with similar coordinates. It is quite lkalso that objects found
with similar coordinates are really the same object. Thierfiéliminates objects which
are replicated.

Given two bounding boxe®, y R, enclosing objectp andg, such that,q €
S(I,%, K); the overlap ofR, andR,, denoted by, ©® R,, is defined as the percentage
of surface that?, overlaps onR,. We define the fusion filter function as,
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0 if3qgesSU % K): % > 0.65
ffusion(p) = AD 7& q (411)
1 any another case

and the sef\ 0, a8,
Afusion = {0 S S(I, E,K) : ffusion(o) = 0} (412)

45.6 Position filter

Characters are arranged either by columns or by rows on thiaioer and thus, the
location of objects on the container and its relative posifirom to other objects is
quite important. Also, characters are always arranged dnto 3 columns or rows
containing similar amount of objects.

This filter detects the position of objects on the image aed to determine whether
objects are arranged in rows or columns. With this inforomtit should be easy to
remove all objects which are not in the correct row or columst py inspecting the
coordinates of its centre, for instance.

The algorithm works as follows, it seeks the two columns withre elements;ol;
andcol, beingc the total amount of elements of both columns. Then, it it sdek
the 2 rows with more elementsow, y row, being f the total amount of elements
in both rows. Ifc > f verifies, then elements are arranged in rows; K f, in
columns. Otherwise nothing can be decided. Two functioaslafined¢ol (o) denotes
the column to which object belongs to and-ow(o) denotes on which objeet is
located.

Once the arrangement of objects is detected, the algoridmoves all objects
which do not lay in the valid columns or rows. Depending on ¢hee, one of the
following two functions would be used,

[ 1 if col(o) € [coly, coli]
Feotumn(0) = { 0 in another case (4.13)

| 1 if row(o) € [rowg, row]
Frow(0) = { 0 any another case (4.14)

and the sef\ is built depending if the arrangement is done in columns wisras,

Avows ={0€ S(I,S,K) : frows(0) =0} (4.15)
Acolumns = {O € S(I; E,K) : fcolumns(o) = O} (416)

45.7 Decision of the tone of the characters

If we recall both expressions foy(I,nite) andy(Ipack), With the filters designed
before we have:

V(Iwhite) = (((((S(Iwhite) - Ashape)
- Aconiﬁ'r‘ast) - Aclassifier) - Aconfidence)
- Afusz'on) (417)
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V(Iblack) = (((((S(Iblack) - Ashape)
- Acontrast) - Aclassi,fier) - Aconfidence)
- Afusion) (418)

A decision can be taken in order to decide which is the valid I§¢he constraint
4.19 is met, the valid set will be the one containing the Igyrhbols. If, otherwise, the
constraint 4.20 is met, the valid set is the one containiegddrk symbols and if 4.21
nothing can be decided.

‘V(Iwhiteﬂ > |’Y(Iblack| (419)
"Y(Iwhite” < |7(Iblack)| (420)
|Y(btack| = 17 (Tbtack| (4.21)

being|y(Zynite)| the cardinality of set/(Ipite)-

It must remarked that, though it may seem that the order ichviters are applied
does not matter, it really does. Some filters may be appliadyrorder as, for instance,
size and contrast filters; this is due to the fact, that theygonsider geometric or sta-
tistical properties of an object at a time. They are used fitsb because they remove
a big percentage of irrelevant objects, and because theyxeery fast, compared to
others.

Classification also takes one object at a time, but it is muokertime consuming
that the previous. This is one of the reasons to execute litgfast stages of filtering,
to avoid losing time.

On the other hand, the fusion filter is executed at the endeopthcess because it
takes the area shared by several objects. If it was applithe ifirst stages, we would be
at risk of removing valid objects of the contained code, aglas these valid objects
could be fused with others which would be later removed by afrhe other filters
(geometric, contrast...). Also, the execution time wouaddffected by the number of
comparisons.

45.8 Code extraction

The codes of containers are extracted by appending all dgmtftich successfully
went through all the filters. The class of each remaining syngobtained in the
classification step, see appendix B, and corresponds tdtraater it represents.

4.5.9 Filtering segmentation results

As with segmentation algorithms alone, experiments weréopeed to test the be-
haviour of these filters.

The position filter was not used because preliminary exparmdid show, that
it was very sensitive to noise. Even just a few objects appgan any part of the
container, did mislead this filter taking it to remove mos{ibhot all) valid objects of
the code. Thus, it was not considered for further processing

Values for filters’ parameters were set manually and tuned wireduced set of
images. For the contrast filter a valug,;,, = 200 was chosen; being low enough as to
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avoid losing symbols due to shadows, but keeping the nunmfreoisy symbols low.
For size, constraints are: width in the range, 50] and height in the rangg, 30].
We established a confidence levelRof%. Table 4.6 shows how the amount of objects
decreases as filters are applied.

Algorithm | Tone Initial amount | Size filter | Contrast filter | Noise filter | Fusion filter
LAT Dark | Total 73806.9 978.5 222.7 205.2 14.5
Left 0.013 0.22 0.92 0.07
Light | Total 68032.5 8255 216.4 158.7 16.4
Left 0.012 0.25 0.73 0.10
Watershed| Dark | Total 41609 1236.7 868.7 822.7 14
Left 0.03 0.70 0.94 0.01
Light | Total 33510 1173.9 902.5 795 16.5
Left 0.03 0.76 0.88 0.02
LAT Dark | Total 1843.2 218.1 207.1 191 13.2
Left 0.12 0.95 0.92 0.07
Light | Total 21953 189.3 183.1 160.2 135
Left 0.09 0.97 0.87 0.08

Table 4.6: Average computation of the amount of remainimgtsyls after each filter is
applied, depending on the segmentation algorithm useawratal, the total amount
of symbols left after the filter is applied to the input. Thevoeft shows the percentage
amount of objects left by the filter with respect to previoteps

45.10 Code extraction results

Experiments aimed to analyse the performance of the metkioacéing codes, were
made with309 images. Results are shown in figure 4.10 and table 4.7. Birstrrthe
table shows the amount of images in each segmentation whitkhsuccessfully recog-
nized (i.e., with zero errors). Columns show the result efdbmplete process for each
algorithm, ordered according to the number of symbols nmigaized successfully.

[ Missed characters| LAT [ Wat. | Thr. |

0 25 13 22
1 55 25 39
2 a7 37 46
3 55 44 40
4 28 49 39
5 26 38 29
6 14 27 19
more than 6 59 76 75

Table 4.7: Performance of the recognition process, usiagdsalone segmentation
algorithms and filters.

In these experiments, results are measuring not only tHerpeaince of the seg-
mentation algorithms, but also the performance of the $ilieplemented. One of the
most sensitive steps in the process is the classifier uséek. r&iiewing which symbols
had been missed, it was decided to improve the classifier hyp@anore instances of
the different expected symbols.

The incorrectly classified symbols of the first experimengewsed to improve
it as explained in appendix B. Results of this new classifigliad to a new set of
312 images is shown in figure 4.11 and table 4.8. As it may be sesproving the
classifier improves significantly results.

As proposed in previous section, performance could be ivgul by using several
segmentation algorithms. Filters are applied to each segtien algorithm’s results
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Figure 4.10: Cumulated plot of images according to the nuroblest symbols , using
stand-alone segmentation algorithms and filters.

[ Missed characters] LAT | Wat. [ Thr. ]

0 48 13 41
1 62 35 69
2 62 35 52
3 41 36 32
4 17 33 23
5 14 28 28
6 16 36 21
more than 6 52 96 46

Table 4.8: Performance of the recognition process withriifgoved classifier.
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Figure 4.11: Cumulated plot of images according to the nurobéost objects using
the algorithms and the improved classifier.
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separately and then, results are joined into one only lissuRs of these experiments
can be seen in table 4.9 and figure 4.12.

[ Missed characterg LAT+Thr. | LAT+Wat. [ LAT+Thr.+Wat. |

0 102 91 163
1 87 90 72
2 49 43 19
3 23 30 6
4 10 8 7
5 11 10 2
6 11 8 1
more than 6 18 31 41

Table 4.9: Performance of the merged algorithms. Numbemafges correctly de-
tected depending on the amount of missed symbols.
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Figure 4.12: Results of merged algorithms.

Execution time of the process with segmentation technitpgether with filters, is
shown in table 4.10. The process becomes very time consuntieg it is Watershed
the chosen segmentation technique. On the other side, LAffeathresholding algo-
rithm used together improve results with a low penalizatiotime execution. From
result plots may be seen that, for instance, in casgmbols could be missed, using
LAT plus the thresholding technique neafl§, 28% of images could be successfully
recognized. A sample application of this schema to an imegeesenting a container
may be seen in figure 4.13.

[ Meantime\ Alg. [ LAT [ Water. [ Thres. | LAT-THR [ LAT-WAT [ LAT-WAT-THR |
| seconds | 2.09 | 1481 | 153 | 436 | 1656 | 1833 |

Table 4.10: Mean execution time. From left to right, the ¢hiraplemented algorithms
and the results of joining them.

Finally, in table 4.11, the percentage of successfully attar tones detection in
images, see section 4.5.7, is shown.
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[ Meantime\ Lg. [ LAT [ Water. [ Threes. [ LAT + Threes. [ LAT + WAT [ LAT + Threes. + WAT |
| Colourdetected| 0.93 [ 0.85 [ 0.94 | 0.96 | 0.93 | 0.95 |

Table 4.11: Percentages of successfully detected colaing the segmentation al-
gorithms together with filters. Columns determine the atgor used, and rows the
percentage of successfully detected container codes.

(c) Contrast filter.

(e) Fusion filter

Figure 4.13: Sample evolution of the process applied to ageérsearching for light
characters. a) The result of segmenting the image with LATAfter applying the
shape filt er. c) After applying the contrast filter. d) Aftermoving noisy regions. €)
After fusing regions.
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4.6 Use of sequences of images

Results obtained so far may be considered satisfactory, fine point of view that just
one image was used to obtain the truck code. Analysing ssuihay be seen that in
some occasions, symbols of the container code are losteTagses are detected as
the most important:

e Shadows which become confused with symbols or do totallyaotigdly cover
them.

e Classification errors, for instance, classifying noise wali@ symbol.

e Confusions in the classification, for instance, a symbolc@&ifused with ang".

Itis possible taking advantage that several pictures paaater are available. Each
one of these images was taken as the truck was approachipgttegate. The time
span between two consecutive images may be enough to chenlight conditions on
the container, revealing symbols that could be affectedipusly by shadows (maybe
shadows of the own texture of the container or casted bymattéactors), which were
not visible in previous images. Some sample sequences msgemen figure 4.14.

For the first problem, shadows, we trust that, by taking sdyectures of the con-
tainer, we will be able to find the characters of the code intrabthe cases. If eventu-
ally a character is shadowed in an image, it is likely thatasviound in other images,
so, by checking all them together, we can have it in the finaki&m. The second issue,
is easier to achieve, noisy objects classified as charaeirappear only in a small
amount of images, thus, if we set the constraint of appedmniagminimum number of
images, noisy objects will be removed from the final solution

The last problem has to do with characters which are midéiledslue to, for in-
stance, a bad segmentation of the image or a classification &s in the first case,
if such a problem appears, we can still know which is the abiwee by keeping only
characters which appeared in a minimum number of imageedaféquence.

In this section we explain how we process a sequence of im@agestract the
container’s code from it. We first try to group objects (whaoke the result of applying
the previous algorithm to each image in the sequence) in imaate into clusters of
close objects. This way, we can use properties of clustais as the centre of mass
of the cluster to faster overlap objects of a reference imaiffe the objects in the
following images.

4.6.1 Clustering objects

The algorithm used to process images is divided into twossfiéngt, the cluster identi-
fication in each image and second, the processing of the segjitself. Both steps are
described thoroughly in the following sections.

Code symbols in the container appear following a defineatatra. Though we do
not know before taking the picture what kind of lay-out theuctters will have and
either the amount of valid objects in the image, it is trug #fter the processing, we
can apply some knowledge on the resulting objects in ordgetaid of those which
are not likely to be in the code, but have gone trough up tostisige of the processing.
For instance, symbols belonging to the code appear clostaaeh other; we can use
this feature to group objects in clusters and use only thiel edlister, i.e. the cluster
with the code, to perform further calculations.
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@ (b) ©

@) (h)

Figure 4.14: Some sequences of truck containers, takefffématit day-times. In each
row, a different sequence is represented. Brights and sisadwy be appreciated in
images, on different parts of the container.
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Given an imagd, we obtain the set(I) = {ro,r1..r,}, the set of objects found
in the segmentation of image | that do meet some constraastsnentioned in the
previous section). We calculate the clusters @f), denoted by{ s, }, as sets contain-
ing objectsr; € ~(I) whose euclidean distance must be less or equal to a given
Algorithm 1 illustrates this process.

Algorithm 1 Algorithm for sequence processing
LVrieyI): k) —{r;},t—0
2: repeat
3 t—t+1
4 Vikbe—rl"
5 VwbLK&ENGF G if 3y € KEATy € K distance(rm, ) < € = K
KEURS AKE 0
until Vi, &t = xi"!
K« K 1 1 = argmaz;(|k;])

1

N

After running this algorithm, it is assumed that the clusteith the biggest amount
of objects will contain the truck container code. We caltathe centre of mass of this
cluster. This centre of mass will be useful in the followirlgaithm, when we try to
match objects in one image with objects in another.

The centre of mass of a clusteris computed as the average coordinates in the
x andy axes of the centres of each of the objegisc «;. By using this value, the
translation between the objects of different clusters Gaddne easily by computing
the translation between centres of masses. This is prommsedcause clusters will
probably have a similar lay-out on the image.

4.6.2 Processing a sequence

A sequence of images is a set of images ordered in tirde= {Iy, I1,...I,_1}. The
result of segmenting the sequenkés a set denoteb by, (7).

Each objecp in the solution sety;(¥) has an associated counter that tells how
many times it appears in different images, accessedcasnter. An auxiliary func-
tion overlap(p, q) is used, this function returnisin case objectg andq overlap and
0 otherwise. Functionymbol(q) returns the symbol associated to this object by the
classifier. The functionentreO f Mass(y) computes the centre of mass of the objects
belonging to the set. Each objecp in the solution set;(¥) which was not found at
least in half of the images of the sequence is discarded. Tdwesgs is formalized by
algorithm 2.

4.6.3 Experiments

We used 51 real images to perform our experiments, correlépgmno 17 containers.
These images represent truck containers and have a si2# of 574 pixels in grey
levels. They were acquired under real conditions in the aslion gate of the port of
Valencia; in several days under different light conditioi3igits and characters can
be clear or dark and they appear in both plain and non-plaifaces. We selected
randomly a set from a large amount of pictures and assuregiddbility was repre-
sented in this set of pictures (sunny or cloudy days, daytmeight-time, damaged
containers...).
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Algorithm 2 Algorithm for sequence processing
1: Given a set ofimage¥ = Iy, 1, I5, ...I,,_1, we take a reference imadg.
t7s(V) < v(Lo)
., — CentreO fMass(y(Ip))
1V p € v5(¥) p.counter «— 1
:forall I, e ¥,i >0 do
¢, = CentreO f Mass(v(I;))
ComputeT translation between poirf, , andc,, ,
Apply T to ~(I;)
V p € vs(V),p.counter «— p.counter + 1 <= 3 q € (1)
overlap(p,q) = 1 A symbol(p) = symbol(q)
100y {gev(L): Pp € (D) : overlap(p, q)}
11:  Vper :p.counter — 1
122 (V) = 7(¥) Uy
13: end for
14 75(0) = 75(¥) — {p € % (V) : p.counter < &}

© e N OAMLN

In table 4.12, results are shown for some sequences. Unéarothmn objects,
we show the number of valid objects in the container, thahesnumber of characters
in the container’s code. Under columns image0 to image2,hee sesults for each
image on its own, first number stands for the number of valigab found in this
image, and the second number stands for the number of nojegtsithat could not
be removed; the addition of both numbers gives the amounbjgicts found in the
picture. In case a sequence had less thanages, we filled the corresponding cells
with dashes. The last column, gives the same informatiar aftplying the sequence
algorithm.

Sequence| Objects Img0 Imgl Img2 ][ Process

H N H N H N H N

1 15 15 6 [ 15] 3 [ 11| 0 [ 15| O
2 17 14 5 12 3 11 6 15 1
3 15 12 | 22 | 12 | 10 | 11 5 12 0
4 15 14 2 14 2 4 0 11 1
5 15 15 5 15 | 10 9 6 13 3
6 15 10 | 10 | 13 5 14 | 4 11 3
7 15 1316 ] 10| 9 0 5 5 0
8 15 13 3 15 0 14 1 12 0
9 15 14 6 14 6 11 4 13 2
10 15 15 6 15 4 11 3 15 1
11 16 13 4 15 4 12 2 11 2
12 15 10 | 13 | 11 3 11 0 11 0
13 17 12 | 10 | 14 | 10 | 11 7 12 4
14 15 15 | 16 | 15 4 - - 15 0
15 15 14131412139 |14 2
16 17 16 1 16 9 - 15 1
17 15 15 | 18 | 15 | 13 15 2

Table 4.12: Comparison of results looking symbols in just onage or merging the
results of the complete sequence.

In each row we show results for each image of a sequence andéghk for the
sequence by applying the sequence algorithm. For instdinserow corresponds to
first sequence. For first image of this sequence, we olitaicorrect objects ané
noisy objects, that is30% of the objects are noisy objects; for the second image we
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obtain againl5 correct objects angd noisy objects; on the other side, by applying
the sequence algorithm we obtdi objects that correspond exactly to the container’s
code. In sequencehowever, the sequence algorithm lo8eharacters of the solution,
and in any of the images of the sequence on their own we wowie fmere hits, but,
on the other side, the result of the algorithm has no noisgaitgnd it is difficult to
choose which picture in any sequence would have the bedtsesu

Though using the sequence algorithm may be seen as addimg pénalty to the
execution, it may bee seen that, it is impossible to find gkcts just with one image.
In addition, the process itself can be implemented in suctag that time penalty
does not influence the final result. It could, for instancediveded into two different
processes, one taking pictures, segmenting them andrgcalijects on them; and
the other one, taking these objects and comparing them hétprievious following the
sequence algorithm presented now. These two processas fok producer-consumer
paradigm and that can be easily parallelized.

4.7 Conclusions

In this chapter, a process developed to segment and det@etirver codes in images
is proposed ([rosell06], [rosell06a], [rosell06b]. In erdo detect the symbols of the
code with the highest precision, meeting real-time coimsaa system using the top-
hat operator, several segmentation techniques and fiftelessigned and tested.

In the experiments it is shown that parallelizing severghsentation techniques
has the benefit of reducing the number of lost objects dueddithitations of the
techniques, enhancing results.

After performing experiments, three well-known algorithmvere chosen to seg-
ment images, merging afterwards their outputs.

The problem of a large amount of false positives is solved siggifilters which
remove all the symbols in the output which do not meet prokdgecific constraints.

Image processing is performed in two different processiagthes, one for light
symbols and another one for dark symbols. By filtering thgpouof each processing
branch, we can determine which the correct tone was andoibiaicontainer’s code.

Finally, fault tolerance is improved by performing thisividual process on several
images representing the same truck container in differer@ snaps. An algorithm is
proposed which processes a sequence of images individaaththen gathers all this
information to extract the container’s code.



Chapter 5

Low level vision developments
for SENSE project

This chapter introduces the low-level video processingritigms developed for an
intelligent node that is part of a distributed intelligeahsory network for surveillance
purposes (within the SENSE project). Details of the sofenarchitecture developed
for this node are given, together with the low-level videogassing algorithms used,
and the results obtained after their implementation, at wel

The low-level software includes acquisition, segmentaticacking and classifica-
tion of detected objects into three main categories [r08&llperson group of people
andluggage The experiments performed with the aim of finding the betfeatures
for classifying the objects are discussed in this chaptbe Unit has to communicate
the classification results and the main features obtainied X3dvIL streaming to upper
levels, as well as the processed frames, using a JPEG sthdhbtimese functionalities
are currently running in the built prototypes [benet10].

5.1 Introduction

Visual surveillance is an active research topic in compuision and some differ-
ent surveillance systems have been proposed in recent[ygar$7], [haritaoglu00],
[vsam99]. The aim is to develop intelligent systems thaegiupport to humans in-
volved in surveillance, by calling their attention when atmal situations are detected.
In order to achieve this goal, a real time analysis of inpdewiis needed. In general,
the processing framework of visual surveillance in dynasoines includes the follow-
ing stages: modelling of environments, detection of mqtmassification of moving
objects, tracking, understanding and description of bielias, human identification,
and fusion of data from multiple cameras. Recent developsraamd general strategies
for all these stages are reviewed in [hu04].

Distributed smart cameras have received increasing foctseiresearch commu-
nity over the past years [fuentes03], [nguyen03], [heeg@d]. The notion of cam-
eras combined with embedded computation power and inteested through wireless
communication links opens up a new realm of intelligentasisenabled applications
[forestiO5].

1Sixth framework programme priority IST 2.5.3 Embedded systengjeét 033279.

69
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Real-time image processing and distributed reasoning rogddstributed smart
cameras can not only enhance existing applications buirsdsigate new applications
[mckenna00], [sacchi01]. Potential application areagesgnom home monitoring and
smart environments to security and surveillance in publicosporate buildings. Crit-
ical issues influencing the success of smart camera dephagrfa such applications
include reliable and robust operation with as little maitece as possible.

In this line, the SENSE [sense04] project undertakes tHedhdeveloping a dis-
tributed intelligent network of sensory units that aid teck#be their environment in a
cooperative way.

5.1.1 Goals and constraints

The goal of the process introduced in this chapter is to pep@sion techniques aimed
to detect, track and give a first rough classification of pe@pid objects standing or
moving in images acquired in areas of an airport. Specifictle objectives are:

e To study vision techniques capable of detecting objectskvtid not belong to
background and producing the most accurate segmentatssibe

e To study the most suitable features in order to classifyaibjautomatically into
one of the classgserson group of peopler luggagein images obtained in the
surveillance context.

The main challenges to cope with are,

e Cameras are stationary.

e The background is dynamic, it is affected by light changesalten by objects
that may be left intentionally in the background and mustdfer a reasonable
period of time, considered as background as well.

e System must response to stimuli in real-time.

5.1.2 SENSE project

This section describes the video node in this SENSE architctogether with the
results obtained with the algorithms developed for the wideodality. Figure 5.1,
shows an schema of the general framework of video modality.

SENSE intends to overcome problems with current centilimgworks. SENSE
uses a completely decentralized approach. The systenmst®nia number of identi-
cal, autonomous acting entities, or nodes, mounted at foeatibns. Each entity has
sensors with static sensing parameters (i.e. intelligamtera and microphones mod-
ules), gathers information from its surroundings, andrprigts it. Consequently, each
entity can be seen as a standalone system. However, enéitieshare their knowledge
with neighbouring nodes, acquiring information indirgdtom other sensors. By fus-
ing it with its own information, a global view is created antmnously.

Each node within the overall SENSE system will be able to @sedts own sensory
data and communicate with other local nodes to build a sharddrstanding of objects
and events how they are related across nodes and modalitiéfiow they are related
to the environment. Key to this distributed intelligencehie concept of a node inter-
acting with its neighbours. For example, as figure 5.2 shdwsperson walks in front
of a sensor in a given direction, then that person may alsk iwdtont of a neighbour
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Figure 5.1: General framework of video modality.

sensor a short time later, in a direction influenced by théipoing of the node sensors
relative to each other. Frequent repetition of this patteithresult in the two sensors
detecting this correlation, and using it both to increasedépendability of their own
observations, and to establish common views which finalbukhhelp to learn about
for instance usual paths over sensor boundaries. The @polothe network is thus
developed over time, and reflects the degree to which nodesaeelate their obser-
vations and thus help each other to draw conclusions abeirtehvironment, rather
than a designer-defined notion of neighbourhood.

Camera view1 Camera view2

Figure 5.2: Two different cameras whose fields of view oyerldote that the person
in the field of view of camera is also seen by cameta

The components of a SENSE node are organized modularlyrivstef their func-
tionality [benet10]. These components are:

¢ RDU (Reasoning and Decision-making Unit) This module correlates informa-
tion from all sensorial components in the node as well agin&tion received
from other SENSE nodes working in the neighbourhoods. Thidute is the re-
sponsible of triggering alarms and selecting which infdiorais offered to the
rest of SENSE nodes. It decides the working mode (e.g. irsd@arking area,
etc.) and propagates this modality to the sensorial compsne
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e EVS (Embedded Video Subsystem)It acquires and processes video images
extracting features in a modal way. The features extractec@mmunicated
to the RDU to enrich the perceived state of SENSE node sudings. This
component offers an interface with higher level softwaredotrol the modality,
QoS and other special features.

e EAS (Embedded Audio Subsystem)It acquires and processes multiple audio
signals extracting features in a modal way. As the previoodute, it sends its
computed features to the RDU and offers an interface to highel software.

¢ WCS (Wireless Communication Subsystem)This module controls the wire-
less communications flow in a neighbourhood of SENSE nodes.

e CIM (Communications and Interface Module): This module is the hardware
and software communication interface that provides thetawahare information
and control among modules in a SENSE node.

Following sections outline the proposed system and therarpats performed
with it. Section 5.2 explains the algorithm used to segmerages and section 5.3
describes the creation and update of the background maasios 5.4 shows the seg-
mentation schema followed, the following section discasgsmv the output of the seg-
mentation is filtered to remove as much noise as possible. pfdeess followed to
classify objects is explained in section 5.6. The trackiysjem is discussed in section
5.7 and finally, the experiments performed with the clas#ifin features, which are
the central contribution of this chapter, are discusse@dtian 5.9.

5.2 Proposed processing for video modality

The system proposed, in the SENSE context, will processésegpresenting different
scenes, such as halls, corridors, different views of chiedesks and other facilities.
The main two issues to control are the motion of people antbttagion of unattended
luggage. In figure 5.3, some sample frames showing normat&ns in an airport are
shown.

The process of detecting objects and providing them withsarfiugh classification
is called, in this applicatioryideo modality This video modality passes information
to upper levels and is not focused to directly solve the gnobbf video surveillance.

The three classes of objects which this system deals wittpargon group of
peopleandluggage Being claspersona single person with or without luggage and
group of peoplés a group of2 or more people with or without luggage.

An outline of the different steps involved in the scene pssagg is represented in
figure 5.4. Images will be captured by a camera and processeetect differences
with the background, in order to locate objects in the image.

The technique chosen to segment objects in frames is bagkgsubtraction (see
chapter 3), which is a popular technique in video survetiéan

In order to remove false positives, regions detected in dggnentation step are
filtered by size. Afterwards, the remaining regions aresifees and tracked.
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= CHAPEL

(b)

(d)

Figure 5.3: Sample images of typical recordings from thpaairaim of the surveil-
lance.

Background

modelling
Image | _|Background |  |Object | _| Object | , Object _ . Object
acquisition subtraction segmentation fitter classification tracking

F)

Figure 5.4: The different phases of the proposed processimgma. After preprocess-
ing F'(i), the segmentation stage provides the system with a setiohsegf interest.
These regions are filtered according to problem depend#etiarand then classified
and tracked.
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5.3 Background modelling

The system acquires a sequence of fraf&¥), F'(1), ..., F'(i) ordered in time with a

given rate of frames per second. At start time or after a retita system computes
a background model denoted (7), using the median of the last frames, and the

system starts normal operation from framet 3.

) (b) ©
(e) ®

Figure 5.5: First row shows background models built witlondrleft to right, mean
(figure 5.5a), median (figure 5.5b) and mode (figure 5.5¢) et afsconsecutive frames
with activity. Note that some areas of the model are blurtesltd this activity. Bottom
row shows models which were built with frames with low or rativity, from left to
right, mean (figure 5.5d), median (figure 5.5e) and mode @&usf); these models are
more accurate than those shown in the row above. In all ca38esnsecutive frames
were used to compute the models.

(d

There are several methods proposed in the literature tatroghs background
model as explained in chapter 3. In the first developmentd®fystem, the mean,
mode and median of several images were used to compute backhmodels of the
scenes. These models are characterized because theyraoslahii.e., only one model
per pixel is considered. Usually, for indoor scenes it islist method, as authors of
[benezeth08] point out.

In our system, we model an initial backgrouBdk) taking a set of frames at start-
up, F(0), F(1), ..., F(k — 1) and computing,

B(k) = mean(F(0), F(1), ..., F(k — 1)) (5.1)
The background model is updated over time in a frame by fraaséshthough for

indoor scenarios the update can be delayed several frantes.exipression used to
update the model is,

B, (i) =a-Byy(i—1)+ (1 —a)F, (i) ,Va,y (5.2)
beinga an update factor in the rang@ 1], which controls the speed at which new
information is included in the model.
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One of the problems of unimodal methods, is that they cangiatrchine whether a
suitable background model is built or not. If moving objeats present in the frames
used to construct the background, blurred areas may app@amature of the values
of the objects and the values of the background will be doigurg 5.5 illustrates this
problem with some sample background models.

The quality of the background model determines dramayi¢ediv good or bad the
segmentations will be; thus, it is crucial being able to jmevhe system with a good
background model.

Current technigues rely on building a first model which witk ®ver become cor-
rupt, that is, the model gives up working correctly. Authofgtoyama99] propose
maintaining a database of background models and choosedstesmitable for the sit-
uation. However this may take to maintain an extremely hugelthse with different
models, though in their paper, authors consider only twieidiht models per scenario.

This lack of control over the quality of the model is not addded currently in the
related literature. In next chapter, section 6.2 introdube concept of model’'s quality
as defined in our algorithms.

5.4 Segmentation
Once the background is modelled, objects moving in the sgenebe found by using

background subtraction. Each incoming fraf@) is subtracted from the background
modelB(i — 1). Instead of using the classical background subtraction,

Ay (1) = |Foy(i) = Bay(i = 1) (5.3)

we favour detecting pixels in dark areas by using,

7oy Fey()) = Bey(i = 1)

dey(i) = Bosli— 1) (5.4)
Images,., (i) is the thresholded version df. (i) and can be defined as,
N L dey(i)>T

The binary imageS, , (i) contains the pixels which are different from the back-
ground model. Sets of connected pixelsdp, (i) are considered as a global entity
called blob from now on, each blob represents a segmentedtobj

5.5 Filters

After segmenting the incoming frame and grouping pixels bibbs, blobs are filtered
in order to reduce the overhead of following steps, as shawfigure 5.4. A size
filter is applied to blobs discarding those which could repré noise. This is done
by removing all blobs whose area is under a given thresholdhase dimensions are
small. For each blob the following two features are computed

e BlobArea : number of pixels of the blob.

e Bounding box (Bbox): minimal rectangle that encloses ttodbl
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Every object, whose dimensions are considered as validigfilter, is classified in
the next step as belonging to the three classes considetiee diystemperson group
of peopleandluggage

5.6 Feature selection

The extraction of meaningful features is an important ideuneny image processing
algorithm. In order to choose a suitable feature set, we toakind two important
considerations:

e The feature set should permit a quick computation and ¢lesson.

e Appearence, properties and differences between the tlesidered classes:
person group of peoplendluggage

After reviewing the literature and performing some infotri@boratory tests, we
finally decided to work with two feature setggometric featureandforeground pixel
density

Both sets of features, geometric and foreground pixel dersgtempt to extract the
essence of shapes and blob’s silhouettes. Unfortunakelgiosvs can connect separate
blobs, deform values associated with shapes and confussifides. A previous work
was performed to determine whether removing shadows wdsluserder to obtain
a higher classification rate even with the evident time ggrihht would suppose.

After analysing the experimental results of the feature arementioned, a new
feature number of headsvas proposed in order to improve performance.

The following subsections discuss the features outlingdemprevious paragraphs.

5.6.1 Geometric features

Geometric features are mentioned in the literature disegssurveillance systems
[vsam99] and those which seemed to be the most efficient, asafispersedness,
aspect ratio, and others were chosen. The constraint cfinealresponse can only
be met if the most efficient in classification success rate aomputational cost are
chosen. The selected features were the following:

e Dispersedness: this feature is computed for each blob as,

BlobPerimeter? (5.6)
BoundingBoxArea '
e Inverse dispersedness: The inverse of the previous orecdimputed as,
1 BoundingBox Area (5.7)

4w  BlobPerimeter?
in order to normalize it in the rande, 1].

e Extent: the proportion of the pixels in the bounding box the¢ also in the

region, computed as,
BlobArea

BoundingBoxArea

(5.8)



5.6. FEATURE SELECTION 77

e Solidity: the proportion of pixels in the convex hull thakaalso in the region;
computed as,
BlobArea

ConvexArea

(5.9)

Geometric features reduce the complexity of a blob’s sittmuinto a simple result
that may be the same for very different silhouettes, whichlma disadvantage when
classifying different objects whose silhouettes are simir produce similar results.

Figure 5.6: Samples of blobs representing objects of cigserson groups of people
andluggageand their bounding boxes withdax 4 grid with a total amount of6 cells.

5.6.2 Foreground pixel density

Following ideas found in [gepperth05], a classifier basedhenaverage density of
foreground pictures in areas of the blobs was developed.

Paying attention to figures; either a person, groups of geaplluggage show a
different pattern of occupancy. It can be seen that, foramst, blobs representing
people exhibit a pattern of low foreground pixels densityhie areas of the bounding
box close to its borders; while luggage usually has a gredgasity of foreground
pixels in nearly all the bounding box except in the top ar&#iss leads us to think that
the density of foreground pixels measured in a regionalsbamild be a good feature
set for classifying the blobs.

We compute these features by dividing each bounding boxagong a blob into
a grid ofn x m cells. For each celC’;, the amount of foreground pixelg?() and
background pixelsR;) is calculated and the result of the division is stored in ctme
C ={Cy,...,Ci,....Coscm—1} Where,

P
Ci= P+ B;

As each bounding box is always divided into the same numbeelts, this method
already incorporates the requirement of scale invariafités way, we have a set of
values pointing out where the majority of foreground pixeldikely to be. For in-
stance, people are expected to have their maximum denisittae area of the body.
On the other hand, luggage is expected to have its foregrpixeds more uniformly
distributed. For groups, foreground pixels are expectédxbtspread all over the bound-
ing box, but as for single people, they should be more conatsat in the mid-area of
the blob, where the bodies should be found. An example capdreia figure 5.6.

(5.10)
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The features described so far can be used to train a clasgsifiedter to distinguish
which class a blob belongs to, according to its silhouettds Works reasonably well
when blobs are very different. In our case, however, expaniswill show that classes
personand group of peoplehave silhouettes which are difficult to model using the
previous features and, depending on how people inside thggds arranged and seen
by the camera, the silhouette of a person and of a group mayiteesimilar.

Figure 5.7: An illustration of the symmetry axis of a persppm@ximated by the axis
that crosses through the maxima of the blob.

5.6.3 Number of heads

Considering the fact that some of the sought objects arel@eejther alone or in
group, the idea of detecting people is also consideredyviiatly approaches already
discussed in [cheng00] a [haritaoglu0Q]. In both workstigal projections are used to
detect pedestrians and people standing in public areasr @iproaches can be found
in the literature, as the work discussed in [viola03] to depedestrians, but the aim of
simplicity induced us to try new methods.

In the case of a single person, figure 5.7 shows that an appadgivertical sym-
metry axis can be computed as the axis that crosses the bamgthits maximum.
Moreover, this axis can be related with the position of thedhéf the person is stand-
ing. Following this approach, we use the superior part oflfed together with the
vertical projection to detect the vertical symmetry axesaomse, when people walks,
they create empty spaces between their legs that may migleagarch of maxima.

For a given blob, the algorithm computes the vertical prigacand the maxima
and minima of the superior silhouette. It ensures that eatdt®d maximum is fol-
lowed by a minimum and vice versa. Figure 5.8 shows the soipsilhouette of a
given blob and its maxima and minima. It can be seen that thergr silhouette is
computed only in the top third of the blob, which, approxiaigt corresponds to the
height where shoulders are expected to be. In order to avadsesuch as local max-
ima or minima because of noise, minima are not allowed toapipea higher position
that any maximum and vice versa. In addition, each axis scs®d with a value,

hX ()
Vert; = ——2Y 5.11
POy et = BlobHeight (5.11)
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X

Vertical
projection
5]

. Superior silhoute )
BlobHsight with maxima and
minima hX (i)

Figure 5.8: Vertical projection and superior part of théaagilette, showing some local
maxima and minima. On the right, the vertical projectiontaf blob. Points labelled
with anz are the same, the difference in the shape of each figure coomadtie fact
that the one in the middle of the figure is the superior silliieugnd the figure on the
right, the vertical projection of the blob.

beingh X (i) the value of the vertical projection in the coordinate of #xés and
BlobH eight the height of the blob.

The valueporVert; measures the relative amount of blob located under each max-
imum, this way, maxima result of raised hands are removdzei/alue is conveniently
thresholded, as shown in the figure 5.9. It can be seen in theefibat the raised fist of
the person is detected as a maximum and neglected later dloe its low associated
hX (). Any maximumm which verifies thaporVert,, > 0.5, is considered a valid

maximum.
Vertical
. m projection
]

*®

BlobHeight Vertical projection

of the superior hi (i) x
silhoute with

maximum and

minimums

Figure 5.9: For a person with a raised hand the algorithmctietevo possible max-
ima in the superior silhouette labelled with the symbol "ix'the figure, but when the
vertical projection is computed and the coefficientstV ert; are computed for each
possible maxima, the maximum located in the hand is disdaatiel only one maxi-
mum is considered as valid.

As mentioned previously, the position of each valid maxiraa be considered as
the approximate location of a head, thus, it is easy to inb&r many heads are visible
in the blob by counting how many valid maxima are discovengthk algorithm.

5.7 Object tracking

After motion detection, the next step is to track objectst fis being able to know
which objects of previous scene have moved and where tokifigiover time typically
involves matching objects in consecutive frames usingifeatsuch as points, lines or
blobs. In our system, each segmented blob is consideredject ¢d track.
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We have implemented a tracking system based on the boundigegion. For
each blohr obtained in the motion segmentation process, its boundimgHy is cal-
culated. We assume that the movement of the object in twaesaixe frames is such
that the bounding boxes surrounding it in two successivedsawill overlap each
other. Tracking is performed by checking which boundingdmoin the current frame
overlap with those in the previous one. This way, we can dei&sily and with a good
confidence degree which blob has moved and where to, withgutusther test. This
method has been found to be effective in other approachesi@esl not require the
prediction of the blob’s position [fuentes03].

The function used to detect whether two different regi@isand R, overlap can
be defined as,

0<R1,RQ>={ Lif B\ 0 (5.12)

0, otherwise

whereR; [ Rs represents the bit-wise logical and operation.
The following situations are considered:

o Blob stayed in the scene: when a bounding BtjXin the current scene over-
laps only one bounding box of previous sce®ié ,, then it is assumed thad?
and RY_, contain the same object. Figure 5.10 illustrates this caseressed
mathematically as,

JRY | ,O(R},R! ) =1NO(R;,R! |)=0,V2#y—
RY stayed in the scene (5.13)

Frame in time {-1 Frame in time i

Figure 5.10: Object stays in the scene, though it moves, frame to frame
there is still the possibility of finding a temporal overlapp between consecu-
tive frames.

o New blob in the scene: When a Bb@¥’ in the current scene does not overlap
with any otherR?_, in the previous scendr? is supposed to be new blob. Figure
5.11 illustrates this case. Mathematically, this case eaexpressed as follows,

VRY |, O(R?,RY ;) =0 — R is a new blob (5.14)
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Frame in time i-1 Frame in time i

Figure 5.11: An object enters the scene. Note that the frartime: — 1 shows
an empty scene, in the following frame, there is a personahi@red the scene.

e A blob leaves the scene: When a blob of the previous s¢&he does not
overlap any othef¥ in the current scene, it is supposed tRét , left the scene.
This case is the opposite to the previous one and figure 5d@ssan example.
Mathematically, this case can be expressed as,

VR?, O(RY_,,R}) =0 — RY_, left the scene (5.15)
Frame in time 1-1 Frame in time |

Figure 5.12: An object leaves the scene. Note that in thedramimei: — 1
there is a person in the scene and in the following frame ibtghrere any more.

e Two or more blobs join: When two or more different bounding &®g}" ;,
R, ... ,R/",, n > 1segmented in framé&(¢ — 1) overlapped a single blob
R? segmented in the framE(t), we say that they have joined. Joints happen
when people are picking a suitcase up or people are crossjoinng. Figure
5.13 shows an example with two people that move close onecto @her and
finally, collapse into one only object.

HRY Yy / Ho (RY,RY 1) #0 —

{RY 1}J _o joined in R} (5.16)
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Frame in time i-1 Frame in time i

Figure 5.13: Two people which are moving close one to eachrdthframe
F(i — 1) finally collapse into one in fram&'(z).

e Two or more blobs split: When a single Bb&¥_, in frameF(t—1) overlapped
with two or more different blobg;°, R;* ... R, n > 1in current scene, we
say that they have split. Splits happen when someone leasegcase or a
group of people unravels. Figure 5.14 illustrates this gatetwo objects. This
situation can be expressed as,

HR Yoy / [] OB, RYy) # 0 —
j=0

{R{"}_, splited from RY_, (5.17)

Frame in time i-1 Frame in time i

Figure 5.14: Two people which were considered as one mowe apd reveal
themselves as two different objects.

The joint/split of blobs corresponds to situations such espfe crossing, people
interchanging material or people leaving or picking up stinimg, for instance.

A Kalman filter [kalman60] is also used in order to performeattjdisambiguation
when objects cross in the scene. The prediction of new pasgicompared to object’s
position in the case of two or more blobs splitting.

Once blobs are located in the scene, they are given a uniakdakeep the one
they had previously. This label is used by higher levels émtdy them in each camera.
Blobs are called from now then objects. In the next step, dohebject a membership
probability for each class are calculated in order to easéitlal classification done by
higher processing levels.
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Figure 5.15: Some of the blobs included in the dataset us#eiexperiments. There
are samples of the three considered clagsason group of peopl@ndluggagerepre-
sented in the figure. These blobs were manually labelled aft®ematic segmentation.

5.8 Blob dataset

The database used in the experiments was designed to cantages of the objects
which were expected to be found in the airport. The data sbgiblobs extracted
from several videos of different lengths recorded in thédfadur university in different
days with different light conditions. Each blob is assasiftvith a bitmap crop of its
bounding box from the real video in RGB space and in grey &vEbgether with each
blob, we kept the coordinates of its bounding box in the imag the frame in which
it was captured, so it was easy locating in the sequence esei Each object was
labelled manually by us as belonging to one of the clagseson group of people
andluggage Blobs were classified according to the following rules:

e Blobs are classified according to the object it represemt@esson group of
people andluggage

e Every blob representing a person with or without luggagelelled aperson

e Only objects with at least/3 of their upper part of the figure were included in
the database.

e A blob representing more than two people is considered todvewp of people
provided that at leagt/3 of the people are visible.

We kept a database @B69 images extracted from the sequences, corresponding
to 1371 images of classingle people367 of classgroup of peopleand631 images of
classluggage

In order to apply both algorithms, we kept a background medbkr in RGB and
grey tone. The background model was updated, for each cwdg]ifollowing the
running Gaussian average approach discussed in sectian 8tapter 3. RGB and
grey tone distances were computed using euclidean distamzea single threshold to
decide how to classify pixels as foreground or background.
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Person | Group of people| Luggage | Total

Blob dataset 1371 367 631 2369
Training data.80% 1097 294 504 1895
Test data20% 274 73 127 474

Table 5.1: Distribution of objects per class and approxansite of the training and
test sets used in the experiments.

Figure 5.15 shows some sample blobs from the database. Fablehows the
distribution of blobs per class in the dataset, it can be Hearthe size of class person
is larger than the others, this reflects the proportion ofdibjects of different classes
in the sequences.

5.8.1 Evaluation of features with blob dataset

In order to evaluate which of the features proposed in seéti6 is the best that can be
used to classify objects, a set of experiments was perfar®edkral experiments were
made considering only the objects in the blob database,ith®fthese experiments
was:

e test the suitability of the dataset.
e check that the chosen features were, at least, consistent.

¢ find out the best configuration for the number of features todesl.
The evaluation criteria for the features are:

e the success in the classification of objects and the inesadanfusion.
¢ the time needed to compute each set of features.

¢ the time needed to classify objects.

The experiments were performed with the features desciibsdction 5.6 using
a k-NN classifier in all cases, therefore, the most suitableevalf & is sought for.
Experiments may be divided into off- and on-line, as someevarformed with the
database and others with real sequences. With the georfegttices, the experiments
were aimed to test the validity of the considered featuretassify blobs. Experiments
with foreground pixel density features are twofold. A firsedjwas obtaining a measure
of how many cells would be necessary to classify correctyttlobs in the database.
On the other hand, once the amount of cells was fixed, it wasrssessary to obtain
the optimal amount of neighbours for tlieNN classifier used. In both cases, the
experiments were performed with the database of blobs asulwaing the shadow
removal algorithms. They were performed by building a irajrset using th&0% of
the total amount of samples randomly chosen and a test setheiremainin@0% of
samples. For each value bf the experiment was performdd0, recomputing each
time the training and test set in order to achieve statistickependency.

Grid density features were extended in order to allow déffeigranularity in spe-
cific parts of the blob. In this case, the experiments peréatmvere also aimed to find
the optimal configuration of cells with the blobs in the datsdy, without considering
shadow removal algorithms.
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Finally, experiments were performed with the head detactigorithm described
in section 5.6.3 together with the features inversed digzkress and extent. Results
of this combination are better than the previous in time oongion and memory re-
quierements.

100

with shadows
Shadows removed. Grays -------
Shadows removed. RGB --------

95

90 - B e s e
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80
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Figure 5.16: Classification rate of the blob dataset with aitdout shadows using
geometric features for different values/of

5.8.2 Experiments with geometric features

Each blob is represented with a vectoBdeatures: dispersedness, extent and solidity
of the blob. As said before, classification is performed bipgis k-NN classifier. The
training set was built choosing randomly samples of thelztega up to a size equal to
80% of the total amount of samples, the remaini§; was kept for testing. For each
value ofk, each experiment was performe@0, recomputing each time the training
and test set in order to achieve statistical independency.

In figure 5.16 we show the global results of object classificator different val-
ues ofk and for each feature set. Each value in the plot correspanttetaverage
of 100 experiments performed with a given valuefof Results are computed using
geometric features with shadows left and with shadows resho¥t can be seen for
geometric features that fér= 1 the classification rate 8%, for higher values of,
the classification rate rises and stays betws#h and90%.

k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15
Person | 36.25% | 48.39% | 48.39% | 50.73% | 51.69% | 54.51% | 54.51% | 54.51%
Luggagge | 0.22% | 0.09% | 0.02% | 0.17% | 0.12% | 0.08% | 0.09% | 0.08%

Table 5.2: Comparison of the confusion rates between dassps of peopleand
classegpersonandluggageclasses using geometrical features.

From figure 5.16 can be also seen removing shadows, eithrgy gey tone images
or RGB images, has not a deep impact in classification pegboe, abous% in the
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Figure 5.17: Classification success rates WHKRN using geometric features, each line
correspond to results for one class. In this case, shadowes mee considered. For
classepersonandluggagethe chosen features perform quite well but, on the other
side, It can be seen that fgroup of peoplelass shows low values.

best case using the proposed geometric features. It isdaasi that the effort devoted
to remove shadows is not worth, considering the time peathyduced by the shadow
removal algorithms.

Though global results seem promising, it also necessapstorthat the behaviour
for each single class is. It can be seen in figure 5.17 thasetpersonandluggage
have a good classification success rate for both featurelmsgtshegroup of people
class shows low values.

Table 5.2 shows the confusion between clagsesonandluggagewith classgroup
of peoplefor different values oft. It can be seen that clagersonhas a big rate of
confusion withgroup of peopleThis could justify the low success rate shown for class
group of peoplén figure 5.17.

5.8.3 Experiments with foreground pixel density features

Some experiments were performed aimed to establish thenalptiumber of cells in
which a blob should be divided before performing experiraevith this feature. This
experiments were conducted by dividing the bounding box lniba into an identical
number of rows and columns, different sets2ok 2, 4 x 4, .., 10 x 10 cells and
classifying objects using/aNN classifier, as in previous section, experiments for each
grid configuration and value df are represented in the plot with the average @i
repetitions of the experiment.

In figure 5.18 results for different values bfand different sizes of square grids
are shown. Though the x 7 yields the best results, we considered that4he 4
grid was the one that best fitted our needs, because it is thkesingrid from which
classification rate starts stabilizing having the same \iehafor all the values of
used in the experiments.



5.8. BLOB DATASET 87

98

96

94

92

90 o : e

88

Classification success rate

gs [/ /A

aa |/

i 2
82 [
;

I = x

—“ONOTW=
|

=

80 b
1 2 3 4 5 6 7
Size of grid n*n

@
©

Figure 5.18: Results of classification experiments witNN, with different values of

k and different cell configurations. The valueis the number of cells in which the
blob was divided, the same vertically and horizontally. Fkhe grid considered range
from1x 1,2 x2upto9 x 9 cells. As expected, the best values are obtained forl

with a difference of only6% between the best values and the worst, corresponding to
k = 6.

In figure 5.19, we show results for foreground pixel densiihwhadows and with
shadows removed, using a grid sizelof 4 with different values of. As it happened
with geometrical features, in this case the low increasdadsasification rate does not
justify the time penalty introduced by the shadow remowgbeathms.

Comparing figure 5.19 to figure 5.16, it can be noted that fan@gd pixel den-
sity behaves completely different to geometric features sirow a good success rate
(95% — 92%) for values ofk betweenl and5 and then decreases iagrows.

Another issue that must be compared, is how the featureerpefbr each of the
considered classes as done in previous section. Figuresb®@s the performance of
foreground pixel density features for each individual slaGlasgersonandluggage
have a good classification success rate for both featurenggite clasggroup of people
behaves better than with geometric features.

Table 5.3 shows the confusion between clapsesonandluggagewith classgroup
of peoplefor different values of. It can be seen that claggrsonhas a big rate of
confusion withgroup of people

Summarizing the information in tables 5.3 and 5.2, we carlcate that the highest
confusion occurs between claspessonandgroup of people@nd increases asgrows.
Confusion betweegroup of peopleandluggageis very low. In general, results point
out, in any case, that both feature sets are valid for cldmgifclassegpersonand
luggagewith a good degree of accuracy. With geometric features vieioh high level
of stability and with foreground pixel density a slightlyghier percentage of success.

It may be seen in figures 5.16 and 5.19, that by removing shak@iincrease the
classification success rate; although the gain does ndflyjtis¢ computational effort
required. For instance, for a movie in which the completersagation-tracking loop
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Figure 5.19: Classification rate usiggNN of blobs with, and without shadows, using
the matrix of foreground pixels density. Grid size wias 4. It can be seen that using
the shadow removal algorithms does not improve signifigahtt performance of the

features.

k=1 k=3 k=5 k=17 k=9 k=11 k=13 k=15
Person | 0.48% | 0.89% 11.06% 13.79% 15.76% 16.33% 15.93% 16.11%
Luggage | 0.02% | 0.02% 0.01% 0.04% 0.14% 0.27% 0.56% 0.89%

Table 5.3: Comparison of the confusion rates between demsps of peopleand
classepersonandluggageclasses using foreground pixel grid density features.
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Figure 5.20: Classification success rates itNN using foreground pixels density
features and grid siz¢ x 4. Each line corresponds to results for one class. Results
are obtained withk ranging in[1,15]. It can be seen the the amount of objects of
classpersoncorrectly classified is abo@b%, in this case, the class with the worst
classification rate igroup of people

takes up td).91 seconds, and there are an average®bbjects per frame, the shadow
removal algorithm in grey levels takes up1¢.03 seconds on average per frame; and
the shadow removal algorithm in RGB space takes uj)tb0 seconds on average per
frame. From these results, removing shadows in both casep@@tant if we want to
achieve optimal accuracy, but, as plots and time resultw,simaybe the gain will not
be worth the effort.

luggage group of person  person

20%

Y ‘«\ 40%
i

20% u -
0% |
a% b 4

40%

P

Figure 5.21: Sample division of the silhouette of a persograup of people and a
suitcase in the three unequal regions, head, body and legs.
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5.8.4 Foreground density with different granularity

A step forward with foreground density features is givingremamportance to some
parts of the object over others. This is due to the fact thatesparts of the blob may
be more significant when distinguishing it from blobs of othiasses. This justifies
that a bigger amount of cells can be used to represent a ¢ereea of the blob, having
this way a more accurate representation of this area. Ftarios, the central part of
the blob of a person will be quite similar to the central pdrthe blob of a suitcase,
however, the lowest parts will have difference occupandiepas.

Having different granularities can be achieved by dividiagh object in three un-
equal regions, which we will call from now ohgad bodyandlegs being the head
region the top of the object, legs region will correspondcmlbottom of the object and
body region will be the rest. Figure 5.21 shows an examplé®fstlhouette of blobs
representing a person, a group of people and a suitcasesdivido three different
regions.

Figure 5.22 shows some blobs with different granularity elfscfor regionshead
bodyandlegs Stripped lines separate the three different regions aadykt lines de-
limit cells in regions. Itis clear that head region may be enaseful for distinguishing
instances, for example, of clasgersonandluggage

Figure 5.22: Samples of person, group of people, and lugg#geifferent divisions
in the 3 regions defined as head (granuladty 2), body (granularity2 x 2) and legs
(granularity3 x 3).

With this schema, we divide each region into a grickpk m,. cells, where- stands
for the region (head, body or legs), being the grid size oheagion independent of
the rest. We then perform the same calculations for eactaséf expression 5.10.

Off-line experiments were made in order to test the validityhhaving more gran-
ularity in some parts of the blob over others. In separatststeve decided that the
top 20% blob would correspond to the head region, the bot#6ff blob would corre-
spond to legs, and the rest to the body. Then we made expdsneaying the values of
Nheads Mheads Mbodys Mbodys Miegs ANAMycq5 iN the rangel..20, these values represent
the number of cells in which each region is divided into.

As in previous experiments JaNN classifier was trained usir&§% of the database
and the test set was composed of the oflté6. The experiments were repeatsal
times to ensure statistical independence of the selectedlea. In table 5.4 we show
confusion tables for different values of., m,, andk = 5, these results shown are
the best obtained with these experiments. Results pointhatinot always a bigger
granularity in any of the regions yields better results thawing an equal distribution
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of cells.
Features 93 features 101 features 27 features
Cells 3x4,7x8,5%x5 5X2,8X7,5x7 3x1,4x3,4%x3
Class Person | Group Luggage | Person | Group Luggage | Person | Group | Luggage
Person | 98.1% 4.5% 0% 98.5% 3.3% 0% 98.2% 7.3% 1.0%
Group 1.9% 95.5% 0% 1.5% 95.2% 0% 1.8% 92.7% 0%
Luggage 0% 0% 100% 0% 1.5% 100% 0% 0% 99.0%

Table 5.4: Confusion tables for different division gramitlas with k¥ = 5. The di-
agonal of each table represents the rate of successfulfidagssns. The number of
features that the different granularities handle is sptifiy the rowrFeatures row
Cells specifies how they are organized. For instance, the firssiilmscompute93
different granularities.

The main issue we took into account when selecting the besstgement, was the
performance with clasgroup of people As we learned in the previous work, objects
belonging to this class are easily confused with instanéedassperson and it is
easy to see that, depending on how people are arranged theideoup (for instance,
with occlusions), a group may be confused with a person. Trangement of cells
(nhead = 3, Mhead = 4, Nbody = 7, Mpody = 8, Niegs = 5, Miegs = 5) was the chosen
one, with a total amount df3 features. Results shown in table 5.4 improves slightly
the performance with the claggoup of peoplever the performance of the classifier
with the arrangemer#t x 1,4 x 3,4 x 3.

Confusion betweetluggageandgroup of peoplés nearly reduced to zero with this
new schema and confusion of clasgessonand group of peoplds also very low;
improving results obtained without forcing different gudarities in different areas of
the object.

The performance of the foreground pixel density featuresejoarate objects of
classegpersonand group of peoplehas the disadvantage of using a big number of
features, which can be expensive to compute if a big numbleiobk are in the scene.
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Figure 5.23: Some of the blobs included in the new database inghe experiments.
There are samples of the three considered clapseson group of peoplendluggage

represented in the figure. These blobs were manually segohbefore inserting them
in the database.
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5.8.5 Experiments with head detection algorithm
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Figure 5.24: Statistical distributions of feature invedispersedness for classes-
gageandpersonfor blobs in the database.

Either with geometric features or with foreground denségttires, confusion be-
tween classepersonandgroup of peoplés reduced but at the expense of computing
a big amount of features, with its associated time penalgviBus experiments show
that using shadow removal algorithms does not improve fogmitly the classification
rate of the features considered.
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Figure 5.25: Statistical distributions of feature extemt ¢dlassesuggageandperson
for blobs in the database..

A new database was built segmenting by hand the objects diatptio the con-
sidered classes. Figure 5.23 shows some sample objects afatabase. The aim
of this database was providing us with more accurate blobwltoh new features
could be tested. This database contaié&tblobs corresponding to claperson 101
blobs corresponding to clagsoup of peopleand991 blobs of classuggagefor a total
amount of1723 objects. Table 5.5 shows the distribution of objects adogrtb the
represented classes.

An alternative approach to classification of the three elasg a time, is taking
advantage of individual and exclusive features that map hklssifying one type of
object. For instance, classg®up of peoplendpersonare easily distinguished by the
number of heads of the blobs.

The features inverse dispersedness and extent were cadmgdltbe blobs in the
new dataset, figures 5.24 shows the probability densitytfomof objects depending
on their values of inverse dispersedness. For instancéyldtayields an extent value
of 0.6 it is quite more probable that the blob belongs to clpsesonthan to class
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Figure 5.26: Statistical distributions of feature invedsgpersedness for classg®up
of peopleluggageandpersonfor blobs in the database.

luggage On the other side, figure 5.25 shows the probability deffigitgtion of objects
depending on their values of extent. Figures 5.26 and 5.@Q% #ie probability density
of objects for all classes, it can be seen that for both featurlasgyroup of people
overlaps areas belonging either to clpsssonor clasduggage

Person | Group of people| Luggage | Total

Blob dataset 631 101 991 1723
Training data.80% 504 80 792 1378
Test data20% 127 21 199 345

Table 5.5: Distribution of objects per class and approxarsze of the training and
test sets used in the experiments.

The information obtained from the four plots discouragestitbe of these features
to distinguish the three classes, but induce to think thaaasiier can be built to
separate classegersonandluggageusing the features extent and inverse dispersedness.
Using such a classifier has the advantage that only contaimseatures, being very
fast to compute. Moreover, the feature vectors of inverspatsedness and extent
were reduced using the multiedit-condensing [hart68]yifder82] technique. The
final database containdd blobs of claspersonand? blobs of classuggage Blobs
of classgroup of peoplavere not considered any longer in this database.

On the other hand, in order to separate claggrsonandgroup of peoplethe
head detection algorithm proposed in section 5.6.3 is usée. algorithm described
in section 5.6.3 for counting the number of heads in a blob teated with a set of
experiments. The goal of these experiments was knowing ltowrate the algorithm
is and in which cases it could be expected to fail. Before tteements, all the
blobs in the database corresponding to the aassp of peoplevere labelled with the
number of heads that they contained. Then the results auotauith the experiment
were checked against the real amount of heads.
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Extent

Figure 5.27: Statistical distributions of feature extemtdlassegroup of peoplelug-
gageandpersonfor blobs in the database..

The amount of heads expected to be detected in the groupsd&megweer? and

4, having60 blobs of2 members30 blobs of3 members and1 blobs of4 elements.
The error rate of the head detection algorithm is shown itetal®. It can be seen that
for blobs of2 members the success is complete. As the number of membesases
the accuracy decreases. As figure 5.28 shows, occlusionsxaedsive separation of
head heights inside the blobs are the main sources of ine@cuin both cases, the
algorithm detects one head less than the real number. Thbegeygen the bottom of
the bounding box and the legs of the person whose head isdnissesponsible of the
failure, producing a number of maxima lower than expectdis €ffect occurs mainly
in big groups (groups containing more thémpeople) making it difficult the accurate
computation of the number of heads with the information ef fpne camera.

r -

(@) (b)

Figure 5.28: Some blobs representing groups, it is remérkhhat separation of head
height inside the blob (blob on the left), and excessivelapping (blob on the right),

avoid the algorithm to detect exactly the amount of peopléaéblob. In both cases,
however, the error was just a person left.
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Number of heads found Group of 2 people| Group of 3 people| Group of 4 people
Total amount 60 30 11
1 head 0% 0% 0%
2 head 100% 40% 9.1%
3 head 0% 60% 63.6%
4 head 0% 0% 27.3%

Table 5.6: Percentage of successfully detection of headsidbs representing groups
of people, depending on the amount of heads expected. Ghoups database vary
from 2 to 4 members.

They were performed by building a training set usingdb% of the total amount of
samples randomly chosen and a test set with the rema20i¥igof samples. For each
value ofk, the experiment was performéd0, recomputing each time the training and
test set in order to achieve statistical independence.

Then, with the aim of classifying objects using the featurember of heads, ex-
tent and inverse dispersedness a classification algorghiesigned joining the head
detecting algorithm to the reduced training set of geométatures, see algorithm 3.
Performance of this algorithm with the objects of the dasab@an be found in table
5.7. This performance is measured by dividing the databdeewo disjoint sets, the
training set built with the80% of the total amount of samples randomly chosen and a
test set with the remaining0% of samples. For each value bf the experiment was
performedl100, recomputing each time the training and test set in ordech@&se sta-
tistical independence. Results in this case are more aetiisf either for the database
as for real-videos shown in table 5.8.

Algorithm 3 A two step decision tree combining the feature number of fiéadhe
root to distinguish objects of claggoup of peopldrom the rest and, at a second level,
ak-NN classifier trained with features extent and inversealispdness to classify ob-
jects of claspersonandluggage
if headNumber(blob) >= then

blobClass +— GROUP
else

blobClass < k-NN( blob.inverseDispersedness(), blob.extent() )
end if

ahwdhde

k-NN k-NN + number of heads
Person | Group | Luggage Person | Group | Luggage
Person | 89.5% | 59.2% 16.3% Person | 97.4% 4.0% 6.3%
Group 2.5% 22.9% 0.01% Group 0% 96.0% 0%
Luggage | 7.9% 17.9% 83.5% Luggage | 2.6% 0% 93.7%

Table 5.7: Columns undér-NN classifier were classified using onlykaNN trained
with the features extent and inverse dispersednesg and. On the right, the results
of classifying the new database using also the feature nuaitteads as described in
the algorithm 3. It is quite evident the improvement in thassification of the three
classes, specially regarding clagsup of peopleif the k-NN classifier together with
the number of heads feature is used.

Performance of algorithm 3 with the objects of the databasevs in 5.23 can be
found in table 5.7. After visual analysis of the results westmemphasize that most
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of the errors found in the classification phase are causedby gegmentations that
distort the shape of blobs.

5.9 Experiments with sequences

Also experiments with sequences were performed using fweitim 3. Working data
are videos recorded in different days and hours in an europeport. These videos
show different areas of the airport taken from one or twoovisingles, partially cov-
ering the same area and do usually have betvwg@®nand 8000 frames. An effort
was done to extract background models for each scene in trgocess it simulat-
ing real-time surveillance. In section 5.3, more detailswathow these models were
created may be found. The sequences have been chosen tyiagture different
real life operation situations. Figure 5.29 shows one offtAmes processed in these
experiments.

7072: 48,90% 6861 57 7682 75,00%

5560: 90,00%

Figure 5.29: Image obtained from a client application simgwinformation provided
by low level video processing services. Each detected bbgsca label with the object
identifier number and the assigned membership probabiliigch BoundingBox is
drawn with a colour that represents the class (green fos tl@gage red forgroup
and blue fompersor) and the detected heads have been marked with a cross.

Experiments are evaluated at the end of the process, thanlig,if an object is
successfully segmented and classified, it is considere@ ® fuccess. In any other
case, it is accounted as a failure.

Also, measuring the validity or not of the thresholds useth& segmentation is
very difficult due to the variety of scenarios that may be ¢abg the system. These
thresholds should be set manually for each individual stna

Table 5.8 shows the classification results obtained withatberithm 3. Experi-
ments were performed using two different valuesian the k-NN classifier. Results
seem to be slightly better for clakgygageif £ = 1 is used.

Taking into account the great variety of scenes and workimglitions under which
have been made these tests the results of the low-levelfidaden can be considered
as reasonably good.
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K=1 K =3
Person | Group | Luggage Person | Group Luggage
Person | 86.8% | 15.2% 6.8% Person | 86.8% | 15.5% 8.2%
Group 13.0% | 84.5% 0.0% Group 13.0% | 84.5% 0.0%
Luggage | 0.2% 0.0% 93.2% Luggage | 0.2% 0.0% 91.8%

Table 5.8: Results of experiments for test videos using #uésebn tree described in al-
gorithm 3. Results are given relative to the total amountpécts correctly segmented
and expected to be found of each class.

5.10 Conclusions

A surveillance system was developed in this chapter basdrhore differencing and
background subtraction with a per-frame classificationbpécts. The output is filtered
to remove noisy blobs. Blobs in the scene are tracked overefseby the application.
In this case the classification process is more difficult thaone discussed in chapter
4, due to the fact that objects move and may vary their shapking it very difficult

to train a classifier based directly on shapes. The main ibotitsn of the chapter is
the features used to classify the blobs [rosell08], [bedietl

In order to classify objects in the scene, different featets were tested: geo-
metric features, foreground pixel density and a head deteatgorithm. Experiments
were performed in order to quantify if reducing shadows whklcould improve clas-
sification results, but results made us conclude that usiag@v removal algorithms
does not improve significantly the classification rate offdetures considered.

Geometric features showed a poor global performance de fatt that thgroup
of peopleclass is often misclassified agrson althoughluggageand personclasses
are classified satisfactorily. Foreground pixel densitg hebetter performance with
less interclass confusion, although performance decsedisenk increases, leading to
a poor performance in botjroups of peopl@ndluggageclasses. Geometric features
seem to be more stable than the foreground pixel density.

New experiments were considered in order to improve refultreground pixel
density feature. In these experiments, different graitidarwere assigned to three
different parts of the blob. In this case, contrary to the twlias expected, results
point out that not always a bigger granularity in any of thgioas yields better results
than having a equal distribution of cells. In fact, the disttions with best results had
the disadvantage that their performance separating slipéctassepersonandgroup
of peopleused a big number of features, which can be expensive to denfpa big
number of blobs are in the scene.

Finally, a solution based on joining a head detection athpritogether with &:-
NN classifier trained with the features extent and inverspatisedness performs better
than the rest. In this case, the features were sought to finchtst notable differences
between each pair of classes. For instance, the head detedgiorithm provides the
system with a clean and reliable method to separate clpssssnandgroup of people
On the other side, inverse dispersedness and extent disatenwell objects of classes
personandluggage By using the algorithm 3 the rate of object recognition iotHooff-
line and on-line experiments, is quite high. Objects of £f@rsonandluggagefrom
the database obtain, respectively, a classification rad&.a% and93.7%, for objects
of classgroup of peoplehe classification rate is abo®6.0%. In on-line experiments
rates are also equally promising in the tested sequencsawinimum rate o84.5%
of successfully classified objects of clagsup of people
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Chapter 6

Background modelling and
object detection

In this chapter we develop two algorithms designed to mockharios and detect ob-
jects, with the aim of being able to give a good performancgeimanding scenarios.
BAC algorithm [rosell08a] creates or restores a backgramodel based on the be-
haviour of pixels in successive frames and, at the same perérms a segmentation
of objects in the scene. BAC has the novelty that yields a denfie value for the
obtained background. BAC is extended with two versions ldgesl with the aim
of permitting colour processing [rosell09] or multi-modalpport (MBAC [rosell10]).
Also, a novel background subtraction method is discussaltedcfuzzy background
subtraction. This later approach eludes the use of fixed abatilistic thresholds
usually found in the traditional background subtractiorthmds and use of per pixel
foreground and background probabilities which can be ui$effurther processes. Fi-
nally, we propose a method that by means of BAC computes aitcaily the input
parameters for a background modelling algorithm [rosél]1The performance of the
proposed algorithms are evaluated and compared to wellskechniques.

6.1 Introduction

In chapter 3, section 3.3 offers a thorough description fiéint background mod-
elling algorithms available in the literature. Althougtetimethods mentioned there
obtain good results in the tested scenarios, in generabf éfiem expect working in
scenarios with low or null activity to build their first baakgind model. One of as-
pects which we miss in these approaches is that there is nsumeeaf when a suitable
background is achieved.

Most of the methods proposed in the literature for backgiaurbtraction operate
mainly in two steps. The first step consists in subtractingnaot frameF'(7) from
a background modeB(: — 1) and, the following step consists in obtainif:), the
background model in timé Usually, both steps expect several parameters to be tuned.
For instance, the subtraction method needs a criterion ¢meavhen two pixels are
considered equal or not. This criterion is usually a congmeribetween the difference
and a given threshold. In the case of the update step, desialmut how often should
the model be updated or how often should previous backgrealugs be forgotten are
also parameters to be taken into account.

99
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Besides the different approaches to background mode#imgther issue related to
this technique is the detection of corrupt models, that isdefs which are not useful
any more for surveillance purposes. A corrupt model yieddlsef segmentations and it
is important being able to detect and correct them. Few gdpéhe literature address
this issue, as far as authors of this chapter are concemdiak literature it is generally
assumed that changes in the background will occur smootidyalrupt changes are
not considered. In [toyama99], authors propose maintgiaidatabase of models. In
the case the background model is considered to be corrugiaralsin the database
should be enough to find the most suitable model.

6.1.1 Goals and constraints

In this chapter we propose techniques aimed to answeringjubstions mentioned
above:

e develop techniques that permit obtain a good backgroundemmal matter if
there is activity in the frames used to build it and withowpous assumptions
about the scene

e design a measure of quality of the background models. Thésare would indi-
cate how confident or reliable a background model and cowdd tesdetermine
when a background model is useless. A background model vdoiek not yield
a proper segmentation of the input frame.

The main constraints that the algorithms have to face is,

o they must work with minimal human intervention, that is, asoaomously as
possible and with a minimal set of parameters

e they should work with minimal resource needs

¢ they should build a background model without human inteieereven in scenes
with high activity

e they should detect automatically if the background modebtsvalid any longer
and reconstruct it, avoiding the storage of background iscakein [toyama99]
as it would be incompatible with the memory constraint

In BAC we study the effect of changing the classical meastirdistance for a
similarity function, discussed further in section 6.2. 8a&®n this algorithm, two ex-
tensions are proposed in sections 6.3 and 6.4. The former éxtension of BAC to
allow the use of several models per pixel and the latter aansiton of BAC using RGB
coordinates to describe each pixel with just one model.

The second, section 6.5 introduces a background subtnealgmrithm that com-
putes a global threshold on the fly based on the intuitive fdagsimilar images should
yield, in average, low distances when subtracted. For bigibrithms, a measure of
confidence, at pixel and model level, is defined and a way tectlebrrupt models is
also described.

Finally, in section 6.6 the performance of the proposedritlyos are evaluated
and compared to well-known techniques. The algorithm®déhtced in this paper are
combined with the classifier discussed in chapter 5. It is @kplored the possibility of
using BAC as an algorithm to compute properties of the sced@aa initial background
model that can be further used by other algorithms.
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6.2 Background adaptive with confidence (BAC)

In this section, we propose an algorithm that does not usestatistical properties of
pixels, but also their behaviour, to build the model. Asexfan the introduction, the
aim is reconstructing or creating a background model froensttratch, with no previ-
ous assumption about the scene activity. Similarity with blackground and motion
criteria are used to determine how the model must be updated.

Our algorithm considers a sequeric@), ..., F'(n) of consecutive grey scale frames,
in which any pixelp € F'(j) must belong either to foreground or to background and
builds a background modél (7). In the first frameF'(0) it is impossible to classify pix-
els as background or foreground, as no further informasagivien. To decide which
pixels may be used to update the background model and whiglamew similarity
and motion criteria is defined in section 6.2.1.

The quality of the background model is computed accordireypoxel-wise value,
that indicates in the rand@, 1] how stable the background model in that location is.
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Figure 6.1: Plot of function similarity with different slep, slopel corresponds to
k = 10, slope2 corresponds to= 20 and slope3 te: = 30.

6.2.1 Similarity criteria between two grey pixels

Similarity between two pixels is usually tested by compguihe difference of their
grey levels with a threshold. We propose to translate intenatfon the intuitive idea
behind "very similar" or "similar" by using a continuous fition defined as, b

lp—ql|

S(p,q) =e" "% :R—>][0,1] (6.1)

beingp andgq grey levels of two pixelsk is a constant determined experimentally.
This way, a difference degree and not an absolute differeatiee is calculated for
pixels similarity, having values af(p, q) close tol for similar pixels and close t6
for very different pixels.

Figure 6.1 shows the plot &f(p, q) for distances in grey tones in the range255]
for different values ofz. It can be seen that increasing the value<pfncreases the
amount of distances values which yield similar values farcfion S(p,¢). In our
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case, we find it better to use a restrictive value #dior two reasons, first, because
small regions induced by camera noise can easily be remoyedtariori from the
segmentation result and second, because it is better haviopy input that confusing
very distant grey tones.

6.2.2 Motion and similarity with the background

By using equation 6.1, it can be measured the similarity ochgaxel with the back-
ground. Similarity between a pixel, , € F'(i) with a background pixeb, , is then
given byS(py.y, b,y ), beingb, , € B(i) the pixel in the background model.

Also, motion can be computed using equation 6.1. Motion dkelgan be defined
in terms of its dissimilarity with previous values of the pixthat is, the more similar a
pixel is with its previous values in previous frames, theslp®tion it has. According
to the equation 6.1 motion of pixel, , € F'(i) with respect ta-, , € F(i — 1) could
be defined as,

1= S(PaysTzy) (6.2)

This equation is equivalent to frame difference as in equafi.4.1. In order to
reduce the effect of noise in the computation of motidfi(p,, ,,) can be filtered by
computing the motion of a pixel with respect to two previoasues and averaging
the result. Being,, € F(i) a pixel in the current frame;, , € F(: — 1) and
¢zy € F(i — 2); we define the motion gf, , as,

M(p) = (1 = SPa,y: da,y)) ;‘ (1= S(Pa,y,T2,y))

This way, motion in the scene is detected by consideringlaiities of three con-
secutive frames.

(6.3)

6.2.3 Segmentation process

Using the similarity criterion discussed in section 6.2atl ghe motion criterion dis-
cussed in section 6.2.2, we segment a frame and separaigefsipto two sets, based
on their computed probabilities of belonging to foregrowndbackground.

We define then the probability that any pixek F(i) belongs to foreground as,

Pfore(p) = max(M(p), 1- S(pa b)) (6.4)

because pixels will belong to foreground if either their motvalue is high or their
difference with the background is high. This way, we cantdelin the foreground set
all pixels which, even being similar to the background butvgkignificant motion and
vice versa. On the other side, the following expression,

Pyock(p) = max(1 — M(p), S(p,b)) (6.5)

defines the probability that a pixel € F(i) belongs to background if both its
motion value is low and its similarity to current backgrouschigh, as stated in the
constraints described before. It must be noted that th&éaehip,

Pback + Pfore =1 (66)
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does not necessary verify, because the value¥ gf) and.S(p, b) are not related
one to each othet.

The background algorithm with confidence (BAC) starts byrtgla frameF'(i) to
be the initial background modét (i) (the model in time), and sets,

Vbyy € B(i),cp (i) =0, 04,(i) =0 (6.7)

beingc, (i) the confidence value of pixél. , ando, , (i) the filtered probability
in time 4.

The valuec, , (i) measures how many times a background pigel, has been
continuously classified as background. This value is eedasto the rang@), 1] after
its update by computin%. On the other side, the value of, , (i) measures
how good the background classification of that pixel has lmem the time. Values
of o, ,(7) are a measure over time of the confidence of the fixgl € B(i) and
how close to previous values of the background model is. Tlise will be reduced
in the case a pixeb, , € F(¢) is continuously classified as foreground. As soon as
this changes, and the pixel is again classified as backgrtbedalue ot , (i) will
increase again. The filtered probability is defined as a fonaif the confidence,

and the probabilityPy, .,

Uw,y(i — 1) ) Cﬂv,y@) + Poack (px,y)
Cry(i) +1
This filtered probability is used, together with other paedens, to avoid that an
object captured in the first model stays forever in the mddehioved.
Figure 6.2 shows the evolution ef; , for a pixel which is continuously classified
as background. Its background probability is modelled wittormal distribution.

Vby,y € B(1) : 04,4(1) = (6.8)
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Figure 6.2: Simulated evolution of the filtered probabitifya pixel (see equation 6.8)
in the case it is always classified as background and its backd probability follows
a normal distribution.

Next two framesF'(i+1) andF'(i +2), are ignored and used only to detect motion
in frame F'(i + 3). For all the next incoming frameS(i), motion and similarities with
B(i — 1) are sought for, to segment frani&s).

1Equation 6.6 would verify if the definition faP,q., = min(1 — M(q), S(g,b))
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OnceF (i) is segmented, the modBl(: — 1) must be updated to obta(), using
pixels in F(¢). Not all pixelsb,, , € B(i — 1) are updated in the same way, it depends
ON Pyoei (Pa,y)s Czy(1 — 1) @andoy , (4).

After background subtraction pixels of franf&i) are separated into four sets; the
foreground setf Set, the background sétSet, dSet for doubtful pixels and finally
cSet for pixels in B(i) whose grey level will be replaced by the grey level of pixels i
F(i). Formally, these sets are defined as follows,

fSet ={psy € F(i) : Prore(pz,y) > T,being 1 > 7 > Prger(Pay)} (6.9)

bSet = {py,y € F(i) : pu,y ¢ fSet} (6.10)
dSet = {p,, € fSet : 0 (i)<08AM>075} (6.11)
= {Pa,y 102,y . Cw7y(i — 1) 1< . .
. Czy(i —1)
cSet = {py,y € fSet : 044(1) < 0.8 N —2——— < 0.75} (6.12)

Cay(i—1)+1

Pixels will be classified as foreground in tlfi§et only if their foreground probabil-
ity is high. A restrictive probability thresholdingcan be used in equation 6.9 in order
to consider as foreground only those pixgls, with very high values 0P, (ps,y)-
This way, it is possible reducing some of the shadows of theoctd

Doubtful pixels,dSet, are those whose filtered background probability is less tha
0.8 (not high enough as to be decisive), but whose confidenceélliowr the third
quatrtile (.75), so high that makes doubt. Recalling that the algorithntsstaith zero
knowledge about the scene, special care must be taken vagthibshaviour, in order
to quickly change pixels which do not describe the backgdqunoperly. On the other
side, pixels in the cSet represent pixels, whose confideaes dot arrive to the third
guartile, and will be replaced by values from the currentiiea Elements of these two
sets are in fact extracted from tiiéet.

Values defining the previous sets should be chosen to be estrjctive, this way,
pixels which may yield low background similarity are quigképlaced. In section 6.6,
an study on different values afis performed.

The regions of interest of fram&'(i) are then defined by fSet. We define the
following set for convenience,

A = bSet U dSet (6.13)

6.2.4 Model update

We update background pixels in a different way, dependingheir observed be-
haviour. Pixels which belong to the cSet are directly chdrgevalues inF'(i). Pixels
in the dSet will be forced to update strongly than those inatBet in order to be more
similar to the expected background. Being, € F'(i) a pixel in current frame, the
modelB(i) is updated as follows,

Vby,y € cSet 2 by (1) = pgy (i) (6.14)
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Vb € At by y (i) = bay (i = 1) + (1 = @) - pay (4) (6.15)

Confidence of pixels is also updated distinguishing the settiich each pixel
belongs to. In this case, pixels which describe the backgtincrease their confidence
and for the others, the confidence is decreased. On the atleerpsxels which are
copied from the frame, take a confidence equal to zero. Thédemte of pixels in
B(1) is updated according to the following expressions,

Vpg,y € bSet : ey y(i) = oyt —1) +1 (6.16)
Vpgy € dSet @ cpy(i) = coy(i—1) —1 (6.17)
Vpa,y € cSet : cqy(i) =0 (6.18)

As this operation is performed in a frame by frame basis, axelpare classified
after segmentation, any pixel whose confidence is reduceddayporal occlusion by a
foreground pixel will recover its previous confidence asrsas the occlusion finishes.

The valuec, , is never lower thai) because, should the confidence of a pixel be
under0.75, the pixel would be classified in th&et, see equations 6.12 and 6.18, and
thus, its confidence will be settg , = 0.

This definition of confidence, which is further used to coneptlie adaptation co-
efficient of the model, allows a pixel to change very quick wits confidence is low
and become more static as time elapses. In figure 6.3 theateduévolution of the
confidence of a pixel, constantly classified as backgrousdhown. The plot shows
that initially the value is small but quickly saturates.
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Figure 6.3: Simulated evolution g% for a pixel which is continuously classified
as background. ‘

A difference with respect to other algorithms is that we msgusing a different
adaptation coefficient,, , (i) for each pixel depending an, ,, (i) they show. This way,
we expect pixels which strongly described the scenario tatgpsmoothly. On the
other side, pixels whose confidence diminishes, recallirggrheans their background
probability is descending, take a lower, ().
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The adaptation coefficient for pixgl; , is computed taking into account the confi-
dence of the pixel in timeé according to the following equations,

- ) — _Cay(d)
Vpzy € At oy (i) =0.98 NOES (6.19)

Vpgy DA ag, (i) =0 (6.20)

This coefficienta,, ,,, takes values in the rangé,0.98). Being 0.98 the value
which corresponds to pixels with a high confidence amige value which corresponds
to pixels which have been changed. We used the valé® as the maximum value
for the adaptation confidence in order to force all pixelsdpecwith light conditions,
except those which received a new value.

6.2.5 Segmentation confidence

As said before, together with its grey level value, each Ipixevides a confidence
value which may be used to weight the quality of the segmiemat\We define the
segmentation confidence of the modxl:) as,

1 Ca,y (1) .
SC= TN .ch’y(i)+1,Vb€ B(i) (6.21)

being M « N the number of pixels of the model. The segmentation confieleac
can be calculated for a target of frarfigi), by particularizing this expression consid-
ering only the pixels segmented for this target.

The segmentation provided by model pitel, € B(¢) will depend of its confi-
dence as said before. We can calculate the segmentatioleocd §c) for a region
of interestR; with an area: of frame F'(i) segmented using mod#l(i) as:

1 Cay
se(Ri) ==Y P o2 VDry € Ry (6.22)
The valuesc(R;) measures only the quality of the pixels segmented as fonegro
not the segmentation itself. This means that it does not uneaspixels are correctly
segmented but the confidence that we can have on the pix¢larthkabelled as fore-
ground. There is no direct relationship between the amousegmented pixels of an

object and the confidence of their segmentation.

Finally, in order to test when the background model is stdbée mean square
quadratic differencengsqd) of the difference between two consecutive models is cal-
culated. An stop condition for the algorithm could dependtom verification of the
following condition,

msqd(B(i), B(i — 1)) < 1073 A s¢ > 0.995 (6.23)

6.2.6 Corrupt model

Once pixels are classified as foreground or background, plsioriterion to detect
corrupt models is used.

The hypothesis is made, that scenarios contain more baakdrthan foreground
pixels. The number of foreground pixel is computed at this stage and compared
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with the total amount of pixel& - M in the scene. Following the hypothesis, it should
verify thatP < N - M. In fact, a real numbex < 1 can be found thaP = - N - M.

The valueu can be used to detect corrupt models, in the q@%@ > u then the
model can be considered as corrupt. Pixel motion is impflicibnsidered, as long as
foreground pixels are defined in terms of their discrepanith tvackground or with
motion in their location. The value should be set experimentally depending on back-
ground clutter.

In the case the process is restarted in tipraodel values are séb € B, B} (0) =
Fy(i), cp = 0). With this initialization, we assume that most pixels whigare con-
sidered as background are still background, but with differalues.

(i) Segmented lmag€(1)0) Segmented magk) Segmented |magk) Segmented  image

F(390) F(550)
-

(m) Control image forr'(1 (n) Control image fo(ro) Control image fc(rp) Control image for
F(390) F(550)

Figure 6.4: Sequence of background model reconstructitim BAC. From top to
bottom, in columns, background model, incoming frame, ianatiic and hand segmen-
tation for frames it = 1, 90, 390 and550. Output of automatic segmentation is filtered
with a size filter to remove noise.
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6.2.7 Results obtained with a particular sequence

A representative situation aim of our developments is etelll in this section, see
figure 6.4.

Results of the experiments are analysed, considering tloei@nof true positives
(T P) obtained in the segmentation process for each object iredoames, see table
6.1. And the goodness of the background model built by the BA@rithm, consid-
ering the amount of true negativeB ) is shown in figure 6.5. Also, the evolution of
model's confidence is considered. The evolution of the medehstruction and how
object behaviour influences it, is discussed through céasituations in which objects
enter or leave the scene or stay still.

In order to evaluate quantitatively the evolution of BAC, fivet segmented manu-
ally 22 frames randomly selected of a sequence that staf§(n with several people
in a scene, simulating a surveillance system, in that morB¢0j is created with tar-
gets andc = 0, see figure 6.4.

The objects present in the scene are segmented using thé obtaieed with BAC
and with the mean. The segmentation using the backgrounelnbthained with the
mean was performed subtracting the background and thaisbolt with a unique
threshold " = 15).

In table 6.1, segmentation results for frani&®0), F'(390) and F'(550) obtained
with BAC and mean are comparesk; of pixels found in each target’s segmentation
with BAC is shown under columse The original frames, together with segmentation
result and the background model built by BAC, may be foundgurg 6.4.

Target Frame90 Frame390 Frame550
mean | BAC sc mean | BAC sc mean | BAC sc
Isttarget | 0.74 | 069 | 0.95 | 0.88 | 096 | 099 | 0.75 | 0.71 | 0.71
2ndtarget | 0.70 | 0.90 | 0.98 [ 0.71 | 0.89 | 0.99 | 0.74 | 0.83 | 0.82
3rdtarget | 0.49 | 0.37 | 099 | 0.69 | 0.51 | 0.99 - - -
4th target | 0.49 0.47 | 0.92 - - -

Table 6.1: Rate of' P found for each target using different methods to obtain the
background model, BAC and mean. In control frapdea total amount of four objects
were found, in390 only three and in framé50, two objects were found. Targets are
not the same in frames.

In F(90), a low rate ofT'P is obtained for both algorithms, due to the fact that
they are far in the field of view of the camera are segmentectmoorly (target);
something similar happens with targetwhich is a group of two people moving still
in the same area they occupied at the beginning of the movie.

In figure 6.4a and 6.418(0) and B(89) are shown, it may be seen thatit(89),
background model has achieved = 0.982 and some targets have been removed.
Improvement over time is evident d%(389) contains no target. This improvement
manifests inF'(390) and F'(550 with a better segmentation.

Evolution of model’s confidence obtained for each input fedhti), 7P andT' N,
of BAC and mean can be seen in figure 6.5 for the manually segaéames. Objects
standing still for long periods of time influence negativég value of7"P for both
algorithms. Figure 6.5 shows that BAC obtains higher valfeg' P than mean. In
F'(201) several objects leave the scene and others start comingliimd(680) some
objects stand still; this explains that some foregrounctlgixare not found. On the
other side ' N, easily reach a high level as area of quiet targets is smalpaoed to
the image. It can be seen that BAC keeps an stable valuEXoduring its execution,
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background modelling using the mean loses accuracy due toljects that stood still
at the beginning of the process.
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Figure 6.5: Evolution of confidenc& P andT' N for the discussed video. Spots cor-
respond to control frames.

This experiment shows that BAC obtains background modetgpenable to those
obtained by using any statistical technique; with the adukytkfit of permitting seg-
mentation from the very beginning of the process.

6.3 BAC with colour coordinates

In this section we extend the algorithm presented in previgection to work with
colour coordinates, by adding the use of RGB coordinatesidiyg this, better results
for foreground and background are expected.

Choosing a colour coordinates model depends on severair§acOn one side,
usually, cameras can produce images in RGB or YUV coordinatel though mathe-
matical methods exist that can convert coordinates of osesyto another, this con-
version may be time consuming and have a severe impact oystensperformance.
Other systems exists, such @4 EL*a*b*, for instance, which could be claimed to
have better properties than RGB.

We chose the RGB system because it is a widely used systen iarehsy to find
cameras which reproduce images using this system. RGB bafrdlwback that it is
not perceptually uniform because it was designed from thgpeetive of devices and
not from a human perspective.

6.3.1 Extensionto RGB

We extend first the similarity criteria introduced in senti®.2.1 using RGB coordi-
nates. The similarity between two pixelsandq is how given by an extended version
of equation 6.1. The only difference is that the distancevben the pixels is extended
to use the three RGB coordinates where the colour distanceniputed as the Eu-
clidean distance of two colour vectors ands a constant determined experimentally.
In this case, equation 6.1 is modified and the similarity fiomcis given by,

dist

S(p,q) =e =

(6.24)
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dist = \/(pr — qr)* + (bc — 46)* + (P5 — 4B)?) (6.25)

As in previous section, motion can be computed using equ#tid4. Motion of a
pixel can be defined as its similarity with previous valueshef pixel. Beingg, , €
F(7) a pixel in the current frame with three colour componepts, € F(i — 1) and
T2y € F(i — 2); we define the motion of, , as,

M(q) — (1 — S(p%y’ q%y)) ; (1 — S(Tm,ya qgc,y))

The remaining processes are kept the same, as they all éngoly computations
with probabilities or are easily extended to the three RG&dimates. A comparison
of this process with the original BAC is made by using the Vi@lter benchmark in
section 6.6.

(6.26)

6.4 MBAC

The BAC algorithm is designed to maintain one model per pat it encounters
difficulties when it has to deal with clutter in the backgrduor outdoor scenes in
which there is a significant amount of motion in the backgrhdior instance, scenarios
with waving trees. The use of just one model to describe tlodraund limits the
capabilities of the algorithm for such scenes.

In order to cope with this problem, we add the possibility escribing the back-
ground with more than one model. Each model will contain filxeljs colour descrip-
tion and a confidence value used to discard models. This end@value measures
how the model matched the pixel in the last frames, and wiltlose to one if the
model matches closely the pixel's value, and close to zetades not.

The extension to multiple models per pixel is quite strefigttard. Recalling equa-
tion 3.1, comparing the value @f, , with the v models that describe it in the model
can be reduced to find the model which yields the maximum aiityl with F, , as
computed in equation 6.1.

Following the approach introduced by [grimson99], afterkzround segmentation
and model adaptation, the models for each pixel are themexatde descending order
according to their confidence. Then, the fikstmodels whose confidence sums equal
or more than a threshold are kept and the rest are removed. We employed a Vélue
to indicate the number of models considered per pixel.

Figure 6.6 shows the distribution of pixels which took diéfet colour values due
to motion in the background. BAC is unable to handle thisatitin and this justifies its
extension in order to handle several models per pixel. Thgiblition is represented
in grey tones, black pixels did never change their initiabglpwhite pixels indicate a
heavy rate of model changes.

Figure 6.6 illustrates the suitability of using a differemount of models per pixel
instead of setting a unique value for the entire image antdntlagbe this information
could be used to decide which pixels need more models, grthesinitially expected.

6.4.1 Segmentation process with MBAC

The algorithm MBAC starts by taking a franf&(7) to be the initial background model
B(i) (the model in time)), and sets,
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Figure 6.6: On the left, image showing the areas in which gemknd models were
changed in order to adapt to changes in the background. aheefcorresponds to an
outdoor sequence of the Wallflower benchmark. On the rigig,frame of the original

sequence.

Vbe B,Y1<m<K:cp(0)=0.01 (6.27)

beingc; (0) the confidence value of the-th model of pixelb in time ¢ = 0. This
confidence value measures how good the model describesxitle pis pixelb may
have more than one mode, a paramétetimits the maximum number of models for
pixel b.

Next two frames,F'(i + 1) and F(i + 2), are ignored and used only to detect
motion in frameF'(i + 3). For all the following framed’(j), j > ¢ + 3, motion and
similarities with B(: — 1) are sought for. We define the probability that any pixel
belongs to background as,

pBack(q) = maxz(1 — M(q), max(S(q, B"))) (6.28)

analogously, the probability of belonging to the foregrdisicomputed as,

pFore(q) = max(M(q),1 — max(S(q, By"))) (6.29)

beingS(q¢, By*) the similarity between pixe} and them-th background model of
pixel b € B(i — 1) andM (q) the motion of a pixel as defined in equation 6.3 .
It must be noted that the relationship,

pFore(q) + pBack(q) =1 (6.30)

does not necessary verify, according to the definitions ti pboobabilities.

It is also straightforward to see, that equation 6.28 dbssrimathematically the
intuitive idea that pixels similar to background or whicle aeasonably stationary have
a bigger probability of belonging to background.

On the other side, equation 6.29 states that pixels vergréift to background or
very different to previous values will have a bigger proltigbbf belonging to fore-
ground.

The segmentation separates pixels in two different se¢sfdteground set (fSet)
and the background set (bSet), defined as,

fSet ={p € F(i) : pFore(p) > 7, being 1 > 7 > pBack(p)} (6.31)
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bSet = {p € F(i):p¢ fSet} (6.32)

By changing the value of, we restrict the criteria to keep only pixels with high
foreground probability in order to remove possible shadowsything which is not
considered to be foreground, is classified as background.

A notable difference with BAC, is that in this case aiet nor dSet sets are built
after segmentation. This is due to the fact, a more flexithesa using the confidences
of models was used to decide whether one ofthpossible descriptions of a pixel in
the background model should be kept or removed.

6.4.2 Corrupt model

Once pixels are classified as foreground or background, plsioriterion to detect
corrupt models is used.

The hypothesis is made, that scenarios contain more baakdrthan foreground
pixels. The number of foreground pixel3 is computed at this stage and compared
with the total amount of pixeld - M in the scene. Following the hypothesis, it should
verify thatP < N - M. In fact, a real number < 1 can be found thaP = p- N - M.

The valueu can be used to detect corrupt models, in the q@%«; > u then the
model can be considered as corrupt. Pixel motion is impficibnsidered, as long as
foreground pixels are defined in terms of their discrepaniti vackground or with
motion in their location. The value should be set experimentally depending on back-
ground clutter.

In the case the process is restarted in tinraodel values are seb € B, B (0) =
Fy(i), ¢t = maz(c™). With this initialization, we assume that most pixels whicére
considered as background are still background, but wifergifit values.

6.4.3 Model update

In the case the model is not restartq@f?& < ), it is updated with information of
frame F'(i). For every pixelb, , € bSet, the confidences and colour information
are updated. In order to cope with light changes, the medethich matched the
background is updated as,

By, (i) = By (i — 1) + (1 — ) - Fyy(4) (6.33)

T,y

and its confidence is updated according to the following esgion,

cpy(i) =a- ey (i — 1)+ (1 —a) - pBback(ps,y) (6.34)

z,y

Note that this computation of confidence is similar to equreti6.16, 6.17 and 6.18
used for BAC, but simplified in order to reduce computationgiwhen several models
are considered. Also, provided that several models ardaenesl per pixel and only
one is adapted per frame, the adaptation factor can be atvaymme.

Any other model describing pixeb which did not match the background model is
updated according to equation 6.35,

@) =a-d (i-1),VI#m (6.35)
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wherea is a learning rate factor in the ranffe 1]. The difference with equations
6.16, 6.17 and 6.18 and the general process followed in BAfhidgsit is easier to
control the quality of each model for each pixel if they aragered the same way.

For every pixep, , € fSet, the K background models describing it are ordered in
descending order according to their confidences. The sulreafdnfidences of pixel
Dz,y IS given by,

Szy = 2y (1), 1 <m <K (6.36)

In the cases, , < v, a value set by user, a new modaeill be added or the worst
model will be replaced by the current value of pixel, € F(i). For the new model
v, the algorithm set&? | (i) = p.., andc;, (i) = 0.01.

The parametety controls the speed at which new models are included in pixels
descriptions. Ify is very close tal, the algorithm will try to maintain always the most
accurate possible description of each pixel. In the easeclose to0, it will show a
bigger resistance to change the model.

Thus, v should be kept big for scenarios with a relatively quiet lpmokind and
small for scenarios with background clutter.

The confidence computed for each pixel is an indicator of hoadgits models
describe the background, in this case, MBAC computes thédmmce of a regiori;
as,

max(c™, (1
sc= =Y |R‘(| ey(@) Vi<m<K (6.37)

being|R;| the total amount of pixels in the regidg.
Thus, an overall estimation of the background’s model qgalitime is given by,

Qi) = ZVban;l.aﬁcgfy(i))

(6.38)

recalling thatV - M is the total amount of pixels in the background. Value§¢f)
close tol indicate a model which describes the scene accurately, eottier side,
values ofQ)(7) close to0 indicate the opposite.

Experimental results using the Wallflower benchmark areudised in section 6.6.

6.5 Fuzzy background subtraction (FBS)

BAC and MBAC compute the segmentation of frafig) by considering its similari-
ties with background modéB(: — 1) and the motion in each pixel. This computation
has some drawbacks. First, a fixed threshold must be set atiegs 6.1 and 6.9.

Also, the MBAC extension can produce wrong results if corapans are not accu-
rate. For instance, one potential problem occurs when a igixscillating in different
values. It is possible that very close values are considerbeé different and thus, the
pixel could have several models very similar among them.

A different line in our research is opened when the uncastaim threshold se-
lection is faced. In this section we introduce an study of lbis uncertainty in the
threshold selection can effectively be faced using fuiizg-techniques. The back-
ground subtraction method introduced in this section ie8am the common sense
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fact that background pixels should yield small distancesms$ubtracted from back-
ground. Thus, a per-frame threshold can be computed if aodésiobtained to deter-
mine when a distance is sufficiently small.

In section 6.5.1 we discuss the empirical results on whiclbased the design of
our method for threshold computation. Two membership fonstare built per frame
according to the distances of pixels to the background model

Based on the threshold computation algorithm describe@dtian 6.5.2 we pro-
pose an algorithm for background modelling and object dietecwhich considers
consecutive frame§'(0), F(1),...F(n), expressed in CIEL*a*b* coordinates, repre-
senting either outdoor or indoor scenarios. Pixels in thekp@und model are de-
scribed with several models in order to cope with clutterhia background of the
scene.

Besides, we propose a mathematical definition of model ptio based on the
values of the membership functions.

The background subtraction of each frame is divided intedhdifferent stages
following a similar schema as the one introduced in [toya®hadn the first one, a
pixel-wise subtraction as explained in section 6.5.3 i$quared. The following stage,
discussed in section 6.5.4, recovers foreground pixelsiwtould be erroneously con-
sidered as background by taking into account spatial oglakiips with their neigh-
bours. In a third step, if the background is not corruptedseetion 6.5.5, it is updated
6.5.6.

By calling our technique fuzzy, we want to stress the fact tha algorithm is
inspired in the results obtained in fuzzy logic. As explaiteer in this section, instead
of generating a threshold based on a priori statistics,|g@ithm computes a threshold
based on an empirical rule applied to actual data.

6.5.1 Empirical results

We base our approach in the idea that background pixels wfefdd(:) should yield
small distances when subtracted from an accurate backgymmodelB(i — 1). In this
section, we introduce the empirical results that lead usitiol lan algorithm based on
this simple idea.

We performed two kind of off-line experiments with ab@00 frames of differ-
ent sequences representing different scenarios, among #wne of the Wallflower
benchmark [toyama99] used later in the experiments.

In the first set of experiments, the pixels of two consecuiigees of a sequence
are pixel-wise subtracted. The aim of these experimentstegisig what is the dis-
tribution of pixels according to their distance to a backgr model and according to
distances to the previous frame. No foreground regions e@mnsidered.

Figures 6.7, 6.8 show the results for two frames of diffesaguences. Frames
are also subtracted from a background model built using mdray frame update
using the algorithm discussed in section 3.6. Both framesvary similar and small
differences are expected. In the left column, from top tadiof it can be seen frame
F(i — 1), frame F(i), on the right column, from top to bottom, the plot of pixels of
the subtraction result grouped by distance to backgroundeinduilt in a frame by
frame basis as the average of previous background valudsharplot of pixels of
F(i) grouped by distance tB'(i — 1).

Another set of experiments was performed taking an initatkground model,
updated in a frame by frame basis using the algorithm digcliss section 3.6, and
subtracting each frame from it. In this case, the distridoutf distances of foreground
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and background pixels to the background were consideredrder to know which
pixels belong to background and which to foreground, pixedse manually labelled.
Figures 6.9, 6.10 and 6.11 show the results for a selectaghgrbframes of different
sequences, top left image the current frafi(g), the image bottom left represents the
manual segmentation of the frame, on the right column, inegep shows the plot
of background pixels according to distance to the backgtonadel B(: — 1) and on
bottom the plot of foreground pixels according to distarcéhie background model
B(i —1).

From the results shown in figures 6.7, 6.8, 6.9, 6.10 and & Thn be seen that
there is a similarity in how background curves behave. Ttsaadast grow of the curves
of background pixels for small distances, which becomesoshes as the distance
increases. In the case of foreground pixels the behaviayuite different, having the
curve small values for small distances and raising to hidhegawhen the distance to
background is big. This behaviour can be modelled with twonipership functions as
those depicted in figure 6.12.

In this figure,d is the distance between two pixels and Hieaxis represents the
membership value. Two functions are represented, on theefbackground member-
ship function (/ B) and on the right, its inverse, the foreground membershigtfan
(MF). The assumption can be made, that up to a distahpéxels have a background
membership value df. If the distance takes values greater thathen the background
membership decreases and, inversely, foreground menibpénsheases.

The decrease of membership value can be modelled in sevayal, wne of the
easiest is using a straight line with an slope proportioodahe probability decrease.
The cross of the straight line with the axis marks the distance at which membership
is zero. In our case, the poinmarks the distance at which any pixel will be considered
as foreground with a membership valuelaind background with a value

The conditionM B < M F could be considered a valid threshold to classify image
pixels according to their distance to background. Unfaataly, it is quite difficult
knowing in advance which the shape of the distances of backagk pixels will be. In
the following section, we introduce a method to approximet® and M F'.

6.5.2 Computation of membership functions

In this section we explain how the background membershigtfan M B is built.
Provided that we only classify elements into two differelatsses, background and
foreground, the following relationship must meet for anygpit, ,,(7),

MB(d,,,) + MF(d, ) =1 (6.39)

We start by considering the euclidean distadgg () between pixelF;, , (i) and
B, ,(i—1) as,

dyy = [Foy (i) = Bay(i = 1), VE (i) (6.40)

In order to ease the following explanations, we define thenadized cardinality of
a distancel as,

) 1 dyy <
Card(d) = Z2rddE x]@(;’) Nd ) (6.41)
That s, the amount of pixelB, , () which yield a distance to background less than
d divided by the total amount of pixels in the imagé - N.




116 CHAPTER 6. BACKGROUND MODELLING AND OBJECT DETECTION

bazkground distance -

L
4 3 o 10 12 14 16 18 B
T T

framodifforonce. -

2 4 G 4 12 1z

Figure 6.7: From top to bottom, the left column shows frafi{e— 1) and frameF ().
And the right column shows a plot of the accumulated perggntd pixels according
to their distance to the background model, and a plot of tbaraalated percentage of
pixels according to their distances (i — 1). As expected, a big amount of pixels
yield small values and the curve reaches the total amounixefspin the image with
small distances. Plots on the right measure distances ihABEoordinates.
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Figure 6.8: From top to bottom, the left column shows frafi{eé— 1) and frameF ().
And the right column shows a plot of the accumulated pergentd pixels according
to their distance to the background model, and a plot of tberaalated percentage of
pixels according to their distances (i — 1). As expected, a big amount of pixels
yield small values and the curve reaches the total amounikefspin the image with
small distances. Plots on the right measure distances ihABEoordinates.
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Figure 6.9: The distribution of pixels according to the digte to background model.
From top to bottom the left column shows the original frarhe, tanually segmented
image, the column on the right shows the plot of the accuradlpercentage of back-
ground pixels grouped according to their distance to th&dpracnd model and finally
the plot of accumulated percentage of foreground pixelsralieg to their distance to
background model. As expected, background pixels yieldlsrales and the curve
reaches the total amount of pixels and the curve for foregtquixels starts raising at
further distances. Plots on the right measure distancet5hAB coordinates.
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Figure 6.10: The distribution of pixels according to thea@ige to background model.
From top to bottom the left column shows the original frarhe, manually segmented
image, the column on the right shows the plot of the accuradlpercentage of back-
ground pixels grouped according to their distance to th&dpacind model and finally
the plot of accumulated percentage of foreground pixelsraliieg to their distance to
background model. As expected, background pixels yieldlsralkies and the curve
reaches the total amount of pixels and the curve for foragtqixels starts raising at
further distances. Plots on the right measure distancetHhAB coordinates.
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Figure 6.11: The distribution of pixels according to thetaliee to background model.
From top to bottom the left column shows the original frarhe, manually segmented
image, column on the right shows the plot of the accumulasdentage of back-
ground pixels grouped according to their distance to thé&dpacind model and finally
the plot of accumulated percentage of foreground pixelsraliieg to their distance to
background model. As expected, background pixels yieldlsrales and the curve
reaches the total amount of pixels and the curve for foragtqixels starts raising at
further distances. Plots on the right measure distancet5hAB coordinates.
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Figure 6.12: Representation of two membership functidd®3 and M F'. The point
labelled witha corresponds to the last value which verifieeB = 1 and M F' = 0.

The decrease of functiall B is modelled by the line with slope, crossingX axis at
d = c. It may be seen that both functions are symmetrical.
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Figure 6.12 shows that the membership functions may be gjppated by using a
straight line between two points with distanegsandd; parametrized as,

_ MB(d\) — MB(dy)
m = R (6.42)

consideringd, the maximum distance at which it is verified B(dy) = 1, the
parameteb of the straight line can be obtained as,

where distanced, andd, are computed algorithmically.

Observing previous plots in figures 6.7, 6.8, 6.9, 6.10 atd &.can be seen that
there is a big amount of pixels which yield very small disesto background. Em-
pirical results show that this amount is arowtd; of the total amount of background
pixels in the image. Recalling figure 6.12, we can set thetpdiniy) to be at the
distanced, that meets the constraidtard(dy) < Cardy, beingCard, a constant
value.

Oncedy is determined, the crossing point of both functions at distal; is com-
puted. In order to do this, again from figures 6.7, 6.8, 6 0 @&nd 6.11, it can be noted
that the distribution of distances of background pixelgiteto raise very quickly. In
the absence of noise, this means that the constfainti(d;,) < Card(d;+1) will be
met ifd; < d;;1. We can approximate the angle of the curve with ¥hexis between
pointsd; andd;; as,

Card(d;) — Card(d;+1)
dit1 —d;

B = atan( ) (6.44)

However, the curve stops raising when the distance beging lsensiderably big
and there are few background pixels to be added to the setanlbe appreciated,
that the angle of the curve with th€ axis takes values close to zero. Usually, at this
point the plot for foreground pixels start to take high valugHowever, real curves
have irregularities due to noisy inputs and that sometiraemll angles are obtained
for consecutive points of the curve because there is a femease of pixels between
two neighbouring distances.

Bearing all this in mind, we propose testing that the comstra < 3, is met a
number of times before computing the crossing poinfvbB and M F', being 5, a
constant determined empirically. The distadgdor which 3 < (3, is met for the third
time, is the last distance for whidlW B(d;) > M F(d;),Vd; < d;.

The background membership function can be then written asaibn of distance
d.y, as follows,

1a Zf 0 S dw,y S dO
MB(dyy) =14 mdy,+0b, if dy <dy, <=2 (6.45)
07 Zf %b < duL,y

Algorithm 4, formalizes the previous method to compdgeandd;, the threshold
that separates background and foreground, is computedsakheation of the curve is
modelled by comparing the angle of the slope between twoemutisze points of the
curve with a constant ang.
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Algorithm 4 Membership function algorithm for computing the threshdjdhat sep-
arates background and foreground pixels following the Kedge acquired with the
experiments of section 6.5.1. Thaised in this algorithm is an small value set in our
experiments te = 0.1.
L dyy — [Foy(i) = Bey(i — 1)
do —0
e« 0.1
Bo < 1°
: while (Card(dy) < Cardy) do
do «— do+¢€
: end while
d; « dy
. detections < 0
: while (detections < 3) do
diy1 —d; +e€
§ — atan( Cord)-Cardn)
if (8 < o) then
detections < detections + 1
end if
i—1+1
: end while
. d1 — dl
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6.5.3 Pixel level processing

Background subtraction methods depend basically on ahtblesvhich acts as a high-
pass filter removing from the output all pixels whose differe from the background
is smaller than a given value. Instead of relying on a singéelgfined threshold, we
propose computing a background membership function to findhe suitable thresh-
old that separates background and foreground after ea&igtmamd subtraction. This
threshold is computed following the algorithm 4 and expmes6.45.

For each frameF'(:), the background subtraction is computed as the euclidean
distance of the colour coordinates of each pikgl, (i) from eachB; (i), being
B} (i — 1) thev-th model for pixel in coordinates, y in time i — 1. This distance,
denoted byi; ,, is computed as,

d;),y = |Fw,y(2) - B;)7y(i - 1)‘7 VFﬂcﬁy(i) (6.46)

The distance finally considered is,

dyy = min(dy, ,,d2 ,..d3 ), Vv (6.47)

T,y XY

Thus eachi, , stores the smallest distance betwéen, (i) and theB; (i — 1).

Following the algorithm 4, we compute a threshdldthat separates background
and foreground pixels. Background pixels are labelled wihand foreground pixels
with 1 by means of a binary image built as follows,

0, Zf dw7y < dl

1, otherwise (6.48)

VP ) Suli) = {
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6.5.4 Foreground recovery

The aim of this stage is recovering foreground pixels thay e been lost due to
inaccurate segmentation. We followed a similar approadhimstage as authors of
[toyama99] and fuse previous segmentations and motiomnrgtion to locate pixels
that may be recovered as foreground. In our research, wehaeelver a colour list
for each region instead of building a histogram of grey taem [toyama99].

The frame difference between framgg¢i) and F'(i — 1) is computed as,

dy (i) = |Fy (i) — Fyoy(i — 1)], VE,(0) (6.49)

With these distances a binary imag&(i) is obtained by applying equation 6.48 to
d;,y(i). Then, the intersection of adjacent pairs of differenceagas and the previous
foreground image is computed as,

P=S' i) ASY(i—1)AS@i—1) (6.50)

Image P contains the coordinates of the seeds that can be used teerdooe-
ground pixels erroneously classified. Connected regionsf P with less tharp,,,
pixels are discarded. Coloues of eachR; are discovered and stored in a 6gt Two
coloursc, andc, such that,, ¢, € R; are considered to be the same if their euclidean
distance is less than a constapy;,,.

For eachR; in P, we check the values of each piXel, y) € R; in frameF(i) and
compute a binary imagg, ,, (¢) as follows,

Lo,(i) = 1, if 3c € C; / dist(c, Fy (i) < Cmin
ey\t) = 0, otherwise

beingdist(c, F, ,()) the distance between colodrand colour of pixelF}, , (7).
ImageL, ,(i) contains all the pixels considered initially as backgrowtmbse colour
is similar enough to neighbouring pixels which were consgddoreground, and thus,
are labelled as foreground as well.

Binary imageS(#) is grown by performing the following operation,

(6.51)

Se(i) = S(i) V L(i) (6.52)

whereS¢ (i) is a binary image in which foreground pixels are labellechwitand
background pixels are labelled with

6.5.5 Model corruption detection

Few methods existin the literature to detect backgroundatmmruption. In [toyama99],
finding an unusual percentage of foreground pixels is censdlto be enough as to de-
cide that the model is no longer valid.

In our approach, model corruption is detected by testindpéf tconstraintl, >
deorrupt 1S Met. This means that a small amount of pixels yield smatiagices to the
background values, breaking the assumption that mostgpsteduld be similar to the
background model.

In the case of background model corruption, the procesartesind keeps only
one model per pixel, as made in section 6.4.2. It sets

B, ,(0) = F, ,(4), cl =max(c,) (6.53)

z,Y T,y
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The difference with the usual approach is that the confidepgef the new model
is inherited from previous frames. In our opinion, this alothe system to keep the
knowledge about the scene dynamics, but does not prevémithanging the values
of the model, if needed. Observing the differences betweey different images, the
limit deorrup: = 10 SeEMS to be safe.

6.5.6 Model update

In this section, the process of background modelling usimgtionsM F' and M B is
explained. The model is initialized without assumptionswttihe observed scene and
is updated in a frame by frame basis.

The algorithm takes as input a sequence of fraf@y), F'(1), ..., F(n) and starts
by setting,

Vz,y , B} ,(0) = F,4(0), c;,(0) =0.01 (6.54)
whereB] ,(0) corresponds to the first model of pixel, ) in time 0 andc}, ,,(0)

is the confidence value of the first model. This confidenceevateasures how good

the model describes the pixel.

Two parameters are set by uséf,the maximum amount of models allowed per
pixel, andv a value in the rangé, 1] that controls the speed at which models of a
pixel are replaced or added, the higher the value, the fastdels are replaced.

After each background subtraction and foreground recovieeymodel is updated
depending on information o8/ (7). Modelv for pixel b, , matches the input, , €
F (i), denoted bYopatcn, if Sf,, = 0 anddynetsr = min(dy,,), Yo # vmatch-

In a similar way as in sections 6.2.4 and 6.4.3, for every Iixat verifies that
Sg:,y = 0, description and confidence of modg| ., are updated as follows,

Bymeteh (i) = a - Bymeteh (i — 1) + (1 — ) Fy () (6.55)
c;:’;f“h () =a- cz’ff”h -1+ (1-a)- MB(d;:';f‘“h) (6.56)

The remaining models # v,,q:c1, fOr pixel b, , also update their confidences as,

Cpy(i) =a-cy (i—1) (6.57)
wherea is a learning rate factor in the range 1] and B} (i — 1) is the value in
timei — 1 of v-th model of pixel at, y.
The models of each pixel are ordered in descending orderdiogato their confi-
dences. If the sum of the confidences verifies that,

7> e, ) (6.58)

v<K

then a new model will be added or tt#é&-th model be replaced. For the replaced
model, the algorithm set8X (i) = F, ,(i) andck (i) = 0.01. Algorithm 5 shows
this process algorithmically.
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Algorithm 5 The process of background modelling. The function
matchedModel(z,y) returns vmq:cn, the index of the model for pixeb, , that
matched the input. On the other hand, the funcébnoseM odelT oUpdate(x,y)
returns the index of the model chosen to be updated for pixghfter ordering them.

1V payy
2: if 5§ , == Othen
3 ey, (i) —ac (i—1), Vv

4: else

5 Umatch < matchedModel(z,y)

6: B;:zaf““ (z) — aB;”;;“t“” (z — 1) + (1 — a)Fw,y(i)
7

8

9

chrien (i) ac;;f;;,éich (i — 1) + (1 — @) M B(dZneen)
C;,y (Z) — ac;7y(l - 1);V’U # Umatch

:end if
100 if y > Y7 e, (4) then
11:  vjast < chooseLastModel(z,y)
12 Bplast(i) « Fy 4 (4)
13 cplast(i) « 0.01
14: end if

6.6 Experiments

Several experiments were performed in order to estimatdodise set of parameters
for the algorithms introduced and compare their resulté wther well-known algo-
rithms found in the literature. In the experiments, we coragahe true negatives
TN that is, the amount of pixels classified as background by ltq@righm which are
truly background and the true positivés, the amount of pixels classified as fore-
ground by the algorithm which are truly foreground. Falssifdees (¢'P) and false
negatives ['N) can be inferred by subtracting previous values fromespectively.
This measure served to compare the results of algorithmsnQative and qualita-
tive results were obtained by performing experiments ugiegVallflower benchmark
[toyama99], which seems to be accepted by the scientific agmtgnas a common
validity test for background modelling algorithms.

We compared the performance of several well-known algmstiproposed in the
literature with the techniques introduced in this chaptng the Wallflower bench-
mark. The algorithms are introduced in section 3.3, a briefmarize follows:

e Frame Difference (FD): Each image is subtracted from the previous image
in the sequence. Absolute differences greater than a thicesine marked as
foreground.

e Mean and Threshold (MT) : Pixel-wise mean values are computed during a
training phase, and pixels within a fixed threshold of the mae considered
background.

e Mixture of Gaussians (MoG) [grimson99]: A pixel-wise mixture o8 Gaus-
sians models the background. Each Gaussian is weighteddaugado the fre-
guency with which it explains the observed background. Thustnieavily
weighted Gaussians that together explain &% of past data are considered
background. Two different versions of the algorithm wested, the grey tone
and the RGB versions.
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e Textures (LBP) [heikkilaO6]: textures in the neighbourhood are modellgd b
means of LBP histograms. Several histograms may be assigmeath pixel, in
order to consider several models.

e Wallflower (WLL) [toyama99]: a combination of three different processing
layers which operate at different levels, pixel, region frache.

The algorithms introduced in this chapter are:

e Background Adaptive with Confidence (BAC)[rosell08]: motion and back-
ground subtraction are considered in order to segment baickd pixels from
foreground pixels. A confidence value is used for each motleb extensions
of this algorithm are also tested BACc, which is an extensid@AC to colour
coordinates and MBAC, a multimodal extension of BAC.

e Fuzzy background subtraction (FBS) [rosell10b]: a background membership
function is computed taking into account the distances athwvpixels of incom-
ing frame lay from the background. This function permits ¢benputation of a
segmentation threshold.

Table 6.2 summarizes the differences and similitudes letvilee compared algo-
rithms. In each row, the most representative features df algorithm are shown. For
instance, frame difference is not adaptive, does not needrartg period to start work-
ing, does not offer multimodal support, thus in theltimodal supportolumn a dash
appears in the corresponding cell, and uses a user setégpientation threshold.

In the case of the mixture of gaussians, the threshold ibksttad by their authors
as2.5 times the variance of the background model. In our opiniois,frevents it from
being classified as a manual threshold, however, it is alsottrat the threshold is not
computed directly from data, so it is classified as semi+aati.

Needing a training period or not, makes a difference if tigpathm is expected to
work under any kind of circumstances. For instance, the teadpnedian filter algo-
rithm needs a set of frames in order to start processing reawefs, otherwise, it cannot
build a reliable model. The Wallflower algorithm also needlpérform intensive and
time consuming computations before starting its normatapmn.

On the other side, the other algorithms discussed in thisoseassume an initial
frame as a starting model and update it over time.

Algorithm. Adaptive | Training period | Multimodal support | threshold computation|
Frame difference N N Manual
Mean and threshold Y Y N Manual
Mixture of Gaussians Y N Y Semi-automatic
LBP Y N Y Manual
Wallflower Y Y Y Automatic
BAC Y N N Manual
BACc Y N N Manual
MBAC Y N Y Manual
FBS Y N Y Automatic

Table 6.2: Summarize of the features of the different comgbackground modelling
techniques.
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6.6.1 The Wallflower benchmark

We used the Wallflower benchmark in our experiments with theat comparing the
performance of the techniques listed in table 6.2. It haativantage that it seems to be
established as a de facto benchmark for background moglelgorithm’s comparison.

This benchmark is composed of seven sequences in whicheiffehallenging
situations are represented, each situation is motivated tifferent problem, fore-
ground aperture, sudden changes of illumination, constatibn, background clutter
and background adaptation over time.

Authors of the benchmark took one sequence of images tosepreach of first
seven problems listed in section 3.3. Each test sequendaesheigh at leasR00 back-
ground frames for training the algorithms, except for thetbtsap sequence (the first
200 frames of the bootstrap sequence were nevertheless usadifong algorithms
that require a training phase). Also, each sequence hadmkivame, used to test the
performance of the background modelling algorithm, thistoa frame corresponds to
a manual segmentation of the scene. The sequences are:

¢ 1. Bootstrapping: The sequence consists of several miofigasoverhead view
of a cafeteria. There is constant motion, and every framé&awpeople.

e 2. Camouflage: A monitor sits on a desk with rolling interfese bars. A person
walks into the scene and occludes the monitor.

e 3. Foreground Aperture: A person is asleep at his desk, ddveen the back.
He wakes up and slowly begins to move. His shirt is uniforndioared.

e 4. Light Switch: First, there is a training period in whichetbamera sees a
room with the lights both on and off. Then, during the testusggre, the room
starts with the lights off. After a few minutes a person wailksturns on the
light, and moves a chair. We stop the algorithms shortlyr dlfte light comes on,
leaving the various pixel-level adaptation mechanismdéaaate time to adapt.
In addition to the person, the recently moved chair is carsid foreground.

e 5. Moved Object: A person walks into a conference room, makegsephone
call, and leaves with the phone and a chair in a differenttjposi The back-
ground is evaluated( frames after the person leaves the scene, giving those
algorithms that adapt time to do so.

e 6. Time of Day: The sequence shows a darkened room that dhaleaomes
brighter over a period of several minutes. A person walksshsits on a couch.

7. Waving Trees: A person walks in front a swaying tree.

6.6.2 Analysis of BAC and MBAC parameters

In this section, we evaluate the parameters of BAC and MBA@rithms before com-
paring their results to other algorithms. With these experits the impact of parame-
ters on results can be discussed. The parameters studjethéo with the reference of
the equation where they are employed, are listed in tableJi8 to the vast amount of
combinations of values, only the most significant experit®and results are discussed
in the following paragraphs.

In equation 6.1, the parametedetermines how strict or loose the comparison with
the background will be, in order to determine the most sigtaalue for this parameter.
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equation Expression Parameter
—Tp—d]

Eqg. 6.1 S(p,q) =e = K

Eq. 6.9 fSet = {pz,y € F(i) : Pfore(Pz,y) > T,being 1 > 7 > Prack(Pa,y)} T

Eq. 6.36 Y > D<Kk Cay () v

Table 6.3: Description of parameters influencing BAC and NIB&xecution.

Tables 6.4 and 6.5 show the results obtained by varying thesafx in equation 6.1
and its impact depending on the valuerafsed. In general, the lower the valuexahe
lower the difference between two pixels should be, in orddre considered similar.
This effect is specially significant in sequensavingTreesin which the percentage
of T'N improves as the value of increases, being better in the caserof 0.6. As
expected, fok = 20 the values off N are higher than the others; this is explained by
the fact that ag increases, pixels must be more separated to be considéiere ali.

BAC

T=04 K=25 k=10 k=15 Kk =20
Seq. TP TN TP TN TP TN TP TN
bootstrap 0.87 | 0.43 ] 0.59 | 0.92 | 0.55 | 0.94 | 0.50 | 0.95
camouflage 0.74 1 0.74] 077 [ 090 | 0.72 | 0.90 [ 0.70 | 0.93
foregroundAperture| 0.90 | 0.60 | 0.49 | 0.98 | 0.24 | 0.99 | 0.20 | 0.99
lightSwitch 082 | 0.15| 030 | 0.86 | 0.48 | 0.90 | 0.47 | 0.91
movedObject - 0.97 - 1.00 - 1.00 - 1.00
timeOfDay 083 | 0.77| 042 | 098 | 0.35 | 0.98 | 0.30 | 0.98
wavingTrees 096 | 0.32 | 0.86 | 0.67 | 0.81 | 0.73 | 0.75 | 0.79

Table 6.4: Rate of' P andT'N obtained for the Wallflower benchmark using equation
6.9 to detect foreground regions with= 0.4. Dashed results mean that no foreground
pixels were labelled in the control image.

BAC

7 =0.6 K=25 k=10 k=15 Kk =20
Seq. TP TN TP TN TP TN TP TN
bootstrap 0.67 | 0.82 | 055 | 0.93 | 0.48 | 0.96 | 0.41 | 0.97
camouflage 040 [ 0.89] 015 095 | 0.72 | 0.91 | 0.70 | 0.92
foregroundAperture| 0.72 | 0.30 | 0.53 | 0.80 | 0.49 | 0.90 | 0.47 | 0.99
lightSwitch 043 | 098 | 033 | 097 | 0.26 | 0.98 | 0.21 | 0.98
movedObject - 1.00 - 1.00 - 1.00 - 1.00
timeOfDay 0.70 | 095 | 048 | 097 | 0.37 | 0.98 | 0.31 | 0.98
wavingTrees 091 | 056 | 0.86 | 0.68 | 0.80 | 0.76 | 0.74 | 0.80

Table 6.5: Rate of' P andT'N obtained for the Wallflower benchmark using equation
6.9 to detect foreground regions with= 0.6. Dashed results mean that no foreground
pixels were labelled in the control image.

The parameter is intimately linked to the value of in equation 6.1. Different
slopes for the curve represented by equation 6.1, will yigleérent values which are
then filtered depending on. This means that the higher the valuerothe more re-
strictive the segmentation is. We considered that bestpatexs are those which offer
a good balance between valuega? andT' NV, giving more importance to tHEN val-
ues than to th@ P values. Using the Wallflower benchmark offered us the pdggib
of testing the behaviour of the algorithm facing a rich sesitiiations with different
parameters. Thus, the parameter values 5 andr = 0.6 seem to be the best option
according to the obtained results, valuesiaf > 0.8 in the Wallflower sequences
which has no clutter in the background nor sudden changdseddene, in these se-
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guences, we obtained a raté > 0.6.

The value ofr is also linked to the value of in the case of the MBAC algorithm.
In some cases, it may seem that some results do not followxirexted improvement
or deterioration of rates, the cause of this effect is theugirmodel detection, that in
some cases forces a new model to be build and distorts results

Tables 6.6, 6.7, 6.8 and 6.9 show the results of varying therdlues ofr in equa-
tion 6.31 fory = 0.4 andvy = 0.6 andx = 5. On the other side, tables 6.10, 6.11,
6.12 and 6.13 show the results for the configuratjoa 0.4 andy = 0.6 andx = 10
with different values ofr. Comparing the values represented in tables 6.6, 6.7, 6.8,
6.9, 6.10, 6.11, 6.12, 6.13 6.14, 6.15, 6.16 and 6.17, it easelen that in the case of
the MBAC algorithm, the value of does not influence largely the obtained results. In
some sense, this is not an unexpected result, as long agtsaxiaral models permits
the algorithm to respond to different background configarst

k=5 MBAC
~v=04 7 =0.3 T=0.4 T =0.5 T=0.6 T=0.7 7 =0.8 7=0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.66 0.62 0.59 0.53 0.48 0.38 0.30
camouflage 0.31 0.12 0.73 0.73 0.70 0.70 0.69
foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.45
lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.64 0.51 0.43 0.32 0.29 0.27 0.25
wavingTrees 0.95 0.94 0.87 0.79 0.69 0.56 0.45

Table 6.6: Rate off' P obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimeegrimund probability
with v = 0.4 andx = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

K=D5 MBAC
~v=04 T =0.3 T =0.4 7 =0.5 7 =0.6 T=0.7 7 =0.8 7 =0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.89 0.91 0.92 0.96 0.97 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.92 0.92 0.93 0.92
lightSwitch 0.97 0.97 0.97 0.99 0.99 0.16 0.21
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.95 0.97 0.97 0.97 0.97 0.97
wavingTrees 0.43 0.49 0.59 0.72 0.79 0.86 0.92

Table 6.7: Rate of' N obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimoegraund probability
with v = 0.4 andx = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

Tables 6.10, 6.11, 6.12 and 6.13 show the results of varyiaghe values of in
equation 6.31 fory = 0.4 andy = 0.6 andx = 10. It may be seen, that increasing the
value ofr yields a smaller rate df P, on the other hand, it has the effect of achieving
a higher rate o' N. Tables 6.14, 6.15, 6.16 and 6.17 show the results of vatjiag
the values of- in equation 6.31 fory = 0.4 andy = 0.6 andx = 15. As wish previous
combinations of parameters, increasing the value yitlds a smaller rate df P, on
the other hand, it has the effect of achieving a higher ratEéf But results seem to
be worse, specially fdF P, ask increases.
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k=25 MBAC
v =0.6 7=0.3 T=0.4 T=20.5 7 =20.6 7=07 | 71=0.8 T7=0.9
Sequence TP TP TP TP TP TP TP
bootstrap 0.62 0.55 0.50 0.44 0.37 0.31 0.23
camouflage 0.31 0.12 0.74 0.71 0.71 0.69 0.68
foregroundAperture 0.58 0.48 0.47 0.46 0.46 0.47 0.45
lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - -
timeOfDay 0.64 0.52 0.43 0.32 0.29 0.29 0.25
wavingTrees 0.95 0.92 0.87 0.77 0.66 0.51 0.37

Table 6.8: Rate off'P obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimuegrimund probability
with v = 0.6 andx = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

k=25 MBAC
v=0.6 7=0.3 T=04 T =20.5 7 =20.6 7=07 | 71=0.8 T7=0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.87 0.93 0.94 0.97 0.98 0.99 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92
lightSwitch 0.97 0.97 0.97 0.97 0.99 0.18 0.23
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.94 0.97 0.97 0.97 0.97 0.97
wavingTrees 0.45 0.51 0.60 0.73 0.81 0.85 0.93

Table 6.9: Rate of' N obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimuegrimund probability
with v = 0.6 andx = 5. Dashed results indicate that no foreground pixels were
labelled in the control image.

k=10 MBAC

v=0.4 7=0.3 T=04 T =20.5 7=0.6 7=07 | 71=0.8 7=0.9

Sequence TP TP TP TP TP TP TP

bootstrap 0.67 0.69 0.63 0.61 0.54 0.47 0.35
camouflage 0.31 0.11 0.74 0.73 0.71 0.70 0.69

foregroundAperture 0.58 0.60 0.56 0.53 0.48 0.47 0.47

lightSwitch 0.50 0.45 0.37 0.28 0.22 0.17 0.37
movedObject - - - - - - -
timeOfDay 0.65 0.57 0.47 0.36 0.31 0.29 0.28
wavingTrees 0.96 0.94 0.88 0.79 0.68 0.56 0.44

Table 6.10: Rate df' P obtained applying MBAC for the Wallflower benchmark, de-
pending on the value assigned to the minimum foregroundatitity with v = 0.4
andx = 10. Dashed results indicate that no foreground pixels werellied in the
control image.

k=10 MBAC
v=04 T =0.3 =04 7 =0.5 7 =0.6 T =0.7 T =0.8 7 =0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.83 0.88 0.92 0.95 0.97 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.57 0.74 0.84 0.90 0.92 0.93
lightSwitch 0.97 0.97 0.98 0.98 0.99 0.99 0.18
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.95 0.96 0.98 0.98 0.98 0.98
wavingTrees 0.44 0.50 0.55 0.67 0.73 0.79 0.86

Table 6.11: Rate of' NV obtained applying MBAC for the Wallflower benchmark, de-
pending on the value assigned to the minimum foregroundatyitity with v = 0.4
andx = 10. Dashed results indicate that no foreground pixels werellied in the
control image.
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k=10 MBAC

~=0.6 7=0.3 T=04 7=0.5 7 =0.6 T=0.7 T=0.8 7=0.9

Sequence TP TP TP TP TP TP TP

bootstrap 0.63 0.62 0.59 0.54 0.48 0.39 0.30
camouflage 0.31 0.13 0.73 0.73 0.70 0.72 0.69

foregroundAperture 0.58 0.49 0.48 0.48 0.47 0.47 0.46

lightSwitch 0.50 0.44 0.36 0.27 0.20 0.63 0.55
movedObject - - - - - - -
timeOfDay 0.65 0.51 0.43 0.32 0.30 0.28 0.26
wavingTrees 0.96 0.94 0.88 0.79 0.69 0.58 0.46

Table 6.12: Rate of' P obtained applying MBAC to the Wallflower benchmark de-
pending on the value assigned to the minimum foregroundgtitity with v = 0.6
andx = 10. Dashed results mean that no foreground pixels were labiellge control
image.

r =10 MBAC

v =0.6 7=0.3 T=04 7=0.5 7 =0.6 T=07 | 7=0.8 7=0.9

Sequence TN TN TN TN TN TN TN

bootstrap 0.88 0.89 0.91 0.92 0.96 0.97 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94

foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.93

lightSwitch 0.97 0.97 0.97 0.97 0.99 0.17 0.22
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.95 0.96 0.98 0.98 0.98 0.98
wavingTrees 0.45 0.50 0.59 0.73 0.79 0.86 0.92

Table 6.13: Rate of' N obtained applying MBAC to the Wallflower benchmark de-
pending on the value assigned to the minimum foregroundatmitity with v = 0.6
andx = 10. Dashed results mean that no foreground pixels were labiellde control
image.

r =15 MBAC

~v=04 T=0.3 T=04 7 =0.5 7= 0.6 T=0.7 T=0.8 7 =0.9

Sequence TP TP TP TP TP TP TP

bootstrap 0.66 0.62 0.59 0.53 0.48 0.38 0.30
camouflage 0.31 0.12 0.73 0.73 0.70 0.70 0.69

foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.46

lightSwitch 0.50 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.64 0.52 0.43 0.32 0.29 0.27 0.25
wavingTrees 0.95 0.94 0.87 0.79 0.69 0.57 0.45

Table 6.14: Rate of'P obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimuegrimund probability
with v = 0.4 andx = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

k=15 MBAC
~v=04 7 =0.3 T=04 T =0.5 T =0.6 T =0.7 7 =0.8 7=0.9
Sequence TN TN TN TN TN TN TN
bootstrap 0.84 0.89 0.91 0.92 0.96 0.97 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94
foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92
lightSwitch 0.97 0.97 0.97 0.99 0.99 0.16 0.21
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.93 0.94 0.97 0.97 0.97 0.97 0.97
wavingTrees 0.43 0.49 0.59 0.72 0.79 0.86 0.92

Table 6.15: Rate of'N obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimeegrimund probability
with v = 0.4 andx = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.
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k=15 MBAC

v =0.6 7=0.3 T=04 7=0.5 7 =0.6 T=07 ] 7=0.8 7=0.9

Sequence TP TP TP TP TP TP TP

bootstrap 0.62 0.55 0.50 0.44 0.37 0.31 0.23
camouflage 0.31 0.12 0.74 0.71 0.71 0.69 0.67

foregroundAperture 0.58 0.48 0.47 0.48 0.46 0.47 0.46

lightSwitch 0.49 0.44 0.36 0.27 0.20 0.63 0.56
movedObject - - - - - - -
timeOfDay 0.65 0.52 0.43 0.32 0.29 0.29 0.25
wavingTrees 0.95 0.92 0.87 0.77 0.66 0.51 0.37

Table 6.16: Rate of P obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimuegrimund probability
with v = 0.6 andx = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

k=15 MBAC

v =0.6 7=0.3 T=04 T=0.5 7T =0.6 T=0.7 T=0.8 7=0.9

Sequence TN TN TN TN TN TN TN

bootstrap 0.87 0.93 0.94 0.95 0.98 0.99 0.99
camouflage 0.94 0.95 0.86 0.90 0.91 0.93 0.94

foregroundAperture 0.80 0.88 0.90 0.90 0.92 0.93 0.92

lightSwitch 0.97 0.97 0.97 0.99 0.99 0.18 0.23
movedObject 1.00 1.00 1.00 1.00 1.00 1.00 1.00
timeOfDay 0.94 0.94 0.97 0.97 0.97 0.97 0.97
wavingTrees 0.45 0.51 0.60 0.73 0.81 0.85 0.93

Table 6.17: Rate of 'V obtained applying the MBAC algorithm for the Wallflower
benchmark, depending on the value assigned to the minimuegrimund probability
with v = 0.6 andx = 15. Dashed results indicate that no foreground pixels were
labelled in the control image.

In general, it can be seen that the MBAC algorithm improveshtly results of
BAC, specially in the sequences in which using several n®oidetn advantage, for
instance, when there is clutter in the background. If theesk = 5, = = 0.6 and
~ = 0.4 are selected, thHEN rate is ovel.70 in all cases in tables 6.7 and 6.6 . On the
other hand, it is difficult finding a combination of paramstésr MBAC which yield
values of I'P over 0.8 in all cases. The use of an exponential to detect differences
between background and foreground together with multipleias per pixel has the
disadvantage that several models can represent tightgmewalues, whose difference
is amplified by the exponential. Also, using motion to modhe background has an
impact in the way models are swaped. This issue produceshidBAC algorithm
does not reach a higher rate’BiV in thewavingTreesequence.

6.6.3 Analysis of FBS parameters

The parameter that seems to have the biggest influenceskBtalgorithm iCardy,
which measures which pixels will be considered undoubtbdbtkground, as shown in
line 5 of algorithm 4. Table 6.18 shows the experiments performedder to detect the
influence of this parameter in the segmentation results.t Aari be seen, the bigger
the value, the worse the results, although the worsen is thoe® mimicked by the
availability of several models per pixel.

However, differences are usually quite small. This may be tduseveral facts, as
the following:

e The cumulative effect of having several models which mayaedly be dropped
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off and replaced with others.

e The evidence that for some frames, the real valuB@fd, could be set to values
greater thar.5.

FBS
Cardy 0.1 0.2 0.3 0.4 0.5 0.6

Sequence TP TN TP TN TP TN TP TN TP TN TP TN
bootstrap 054 | 097 | 054 | 097 | 055 | 0.96 | 0.56 | 0.96 | 0.54 | 0.95 | 0.55 | 0.96
camouflage | 0.75 | 090 | 0.74 | 092 | 0.73 | 0.92 | 0.74 | 0.92 | 0.28 | 0.95 | 0.06 | 0.95
foregroundAp.| 0.59 | 0.90 | 0.61 | 0.91 | 0.58 | 0.91 | 0.60 | 0.90 | 0.59 | 0.91 | 0.62 | 0.91
lightSwitch 0.63 | 0.86 | 0.68 | 0.86 | 0.66 | 0.85 | 0.76 | 0.79 | 0.80 | 0.84 | 0.79 | 0.85
movedObj. - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00
time. 0.70 | 097 | 072 | 0.96 | 0.72 | 0.96 | 0.71 | 0.96 | 0.69 | 0.96 | 0.74 | 0.97
wavingTr. 0.85 | 0.88 | 0.86 | 087 | 0.85 | 0.88 | 0.89 | 0.86 | 0.90 | 0.85 | 0.37 | 0.79

Table 6.18: Evaluation of parametélard, by computing the rate of' P and TN
obtained ranging the value 6fardy in [0.1,0.6] the FBS algorithm. Note that there is
an slight decrease in the percentage® &% for Cardy > 0.3.

Empirical results, as those represented in the figures 87,63, 6.10 and 6.11,
induce to think that a low value is desirable. If liign algorithm 4 is considered
with attention, the inequality searches for all the valuésécty are under a given limit,
looking for a, presumably, small set. If this set was expdtebe larger, maybe
it would affect negatively the slope of the curve thus, chiagghe location of the
threshold. This fact, together with the empirical results@mentioned and the results
obtained in table 6.18, it was decided finally to 6etrdy = 0.3.

6.6.4 The FBS algorithm versus the BAC, MBAC algorithms

For a quantitative comparison of results of these algosthwe used th& P andT N
for each control image of the benchmark.

BAC and BACc were executed taking= 0.6 andx = 5. For MBAC, a value
K =3andr =08,y =04.

For fuzzy background subtraction, parameter's valuesiare: 3, p,,;, = 8 as
suggested in [toyama99¥, = 1°, ¢pin = 7 andy = 0.6. Only in the sequence
camouflagea valuey = 0.4 was chosen.

BAC BACc MBAC FBS
Sequence TP TN TP TN TP TN TP TN

bootstrap 0.67 | 090 | 0.68 | 0.89 | 0.59 | 0.91 | 0.56 | 0.96
camouflage | 0.72 | 0.76 | 0.75 | 0.69 | 0.73 | 0.86 | 0.74 | 0.92
foreAperture | 0.40 | 0.87 | 0.43 | 0.96 | 0.47 | 0.90 | 0.67 | 0.83
lightSwitch | 0.43 | 0.90 | 0.54 | 0.85 | 0.41 | 0.36 | 0.97 | 0.86
movedObject| - 1.00 - - - 1.00
timeOfDay | 0.70 | 0.95 | 0.42 | 0.74 | 0.43 | 0.97 | 0.72 | 0.88

wavingTrees | 0.91 | 0.56 | 0.93 | 0.57 | 0.87 | 0.59 | 0.86 | 0.88

Table 6.19: Results of the compared algorithms. Each rolwertable corresponds to
an algorithm and shows tt#eP andT N achieved for a given sequence. The numbers
of the sequences, correspond to the numbers in the list fioee&6.1.

Intable 6.19, the rates achieved in the Wallflower benchroétike four algorithms
introduced in this section is shown. BAC has a poor perfoeahthere is motion in
the background, as it is not able to respond to differenteslf the background as
may be seen in the sequengavingTrees
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BACc seems to improve slightly results considering The values in nearly all
sequences. However, for sequetioeOfDaythe similarity function seems to perform
poorly in the RGB case yielding a very low rate 5, lower than that obtained for
BAC. This may be due to the fact that the RGB space is no unlfodistributed and,
in some cases, some distances yield wrong probability salue

MBAC improves results over BAC and BACc, specially in theead clutter in
the background as in the sequemavingTreesBut using motion to detect regions of
interest at the same time that several models are handlachdbproduce the expected
results, as pointed out in section 6.6.2. The use of motialetect regions of interest,
for instance, produces poor results in tightSwitch

It can be seen that, in all cases, the FBS algorithm outpagdhe others if we
consider the balance @fP andT' N rates. Due to its ability to manage several models
per pixel, it is quite obvious its advantage over the BAC or@Aalgorithms, which
just consider one model per pixel. On the other side, thestiole computation of the
FBS algorithm is more accurate than the one computed by tha®Agorithm.

6.6.5 Our proposal compared to the literature algorithms

Six algorithms, or versions of algorithms, were compareamk difference, temporal
median filter, textures, mixture of gaussians, wallflowet BEBS.

For frame difference and the temporal median filter algargha segmentation
threshold equal t@a0 was used.

As an example of the mixture of Gaussians, the Staufferisratgn was chosen. It
was executed witlk = 5 andT" = 0.6.

The LBP algorithm was executed with the suggestions fourjdeikkila06], R =
6, P=2,Tg =0.8,Tp = 0.7 andap = a,, = 0.01.

Analogously, for the Wallflower algorithm the parametergevset as the authors
propose in their papes( coefficients for the Wiener filter ari past values.

FBS was executed as discussed in section 6.6.4. For allithigna;, we usedv =
0.99.

The comparison of algorithms is made from the point of viethefresults achieved
with the Wallflower benchmark and also, taking into accohairttime and spatial cost.
Table 6.20 shows the global results for each algorithm withdomplete benchmark.
Qualitative results of the compared algorithms are showigure 6.13. In this figure,
on the left column, we show the hand segmented versions ebttiteol frames. On the
right, the result obtained by fuzzy background subtractidre fact that no unexpected
noises appear on result frames and that objects seem tofneisiegl quite accurately,
makes us think that these results are quite promising.

The LBP algorithm obtain§'N rates over).8 in all cases but in théghtSwitch
because it is not able to manage sudden corruptions of thgtmamnd model. For this
challenge, thd'N rate falls t00.7.

The comparison between the Stauffer's approach using grestand RGB coor-
dinates shows that adding colour to the processing impraligistly results. However,
the time penalty has to be considered. In both cases, theagpfails when sudden
changes in the background occur, as inlthbtSwitchsequence witll’P = 0.05 and
TP = 0.07 respectively. This happens mainly because the algoritiikesta lot of
time to react to changes in pixel’s values, moreover, if tixelghas several different
descriptions modelling it.

Frame difference (FD), as expected, has a good behavioectdes moving re-
gions, but fails when objects stay still. Also, It usuallyldato detect the complete
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Algorithm boots. | camouf. | foreApert. | lightSw. | moved. | timeOfDay | wav.
LBP TP 0.71 0.73 0.79 0.62 - 0.86 0.85
TN 0.90 0.86 0.66 0.91 1.00 0.97 0.77

MoG TP 0.44 0.92 0.54 0.75 - 0.46 0.75
TN 0.91 0.67 0.74 0.05 1.00 0.99 0.86

TP 0.44 0.92 0.50 0.73 - 0.41 0.86

MoGSRGB 595 T 0.73 0.85 0.07 7.00 0.98 0.90
D TP 0.48 0.20 0.25 0.29 - 0.25 0.70
TN 0.95 0.96 0.94 0.98 1.00 0.98 0.62

MT TP 0.79 0.97 0.60 0.98 — 0.52 0.91
TN 0.81 0.28 0.52 0.06 1.00 0.88 0.56

WLL TP 0.77 0.97 0.99 0.70 - 0.79 0.85
TN 0.99 0.98 0.90 0.98 1 0.79 0.85

EBS TP 0.56 0.74 0.67 0.60 - 0.72 0.86
TN 0.96 0.92 0.83 0.86 1.00 0.88 0.88

Table 6.20: Results of the compared algorithms. Each rolwertable corresponds to
an algorithm and shows tleP andT' N achieved for a given sequence.

area of objects and just detects their edges. Its quandtedsults for the Wallflower
benchmark can be seen in table 6.20, for all the sequencealtieofT NV is over0.90
except in thewavingTreessequence, in which the clutter in the background is quite
significant. However, the values @fP do not reach th&0% of the total amount of
foreground pixels.

Mean and threshold (MT) algorithm yield very poor resultsewlit has to deal with
clutter in the background, due to the fact that it only st@@sodel of the scene. This
problem is evident in thevavingTreeor camouflagesequences. Sudden background
corruption is not easily dealt by these algorithms, as shiowthe results obtained in
the sequenchghtSwitchwith TN = 0.06. In the rest of cases, tHEN rate is always
under0.8.

Wallflower algorithm has the best performance in all seqaspachieves the high-
est rate of'P andT'N. It effectively responds to all the challenges proposedhey t
benchmark. However, as will be discussed later, this eff@iés obtained at the cost of
an enormous temporal and spatial cost. It can be seen thatéhefT N is in all cases
but one oven.85, and also the rate df P is over0.7, a result which is not obtained by
any other algorithm.

Finally, the FBS algorithm also achiev8&V rates over0.83 for all sequences,
and handles appropriately the challenge inltgbtSwitchchallenge, achieving & P
similar to that obtained by the LBP algorithm.

In general, the values @ P are over those obtained by the mixture of Gaussians
and a little bit worse than those of the textures algorithrtherWallflower algorithm.

In general, results point out that adaptive, multimodabegtgms handle suitably
all situations. Specifically, the Wallflower algorithm igtbne with best overall results,
followed by the LBP algorithm, FBS algorithm and the Statdfapproaches.

6.6.6 Temporal analysis of algorithms

In this section we introduce an analysis of the time consignpif each algorithm
in order to process a complete sequence of the Wallfloweritiign. Average time
responses of each algorithm are shown in table 6.21. Inable tthe time invested in
segmentation is separated from the time invested in baakgradaptation.

The segmentation time includes time spent on any operatfaohainvolves sub-
tracting, comparing values or extending areas, as in tHermeggage of the Wallflower
algorithm and the fuzzy background subtraction algorith@n the other hand, the
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Algorithm boots. | camouf. | foreApert. | lightSw. | moved. | timeOfDay | wav.
LBP Segm. 33.6 26.89 21.26 22.28 20.32 31.87 23.16
Model 5.41 3.97 3.22 3.12 3.00 5.00 3.33
MoG Segm. 0.08 0.05 0.05 0.05 0.05 0.04 0.05
Model 5.13 3.71 3.43 3.45 3.44 2.73 3.35
Segment.| 0.08 0.05 0.05 0.05 0.05 0.05 0.06
MoG RGB Model 5.13 3.72 3.42 3.45 3.44 3.52 4.23
D Segm. 3.5E-4 | 3.4E-4 2.8E-4 2.8E-4 | 2.9E-4 2.5E-4 4.2E-4
Model 0 0 0 0 0 0 0
MT Segm. 5.5E-4 | 4.7E-4 4.4E-4 4.2E-4 | 4.1E-4 2.8E-4 5.9E-4
Model 0.72 0.71 0.78 0.74 0.79 0.79 0.70
BAC Segment.| 0.73 0.48 0.36 0.73 - 0.44 0.51
Model 0.86 0.96 0.99 0.74 0.99 0.98 0.95
BACGC Segment.| 0.67 0.78 0.58 0.46 — 0.53 0.93
Model 0.85 0.70 0.87 0.97 0.99 0.98 0.59
MBAC Segment.| 0.56 0.49 0.40 0.39 0.50 0.33 0.55
Model 0.48 1.74 2.19 2.69 2.48 3.02 111
WLL Segment.| 0.35 0.34 0.34 0.34 0.34 0.34 0.34
Model 55.5 55.5 55.5 55.5 55.5 55.5 55.5
FBS Segment. 0.8 0.2 0.7 0.1 0.1 0.1 0.6
Model 25 2.8 2.8 2.2 2.0 2.0 2.7

Table 6.21: Mean time for frame segmentation and backgrooodeling of each of
the studied algorithms.

background adaptation time includes the operations otiagaipdating or removing
background descriptions.

LBP algorithm and wallflower algorithms have a very high temgb cost if not
parallelized; however, experiments were made from thetpdiview of the constraints
stated in section 5.1.1. These were the approaches wittr seimentation results, but
at the expense of a bigger amount of time per frame in average.

FBS requires more time in average to segment a single fraare 3kauffer's ap-
proach, however its model update time is lower. BAC and MBA®¢halso a slow
segmentation, influenced probably by the exponential usétki segmentation.

6.6.7 Space complexity of the algorithms

To analyse an algorithm is to determine the amount of regsufsuch as time and
storage) necessary to execute it. Most algorithms are meditp work with inputs of
arbitrary length. Usually the efficiency or running time of algorithm is stated as a
function relating the input length to the number of stepsi¢ticomplexity) or storage
locations (space complexity). Algorithm analysis is an amgnt part of the computa-
tional complexity theory, which provides theoretical esttes for the resources needed
by any algorithm, as the complexity function for an arbitgalarge input. O notation,
w nhotation andd notation are used to this end. Space complexity of algostiaof
crucial importance if the algorithm is designed to run iniemwments in which tasks
will be given a small amount of memory to work with. In this 8en, the complexity
analysis of the algorithms considered in the experimenpeiformed from the point
of view of their space consumption.

In order to compare the space complexity of the algorithmtetkin our exper-
iments, we supposed an image of size m. Table 6.22 shows the comparison of
algorithms’ space complexity.

BAC and BACc have similar space complexities, so they areaikidered in the
row corresponding to BAC. In the case of MBAC, its complexiybigger because it
needs to store the models. Frame difference uses no modeif aodirse, no model
weights, so its space complexity reduces only to input atpudwariables. LBP com-
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Algorithm weight model
LBP O(n-m-K) | O(n-m-K-27)
Mix. Gauss. O(n-m- K) O(n-m- K)
Frame difference O(n -m) O(n - m)
Mean and threshold O(n -m) O(n - m)
Wallflower - O(n-m-V)
BAC - O(n-m)
MBAC O(n-m-K) O(n -m)
FBS O(n-m- K) O(n-m- K)

Table 6.22: Space complexity for each algorithm consideréae experiments, taking
as reference an image of m pixels.

plexity depends o’ the size of each histogram. Wallflower complexity only takes
into account the model’'s complexity, as no model weightscamsidered in this al-
gorithm. Its complexity is theil®(n - m - V'), whereV is the sum of the number of
coefficients and the number of past values used to predigtfwialues with the Wiener
filter. The Wallflower algorithm considers a fixed number ofdals. Finally, the space
complexity of fuzzy subtraction algorithm 3(n - m - K) for weights and)(n-m- K)

for the model.

Considering the results obtained in tables 6.20, 6.21 a2@| & can be stated that
FBS yields results comparable to other approaches wittothedt total time consump-
tion and the lowest space complexity. The BAC algorithm jmes with a method to
compute a reliable background model but it fails if therd(gter in the background or
in the contrast between objects and background is very small

Figure 6.14 shows the background models considered by tpopged algorithms
and the two implemented versions of Stauffer’s algorithnemwthe control frame was
about to be segmented. Note that BAC or BACc produce a noiskgraund model
for sequences with clutter in the background such as thengavee sequence. On
the other side, the model used by Stauffer’'s algorithm ferlight switch sequence is
wrong as the algorithm cannot adapt itself to sudden chaingbe scene.

6.6.8 Combining BAC and the FBS algorithm

Most of the multi-modal algorithms introduced in this wodsually expect user to pro-
vide the algorithm with the values &, number of models, ang, model replacement
speed. After the experiments performed to compare the mesiace of the algorithms
on their own it can be seen that BAC, when provided with stadties in order to force
it creating a reliable background model, can be used to geowiith an estimate of
both parameter& and~. This section discusses another set of experiments peztbrm
using BAC to compute an initial background model that cowdulsed by the FBS
algorithm as the first model.

BAC computes the confidence of a pixel in such a way, that @threa easily values
around0.9, over a maximum of, after10 or 20 consecutive frames without changes,
recall figure 6.3. If we apply this algorithm to the input segae until the computed
background model achieves a certain confidghege obtain an initial modeB,, , (0)
and for each pixe(z,y), h(z,y),the number of times the model was modified, and
g(z,y), the confidence obtained at the end of the process.

It is easy to see that the values &f and~ have an strong relationship with the
values ofh andg. The bigger the value 0i(x,y), the most models pixeB,, , may
need, and the higher the confidengde, y) obtained, the lowest its need of changing
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manual

Bootstraping  Camouflage Foreground Moved object  Time of day Waving tree
aperture

Figure 6.13: Quantitative results for the Wallflower benehkn The first row shows
the original control frames captured from the sequence. SHw®nd row shows the
control frames segmented by hand. Remaining rows show st ki each algorithm
for each sequence.
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Stauffer

Stauffer
RGB

BACc

Bootstraping Camouflage Foreground  Light switch Moved object Time of day Waving tree
aperture

Figure 6.14: Background models computed by the the propakgdithms together
with Stauffer's approach in grey tones and RGB coordinates.
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quickly. As models should show flexibility to changés,may be estimated following
the rule:

2, if h(z,y) <2, V(z,y)

V(z,y), K(z,y) = { min(5, h(zx,y)), if h(z,y) > 2, (6.59)

and,

Y(z,y) =1-g(z,y) (6.60)

~(z,y) is restricted to the intervdD.3,0.6], in order to avoid that a pixel never
changes or never arrives to an stable state. M&gJ(0) is set to the model obtained
by BAC. When an stability condition is reached, the FBS aljonicontinues with the
segmentation and background update.

Table 6.23 shows quantitative results, we measured thgrfmmad and background
pixels classified successfully,P andT N. Results improve slightly those obtained by
BAC or by the FBS algorithm on their own.

Algorithm bootstrap | camouflage| fore. | lightSwitch | movingObj. | timeOfDay | wavingTrees
TP 0.44 0.50 0.92 0.73 - 0.41 0.86
Mix. Gauss. | TN 0.95 0.85 0.73 0.07 1.00 0.98 0.90
TP 0.71 0.62 0.73 0.79 - 0.86 0.85
LBP TN 0.90 0.91 0.86 0.66 1.00 0.97 0.77
TP 0.60 0.75 0.56 0.48 - 0.30 0.83
BAC TN 0.90 0.76 0.87 0.90 1.00 0.98 0.67
TP 0.47 0.81 0.67 0.65 - 0.82 0.87
FBS TN 0.96 0.92 0.83 0.86 1.00 0.88 0.88
TP 0.56 0.74 0.67 0.60 - 0.72 0.86
Wallflower | TN 0.99 0.98 0.90 0.98 1.00 0.99 0.85
TP 0.61 0.81 0.69 0.68 - 0.70 0.94
BAC +FBS [ TN 0.95 0.91 0.93 0.85 0.99 0.98 0.87

Table 6.23: Results (in %) of the compared algorithms wheedao the different
situations represented in the Wallflower benchmark.

6.6.9 Combining the algorithms with a classifier

In this section we discuss an experiment performed with thé BUBAC and FBS al-
gorithms together with the classifier discussed in chapt&h® aim of this experiment
is showing that the algorithms developed in this chaptereaeffectively used with a
classifier, for instance in a surveillance application. \WWedia sequence recorded by
ourselves ofi56 frames in which we simulate the behaviour of people in a pufiah
cility. In order to extract conclusions from results, oltgein the frames were manually
labelled as belonging to clagersonor group of people There were350 objects of
classpersonand38 objects of clasgroup of peoplén the sequence.

Results of this experiment can be seen from two differemitgaf view: the seg-
mentation and the classification process. In the first plsegmentation depends ex-
clusively of the background subtraction method chosen.

Table 6.24 compares the total amount of expected objectsd¢otectly segmented
to those really found by BAC, MBAC and FBS. From the segméartgtoint of view, it
can be seen, that MBAC shows a poor performance becauseé lakger to produce
an stable model, as long as some objects are included intodlel until it becomes
robust enough. FBS is also affected by the problem of mulliaiity. However, in
MBAC the use of several models per pixel and the segmentasomy equation 6.1
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produces a less accurate segmentation, and this effeattsefieer time in a poorer
background model.

| [ Total | BAC | MBAC | FBS |
[ Objects | 388 | 325 | 135 | 239 |

Table 6.24: Comparison of successfully segmented objdxdtsreed by BAC, MBAC
and FBS. Under the columotal, the total amount of objects expected to be found in
the sequence, regardless of their class.

On the other side, classification results for the three &@lyos are shown in table
6.25. In general, there is no confusions of clagsasonor group of peoplavith class
luggage Confusions between classpsrsonand group of peopleare due to some
configurations of groups in the scenario, which are diffitutieal with. In this case, it
is notimportant however the performance of the classifigridsee that the algorithms
produce an output.

BAC MBAC FBS
Person | Group | Luggage | Person | Group | Luggage | Person | Group | Luggage
Person 282 25 0 102 11 0 202 21 0
Group 9 9 0 14 8 0 11 5 0
Luggage 0 0 0 0 0 0 0 0 0

Table 6.25: Confusion rates for a sequence with objectsaskelpersonandgroup of
people there were no objects of clakgygagein the sequence. Results are obtained
by applying BAC, MBAC and FBS algorithms to the sequence dadsifying the
obtained objects with the classifier discussed in chapter 5.

6.7 Conclusions

In this chapter we develop three algorithms designed to heagmarios and detect ob-
jects, with the aim of being able to give a good performancgeimanding scenarios.
These scenarios are characterized by having always a sgmifactivity level, mak-
ing it difficult to obtain a clean model with traditional tedjues. These algorithms
were developed to respond to some issues that arised wiliidéniguthe system (BAC
[rosell08a], [rosell09], MBAC [rosell10] and FBS [ros€li]).

The algorithms were developed with the aim of giving an amswéhe problem of
system recovery after model corruption and the computati@amodel’s quality over
time.

The addition of colour to BAC did not improve results, yigldiin some cases a
poor response in some situations. MBAC improves the resfilBAC when there
is motion in the background because it considers severaklmqebr pixel, however,
the use of motion to detect degratations in the backgroundeiraffect seriously its
performance in certain situations. The FBS algorithm, WhisedC'I £ L*a*b* colour
coordinates because of their perceptual uniformity, hagt@bresponse than BAC and
MBAC.

The algorithms developed in this chapter detect corruptatsoglasily. Model cor-
ruption is an issue not usually covered by other algorthimeur opinion, if a system
is expected to be autonomous, it should consider the pipgithibt the model may be-
come useless by whichever reason and that it must be evigntestarted. BAC and
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MBAC consider that a background model is corrupt if a suddenresiase of foreground
pixels is detected. In FBS detection is defined in a mathealatiay derived from the
algorithm’s assumptions.

The FBS algorithm proved to be reliable and permits the dieteof regions of in-
terest with great accuracy thanks to the frame-by-framestiold computation. Results
obtained by the FBS algorithm are as good as those obtainbtiXiyre of Gaussians
or the LBP approach for the sequences in the Wallflower beadhnindeed, this re-
sults are obtained with a lower spatial consumption, thig wa meet the constraints
stated for the developed algorithms.

Traditionally, background modelling algorithms expecenssto specify, at least,
the amount of models used to describe the each pixel in theehzodl the speed at
which these models will be changed, if needed. This conftguras performed by
user relying on previous experiences. We have shown that &&be combined with
other methods [rosell10b] in order to permit facing the peab of self-configuring
units that can work with autonomy. Experiments with the Wi@Ner benchmark and
with our own sequences make us think that our solution issolvhen facing different
scenarios and challenges.



Chapter 7

Conclusions and future works

7.1 Conclusions

In this thesis, techniques for object segmentation in 8dua in which light conditions
cannot be controlled are developed and discussed. Theopedtkechniques have
been successfully applied to two different problems of thal world, the location,
segmentation and identification of container codes anddbatibn and tracking of
people in a closed environment as an airport.

The proposed schemas try to apply the most suitable segtioeratgorithms to the
problem to solve, in an effort to cope with as many differemtisonmental situations
as possible. In case algorithms need to be supplied withhpteas, these are ranged
in intervals as wide as needed, whenever possible. Thigems bas as a consequence,
that output will contain very likely the expected objectgdther with noise. This
noise is reduced by means of filters applied to the segmentatitput. In certain
applications, time performance is a high priority consttan this thesis, comparisons
about the time consumption of algorithms is done in ordextmaet conclusions about
their suitability to each of the considered applications.

Experimental results were obtained by using real imagesimdd in the entrance
gate of Valencia trading port and, on the other hand realoviguences. In order to
evaluate the performance of the algorithms proposed irtlibisis or obtained from the
literature, we measured with different methods the locatibthe detected objects. In
chapter 4 and 5 we considered the location of the centre dbtlaged object, in chapter
6 a pixel-wise comparison is performed.

In chapter 2 a review on segmentation techniques is dones t€bhniques are
designed in such a way, that they rely heavily on the light@ions and images taken
under non controlled light conditions become difficult t@bwith.

In chapter 3, it can be seen that background subtractiomigebs are the most
popular in the literature. They have proved to achieve a g@ofbrmance in scenarios
with small changes in the background. The basic techniqusisis on obtaining a
model of the scenario, several methods may be found in tamfitre to build this
background model. Light conditions also have an influenddeperformance of these
algorithms, as most of them rely on thresholds to distinguich pixels belong to
foreground and which belong to background. Algorithms magdrt into two groups,
regarding the threshold used. One group uses fixed thresholtlanother group uses
thresholds which depend on statistical computations.
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To develop the method of chapter 4 to detect and recognizaioen’'s codes, sev-
eral algorithms were used to segment image and, by the uskeo$ fithe initial re-
sponse is reduced to a smaller set. This is achieved by usentpp-hat operator, a
combination of segmentation techniques, classifiers ateddil

Objects expected to be found by segmentation techniquesaimays be charac-
terized by specific features, which describe them. Simpterggric features such as
height or width, but also location in the image or a classgassent given by a clas-
sifier are useful to circumscribe objects in a closed set. Yéethiese features, besides
from describing objects, also as discriminators. Objetthé output of the segmen-
tation step may be filtered out by checking which expectetlifea do not meet. In
the case of characters, specific height and width may be teghand any object not
meeting these constrains may be removed from the output. kifigeof filters used
depend extremely of the application to be developed; th@uggneral schema may be
given, the specific needs and particularities of the systdhd@mand one set of filters
or another.

The algorithm discussed in chapter 4 finds objects with tigadst probability of
belonging to the container's code. Sequences of imagesgepting the same con-
tainer in different moments of time, are used. These secsse used in an algorithm
that tries to reduce the number of errors in the processimgcii single image. Com-
mon errors are induced by shadows or damaged containersandercorrected using
sequences, as has been proved. This way, a more reliablaaitolerant algorithm
is obtained.

Different experiments were performed using the singlen@gkes or a combination
of them. Finally, experiments were made waho images, from the results it may be
concluded that is prererable using LAT and the thresholtiaynique together over
the techniques alone, as better results can be obtained.

With our system, a high degree of success can be achievedalbeéthm needs
no parameter to be adjusted. However, it does depend on leoslebsifier was trained
as its performance depends directly of the classifier'sqoerdnce and how it detects
noisy objects. The better the classifier is trained, theeb#te process will work.

Our works within the SENSE project are discussed in chapgerd6. In this case,
real video sequences were used in the experiments, we wsi#dllflower benchmark
together with sequences recorded by ourselves. In chapter @mpare the results
obtained by our algorithms with other from the literature.

The application discussed in chapter 5, is a system aimedt&bd and track people
and luggage in the halls of an airport has also been developedhis case, time
constraints are much more restrictive than in previousesystalso, in surveillance
systems accuracy is an important factor. This implies theegsty of more accuracy
when determining whether a given object is noise or not; asbject may be lost under
any circumstance.

We proposed a solution that uses background subtractiomdier do locate the
objects in the scenario and a process of background upd#ieai given period of
time. In the discussed system, we built a classifier in ormleeparate detected objects
into three different classes. Several experiments wefeqmeed with different features
with the goal of achieving the maximal classification confickein the minimal time.
Finally, a solution using &-NN classifier and a head detection algorithm is the solution
chosen.

As a different way of interpreting background subtractiove, have proposed the
use of probabilities in chapter 6. During the developmerthefsurveillance system,
a lack of literature about recovering or constructing backgd models have been de-
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tected. Two algorithms aimed to perform background subtmaaising probabilities.
One of them, BAC, performs a pixel-wise computation of samity with the back-
ground. The other one, FSB, performs a global threshold atatipn for the entire
image, using two membership functions computed on the fly.

In chapter 6 we have discussed three algorithms for backgrowdelling: BAC,
MBAC or FSB. As a hovelty, we developed the concept of badkgdoquality in BAC,
being this quality a measure of the confidence of the backgtouodel. This measure
was extended to the other two algorithms. BAC also considiejects’ motion when
building the background model. MBAC is an extension of BAConder to support
several models per pixel, with the aim of supporting cluttethe background. On
the other hand, FSB computes a global threshold by buildmthe fly two member-
ship functions for background and foreground, eluding theaf fixed or probabilistic
thresholds usually found in the traditional backgroundisadiion methods.

BAC, FSB or MBAC detect corrupt models easily. Model coriaptis an issue
not usually covered by other algorithms, in our opinion, ystem is expected to be
autonomous, it should consider the possibility that the ehothy become useless by
whichever reason and that it must be eventually restarté&@ &d MBAC consider
that a background model is corrupt if a sudden increase efyfound pixels is de-
tected. In FSB detection is defined in a mathematical wayeeifirom the algorithm’s
assumptions.

Also research was performed in this thesis about the iizéiibn of the background
modelling algorithms. We proved that BAC can be combinedhwther methods in or-
der to permit facing the problem of self-configuring unitattban work with autonomy.
Experiments using a combination of BACFSB were performed with the Wallflower
benchmark and with our own sequences yield promising iesiblbut the robustness
of this combination when facing different scenarios andlehges.

Summarizing, the conclusions of this thesis are:

¢ In this thesis we have developed a reliable technique tactiated identify the
symbols of truck containers.

e Research has been done in techniques to characterizeolgeetcially, different
features have been tested for object recognition in the dietdirveillance appli-
cations, these features were tested on a database of abjgotslly segmented
by ourselves.

¢ In order to perform experiments, we have recorded and psedeseal-life se-
guences.

¢ In this thesis three novel techniques for background modghave been pro-
posed. An important issue from our point of view, is the inelegience of the
algorithms to environmental conditions, thus, the proddsehniques are able
to restart the background models if errors are encountekéateover, the al-
gorithms compute a quality measure of the background medeth is also a
novelty in this field.

e The comparison of results obtained with the FSB proposedifthesis with
other works found in the literature, show that our propasabbust when facing
different scenarios and challenges.



146 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

7.2 Future works

Further efforts will focus on improving execution times barallelizing parts of the
process of locating and recognizing container’s codes.VEmg nature of the solution
proposed clearly points in the direction of parallelizitg execution of the different
algorithms and the different processing flows. Moreovers ipossible obtaining a
compact and reduced implementation of the system in ordiengement the system
in low cost, low consumption systems as, for instance, systen-chip (SoC).

Better results can also be obtained if the classifier is ingnidoy adding more
images to train the system. Specially, improving the desion of the class noise by
adding more instances would benefit the global results.

Also, following with the truck containers application, ipEng a fast process that
could roughly locate the container’s code in the image wdidchelpful in order to
diminish time execution of the algorithm.

The use of sequences can be improved if images are segméritedsame time
new images are captured. By using this pipeline structhieimhprovements obtained
by using sequences can be obtained at a low temporal cost.pé&m loe is also re-
searching new methods to fuse the information obtained fiteendifferent images
considered in the sequence.

Surveillance system may also be improved by improving thssifier, finding a
more robust set of features or a new approach to classifyctshjéSpecially when it
is about separating classpsrsonandpeople Experiments with thé-NN classifier
show that both classes are not easy to separate and, thagketof symmetry axes
improves results, maybe other methods should be explorethssifier based on other
features, different from shape or silhouette is also dbkdra

Crowd estimation is also a challenge, either by using dydbe results of the
classification method introduced in this thesis is an opsadir by applying statistical
estimations to the gathered data.

Research is still to be done with the background modellinthods using colour
constancy [gevers97]. Also, using colour invariance sderhe a way to obtain a better
tracking system able to manage with occlusions [nguyern@2ny case, an open line
is still obtaining better background descriptions thatd/leetter segmentations.

Finally, the background modelling algorithms discussethis thesis have an im-
mediate application to AAL (Ambient Assisted Living) [sum@09]. In this case, the
aim of the applications is not locating threats or lost otgéuit constructing safe envi-
ronments around assisted peoples and helping them maamtandependent live.



Appendix A

Morphological operators

In this chapter, a quick review to morphological operatsrsiown. These operators
form an algebraic system of operators. They may be combineshg them in or-
der to extract the most significant parts of complex imagescofding to authors in
[soille99], this operators allow identifying essentialtseof figures in order to recon-
struct them optimally from distorted images. Morphologjimaerators can simplify an
image, keeping its essential features and removing anyniration which is not useful.

The basic unit of information in a morphological approximatis the binary im-
age; although the operators may be extended to work anabgwaith grey-level im-
ages. Giverd, a binary image, and an structural element (a binary sub-image),
a universal binary image (that is, an image which has alliitslp set tol), the four
basic morphological operators are defined as follows:

e intersection:AB={pec AApe€ B}
e union:A|JB={pe AVpe B}
e complementation A ={p e QAp ¢ A}

e traslation : being a pixel, the traslation ofi by p is given byA4, = {a +p :
ac A}

By combining these morphological operators, other opesatay be obtained, as,
for instance, the top-hat operator. Two important openastiwhich have to be defined
before using this operator are the dilation and erosionaijuer.

o Dilation: beingAy;, Aps, Ass, ..., the union traslation of a binary imageby the
set of pixels with value equal tbof the binary imageB = {b1, bs...}; is called
dilation of A by B, expressed as :

Ao B=|Jb € BA,

Dilation verifies both the commutative and associative proes. ImageB is
usually a regular shaped figure known as Structural Elen8ttdr short).

e Erosion: the dual operation of dilation, defined as :
AcoB={p:B, C A}

147



148 APPENDIX A. MORPHOLOGICAL OPERATORS

Being I a grey-level image with dimensiordd x N andI(z,y) the grey level for
pixel located in coordinate@:, y), and the structural elemebti, j) with dimensions
m x n. The dilation and erosion operations for grey-level imagyesdefined as :

(feb)(z,y) = mazij{f(x—i,y—7)+0(i,j)}, V0 <=i<m—-1,0<=j <n-—1

(feb)(z,y) =min, ;{f(z+i,y+7)—0b(,7)},V0<=i<m—-1,0<=j<n-—1



Appendix B

Object classification

Vision systems do not only perform a task of detecting olsj@écta scene, but also
are expected in most occasions to give a classification aletlobjects. There are
several methods to classify objects, for instane®&N classifiers, neural networks,
self-organizing feature maps, support vector machinagtgumention some.

Geometrical or statistical classification methods havenhesd with success in a
big amount of real systems. Objects are represented by & sehamerical values
that ease the process of representing them as pointg tiraensional space. Ideally,
objects that belong to the same class will be representedioyspocated in narrow
areas in the representation space. The distribution of eathese areas and their
organization in the space can be defined by the probabilitgitefunction associated
to the points that compose it. Geometrical methods decidecldiss of new objects
by considering these probability density functions. Thisetions are, in general,
not easy to compute. Usually they can be estimated by meaparafetric or non-
parametric methods from an initial set of points (the scechitaining set).

The performance of the classification methods depends onuimber of values
used to represent objects and also of the number of elemsadkin the training set.
Representing objects with a big amount of values (featwi@® fnow on) does not
assure a better performance. By increasing the amount tfrésaused to represent
objects, the complexity of the space increases expongnti@his will force to also
increase the number of objects used in the training set,lmibiciot always feasible,
with the aim of defining correctly the space areas that betongach of the classes
(non-parametric methods) or being able to estimate the gdrameters that appear
(parametric methods). This phenomenon is known in thealitee as thecurse of
dimensionality{devijver82]. On the other side, the use of a high number afufies
will influence the temporal and spatial cost when computiveggfeatures for an object
and when classifying it, as well.

Another important issue to consider is the possibility thaisy features appear.
These features have no real influence in the classificatioceps and confuse clas-
sifiers. At the same time, the existence of features with & Higgree of correlation
that introduce no new information and increase the dimesadity of the space are
problems to face.

Summarizing, it is crucial to reduce as much as possible theuat of features
used to represent objects; reduce the cost to compute tipeled sip the classification
process, ease the classification task and improve its Bcis

In order to work with the smallest amount of features, theesw&o steps which are
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included in the process of developing a recognition systaa {igure B.2):

e Feature selectionin this step the goal is obtaining the minimal set of feagure
that maximize the performance of the classifier. As an amlthii advantage,
when reducing the number of features the time invested iainibg them does
also reduce.

e Feature extractionthis step is also aimed to reduce the number of features. In
this case, the reduction is made by combining the originaluies in several
ways in order to obtain new features that, in a reduced nunobéain the same
classification results or even improve them. Feature etirats aimed to obtain
new features from the hidden relationships between thénadifeatures.

:> Feature i |::> Feature |:> Featun_e |:> Classifier |:>
computation selection extraction

B N | e

validation

Figure B.1: Stages of a geometrical recognition system.

The k-NN [fukunaga90] is a method for classifying objects basedlosest train-
ing examples in the feature spadeNN is a type of instance-based learning, or lazy
learning where the function is only approximated locallyl @l computation is de-
ferred until classification. The-NN algorithm is amongst the simplest of all machine
learning algorithms: an object is classified by a majorityevof its neighbours, with
the object being assigned to the class most common amosagsh@arest neighbours
(k is a positive integer, typically small). K = 1, then the object is simply assigned to
the class of its nearest neighbour. Nearest neighbounrafféct compute the decision
boundary of classes in an implicit manner.

The neighbours are taken from a set of objects for which thecbclassification is
known. This can be thought of as the training set for the @lgor, though no explicit
training step is required.

The k-NN classifier was used in the applications discussed throwigthe thesis.
In this appendix, the feature sets built for symbols appgesin truck containers along
with experimental results.

B.1 Feature sets for characters recognition

Symbols on truck containers are a mixture of characters antbers. The classifier
built for this problem thus, was made collecting images ahbars and characters
appearing on images representing truck containers.

B.1.1 Database preprocessing

In [salva02], ak-NN classifier was trained with a corpus @34 images, with an ap-
proximate total amount df8§10 symbols. The image set was acquired in several days
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with different lighting conditions. Moreover digits andtiers can be light or dark and
they appear in both plain and non-plain surfaces. The namglurfaces can produce
deformations in the code characters and shades. Thestwitimake difficult the
recognition task. From each symi®38 features were obtained, representing the grey
tones for each normalized symbaR(x 24 pixels). In the following subsections the
schema followed to preprocess the database image and oleginNN classifier is
outlined.

First, a segmentation process is applied as explained jptehd in order to obtain
objects from images. These segmented objects are prepeatas shown in figure
B.2 to obtain the feature vector representing them. For riaihg set, objects are
labelled using the manually segmented symbols in the wagrithesl in section 4.4.2.
Objects overlapping manual segmented symbols are labgitedhe suitable symbol,
the others are labelled as noise.

Segmentation|—#| Equalization |—#| Cropping |—*| Scaling |—= PCA H.{feattur}e
vector

Figure B.2: The stages into which the preprocessing of thebdae divides.

The feature extraction process is carried out on each ofuthémsages obtained
by the segmentation process. In order to obtain the chaistate of these objects the
following steps are carried out: top-hat (see appendix Alatization, cropping and
scaling.

B.1.2 Equalization

After applying top-hat to the sub-image a grey level imagebgined, it usually has a
very poor dynamic range and the background is always dankerthe object. Next, by
means of an equalization [gonzalez93] the grey levels sfithage are spread out and
reach white. This technique increases the dynamic rangearsquently produces an
improvement in the image contrast, see figure B.3. Consdlguhbis process increases
distance between the grey values of the object pixels anblableground pixels.

Equalization
Tophat and cropping Scaling
— - 3 o ]

Figure B.3: Steps carried out to extract features for eagacolpresent in the seg-
mented sub-image

B.1.3 Cropping

The bounding box obtained in the segmentation step may icotita character and
some spots. Thus, if we have two characters of the same olassyith a little noise
and other without it, their feature vectors can be quiteeddiht after rescaling them.
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Therefore, the cropping process has been applied in ordesstare that in the consid-
ered sub-image the character is touching the edges of the caen

F 1 -
Figure B.4: Result of cropping in a noisy character

Given the equalized imag8(p, q) with pixelse(i, j) fori = 0..p—1,i = 0...q—1
the minimumg1 and the maximung2 grey tones off(p, ¢) are computed as follows,

gl = min(e(i, j) € E(p,q)) (B.1)

92 = max(e(i,j) € E(p,q)) (B.2)
The row: is cropped if all of their pixels satisfy the following coridin,

Ve(i,j) € [gl,m x (g2 — g1) + g1] (B.3)

wherem e [0,1]. In a similar way, the colump is cropped if all of their pixels
fulfil the following condition,

Ve(i,j) € [g1,m x (92 — g1) + g1] (B.4)

The cropping process begins in the first row, or column, aogsstvhen it finds
a row which does not fulfil the condition stated in equatio Br, in the case the
processing is performed per columns, in a column, in casedhdition equation B.4
is not met. Similar steps are carried out beginning bypthel row, org — 1 column,
to continue analysing — 2 row, theq — 2 column, etc. The result of this step can be
seen in figure B.4.

B.1.4 Scaling

After cropping, the obtained sub-images are scaled or digahtvith a grid of12 x 24
obtaining288 grey tones. TheseRs features were used to represent the objects.

B.1.5 PCA

After scaling the images and obtaining the features, the R€Anique [fukunaga90]
was used in order to reduce the amount of features. This spgethe classification
process as explained previously. Experiments were peddmwith different amount
of features out of th@88 obtained in the previous step. A setaif features revealed
as the minimum set of features that maintains the origirageition rate.
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B.2 Training

In this task47 classes were considere2l; for letters, 10 for digits, 10 for control
digits (digits surrounded by a square) ahdor the noise class which contains the
most frequent errors as labels, mirrors, tires and somegoackd objects. A total
of 7848 samples, the0% of the total amount of samples, have been used for the
training corpus. The test set h&®62 samples, th€0% of the total amount. In order
to perform the search we have used the approximatBitN (ANN) [arya98], which
get good results in a very short time. ANN combines the siaitgland performance
of classicalk-NN with the kd-tree structure [bentley80].

An initial recognition rate 0f02.37% was obtained. The corpus can be grown
artificially by adding some transformations of the origioajects [salva02], such as
translations in th8& directions, rotations and several borders.

After several experiments [salva02], the new corpus wagposed of the following
sets: the original training corpus (bord¥r its translations ot and2 pixels, rotations
of 2, 4 and6 degrees, borderr with translations ofi pixel and rotations o2, 4 and6
degrees.

This new corpus gets #3.92% of recognition rate. These results were obtained
with m = 0.0. The next step is to explore which cropping value gets thé fessilt.
Table B.1 shows that fom = 0.4 the recognition rate achieves a value9df81%,
which is approximatel2.5% better than the best one with the original corpus.

m Recognition rate %)
0.0 93.92
0.25 94.33
0.30 94.54
0.35 94.78
0.40 94.81
0.45 94.26
0.50 93.92
0.55 93.54

Table B.1: Recognition rate for the mixed corpus

In this work, the classifier was improved by means of boopglireg. With this
technique, the classifier is used to classify a sequencenobhgects, the objects whose
classification is wrong are used to grow the classifier. Adaimed in chapter 4, a
bootstrapping process was performed inserting objectmeously classified into the
classifier. This process led to obtain a performandsdfo% of classification success.

B.3 £-NN confidence computation

The confidence of the classification is used by the confidelteedikplained in section
4.4.2. The confidence value given bytaNN classifier is computed as an estimation
of the maximum likelihood of tha posterioriprobability of classes by means of the
expression:

P(wilz) = % (B.5)
wherek is the total amount of neighbours sfconsidered by the classifier ahgl

is the number of neighbours that belong to classThe Bayes error estimation using
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the P(w;|z) yields an optimistic estimation of error, though quite &t in the case
the k-NN classifier was designed using the following convergermalitions:

1. k—

2. k/n — 0whenn — co

beingn the number of elements in the set used to desigrkthiN classifier. As
long as the number of samples cannot be, usually, arbjtranifje, these constraints
will not be met and thus, the error estimation must be contpfdaitowing a different
strategy.

When estimating®(w; |z), it is also possible to use the expression:

1
ZuEQKi d(u,z)

P(wilz) = (B.6)

ZUEQK ﬁ

beingfx the number of neighbours af 6, represents the number of neighbours
of  that belong to class; and the functionri(., .) corresponds to the distance between
two observations [arlandis02]. As it can be seen, exprad3i6 takes into account the
distance at which neighbours lay. This additional inforioratan be useful in the case
the design of the classifier does not meet the convergenstraonts.

The confidence measure computed by equation B.6 is useditm assonfidence
value to the classified symbols.



Bibliography

[arlandis02]

[arya98]

[atienza05]

[atienza08]

[barroso97]

[benet10]

[benezeth08]

[bentley80]

[beucher79]

[beucher91]

J. Arlandis, J. C. Pérez-Cortés, and J. Canejedion strategies
and confidence measures for a k-nn classificer in an ocr t&&k&
International Conference on Pattern Recognition (ICPR@PD2.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, , AntVu. An op-
timal algorithm for approximate nearest neighbor seaghirfixed
dimensionsJournal of the ACM1998.

V. Atienza, A. Rodas, G. Andreu, and A. Péreztidapflow-based
segmentation of containers for automatic code recogniti@tture
Notes in Computer Sciencg686:636—645, 2005.

V. Atienza, J. Rosell, G. Andreu, and J. M. \atige People and lug-
gage recognition in airport surveillance under real-tinastraints.
IEEE International Conference on Pattern Recognition (RLB)
Tampa. USA.Dec. 2008.

J. Barroso, A. Rafael, E. L. Dagless, and J. 8@lauz. Number
plate reading using computer visiorinternational Symposium on
Industrial Electronics (ISIE97), Guimaraes, Portugab97.

G. Benet, J. Sim6, G.Andreu-Garcia, J. Rosdkgar and

J. Sanchez. Embedded low-level video processing for dlanee
purposes.Proceedings of the 3rd International Conference on Hu-
man System Interaction. Rzeszow, Poldvdy 2010.

Y. Benezeth, P.M. Jordin, B. Emile, H. Laurarid C. Rosen-
berger. Review and evaluation of commonly-implementedkbac
ground subtraction algorithmslEEE International Conference on
Pattern Recognition.(IAPR082008.

J. L. Bentley, B. W. Weide, and A. C. Yao. Optineapected time
algorithms for closest point algorithm&CM Transactions on Math-
ematical Softwargpages 563— 580, 1980.

S. Beucher and C-Lantuéjoul. Use of watershed®ntour de-
tection. CCETT/INSA/IRISA IRISA Report n. 132, Rennes, France
pages 2.1-2.12, 1979.

S. Beucher. The watershed transformationeapfal image segmen-
tation. Conference on Signal and Image Processing in Microscopy
and Microanalysispages 299-314, September 1991.

155



156

[brad01]

[cheng00]

[cormen90]

[cucchira01]

[devijver82]

[elbaf09]

[elgammal00]

[felzen98]

[forestiO5]

[friedman97]

[fuentes03]

[fukunaga90]

[gepperth05]

[gevers97]

BIBLIOGRAPHY

R. Brad. License plate recognition syst&rceedings of the 3rd In-
ternational Conference on Information, Communicationd &ignal
Processing, Singaporeages 2—6, 2001.

V. Cheng and N. Kehtarnavaz. A smart camera aifgit. Dsp-
based people detection and trackidgurnal of Electronic Imaging
pages 336 — 346, 2000.

T.H. Cormen, C.E. Leiserson, and R.L. Rive#roduction to algo-
rithms The MIT Press, McGraw-Hill Book Company, 1990.

R. Cucchira, C. Grana, M. Piccardi, and A. iPlaetecting objects,
shadows and ghosts in video stream by exploiting colour aptibm
information. IEEE International Conference on Image Analysis and
Processing (ICIAPO1)pages 360 — 365, 2001.

P.A. Devijver and J. Kittler.Pattern recognition, a statistical ap-
proach. Prentice Hall. Englewood Cliffs. London, 1982.

F. El Baf, T. Bouwmans, and B. Vachon. Fuzzy statid model-

ing of dynamic backgrounds for moving object detection iinared
videos. IEEE Computer Vision and Pattern Recognition Workshops
(CVPRO09) pages 60-65, 2009.

A. Elgammal, D. Harwood, and L.S. Davis. Nargmetric model
for background subtractiorEuropean Conference on Computer Vi-
sion (ECCV0Q)pages 751 — 767, 2000.

P. Felzenszwalb and D. Huttenlocher. Image segation using lo-
cal variation. Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR98), Santa Barbara, f#ges 98 —
104, 1998.

G. Foresti, C. Micheloni, L. Snidaro, P. Remimgn and T. Ellis. Ac-
tive video-based surveillance system: the low-level image video
processing techniques needed for implementatiBRE Signal Pro-
cessing Magazine2(2):25-37, 2005.

N. Friedman and S. Russell. Image segmemtétigideo sequence:
a probabilistic approactRroc. od the Thirteen Conf. on Uncertainty
in Artificial Intelligence 1997.

L. Fuentes and S. Velastin. From tracking taaaded surveillance.
IEEE International Conference on Image Processing (ICIR03
3:121-124, 2003.

K. FukunagéStatistical Pattern RecognitiorAcademic Press, sec-
ond edition edition, 1990.

A. Gepperth, J. Edelbrunner, and T. Beucheyal-Bme detection
and classification of cars in video sequend&EE Intelligent Vehi-
cles Symposiuppages 625— 631, 2005.

T. Gevers and A. Smeulders. Color based objecgrétion. Pattern
Recognition 32:453-464, 1997.



BIBLIOGRAPHY 157

[gonzalez93]

[grimson99]

[han04]

[haritaoglu00]

[hart68]

[hegtos]

[heikkila04]

[heikkila06]

[hengstler07]

[horpraset99]

[hu04]

[huang09]

[kalman60]

[kirby79]

R. Gonzélez and R. WoodBigital image processing Addison-
Wesley Publishing Company, 1993.

W.E.L. Grimson and C. Stauffer. Adaptive backmd mixture for
real-time tracking.|IEEE Computer Vision and Pattern Recognition
(CVPR99) pages 246 — 252, 1999.

B. Han, D. Comaniciu, and L.S. Davis. Sequentiah&kbdensity ap-
proximation through mode propagation: applications tckigemund
modeling.Proc. Asian Conference on Computer Visi@n04.

I. Haritaoglu, D. Harwood, and L. S. Davis. WWRkal-time surveil-
lance of people and their activitieEEE Pattern Analysis and Ma-
chine Intelligencepages 809 — 830, 2000.

P. E. Hart. The condensed nearest neighbor HEEEE Transactions
on Information TheorylT-14:515-516, 1968.

H. A. Hegt, R. J. de la Haye, and N.A. Khan. A high parfance
license plate recognition systerfEEE Int. Conference on Systems,
Man and Cybernetic$H:4357-4362, 1998.

M. Heikkila., M. Pietikainen, and J.Heikkila A texture-based
method for detecting moving objects. Bnitish Machine Vision Con-
ference (BMVC04)2004.

M. Heikkila and M. Pietikainen. A texture-bed method for mod-
eling the background and detecting moving objedtSEE Pattern
Analysis and Machine Intelligenc28(4):657—662, April 2006.

S. Hengstler and H. Aghajan. Applicatioiented design of smart
camera networkgsirst ACM/IEEE International Conference on Dis-
tributed Smart Camerapages 9 — 16, 2007.

T. Horprasert, D. Harwood, and L. S. Davis.ta&istical approach
for real-time robust background subtraction and shadoveddet
tion. IEEE International Conference on Computer Vision (ICCV99)
FRAME-RATE Workshgppages 1 — 19, 1999.

W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visuaveil-
lance of object motion and behaviolEEE Transactions on Systems,
man, and Cybernetic2004.

Deng-Yuan Huang and Chia-Hung Wang. Optimal ireel
thresholding using a two-stage otsu optimization approdetttern
Recognition Letters30(3):275—-284, 2009.

R. E. Kalman. A new approach to linear filteringd gprediction
problems.Transactions of the ASME—-Journal of Basic Engineering
82(Series D):35 — 45, 1960.

R. L. Kirby and A. Rosenfeld. A note on the use of ggrlevel,
local average gray level) space as an aid in threshold ssletEEE
Transactions on Systems, Man and Cybernetics SiMfta§es 860—
864, 1979.



158

[koller93]

[lee05]

[makhoul75]

[marcenaro00]

[mason01]

[mckennaO0]

[mikic00]

[nguyen02]

[nguyen03]

[oliver0Q]

[otsu79]

[piccardiO4]

[piccardiO4a]

[porikli03]

BIBLIOGRAPHY

D. Koller, K. Daniilidis, and H.H. Nagel. Moddlased object track-
ing in monocular image sequences of road traffic scehet®rna-
tional Journal of Computer Vision (1JCV93)10(3):257-281, June
1993.

Dar-Shyang Lee. Effective gaussian mixture lesgniEEE Pattern
Analysis and Machine Intelligencpages 827-832, May 2005.

J. Makhoul. Linear prediction: a tutorial rewi Proceedings of the
IEEE, 63(4):561-580, 1975.

L. Marcenaro, F. Oberti, and C. S. Regazzo@hange detec-
tion methods for automatic scene analysis by usingmobileedu
lance cameradEEE International Conference on Image Processing
(ICIP0QO), 1:244 — 247, 2000.

M. Mason and Z. Duric. Using histograms to detedtteack objects
in color video. Applied Imaginery Pattern Recognition Workshop
pages 154 — 159, 2001.

S. McKenna, S. Jabri, Z. Duric, A. Rosenfeldnd &. Wechsler.
Tracking groups of peopléComputer Vision and Image Understand-
ing, 80(1):42 — 56, 2000.

I. Mikic, P. C. Cosman, G. T. Kogut, and M. M. TrivedMoving
shadow and object detection in traffic scendEEE International
Conference on Pattern Recognition (ICPRADIL3 — 21, 2000.

H.T Nguyen and A.W.M. Smeulders. Template tiragkising color
invariant pixel features.IEEE International Conference on Image
Processing. 2002. (ICIPO2pages I-569 — 1-572, 2002.

N. Nguyen, S. Venkatesh, G. West, H. Bui, , and éthi? Multi-
ple camera coordination in a surveillance systehsta Automatica
Sinica 29(3):408 — 422, 2003.

N.M. Oliver, B. Rosario, and A. P. Pentland. A lesjan computer
vision system for modeling human interactiohS8EE Pattern Anal-
ysis and Machine Intelligen¢c@2(8):831 — 843, 2000.

N. Otsu. A threshold selection method for grayelevistograms.
IEEE Transactions on Systems, Man and Ciberngfic4979.

M. Piccardi. Background subtraction techu@g: a review.|EEE
International Conference on Systems, Man and Cybernetig®99—
3104, Oct 2004.

M. Piccardi and T. Jan. Efficient mean-shiftkground subtraction.
IEEE International Conference on Image Processing (ICIRP@kct
2004.

F. M. Porikli and O. Tuzel. Human body tracking ladaptive back-
ground models and mean-shift analysiEEE International Work-
shop on Performance Evaluation of Tracking and Surveika2603.



BIBLIOGRAPHY 159

[pratiO1]

[rosell06]

[rosellO6a]

[rosell06b]

[rosell08]

[rosell08a]

[rosell09]

[rosell10]

[rosell10Db]

[rosin95]

[rowley97]

Andrea Prati and Rita Cucchiara. Analysis ancediébdn of shad-
ows in video streams: A comparative evaluatittfeEE International
Conferece Computer Vision and Pattern Recognition. (CMBRO
pages 571-576, 2001.

J. Rosell, A. Pérez, and G. Andreu. Segmentatigarithms for ex-
traction of identifier codes in containetdsiternational Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics fijheo
and Applications (VISAPPO06) Portugadages 375-380, Feb 2006.

J. Rosell, G. Andreu, and A. Pérez and. Proogssid recognition
of characters in container cod€&sh WSEAS Int. Conf. on Signal Pro-
cesing, Computacional Geometry and Artificial Vision (1S®B6).
Crete, GreecgAug 2006.

J. Rosell, A. Pérez, and G. Andreu. Fault-e¢search of container
codes.6th WSEAS Int. Conf. on Signal, Speech and Image Process-
ing (SSIPOG6). Lisbon. Portugabep 2006.

J. Rosell, G. Andreu, A. Rodas, V. Atienza, antfaliente. Feature
sets for people and luggage recognition in airport suiedé under
real-time constraintsinternational Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applaai
(VISAPPO08). Madeira, PortugaFeb 2008.

J. Rosell, , G. Andreu, A. Rodas, and V. AtienBackground mod-
elling in demanding situations with confidence measlE&E Inter-

national Conference on Pattern Recognition (ICPR08). TanjsA.

doi = http://dx.doi.org/10.1109/ICPR.2008.476104kc. 2008.

J. Rosell and G. AndreWRattern Recognitionchapter Background
modelling with associated confidence, pages 15 — 30. In Raf9.

J. Rosell, , G. Andreu, A. Rodas, and V. Atienzaackground
modeling with motion criterion and multi-modal suppottterna-
tional Joint Conference on Computer Vision, Imaging and Qoter
Graphics Theory and Applications VISAPP10. Angers, Fraay
2010.

J. Rosell-Ortega, G. Andreu-Garcia, A. Rodas#a, and V. Atienza-
Vanacloig. A combined self-configuring method for ob-
ject tracking in colour video. IEEE International Confer-
ence on Pattern Recognition ICPR10. Istambul, Turkey. doi=
http://dx.doi.org/10.1109/ICPR.2010.11,20D10.

P. Rosin and T. Ellis. Image difference threshstdhtegies and
shadow detectionProceedings of the British Machine Vision Con-
ference (BMVC95)yages 347 — 356, 1995.

H.A. Rowley and J.M. Rehg. Analyzing articuldtenotion using
expectation-maximizationEEE Pattern Recognitiqrii997.



160

[sacchiO1]

[salva01]

[salva02]

[seki03]

[sense04]

BIBLIOGRAPHY

C. Sacchi, G. Gera, L. Marcenaro, and C. RegazzAdvanced
image-processing tools for counting people in touristsitaitoring
applications.Signal Processing1:1017-1040, May 2001.

I. Salvador, G. Andreu, and A. Pérez. Detectioientifier codes

in containers.Simposium Nacional de Reconocimiento de Formas y
AnAjlisis de ImAjgenes (SNRFAIO1). Castellon, Spain19-124,
May 2001.

I. Salvador, G. Andreu, and A. Pérez. Preprongsand recognition
of characters in container codd&EE International Conference on
Pattern Recognition ICPRQ2002.

M. Seki, T. Wada, H. Fujiwara, and K. Sumi. Backgrdsubtraction
based on coocurrence of image variatiohBEE Computer Vision
and Pattern Recognition (CVPRQ3).65 — 72, 2003.

SENSE. Smart embedded network of sensing entitie
http://www.sense-ist.org/index.html.

[shoushtarian05] B. Shoushtarian and H. E. Bez. A practdalptive approach for

[soille99]

[stringa00]

[sunand09]

[toyama99]

[varcheie08]

[viola03]

[vsam99]

dynamic background subtraction using an invariant coloedehand
object tracking.Pattern Recognition Lette26(1):5-26, 2005.

P. Soille. Morphological image analysis: Principles and applica-
tions Springer Verlag, 1999.

E. Stringa. Morphological change detectiagoathms for surveil-
lance applications British Machine Vision Conference (BMVCQO0)
2000.

H. Sunand V. De Florio, N. Gui, and C. Blondia.rfises and chal-
lenges of ambient assisted living systertrgernational Conference
on Information Technology: New Generations (ITNG@&)ges 1201
— 1207, April 2009.

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.|N\éaver: Prin-
ciples and practice of background maintenan&EE International
Conference on Computer Vision (ICCV99), Kerkyra, Gregeges
255-261, 1999.

P. D. Z. Varcheie, M. Sills-Lavoie, and G. Bigmu. An efficient
region-based background subtraction technig@anadian Confer-
ence on Computer and Robot Visjgages 71-78, 2008.

P. Viola, M. J. Jones, and Daniel Snow. Detectirglgstrians and
using patterns of motion of appearent€EE International Confer-
ence on Computer Vision (ICCVQ3ages 734 — 741, 2003.

R. Collins, A. Lipton, and T. Kanade. A system foded surveil-
lance and monitoringProc. American Nuclear Society (ANS) Eighth
International Topical Meeting on Robotics and Remote Ryste
Pittsburgh pages 25-29, 1999.



BIBLIOGRAPHY 161

[wangO03]

[wixson00]

[wren97]

[xu05]

[yang92]

[zeng08]

[zivkovicO4]

L. Wang, W. Hu, and T. Tan. Recent developments mdrumotion
analysis.Pattern Recognition3:585-601, 2003.

L. Wixson. Detecting salient motion by accuntirlg directionally-
consistent flow. IEEE Pattern Analysis and Machine Intelligence
8:774 — 780, 2000.

C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Bamd. Pfinder:
Real-time tracking of the human bodf£EE Transactions on Pattern
Analysis and Machine Intelligencpages 780 — 785, 1997.

Li-Quan Xu, J. L. Landabaso, and M. Pardas. Shadovovainwith
blob-based morphological reconstruction for error cdrosc Pro-
ceedings on Acoustics, Speech, and Signal Processing 828
2:729 — 732, 2005.

Y. H. Yang and M. D. Levine. The background primattsk: an
approach for tracking moving objectslachine Vision and Applica-
tions pages 17 — 34, 1992.

Jia Zeng, Lei Xie, and Zhi-Qiang Liu. Type-2 fuzaugsian mixture
models.Pattern Recognitioy41(12):3636 — 3643, 2008.

Z. Zivkovic. Improved adaptive gaussian mixt model for back-
ground subtraction. IEEE International Conference on Pattern
Recognition (ICPR042004.



