
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

American Physical Society

Ramirez Hoyos, P.; García-Morales, V.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.;
Mafe, S. (2017). Hybrid Circuits with Nanofluidic Diodes and Load Capacitors. Physical
Review Applied. 7(6):064035-1-064035-8. doi:10.1103/PhysRevApplied.7.064035

https://doi.org/10.1103/PhysRevApplied.7.064035

http://hdl.handle.net/10251/108669



 1

Hybrid Circuits with Nanofluidic Diodes and Load Capacitors: 

Experimental and Theoretical Studies 

 

P. Ramirez,1,* V. Garcia-Morales,1 V. Gomez,1 M. Ali,2,3 S. Nasir,3 W. Ensinger,2,3 and S. Mafe4 

 
1Dept. de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain 

2Dept. of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, D-

64287 Darmstadt, Germany 
3Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291 

Darmstadt, Germany 
4Dept. de Física de la Tierra i Termodinàmica, Universitat de València, E-46100 Burjassot, 

Spain 

 
The chemical and physical input signals characteristic of micro- and nanofluidic devices 

operating in ionic solutions should eventually be translated into output electric currents and 

potentials that are monitored with solid-state components. This crucial step requires the design of 

hybrid circuits showing robust electrical coupling between ionic solutions and electronic 

elements. We have studied experimentally and theoretically the connectivity of the nanofluidic 

diodes in single pore and multipore membranes with conventional capacitor systems for the 

cases of constant, periodic, and white noise input potentials. The experiments demonstrate the 

reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical 

capacitances, and solution pH values. The model simulations are based on phenomenological 

equations that provide a convenient description of the electrical circuit operation. The results 

should contribute to advance signal transduction and processing using nanopore-based 

biosensors and bioelectronic interfaces. 
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I. INTRODUCTION 

Micro and nanofluidic devices operating in ionic solutions allow a wide range of 

functionalities because of the different pore surface functionalizations currently available [14]. 

The interaction between the ions and the specific molecules functionalized on the pore surface of 

these soft nanostructures can be externally modulated by means of thermal, chemical, electrical 

and optical signals [14]. The different nature of these input signals is crucial in applications 

such as electrochemical energy conversion, logic responses in sensors and actuators, and signal 

processing in bioelectrical interfaces [1,57]. However, to achieve full functionality, the physical 

responses at the nanoscale should eventually be translated into electric current and potential 

signals that are monitored with solid-state components. Therefore, significant physical advances 

require an efficient electrical coupling between the nanofluidic devices and conventional 

electronic elements such as capacitors in hybrid circuits. 

We have studied recently the conversion of white noise, zero average electrical potentials 

into net currents by using single nanofluidic diodes [8] and protein ion channels [9]. To check 

further the connectivity between these liquid-state nanostructures and conventional capacitor 

systems, we propose now to study experimentally and theoretically some fundamental theorems 

concerning energy conversion and charge transfer in hybrid networks.  

The experimental results concern single pore and multipore membranes and show the reliable 

operation of circuits where different load capacitors are interconnected with soft nanostructures 

that act as potential-dependent resistances. The phenomenological equations for the current-

voltage curves of the nanofluidic diodes allow the analysis of hybrid circuits similarly as in the 

case of conventional solid state circuits. For the sake of generality, we use constant, periodic, and 

white noise input potential signals. The membrane resistances are between 1 k and 1 G and 

the capacitances of the load capacitors vary between 10 nF and 10 mF. The electrolyte solution 

properties cover a wide range of pH values between 1 and 7, approximately. Because of the wide 
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range of physical and chemical conditions considered, the experimental and theoretical results 

should contribute to advance signal transduction and processing using nanopore-based 

biosensors and bioelectronic interfaces [1,5,710]. 

 

II. EXPERIMENTAL METHODS 

A. Nanofluidic diode fabrication 

We used membrane samples with 1 and 104 tracks per cm2 obtained from stacks of 12.5-μm 

thick polyimide (PI) foils (Kapton50 HN, DuPont) that were irradiated with swift heavy ions 

(Au) of energy 11.4 MeV per nucleon under normal incidence at the linear accelerator UNILAC 

(GSI, Darmstadt). Under these conditions, the range of heavy ions in PI was larger than the 

thickness of the six foil stack so that the energy loss of the ions was above the threshold required 

for homogeneous track etching. In front of each stack, a metal mask with a 200 m diameter 

centered aperture was placed for the case of single-ion irradiation. As soon as a single ion passed 

through the foil stack and registered by a particle detector behind the samples, the ion beam was 

blocked. The procedure gave tracks in the membrane that were converted into approximately 

conical pores by asymmetric track-etching techniques [11,12]. The track-etching processes 

yielded carboxylate residues on the pore surface that eventually result in fixed charges when the 

membrane is exposed to aqueous ionic solutions of KCl and different pH values. The sign of 

these charges depends on the solution pH and the approximately conical pore geometry is 

responsible for the electrical rectification characteristic of the nanofluidic diodes [11,12]. 

B. Electrical measurements  

Figure 1(a) shows a scheme of the hybrid circuit. The picoammeter/voltage source (Keithley 

6487/E) provides the input potential (t) and controls the current I through the circuit obtained 

upon closing the switch at time t = 0. The potential drops across the nanofluidic diode (VD) and 

the load capacitor (VC) of capacitance C are measured with a multimeter (Keithley 2000/E). 
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Figure 1(b) shows a scheme of the electrochemical cell with the nanofluidic diode for the single 

pore membrane case. The membrane area exposed to the aqueous ionic solutions was 1 cm2. The 

membrane samples were bathed by 0.1 M KCl electrolyte solutions under controled pH 

conditions. Ag|AgCl electrodes immersed in the bathing solutions were employed to introduce 

the input potentials in the electrochemical cell and measure the electric currents. Note the sign 

criteria used for voltages and currents.  

Figures 1(c) and 1(d) show the typical current-voltage (IVD) curves obtained for the single 

pore and multipore membranes, respectively. These curves could be described by using the 

phenomenological model of the Appendix and the pore parameters shown in the insets of Figs. 

1(c) and 1(d). Low pore resistances R+ were observed when the current entered the cone tip, 

while high resistances R- were obtained when the current entered the cone base [8]. The 

reproducibility of the nanopore IVD curves and the membrane responses was checked several 

times in all experiments conducted with the different circuits. From the steady-state IVD curves, 

pore radii in the ranges 1040 nm (cone tip) and 300600 nm (cone base) were obtained [12]. 

 

II. RESULTS AND DISCUSSION 

Figures 2(a) and 2(b) schematically show the charging (time t = 0) and discharging (time t = 

ts) circuits for two nanofluidic diode configurations together with the experimental curves 

obtained at the constant input potential  = 2 V for single pore (Figs. 2(c) and 2(d)) and 

multipore (Figs. 2(e) and 2(f)) membranes. In Figs. 2(c) and 2(e), the charging of capacitor 1 

proceeds through the nanodiode high-conductive polarity, while the charge transfer to capacitor 

2 occurs through the low-conductive polarity. The opposite case is considered in Figs. 2(d) and 

2(f). As in the conventional resistor-capacitor circuit (RC circuit), the capacitor voltage VC1 

eventually reaches the source voltage. Upon the discharge to capacitor 2, half of the energy 

initially stored in capacitor 1 is finally stored in capacitor 2, regardless of the particular 
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nanodiode resistance characteristic of the charge transfer process. The time constants of the RC 

circuits of Figs. 2(a) and 2(b) are shown in Table I for the charging experiments of Figs. 

2(c)2(f). For the charge transfer, the final voltage of capacitors is Vst = C1V/(C1 + C2) and then 

the dissipated energy is (1/2)C1C2/(C1 + C2) regardless of the particular nanodiode resistance 

characteristic of the process. The time constants of the RC circuits of Figs. 2(a) and 2(b) are 

shown in Table II for the charge transfer experiments of Figs. 2(c)2(f). Note the excellent 

agreement between the theoretical steady state voltages Vst and the experimental saturation 

voltages of Figs. 2(c)2(f). This is also the case of the theoretical and experimental time 

constants. 

Figure 3(a) considers the case of a periodic input signal of zero average and the multipore 

membrane for the charging circuit of Fig. 1(a). The sinusoidal signal of amplitude of 2 V has a 

period of 105 s. Because of the electrical rectification, the capacitor is charged with time. For 

high enough capacitances, the oscillating capacitor voltage attains an average value which is 

independent of the capacitance. On the contrary, the charging time constant increases with this 

capacitance, while the oscillation amplitude decreases with the capacitance (see Appendix). 

Figure 3(b) shows the I curve for the circuit of Fig. 1(a). The experimental loop gives the 

minimum and maximum values of the capacitor voltage VC defined by the condition of zero 

current, I = 0. The curves obtained with the theoretical model of the Appendix are in good 

agreement with the experimental results (see Figs. 3(c) and 3(d)).  

Figure 4 shows the case of the white noise input signal for single pore (Figs. 4(a) and 4(b)) 

and multipore (Figs. 4(c) and 4(d)) membranes. This case is of interest for energy transduction 

using external noisy signals [8,9]. As observed previously, the limiting value of the capacitor 

voltage does not change with the capacitance (see Figs. 4(a)4(c)), which is not the case of the 

time constants and the fluctuating potential amplitudes around the average potential. We have 

provided a theoretical justification of this experimental fact in the Appendix. The theoretical 
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results of Fig. 4(b) reproduce the observed behavior. Figure 4(d) shows the I curve for the 

circuit of Fig. 1(a) in the case of the multipore membrane. The minimum and maximum values 

of the capacitor voltage VC are now approximately described by the condition of zero current, I = 

0. The amplitude between the extreme values of Fig. 4(d) approximately corresponds to the 

difference between the minimum and maximum fluctuating potentials of Fig. 4(c).  

Figure 5 considers the effect of the solution properties (pH) on the IVD curves (Fig. 5(a)), 

the charging process (Figs. 5(b) and 5(c)), and the dependence of the steady state voltage Vst on 

the rectification ratio r (Fig. 5(d)). Note the effect of the pore fixed charge sign on the IVD 

curves: decreasing the pH causes a decrease in the negative surface charge density and 

eventually reverses it to give a positive charge density [12,13]. This experimental fact changes 

the sign of the voltage VC in Figs. 5(b) (experiment) and 5(c) (model). The theoretical line of Fig. 

5(d) is given by Vst = (V0/2)[(r1)/(1 + r)], as shown in the Appendix. Table III gives the different 

membrane resistances obtained from Fig. 5(a) as a function of the solution pH.  

 

III. CONCLUSIONS 

Fluidic devices operating in ionic solutions can be used to process a variety of chemical and 

physical signals. Input signals defined at the micro and nanoscale should eventually be translated 

into electric currents and potentials that are monitored with solid-state components [1,57]. This 

crucial step requires the design of circuits showing robust electrical coupling between the ionic 

solutions and the electronic elements. We have studied experimentally and theoretically the 

connectivity between liquid-state nanofluidic diodes and conventional capacitors. Fundamental 

questions concerning energy conversion and charge transfer in hybrid networks have been 

addressed. In particular, we have shown that the limiting value of the load capacitor voltage does 

not change with the capacitance for the different input signals used. 
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The experiments have been conducted using single pore and multipore membranes in the 

cases of constant, periodic, and white noise input potential signals. The extension of the analysis 

to single protein ion channels [9], and square wave and triangular signals [14,15] could also be 

possible. The membrane resistances, load capacitor capacitances, and solution pH values cover a 

wide range of experimental cases. The theoretical model is based on phenomenological 

equations that provide a good description of the electrical circuit operation. 

  

APPENDIX 

The theoretical model for the nanofluidic diode of Fig. 1 is based on a phenomenological 

equation for the current-voltage curve IVD: 

 1 ( 1) tanh
2

  
     

  
+ D D

T

R V V
I r r

r V
, (A1) 

where r  R /R  is the ratio of the resistances R  and R  experimentally observed for high 

positive and negative voltages VD , respectively. For high positive VD , Eq. (A1) gives I  RVD  

asymptotically while for high negative voltages VD , it reduces to  DI R V . Thus, the values of 

these resistances are obtained from independent experiments. The parameter VT is the thermal 

voltage (RgT/F) corrected by an empirical factor to give VT = 0.5 V in our case, where Rg is the 

gas constant, T is the temperature, and F is the Faraday constant. 

The time evolution of the potential VC across the capacitor is governed by the equation 

CdVC /dt  I , where I is the current of Eq. (A1). This differential equation can be discretized for 

small time steps t to give VC , t1 VC , t  t I /C  where the second subscript makes reference to 

time. Since the voltage across the nanofluidic diode can be written asVD   VC , we obtain 

 , ,
, ,

1
1 tanh

1

 


   
        

C t C t
C t t C t

ch T

V Vr
V V t

r V
, (A2) 

where we have introduced the characteristic timech  (r 1)R /(2rC) . Eq. (A2) describes the 
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dynamics of the electric circuit in Fig. 1 and is used in the model results of Figs. 35. If the 

applied voltage  is constant, the only fixed point of Eq. (A2) is Vst    (a stable value).  

We consider now the case of an applied voltage  t  that takes random values in the interval 

 0 0,V V  at each time step according to a uniform distribution. By introducing t  nt  with n a 

non-negative integer, we can obtain the time average of a generic magnitude ft over a long time 

T  Nt  as 

 f t 
t

T
fnt

n0

N 1

 . (A3) 

Note that we have  t  0 because the applied voltage is uniformly distributed. When the 

capacitor potential has reached a stationary state, VC , t Vst , with t VC , t Vst  the deviation of 

the instantaneous capacitor potential from the average stationary state value, so that t  0. 

Therefore, we have from Eq. (A2) that 

 
1

0 1 tanh
1

   


     
       

t t st t t st

ch T

V Vr
t

r V
, (A4) 

and then 

 
1

( ) tanh
1

  
  

      
t t st

st t t st
T

Vr
V V

r V
. (A5) 

In the limit 0TV , we obtain  

 Vst 
r 1

r 1
 t  t Vst . (A6) 

For negligible small fluctuations t  0, this equations reduces to 

 Vst 
r 1

r 1
 t Vst . (A7) 

The average x  of a stochastic variable x uniformly distributed in the interval [ , ]a b  is 

x  (a b) /2  and then  t Vst V0 /2  because  t Vst  is uniformly distributed in the 
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interval 0 0[ , ]st stV V V V  . Therefore, Eq. (A7) becomes 

 01

1 2

    
st

Vr
V

r
, (A8) 

which shows that the average capacitor voltage depends linearly on the ratio (r 1) /(r 1)  and 

the maximum value V0 of the applied voltage t . This theoretical result is in good agreement with 

the experimental data of Fig. 5(d). 

In addition, Eq. (A8) correctly predicts that the average stationary voltage does not depend on 

the capacitor characteristics, as shown in Fig. 4. However, the amplitude of the fluctuations does 

depend on the capacitance through the characteristic time ch . Indeed, if we take t  0  in Eq. 

(A2) for the stationary state, we obtain  

 
1

1 tanh
1




   
       

t s tt st
t t

ch T

VV r
t

r V
, (A9) 

which reduces to 

  tt 
t

 ch

 t Vst 
r 1

r 1
 t Vst  (A10) 

in the limit 0TV . For r 1, the maximum value 
max

 of any fluctuation around the stationary 

state can be obtained from Eq. (A10) with  t V0  and Eq. (A8) as 

 
max


t

 ch

r  3

(r 1)2 V0. (A11) 

Eq. (A11) shows that low capacitances give high fluctuations around the average voltage. Note 

also that ch  is bounded below by t . If r 1, Vst  0 from Eq. (A8) and then 
max


t

 ch

V0 

from Eq. (A11). Therefore, for small values of C, 
max

V0  and the signal becomes 

indistinguishable from the noisy applied voltage. This fact explains the results of Fig. 4 

concerning the effect of capacitance on the observed fluctuations. 

 



 10

ACKNOWLEDGEMENTS 

We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and 

FEDER (project MAT2015-65011-P). M.A., S.N. and W.E. acknowledge the funding from the 

Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE 

project iNAPO. 



 11

 

[1] M. Tagliazucchi and I. Szleifer, Transport mechanisms in nanopores and nanochannels: can 
we mimic nature? Mater. Today 18, 131 (2015). 

[2] Q. Liu, L. Wen, K. Xiao, H. Lu, Z. Zhang, G. Xie, X.-Y. Kong, Z. Bo, and L. Jiang, A 
biomimetic voltage-gated chloride nanochannel, Adv. Mater. 28, 3181 (2016). 

[3] P. Ramirez, J. Cervera, M. Ali, W. Ensinger, and S. Mafe, Logic functions with 
stimuli‐responsive single nanopores, ChemElectroChem 1, 698 (2014). 

[4] G. Pérez-Mitta, A. G. Albesa, C. Trautmann, M. E. Toimil-Molares, and O. Azzaroni, 
Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction 
of biological, chemical and physical stimuli, Chem. Sci. 8, 890 (2017). 

[5] N. Misra, J. A. Martinez, S.-C. J. Huang, Y. Wang, P. Stroeve, C. P. Grigoropoulos, and A. 
Noy, Bioelectronic silicon nanowire devices using functional membrane proteins, Proc. 
Natl. Acad. Sci. U.S.A. 106, 13780 (2009). 

[6] Y. Hou, R. Vidu, and P. Stroeve, Solar energy storage methods, Ind. Eng. Chem. Res. 50, 
8954 (2011). 

[7] M. Ali, P. Ramirez, W. Ensinger, and S. Mafe, Information processing with a single 
multifunctional nanofluidic diode, Appl. Phys. Lett. 101, 133108 (2012). 

[8] V. Gomez, P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger, and S. Mafe, Charging a 
capacitor from an external fluctuating potential using a single conical nanopore, Sci. Rep. 5, 
9501 (2015). 

[9] C. Verdia-Baguena, V. Gomez, J. Cervera; P. Ramirez, and S. Mafe, Energy transduction 
and signal averaging of fluctuating electric fields by a single protein ion channel, Phys. 
Chem. Chem. Phys. 19, 292 (2017). 

[10] O. Yehezkeli, R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, and I. 
Willner, Nat. Commun. 3, 742 (2012). 

[11] P. Apel, Track etching technique in membrane technology, Radiat. Meas. 34, 559 (2001). 

[12] M. Ali, P. Ramirez, S. Mafe, R. Neumann, and W. Ensinger, A pH-tunable nanofluidic 
diode with a broad range of rectifying properties, ACS Nano 3, 603 (2009). 

[13] J. Cervera, P. Ramirez, V. Gomez, S. Nasir, M. Ali, W. Ensinger, P. Stroeve, and S. Mafe, 
Multipore membranes with nanofluidic diodes allowing multifunctional rectification and 
logical responses, Appl. Phys. Lett. 108, 253701 (2016). 

[14] V. Gomez, P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger, and S. Mafe, Converting 
external potential fluctuations into nonzero time-average electric currents using a single 



 12

nanopore, Appl. Phys. Lett. 106, 073701 (2015). 

[15] E. Kalman, K. Healy, and Z. S. Siwy. Tuning ion current rectification in asymmetric 
nanopores by signal mixing, Europhys. Lett. 78, 28002 (2007). 



 13

 

-100

0

100

200

300

400

-2 -1 0 1 2

multipore membrane

V
D
(V)

I(
A

)

R
+
 = 5.7 k

R
-
 = 83 k

V
T 

= 0.5 V

-10

0

10

20

30

40

50

-2 -1 0 1 2

single pore

I(
nA

)

V
D
(V)

R
+
 = 45 M

R
-
 = 0.8 G

V
T
 = 0.5 V

(c) 

KCl KCl 

Ag|AgCl 
electrodes 

nanofluidic diode Hybrid circuit 

(d) 

VD 

I > 0 
electrolyte 
solutions 

nanofluidic 
diode 

capacitor 

Picoammeter/voltage 
source 

q 

C 

VC 

t = 0 

I  

VD 

(t) 

membrane 
sample 

Current – voltage curves of the nanofluidic diodes

(b) 

A 

(a) 

 

 
FIG. 1: The hybrid circuit with the nanofluidic diode and the load capacitor (a). The 

electrochemical cell with the nanofluidic diode (b). Typical current-voltage curves obtained for 

the single pore (c) and multipore (d) membranes obtained at pH = 6.6. 
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FIG. 2. The charging and discharging (charge transfer between capacitors) circuits for two 

nanofluidic diode configurations (a) and (b). Experimental curves measured for single pore 

membrane [(c) and (d)]. The curves correspond to C2 = 0.10, 0.47, and 1.0 F, from top to 

bottom. Experimental curves measured for multipore pore membrane [(e) and (f)]. The curves 

correspond to C2 = 0.11, 0.5, 1.1, 5.0 and 0 mF, from top to bottom. All curves were obtained 

with constant input potential  = 2 V. 
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FIG. 3. Experiments with a periodic input signal (sinusoidal wave) of zero average and the 

multipore membrane [(a) and (b)]. Theoretical curves obtained with the model of the Appendix 

[(c) and (d)]. 
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FIG. 4. Experiments with white noise input signals for single pore (a) and multipore 

membranes [(c) and (d)]. Theoretical results obtained with the model of the Appendix for the 

single pore (b). The most scattered data correspond to the lowest capacitance. 
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FIG. 5. Effect of the solution properties (pH) on the capacitor charging. Experimental 

current-voltage curves of the multipore membrane at different pH values and rectification ratios 

(a). Experimental charging curves of the capacitor at different pH values (b). Theoretical results 

obtained with the model of the Appendix (c). Dependence of the steady state voltage Vst on the 

rectification ratio r showing the agreement between the model of the Appendix and the 

experiments (d).  
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 Time constant (s) 

 Circuit (a) Circuit (b) 

Single pore 18 400 

Multipore membrane 7 90 

 

Table I: Time constants for the RC circuits of Figs. 2(a) and 2(b) in the charging 

experiments of Figs. 2(c)2(f). 



 19

 

    Time constant (s) 

 C2 (F) Vst (V) Circuit (a) Circuit (b) 

Single pore 

0.10 1.65 66 3.3 

0.47 1.00 188 9.4 

1.00 0.64 256 12.8 

 C2 (mF) Vst (V) Circuit (a) Circuit (b) 

Multipore 
membrane 

0.11 1.82 8 0.6 

0.50 1.38 28 2.1 

1.10 1.00 44 3.3 

5.00 0.36 72 5.4 

No capacitor 0.00 88 6.6 

 
Table II: Time constants, theoretical steady state voltages Vst, and capacitances of the RC 

circuits in Figs. 2(a) and 2(b) for the charge transfer experiments of Figs. 2(c)2(f). 
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pH R+(k) R-(k) 

6.64 5.7 83 

4.27 7.5 82 

3.61 25 107 

3.17 24 16 

2.26 36 7.0 

0.98 27 3.6 

 
Table III: Membrane resistances obtained from Fig. 5(a) as a function of the solution pH. 

 

 

 

 

 


