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Abstract: In this paper, a centralized control strategy for the efficient power management of power 

converters composing a hybrid AC/DC microgrid is explained. The study is focused on the 

converters connected to the DC bus. The proposed power management algorithm is implemented 

in a microgrid central processor which is based on assigning several operation functions to each of 

the generators, loads and energy storage systems in the microgrid. The power flows between the 

DC and AC buses are studied in several operational scenarios to verify the proposed control. 

Experimental and simulation results demonstrate that the algorithm allows control of the power 

dispatch inside the microgrid properly by performing the following tasks: communication among 

power converters, the grid operator and loads; connection and disconnection of loads; control of the 

power exchange between the distributed generators and the energy storage system and, finally, 

supervision of the power dispatch limit set by the grid operator. 

Keywords: power management algorithm; microgrid; communication with power converters 

 

1. Introduction 

Most countries are dependent on fossil fuels and nuclear energy for electric power generation. 

However, due to the increasing energy demand and the proliferation of new forms of energy 

generation which are cheaper and environmentally-friendly, many distributed generation (DG) 

systems have been integrated into the power grid. Some DGs consist of Renewable Energy Sources 

(RES), such as Photovoltaic (PV), wind, biomass and geothermal [1]. The DGs are the basis of 

Microgrids (MGs), which can operate as a single power system that provides a safe and reliable 

operation at certain voltage and load levels. MGs may work in island-mode or in grid-connected 

mode, so that they can connect to DGs placed at various locations and inject their energy to the grid 

if it is needed [2]. The transition between these two operation modes is a process that can destabilize 

the voltage at the MG buses and damage the MG. In [3], a methodology to recover the MG operation 

during this transition was presented, along with the main technical problems which should be taken 

into account. There are three basic MG topologies that can be classified according to the nature of 

their voltage: DC microgrid (DC MG), AC microgrid (AC MG) and hybrid AC/DC microgrid [4], 

which is a microgrid with AC and DC buses. Hybrid AC/DC microgrids are currently of great interest 

to researchers and are considered the distribution and transmission systems of the future, because 

they enable the coexistence of both AC MGs and DC MGs. The main drawback of the hybrid AC/DC 

microgrid is the protection strategy because it is more complex than the traditional MG [5,6]. The 
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large amount of required power converters may complicate the control, management, 

communication and power dispatch among devices. 

Early proposals for the control of a hybrid AC/DC microgrid were presented in [7–9]. In [10] a 

decentralized control of a MG was proposed, based on using an interlinking converter (ILC) in order 

to coordinate the power flows among the power converters connected to the AC and DC buses. Droop 

methods [11] were used to share power among converters. In [10], droop was applied to the power 

converters connected both to the DC and AC buses. This control concept was extended in [12–14] to 

implement power interchange among sub-grids comprising a hybrid AC/DC microgrid. Several 

studies about power management in hybrid AC/DC microgrids using droop strategies for power 

dispatch have been recently presented [15]. In [16], the droop concept was extended in combination 

with a cost function defined for the power sharing. Overall, the droop control has a drawback for 

MGs that result from their small scale. The voltage and the frequency of these systems can fluctuate 

significantly under load variations or system failures. In order to solve this problem, a 

communication system between the power converters through a smart centralized system could be 

used [17–19]. Centralized systems allow optimization of power sharing and integrating different 

types of RES into the MG. The experimental results of an MG which integrates commercial generators 

to the distribution grid without any droop control was presented in [20]. In that work, power 

management of the MG was implemented through an energy management system (EMS). In [21] an 

EMS was proposed whose aim was to minimize the operational costs of an MG working in grid 

connected mode. However, local autonomous controllers are necessary in the case of communication 

failures with the central controller. Those local controllers have been explained in many previous 

works, such as [22,23]. In [23], a distributed control scheme for the MG was proposed, in which the 

local controllers were linked to a central controller through a low bandwidth communication device. 

The central controller managed an optimal EMS. 

In this paper a centralized power management algorithm of the DC bus connected DC/DC 

converters in a hybrid AC/DC microgrid is presented. As shown in Figure 1, the AC bus of the MG 

is connected to the grid, and the DC bus is connected to the AC bus through an ILC. The ILC is an 

AC/DC bidirectional converter which regulates the DC bus voltage, managing the power flow 

between the DC bus and the AC bus. If the microgrid is in island-mode, the distributed generators 

connected to the AC bus can regulate the AC bus voltage using droop methods. In that case, the ILC 

can keep regulating the DC bus voltage. The use of centralized communications among all the 

microgrid elements makes that task feasible [19]. A centralized control decides the status of the DGs, 

the loads and the energy storage system (ESS) in the MG by applying a set of predefined operation 

functions. The power exchange with the grid is calculated by an algorithm implemented in the 

microgrid central processor (MGCP). The algorithm uses the information of the PV available power, 

the load connected to the DC bus, the battery state of charge (SOC) and the power exchange limits 

provided by the grid operator. The goal of this algorithm is to import the needed power from the 

grid, keeping it below the limits established by the grid operator, feeding the loads and keeping the 

SOC inside a safe range. If a surplus of energy is available from the PV generation, power is injected 

to the grid below another limit imposed by the grid operator. It is worth pointing out that this work 

is focused on the centralized control of the power flow in the MG. It is assumed that each power 

converter in the MG has a local controller for operating in case of communications failure. The 

proposed system has a load shedding functionality at the DC bus. This function is performed when 

the power imported by the microgrid from the grid tends to surpass its pre-defined limits. If there is 

not enough energy in the distributed generators and batteries, the load shedding functionality will 

be activated. In addition, in order to avoid the erratic connection/disconnection of loads, a hysteresis 

level is introduced through a set of power thresholds. The load shedding is used in industrial practice 

for preventing blackouts, cascading events and the collapse of the power system [24–26]. 

The main contributions of this manuscript are (i) the definition of twelve operation functions for 

the management of the DC bus connected converters of the hybrid AC/DC microgrid and (ii) the 

implementation of load-shedding hysteresis levels in cases where the aim is to keep the battery 

energy backup as high as possible without exceeding a certain power limit imported from the main 
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grid. This strategy is usually the preferred one when the electricity tariff is low [27,28]. Moreover, the 

experimental validation of the centralized power management algorithm in a hybrid AC/DC 

microgrid is shown. The power management algorithm has been implemented in a MGCP based on 

TMS320F28335 DSC. Both, the control and the communications of each power converter have been 

implemented by means of TMS320F28335 DSCs. 

This paper consists of five sections. In Section 2, a description of the hybrid AC/DC microgrid 

under study is provided. In Section 3, several concepts of the power management algorithm are 

explained. In Section 4, simulation and experimental results at different scenarios of the MG are 

presented. Section 5 contains the conclusions of the study. 

2. Description of the Hybrid AC/DC Microgrid under Study 

The hybrid AC/DC microgrid is depicted in Figure 1. The parameters of the communication 

system inside the MG are shown in Table 1. The MG under study is based on a single DC bus and a 

single AC bus, connected to the Point of Common Coupling (PCC) of the public grid by means of a 

static switch. The connection between the DC and AC buses is performed by the ILC, allowing a 

bidirectional power flow. In grid connected mode, the ILC may work as a current source that injects 

power to the grid synchronously with the AC bus voltage. An anti-islanding protection, based on 

[29], has been performed on the DSP of the MGCP. In that case, the operation of the distributed 

generators connected to the AC bus changes to droop mode so that they can regulate the voltage at 

the AC bus. The ILC keeps controlling the voltage at the DC bus.  

 

Figure 1. Conceptual scheme of the hybrid AC/DC microgrid under study. 

Table 1. Communication parameters of the system. 
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Communication Parameters between the MGCP and the Grid Operator 

High-level control EDL, P̂Grid-to-MG, P̂MG-to-Grid 

The MGCP sets the operation functions of the power converters, loads and the ESS, depending 

on the MG scenarios. These scenarios depend on the internal and external changes that affect the 

power dispatch, such as changes in the solar irradiation, the load, the ESS and the power limit 

established by the public grid operator. 

The MGCP optimizes power sharing by applying several control actions to the microgrid 

devices: (i) to connect/disconnect the loads as a function of the generated power and the available 

energy in the batteries; (ii) to share the available power between the priority loads [30] and the ESS; 

(iii) to adjust the hysteresis levels for avoiding oscillation in the DC bus due the connection-

disconnection of loads and (iv) to accomplish the power limits established by the grid operator. Note 

that the grid operator can establish different power exchange limits at any moment by means of serial 

communication. In fact, the power generated by the energy sources connected to the DC bus must be 

limited by the MGCP, in order to prevent an excessive power injection to the public grid beyond the 

limit set by the grid operator.  

The MGCP defines the internal functionality depending on the possible scenarios of the MG. 

The communications allow control of the PV DGs, the ESS and the load connection/disconnection. In 

Figure 1, a 10 kW ILC, which connects the AC bus and the DC bus, can be observed. The AC bus is 

single phase and works in grid-connected mode with a grid voltage: VGrid = 230 Vrms and FGrid = 50 Hz 

± 1 Hz. In the MG under study, two additional elements are connected to the AC bus: a 5 kW AC DG, 

and a 4 kW AC load. The nominal DC bus voltage is VDC = 420 V, being regulated by the ILC. Three 

elements are connected to the DC bus: a 3 kW bidirectional DC/DC converter connected to a battery 

bank and two 5 kW DC/DC converters connected each one to one PV array. The voltage at the battery 

bank (VBat) ranges from 192 V to 252 V, whereas the voltages at the PV arrays (VPV1 and VPV2) vary 

from 306 V to 378 V. Additionally four ‘shed-able’ 2 kW DC loads are connected to the DC bus. The 

loads can be connected or disconnected to/from the DC-bus by means of individual switches 

controlled by the MGCP (Sw1 to Sw4). 

3. Management and Control of the MG 

3.1. Parameters of the MGCP 

In this section, several concepts and parameters of the MGCP are explained in order to define 

the features and control functionalities of the proposed algorithm. 

3.1.1. High-Level Control Limits 

The grid operator establishes a tertiary high-level control strategy which controls the power flow 

between the MG and the main grid. That power flow imposes a limit of the power injected from the 

MG to the main grid or vice versa. The limits established from the high-level control are: 

Energy Dispatch Limit (EDL) 

The EDL is a digital flag that is inside the MGCP which indicates that there is an energy dispatch 

limit in the MG, set by the grid operator. The EDL allows the MGCP to set a suitable control strategy 

by taking into account the values of the maximum power extracted/injected from/to the grid to/from 

the MG. When EDL = Off, there is no energy dispatch limit, and the MGCP can inject or extract 

unlimited power to/from the grid. In the opposite case (EDL = On), the MGCP establishes a set of 

power management criteria which depends on the load connected to the AC or DC buses, the power 

available in the MG and the SOC of the batteries.  
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Maximum Power Extracted from the Grid 

The power flow scenarios between the grid and the MG are shown in Figure 2. Two general 

cases are possible: PGrid < 0 and PGrid > 0, being the power flow from the main grid to the microgrid or 

vice versa. Parameter P̂Grid-to-MG is established by the grid operator and represents the maximum 

power that can be extracted from the main grid to the MG, |PGrid|≤ P̂Grid-to-MG. 

  
(a) (b) 

Figure 2. Power flow scenarios between the grid and the MG: (a) power flow from the grid to the MG, 

PGrid < 0; (b) power flow from the MG to the grid, PGrid > 0. 

Maximum Power Injected to the Grid 

Parameter P̂MG-to-Grid stands for the maximum power that can be injected from the MG to the 

main grid. This parameter is established by the grid operator, imposing the condition, 

PGrid≤ P̂MG-to-Grid. 

3.1.2. Parameters of the MGCP 

The MGCP establishes some parameters for the secondary control strategy, which is responsible 

for the power flow between the AC bus and the DC bus of the MG. The MGCP must limit the power 

generated by the RESs, if the available power is higher than that necessary at the MG buses.  

Maximum Power Extracted from the AC Bus to the DC Bus Measured at the AC Side of the ILC 

The power that flows from the grid to the MG is depicted in Figure 2a. In that case (PGrid < 0 and 

PILC_AC < 0), the value of PILC_AC can be calculated by Equation (1). The parameter P̂ILCAC
|Grid-to-MG 

stands for the maximum power which can be extracted from the AC bus to the DC bus. This power 

is measured at the AC side of the ILC (2). The value of P̂ILCAC
|Grid-to-MG  depends on the MGCP, 

because the value of P̂Grid-to-MG  is set by the MGCP. The absolute value of PILC_AC must meet the 

condition expressed by Equation (3) at any time, taking into account the rated power of the ILC. 

PILCAC
=PACDGs+|PGrid|-PACLoad

 (1) 

P̂ILCAC
|Grid-to-MG=PACDGs+P̂Grid-to-MG-PACLoad

 (2) 
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|𝐺𝑟𝑖𝑑−𝑡𝑜−𝑀𝐺) (3) 

Maximum Power Injected from the DC Bus to the AC Bus Measured at the AC Side of the ILC 

The power that flows from the MG to the grid is depicted in Figure 2b. In that case (PGrid > 0 and 

PILC_AC > 0), the value of PILC_AC can be calculated by Equation (4). Parameter P̂ILCAC
|MG-to-Grid stands 

for the maximum power which can be injected from the DC bus to the AC bus, measured at the AC 

side of the ILC (5). The maximum power injected from the DC bus to the AC bus by the ILC must 

meet the conditions of Equation (6).  
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-PACDGs (4) 

P̂ILCAC
|MG-to-Grid = P̂MG-to-Grid+PACLoad

-PACDGs
 (5) 

AC BUSDC BUS

ESS

ILCPV
PVP

ESSP

LoadDCP

0GridP

 DC
 Loads 

DCILCP

AC
Load

LoadACP

DGsACP
DGs

Utility 
Grid

PCC
ACILCP

GridP

MGtoGridGrid PP 
^^

AC busDC bus

AC BUSDC BUS

ESS

ILCPV
PVP

ESSP

LoadDCP

0GridP

 DC
 Loads 

AC
Load

LoadACP

DGsACP

AC busDC bus

DGs

Utility 
Grid

PCC

GridP

DCILCP
ACILCP

GridtoMGGrid PP 
^^



Energies 2018, 11, 794 6 of 21 

 

P̂ILCAC≤ MIN (𝑃𝐼𝐿𝐶𝑅𝑎𝑡𝑒𝑑, 𝑃̂𝐼𝐿𝐶𝐴𝐶
|𝑀𝐺−𝑡𝑜−𝐺𝑟𝑖𝑑) (6) 

PV Power Generated in the DC Bus 

The power outputs generated by the PV DGs connected to the DC bus are measured 

individually. Parameter PPV is the overall PV power generated in the DC bus of the MG. The total 

power generated by two PV DC/DC converters connected to the DC bus is shown in Equation (7). 

PPV = PPV1 · ηPV1 + PPV2 · ηPV2 (7) 

Power Consumed by the Loads Connected to the DC and AC Buses 

The power consumed by the loads connected to the DC bus is PDCLoad
 = IDCLoad

·VDC and to the 

AC bus is PACLoad
 = IACLoadrms

· VGridrms
. 

Maximum Power Consumed by the Loads Connected to the DC Bus 

Parameter P̂DCLoad
 stands for the maximum overall power which the DC loads are allowed to 

consume. The load shedding functionality at the DC bus performed by the MGCP depends on this 

parameter. P̂DCLoad
 ≤ PILCRated

 establishes an upper limit for the maximum power as a function of the 

ILC power rating. 

PV Power Limit 

Parameter PPV_Lim is the maximum power that should be extracted from the PV sources at any 

time, so that it can be consumed by the DC loads and by the batteries (PESS > 0) and/or it injected into 

the grid. PPV_Lim is represented by Equation (8), where PESS = (VBat·IBat)/ηESS. 

PPVLim  = P̂ILCAC
|MG-to-Grid+PDCLoad+PESS (8) 

PV Generation Power Available in the DC Bus 

Parameter PAvailableDC_MG is the extra power available from the PV DGs of the DC bus after feeding 

the load connected in the DC bus. The available PV generation power is defined by Equation (9). 

PAvailableDC_MG
 = PPV - PDCLoad (9) 

DC Load Switch 

The flag of DC load switch takes two possible states, SwLoad = On and SwLoad = Off, depending on 

the connection or disconnection of loads to the DC bus, respectively.  

DC Load Hysteresis 

Parameter DCLoad_hyst is calculated as 10% of the overall power consumed by the DC loads, 

DCLoadhyst
 = 0.1·PDCLoad

. DCLoad_hyst is the hysteresis level which has been established for avoiding erratic 

connection/disconnection of the loads.  

Power Consumed for the Batteries to C10 

Parameter PESSC10 is the maximum power consumption for the charge of the batteries of the ESS, 

PESSC10 = (VBat·IC10)/ηESS. It has been established that the batteries are charged with a current equal to 

IC10 = C10/10, where C10 the specified battery capacity (measured in A·h) for a discharge time of 10 h.  
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3.2. Power Management Algorithm 

Several calculations and functions are necessary for the suitable power management of the MG 

control algorithm. These calculations and functions depend on the SOC of the battery, the availability 

of power in the buses, the limits set by the grid operator and the status of SwLoad. 

3.2.1. Operation Functions of the MGCP 

The power management algorithm embedded in the MGCP executes 12 operation functions 

according to the various operating scenarios. The operation functions of the MGCP and their 

interactions with the power converters of the MG are described in the following paragraphs.  

Operation Functions in DC Load Connection Mode (SwLoad = On) 

Function 1 (F1): All DC loads are fed. When SOC ≤ SOCFull (SOCFull = 100%), the DC/DC converter 

of the ESS charges the batteries from the DC bus with a current (IC10). The PV DGs work at their 

maximum power point (MPP), so that MPPT = On. If there is not enough power available from the 

PV DGs connected to the DC bus, the ILC can extract the rest of the power from the AC bus with the 

only restriction being |P̂ILCAC
|≤PILCRated

, taking into account that EDL = Off. 

Function 2 (F2): All DC loads are fed. When SOC ≤ SOCFull; the DC/DC converter of the ESS 

charges the batteries from the DC bus with a current equal to IC10. The PV DGs work at their MPP 

(MPPT = On). In this case, the PV DGs connected to the DC bus may produce excess power which 

can be injected into the AC bus by the ILC if necessary, with the only limitation being its rated power: 

P̂ILCAC
 ≤ PILCRated

.  

Function 3 (F3): All DC loads are fed. When SOC ≤ SOCFull; the DC/DC converter of the ESS 

charges the batteries from the DC bus with a current equal to IC10. The PV DGs do not work at their 

MPP (MPPT = Off). In this case the PV DGs connected to the DC bus produce a limited amount of 

power, because the power which can be injected to the AC bus by the ILC is limited by the grid 

operator. The power injected from the DC to AC bus by the ILC is given by: PILCAC
≤ P̂ILCAC

|MG-to-Grid. 

Figure 3 depicts the power dispatch inside the MG after applying the operation functions: F3, F8, F10 

and F11. 

Function 4 (F4): All DC loads are disconnected. When SOC ≤ SOCMIN (SOCMIN = 20%), the ESS is 

in standby mode. The flag SwLoad changes from On to Off, entering the DC load disconnection mode. 

The PV DGs work at their MPP (MPPT = On). 

Function 5 (F5): All DC loads are fed. While SOC ≤ SOCFull, the DC/DC converter of the ESS 

charges the batteries from the DC bus with a current equal to IC10. The PV DGs work at their maximum 

power point (MPPT = On). The ILC injects the excess power at the DC bus to the AC bus. The power 

injected to the AC bus must comply with the following conditions: PILCAC
 ≤ P̂ILCAC

|MG-to-Grid.  
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(d) 

Figure 3. Power dispatch inside the MG after applying the operation functions: (a) F3; (b) F8; (c) F10 

and (d) F11. 

Function 6 (F6): All DC loads are fed. As the SOC has reached SOCFulll, the DC/DC converter of 

the ESS stops charging the batteries, putting the ESS in standby mode. The PV DGs work at their 

MPP (MPPT = On), producing an excess of power which can be injected to the AC bus by the ILC. 

Function 7 (F7): All DC loads are fed. While SOC ≤ SOCFull, the DC/DC converter of the ESS 

charges the batteries from the DC bus with a current whose value is shown by Equation (10) which 

is smaller than IC10. The PV DGs work at their MPP (MPPT = On). If there is not enough power 

available from the PV DGs, the ILC can extract the rest of power from the AC bus subject to the 

following limit: |PILCAC
|≤ P̂ILCAC

|Grid-to-MG. 
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Function 8 (F8): All DC loads are fed. When SOC ≥ SOCMIN, the DC/DC converter of the ESS 

operates as a controlled current source discharging the batteries to the DC bus. In F8, the PV DGs 

work at their MPP (MPPT = On). The sum of the power coming from the ESS and from the PV DGs 

is not enough to energize the DC loads, so that the required extra power can be transferred from the 

AC bus to the DC bus through the ILC. That extra power is limited in order not to override the power 

which can be absorbed by the DC loads. Equation (11) shows the expression of the discharge current. 

In this case, the extra available power is negative (PAvailableDC_MG < 0), because the power coming from 

the PV DGs is not enough to energize the DC loads. The power flows in the MG when F8 is active are 

shown in Figure 3b. 
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IDisref
 = MIN (IC10, |

PAvailableDC_MG
+ P̂ILCAC

|Grid-to-MG

Vbat
|) (11) 

Function 9 (F9): All DC loads are fed. As the SOC has reached SOCFull, the DC/DC converter of 

the ESS stops charging the batteries and enters standby mode. The PV DGs do not work at their 

maximum power point (MPPT = Off), because the DC loads cannot absorb the sum of MPP powers. 

The ILC injects a limited amount of power from the DC to the AC bus which is the required extra 

power to feed the DC loads. 

Operation Functions in DC Load Disconnection Mode (SwLoad = Off) 

Function 10 (F10): In F10, the flag SwLoad switches from Off to On. All DC loads are fed. The ESS 

is in standby mode. The PV DGs work at their MPP (MPPT = On). The power flows in the MG when 

F10 is active are shown in Figure 3c. 

Function 11 (F11): Some DC loads are fed by the load shedding functionality, as is shown in 

Figure 4. This function each of the DC loads on and off automatically. While SOC ≤ SOCMAX (SOCMAX 

= 80%), the DC/DC converter of the ESS charges the batteries with a current smaller than IC10, given 

by Equation (10). The power flows in the MG when F11 is active are shown in Figure 3d. Cal.0 is the 

calculation of the available PV power plus the maximum power that can be transferred from the AC 

bus to the DC bus by the ILC. This expression is shown in Equation (12). A decision tree can be 

observed in Figure 4, which depicts how 1 to 4 DC loads are connected–disconnected as a function of 

the value of Cal.0. If Cal.0 is not enough to energize all the DC loads, F11 begins their disconnection 

depending on the values of Cal.0 and the state (1 or 0) of the logic variables, Comp.1 to Comp.3, which 

are calculated as AND functions. Note that a 10% hysteresis band of the power of one DC load has 

been chosen for establishing the comparison: DCLoad_hyst = 0.1·2 kW = 0.2 kW. 

Cal.0 =  PPV+P̂ILCAC
|Grid-to-MG  (12) 

 

Figure 4. Load shedding functionality. 

Function 12 (F12): All DC loads are fed. When SOC ≤ SOCMAX, the DC/DC converter of the ESS 

charges the batteries with a current smaller than IC10, given by Equation (10). The PV DGs work at 

their MPP (MPPT = On). If the power coming from the PV DGs is not enough to energize the DC 

loads, the required extra power can be transferred from the AC to the DC bus through the ILC. 
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3.2.2. Power Management Algorithm of the MG 

The flow diagram of the power management algorithm is shown in Figure 5. Comp.4 is a logic 

variable calculated as an OR function. The flags, SwLoad and EDL, are fundamental parameters for the 

power dispatch in the MG. When EDL = Off, there is no energy dispatch limit, so that functions F1 or 

F2 can be applied. When EDL = On and SwLoad = On, the MGCP applies functions F3 to F9. The flag 

SwLoad can be turned Off by F4; after that, the MGCP can apply functions F10 to F12. The functions are 

implemented so that the power transfer limits between both buses are not exceeded. The calculations 

performed by the power management algorithm, Cal.0 to Cal.4, are shown in Equations (12)–(15) and 

allow the power availability of both buses to be checked, taking into account their power dispatch 

limits.  

Equation (13) stands for the power availability in the DC bus coming from DGs and batteries 

plus the maximum power which can be extracted from the AC bus to the DC bus. 

Cal.1 = PAvailableDCMG
+ P̂ILCAC

|Grid-to-MG  (13) 

Equation (14) stands for the maximum power that can be injected from the DC to the AC bus 

plus the power consumed for charging the batteries at a current (IC10). 

Cal.2= P̂ILCAC
|MG-to-Grid+PESSC10

 (14) 

Equation (15) stands for the power available in the DC bus plus the maximum power which can 

be extracted from the AC bus to the DC bus. 

Cal.3 = PPV + P̂ILCAC
|Grid-to-MG-P̂DCLoad

 (15) 

 

Figure 5. Power management algorithm of the MG. 
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4.1. Simulation Results 

The proposed power management algorithm has been simulated by means of PSIM™ [31] under 

various scenarios. This study is focused on the particular case in which the MG is operating in grid 

connected mode. The characteristics of the power electronic converters comprising the MG are listed 
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proposed algorithm in different situations with a short simulation time, the algorithm was run in 

simulations at 25 Hz. The duration of the operation functions F4 and F10 is one clock cycle (40 ms), 

because their main function is to change the load shedding functionality. It is assumed that the ESS 

is initially discharged (SOC ≤ SOCMIN). A selected number of possible scenarios have been studied in 

order to demonstrate the suitable behavior of the MG in its most common and critical situations. In 

the scenarios under study, step changes of the irradiation, the DC load and the EDL were considered, 

as can be observed in Table 3. The behavior of the proposed algorithm and the application of 

particular functions F1 to F12 by the MGCP can be observed from the following graphs: Figure 6 

depicts the behavior of the currents, IBat, IPV = IPV1 + IPV2, and of the SOC versus time. The evolution of 

the powers, PBat, PPV, PDCLoad, PILC_AC and PGrid, can be observed in Figure 7. Figure 8 provides detail 

about the most sudden transients of IILC_AC, VDC and PILC_AC, which take place throughout the whole 

simulation, corresponding to the time span, 34.8 s to 35.4 s. The analysis is performed according to 

the following time intervals:  

Interval 1 (0 ≤ t < 1 s): This interval is divided into two subintervals. 

0 ≤ t < 40 ms: At t = 0 s, the ESS is initially discharged (SOC ≤ SOCMIN). The irradiation is 300 W/m2 

and the overall DC load absorbs 8 kW. Due to the fact that the PV available power, PPV, at that low 

irradiation level is not enough to feed the loads, the MGCP applies function F4, internally activating 

flag SwLoad = Off. 

40 ms ≤ t < 1 s: After to F4, F11 is applied to disconnect two DC loads (overall DC load = 4 kW), 

and the batteries are charged with a current given by Equation (10). 

Table 2. Characteristics of the power converters of the MG. 

ILC 2 PV DC/DC Converters (DGs) ESS 

PILC_Rated = 10 kW 

VGrid = 230 V 

FGrid = 50 Hz 

VDC = 420 V 

FswILC = 12.8 kHz 

PPV1,2_Boost = 5 kW 

VPV = 306 V 

Fsw_PV = 16 kHz 

PV Panel: Atersa A-250P GSE 

VPV_oc = 37.61 V 

IPV_MAX = 8.18 A 

VPV_MAX = 30.58 V 

IPV_CC = 8.71 A 

PESS_HB = 3 kW 

VBat = 216 V 

Fsw_ESS = 16 kHz 

Battery Bank: 18 batteries type 

SUN POWER VRM 12V105 

connected in series 

VBat_Nom = 216 V 

VBat_MIN = 185 V 

VBat_MAX = 259.2 V 

C10 ≅ 105 A·h 

IC10 = 10.5 A 

Table 3. The simulation scenarios of the MG. 

SIMULATION Scenarios 

Time Intervals (s) 

Time interval number 1 2 3 4 5 6 7 

Time span (s) 0 < t < 1 1 < t < 10 10 < t < 18 18 < t < 20 20 < t < 28 28 < t < 35 35 < t < 40 

Irradiation (W/m2) 300 600 400 800 800 800 100 

Load connected to the DC bus 
4 loads 

(8 kW) 

4 loads 

(8 kW) 

4 loads 

(8 kW) 

4 loads 

(8 kW) 

2 loads 

(4 kW) 

2 loads 

(4 kW) 

2 loads 

(4 kW) 

EDL(1) On On On On On Off Off 

ILC The MG is operating in grid-connection mode 

ESS The batteries of the ESS are initially discharged. SOC ≤ SOCMIN 

Power limits 𝑃̂𝑀𝐺−𝑡𝑜−𝐺𝑟𝑖𝑑 = 4 kW, 𝑃̂𝐺𝑟𝑖𝑑−𝑡𝑜−𝑀𝐺 = 1kW, 𝑃̂𝐷𝐶 𝐿𝑜𝑎𝑑
 = 8 kW 

AC bus 𝑃𝐴𝐶𝐿𝑜𝑎𝑑
= 4 kW, 𝑃𝐴𝐶 𝐷𝐺𝑠

= 5 kW 

1 Energy dispatch limit. 

Interval 2 (1 s ≤ t < 10 s): At t = 1 s, the irradiation undergoes a change from 300 W/m2 to 600 W/m2, 

whereas the SOC keeps growing below SOCMAX. The MGCP goes on applying F11. The PV generation 

is increased and F11 connects an additional 2 kW DC load (overall DC load = 6 kW) to the DC bus. 

The MGCP makes both PV DC/DC converters operate at their MPP, whereas the DC bus voltage is 

regulated to 420 V by the ILC.  
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Interval 3 (10 s ≤ t ≤ 18 s): This interval is divided into five subintervals. 

10 ≤ t < 10.2 s: At t = 10 s, the irradiation decreases from 600 W/m2 to 400 W/m2, whereas the SOC 

keeps growing below SOCMAX. The MGCP maintains F11. The power generated by the panels, PPV, 

with this irradiation is insufficient to feed three loads, and F11 disconnects one load (DC load = 4 kW) 

in the DC bus. 

10.2 s ≤ t < 10.24 s: At t = 10.2 s the SOC surpasses SOCMAX, whereas the irradiation stays at a 

constant value of 400 W/m2. The MGCP applies F10 after detection of SOCMAX, which internally 

activates the flag, SwLoad = On. 

10.24 s ≤ t < 15.4 s: At t = 10.24 s, the generated PV power at the current irradiation level is not 

enough to feed all the DC loads, so that the MGCP applies F8 in order to get additional power from 

the ESS, and the battery bank is discharged at a current given by (11). F8 connects all DC loads (8 kW) 

to the DC bus and extracts power from the AC bus taking into account the limit that the maximum 

power that can be extracted of the same (|PILCAC
|≤( P̂ILCAC

|Grid-to-MG), and the ESS injects the current 

required by the DC bus to feed the DC loads. 

15.4 s ≤ t < 15.44 s: At t = 15.4 s the SOC goes below SOCMIN, so that the MGCP applies F4, 

internally activating flag SwLoad = Off. 

15.44 s ≤ t < 18 s: At t = 15.44 s, the MGCP applies F11. F11 disconnects two DC loads (overall DC 

load = 4 kW), so that the batteries are charged with a current given by (10).  

Interval 4 (18 s ≤ t < 20 s): At t = 18 s, the irradiation undergoes a linear change of 400 W/m2 to 800 

W/m2, being SOC < SOCMAX. The generated PV power and the extracted power from the AC bus are 

enough to feed all DC loads. Due to limitations on the amount of power that can be interchanged 

between the buses, the MGCP applies F12, and the batteries are charged with a current given by 

Equation (10). F12 connects all the DC loads and also sets the PV sources at their MPP.  

Interval 5 (20 s ≤ t < 28 s): This interval is divided into three subintervals. 

20 ≤ t< 20.04 s: The irradiation keeps a constant 800 W/m2 value, whereas SOC remains below 

SOCFull. At t = 20 s, the load connected to the DC bus decreases from 8 kW to 4 kW. The PV-generated 

power (PPV) at the current irradiation is enough to feed all DC loads. The MGCP applies F10 which 

internally activates the flag, SwLoad = On. 

20.04 ≤ t< 23.7 s: At t = 20.04 s, MGCP applies F5. F5 sets the charge the batteries with a current 

(IC10). The PV sources work at their MPP. The ILC injects the power excess to the AC bus. 

23.7 s ≤ t< 28 s: Both the irradiation (800 W/m2) and the DC load (4 kW) remain constant, whereas 

the SOC has reached 100%. The power generated by the panels is higher than that necessary for 

feeding the DC loads: PPV > 4 kW. The MGCP applies F9 to stop charging the batteries and to set the 

PV generators outside their MPP (MPPT = Off). In this case, (PILCAC
≤ P̂ILCAC

|MG-to-Grid).  

Interval 6 (28 s ≤ t < 35 s): The irradiation and the SOC remain constant: 800 W/m2 and 100%, 

respectively. EDL switches from On to Off. The MGCP applies F2, and the ILC injects power into the 

grid to its rated power, if necessary ( PILCAC
≤PILCRated

). At t = 30 s, MPPT switches from Off to On. 

Interval 7 (35 s ≤ t < 40 s): The irradiation undergoes a change from 800 W/m2 to 100 W/m2. The 

MGCP applies F1, so that the ILC can extract power from the grid (  |PILCAC
|≤PILCRated

) when  

MPPT = On. 
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Figure 6. Simulation waveforms, IBat, IPV = IPV1 + IPV2 the SOC over time. 

 

Figure 7. Simulation waveforms of the powers, PBat, PPV, PDCLoad, PILC_AC and PGrid. 
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Figure 8. Simulation waveforms of the most sudden transients of IILC_AC, VDC and PILC_AC. 

4.2. Experimental Results 

The experimental power electronic converters, whose characteristics are summarized in Table 2, 

were built to validate the proposed power management algorithm. The following devices have been 

connected to the DC bus of the MG available in the lab: a 3 kW battery ESS, a 2.5 kW PV source and 

four electronic switches to connect/disconnect four DC loads of 0.6 kW (𝑃̂𝐷𝐶𝐿𝑜𝑎𝑑
 = 2.4 kW). Figure 9 

shows a picture of the experimental setup. The batteries were emulated by a bidirectional DC 

source/battery emulator, model TC.GSS-Bidirectional-DC-PSU, from Regatron. The PV array was 

emulated by means of a 10 kW PV array simulator, TerraSAS ETS1000/10, from Ametek (Berwyn, PA, 

USA). Three experiments were carried out. The experimental scenarios are summarized by Table 4. 

Figures 10 and 11 depict the waveforms of the currents, voltages and powers of the power converters 

that form the DC bus of the MG, with Figure 10 corresponding to Experiment 1 and Figure 11 

corresponding to Experiment 2. Figure 12 corresponds to Experiment 3. 

Experiment 1 and Experiment 2 show the behavior of the system with the same change in the 

irradiation level at the PV source, but with a different SOC of the ESS. The available power injected 

from the AC bus to the DC bus by the ILC is PILC_DC = −1 kW. 

 

Figure 9. Experimental setup picture. 
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Experiment 1: The ESS is initially at an SOC ≥ 80% (charged). The four loads remain connected 

throughout the whole experiment, as can be seen in Figure 10. (PDC_Load = 2.4 kW). The hysteresis level 

for comparisons with power thresholds is DCLoad_hyst = 0.24 kW. 

Interval1 1 (0 s < t < 8 s): The irradiation level is 100 W/m2 and the PV source works at its maximum 

power point (MPP), providing PPV = 0.14 kW to the DC bus. That irradiation is not enough to feed all 

of the loads. Taking into account that the ESS is charged (SOC ≥ 80%), the MGCP transfers the 

maximum possible power from the AC bus (PILC_DC = −1 kW) to the DC bus through the ILC and 

applies F8. This keeps all the DC loads connected and orders the ESS supplying all the power required 

by the DC bus, PBat = −1.26 kW. 

Interval 2 (8 s < t < 11 s): The irradiation increases from 100 W/m2 to 800 W/m2 in 3 s. The MGCP 

keeps F8 activated and the power delivered by the ESS can be reduced.  

At t = 8.6 s, MGCP detects increasing generation, and the PV source works at its MPP, delivering 

PPV = 0.64 kW. The MGCP keeps F8 activated and transfers the maximum possible power from the 

AC bus (PILC_DC = −1 kW) and keeps all of the DC loads connected. The ESS supplies the power 

required by the DC bus; the power delivered by the ESS is reduced to PBat = −0.76 kW.  

At t = 10.5 s, the PV source works at its MPP delivering PPV = 1.64 kW, with PILC_DC = −1 kW. At 

this moment, the MGCP detects that the available power at the DC bus to fed all the DC loads is 

higher than the hysteresis level (Cal.1 > DCLoad_hyst). The MGCP changes from F8 to F7. F7 forces the 

ESS to change its operation to energy storage mode; the batteries are charged with a current given by 

Equation (10). The MGCP changes the setpoint of the ESS charge current, ICh_ref, until the available 

power generation is stable (At t = 11.6 s, PBat = 0.5 kW). The power flows in the MG when the MGCP 

changes from F8 to F7 are shown in Zoom 1 of Figure 10. 

Table 4. The experimental scenarios of the MG. 

Experimental Scenarios 1 

ESS Experiment 1: The batteries of the ESS are initially charged. SOC = SOCMAX 

Time span (s) 0 < t < 8 8 < t < 11 11 < t < 41 41 < t < 44 44 < t < 50 

Irradiation (W/m2) 100 100–800 800 800–100 100 

ESS Experiment 2: The batteries of the ESS are initially discharged. SOC ≤ SOCMIN 

Time span (s) 0 < t < 7 7 < t < 10 10 < t < 40 40 < t < 43 43 < t < 50 

Irradiation (W/m2) 100 100–800 800 800–100 100 

Load connected to the DC bus 4 loads (2.4 kW) 

EDL On 

ILC The MG is operating in grid-connection mode 

Power limits 𝑃̂𝑀𝐺−𝑡𝑜−𝐺𝑟𝑖𝑑 = 4 kW, 𝑃̂𝐺𝑟𝑖𝑑−𝑡𝑜−𝑀𝐺 = 1 kW, 𝑃̂𝐷𝐶𝐿𝑜𝑎𝑑
 = 2.4 kW 

AC bus 𝑃𝐴𝐶𝐿𝑜𝑎𝑑
 =  4 kW, 𝑃𝐴𝐶𝐷𝐺𝑠

 =  5 kW 

1 The algorithm is running in the experiments at 1 Hz. 

Interval 3 (40.4 s < t < 44.2 s): The irradiation decreases from 800 W/m2 to 100 W/m2 in 3 s. The 

MGCP keeps F8 activated and the power delivered by the ESS can be reduced. The power flows in 

the MG when F8 is active are shown in Zoom 2 of Figure 10. 

Experiment 2: The ESS is initially at an SOC ≤ 20% (discharged). 

Interval 1 (0 s < t < 7 s): The irradiation level is 100 W/m2, and the PV source works at its maximum 

power point (MPP), providing PPV = 0.14 kW to the DC bus. That irradiation is not enough to feed all 

of the loads. Considering that the ESS is discharged (SOC < 20%), the MGCP transfers the maximum 

possible power from the AC bus (PILC_DC = −1 kW) to the DC bus through the ILC and applies the load 

shedding functionality, F11. Taking into account that the available power at the DC bus (1.14 kW) is 

not enough to feed two loads, F11 connects only one DC load (0.6 kW). The rest of the available power 

is used for charging the batteries at PBat = 0.54 kW. The power flows in the MG when F11 is active are 

shown in Zoom 1 of Figure 11. 

Interval 2 (7 s < t < 10 s): The irradiation increases from 100 W/m2 to 800 W/m2 in 3 s. The MGCP 

keeps function F11 activated. 



Energies 2018, 11, 794 16 of 21 

 

At t = 8 s, the PV source works at its MPP, delivering PPV = 0.6 kW, whereas PILC_DC = −1 kW. At 

this moment, the MGCP detects that the available power at the DC bus, taking into account the 

hysteresis level is enough to feed two of the loads. F11 connects two loads and changes the setpoint 

ICh_ref of the ESS from 2.9 A to 0.78 A, where PBat = 0.15 kW. Note that at t = 8 s, after the connection of 

the two loads, only |PILC_DC| ≤ 0.75 kW is taken from the AC bus. This ensures a minimum level of 

power is available in the DC bus. 

At t = 9.8 s, the PV source works at its MPP, delivering PPV = 1.7 kW, where PILC_DC = −1 kW. At 

this moment, the MGCP detects that the available power at the DC bus to feed all the DC loads is 

greater than the hysteresis level (DCLoad_hyst). The MGCP applies function F10 which internally 

activates the flag, SwLoad = On. After that, the MGCP starts a transition from F10 to F7. F7 connects all 

the DC loads and changes the setpoint of the ESS to ICh_ref = 1.82 A until the available power generation 

is stable at the instant t = 11.4 s, where PBat = 0.35 kW. At t = 9.8 s, the MGCP applies function F10 

during an execution cycle of the algorithm, i.e., for 73 ms. After that, function F7 is applied. 

 

Figure 10. Experiment 1. 
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Figure 11. Experiment 2. 

Interval 3 (39.2 s < t < 42.8 s): The irradiation decreases from 800 W/m2 to 100 W/m2 in 3 s. Note 

that at t = 40 s, the MGCP applies function F4 which internally activates the flag, SwLoad = Off. Then, 

the MGCP starts a transition from F4 to F11. The MGCP keeps F11 activated and the power delivered 

by the ESS can be reduced. The power flows in the MG when the MGCP starts a transition from F4 

to F11 are shown in Zoom 2 of Figure 11. 

Experiment 3: The operation functions broadcasted by the MGCP to the MG elements have a 

communication delay which depends on the RS485 communication system. In the experimental MG, 

the computing time of one operation function and its delay to be broadcasted and processed by one 

of the elements is lower than 74 ms, as can be observed in Figure 12. 
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Figure 12. Experiment 3. 

4.3. Discussion 

In Figure 7, the power exchange between devices of the MG is shown. In the first part of interval 

5 (20 < t < 23.7 s), the MGCP causes the battery system to be charged to its maximum capacity, PESSC10, 

using the power available from the PV DGs. In the second part of interval 5 (23.7 s ≤ t < 28 s), the 

MGCP limits the generation from the PV DGs, setting their operation points out of the MPP (MPPT 

= Off).  

The ILC controls the DC bus voltage, because the AC bus works in grid connection mode. The 

ILC also carries out the synchronization of the AC bus with the grid, causing the current, IILC_AC, 

flowing through the ILC to/from the AC bus to have low distortion and to be synchronized with the 

grid voltage, VGrid, when the MG exports/imports power to the grid. Figure 8 shows the waveforms 

of IILC_AC and of VGrid in both situations, where a smooth transient, a good synchronization and a low 

distortion of IILC_AC can be observed in the transition from exporting to importing power to/from the 

AC bus. A smooth transient of the DC bus voltage, VDC, is also observed in that transition at t = 35 s, 

which is the most sudden transient during the whole study, producing a transient undervoltage of ∆

ˆ
DCv = 34 V, i.e., less than 10% of the DC bus voltage. It should be considered that the power, PILC_AC, 

interchanged between the ILC and the AC bus, undergoes an abrupt change from 3.8 kW to −3.2 kW 

(7 kW step) at t = 35 s, provoked by a fast irradiation decrease. 

Figure 10 shows the power exchange among the MG devices in Experiment 1. In time intervals 

1 and 3, the MGCP applies the operation function F8. In this case, the demand of the DC bus is higher 

than the sum of the available PV power and the power import limit established by the grid operator. 

In that case, the MGCP requests the ESS to extract energy from the batteries to temporary feed the 

DC bus. This functionality reduces the cost of the electric bill. 

The power flow in the MG after the application of the load shedding functionality can be 

observed in the zoom areas of Figure 11. No oscillations during those transients are observed.  

In Experiment 3, the overall computing + transmission + processing delay of one operation 

function is 74 ms, where the ESS is at a distance of 2 m from the MGCP. According to the TIA/EIA-

485-A standard, the maximum bandwidth at a 1.2 km distance is 100 kbps, which is much higher 

than the 9600 bps used in the experimental microgrid. The delay of a CAT5e twisted pair wire is less 

than 10 μs/km [32]. Therefore, if the distance between the ESS and the MGCP increases to 1 km, taking 
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into account that the messages between the MGCP and the ESS run through the twisted pair four 

times (see the green and pink waveforms of Figure 12), the overall delay would increase to about 40 

μs, i.e., about 0.05% of the total delays considered in the tests (73.6 ms). Further, the proposed 

algorithm is executed every second in the microgrid under study, so that the communication delays 

produced by moderate distances up to a few kilometers are not critical. 

5. Conclusions 

A new algorithm for the efficient management of the power converters of the hybrid AC/DC 

microgrid working in grid-connected mode has been presented. The algorithm is based on 

categorizing the devices according to their type: generation, storage, interlinking converter and load. 

Twelve operations functions have been defined and programmed in a Microgrid Central Processor 

for managing the power flow in the MG. The choice of the active operation function depends on the 

status of the distributed generators, the loads, the energy storage system and the energy dispatch 

limits between the AC and DC buses established by the grid operator. The MGCP broadcasts the set 

points of each converter through a RS485 communications system. The experimental and simulation 

results confirm that the proposed power management algorithm allows a suitable power balance 

among the MG devices when changes in PV generation, load demand and state of charge of the ESS 

occur. At any time, the power dispatch limits set by the public grid operator can be accomplished. 
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Nomenclature 

PPV1, PPV2 Power supplied by the PV arrays 1 and 2 

PPV Total PV power generated by the DC MG 

PDCLoad Total power consumed by the DC loads 

PGrid Power injected from the hybrid AC/DC microgrid to the main grid 

PILC_AC 
Power injected from the DC bus to the AC bus by the ILC, measured at the AC side 

of the ILC 

PILC_DC 
Power injected from the DC bus to the AC bus by the ILC, measured at the DC side 

of the ILC 

PESS Power absorbed by ESS from the DC bus 

PBat Battery bank charge power 

PACLoad Total power consumed by the AC loads 

PAC_DGs Power supplied by the AC DGs  

ηEES Efficiency of the ESS 

ηPV1, ηPV2 Efficiency of the PV DC/DC converters 1 and 2 

ηILC Efficiency of the ILC 

IGrid RMS Current injected from the hybrid AC/DC microgrid to the main grid 

VGrid RMS value of the grid voltage 

ω Grid angular frequency 

φ Grid phase 

IACLoad Total RMS current consumed by the AC loads 

IDCLoad Total current consumed by the DC loads 

VDC DC bus voltage 

IILC_AC RMS current injected from the ILC to the AC bus 

SOC State of charge of the battery bank 

IBat Charge current of the battery bank  

VBat Voltage of the battery bank  
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ICh_ref Reference of the charge current of the battery bank 

IDis_ref Reference of the discharge current of the battery bank 

IPV1, IPV2 Current supplied by the PV arrays 1 and 2 

PPV_Lim Limit of the PV power generation  

IDCLoad Total current consumed by the DC loads 

SW1,2,3,4DC_Load Switches of the DC loads (loads 1 to 4) 

EDL Energy dispatch limit 

𝑃̂𝐺𝑟𝑖𝑑−𝑡𝑜−𝑀𝐺 Maximum power drawn from the grid to the hybrid AC/DC microgrid 

𝑃̂𝑀𝐺−𝑡𝑜−𝐺𝑟𝑖𝑑 Maximum power injected to the grid from the hybrid AC/DC microgrid 

𝑃̂𝐼𝐿𝐶𝐴𝐶
|𝐺𝑟𝑖𝑑−𝑡𝑜−𝑀𝐺 

Maximum power drawn from the AC bus to the DC bus measured at the AC side of 

the ILC 

𝑃̂𝐼𝐿𝐶𝐴𝐶
|𝑀𝐺−𝑡𝑜−𝐺𝑟𝑖𝑑 

Maximum power injected from the DC bus to the AC bus, measured at the AC side 

of the ILC 
𝑃𝐼𝐿𝐶𝑅𝑎𝑡𝑒𝑑

 Rated power of the ILC  

𝑃̂𝐷𝐶𝐿𝑜𝑎𝑑
 Maximum power consumed by the DC loads 

PAvailableDC_MG Power available at the DC bus of the MG 

DCLoad_hyst Power hysteresis level used by the load shedding functionality 

PESSC10 
Power drawn by the ESS from the DC bus at a charge current of the battery bank 

equal to IC10 
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