

Designing Lectures as a Team and Teaching in Pairs

Zehetmeier, Daniela
a,b

; Böttcher, Axel
a
 and Brüggemann-Klein, Anne

b

a
Department of Computer Science and Mathematics, Munich University of Applied

Sciences, Germany,
b
Department of Informatics, Technical University of Munich, Germany

Abstract

A technique that is frequently used in modern software development is the so-

called pair programming. The proven idea behind this technique is that

innovative work in a highly complex environment can benefit from the

synergy between two persons working together with well-defined roles.

The transfer of this technique as a metaphor for teaching has repeatedly been

reported as a successful teaching strategy called pair teaching. In this paper,

we describe our experiences with designing and teaching a complete lecture

on software development as a pair.

Our contribution is the definition of patterns for role-assignments to both

persons. These include patterns for the design of the lecture as well as

patterns for the teaching in class itself. Our experience shows that there also

exists a couple of anti-patterns namely role distributions that should be

avoided.

First evaluation results are promising in the sense that the reception of

structure and content as well as students' satisfaction increased significantly

with the introduction of pair design and pair teaching.

Keywords: Pair teaching; team teaching; computational thinking; cognitive

apprenticeship.

4th International Conference on Higher Education Advances (HEAd’18)
Universitat Politècnica de València, València, 2018
DOI: http://dx.doi.org/10.4995/HEAd18.2018.8103

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 873

Designing Lectures as a Team and Teaching in Pairs

1. Introduction

The presentation and discussion of topics by two people is common practice in several

fields, like educational TV-shows, debates, or in interviews. Furthermore, working in pairs

has become a traditional approach in the field of software engineering and is called pair

programming. As this practice has proven highly efficient (Williams, 2000) and we are

familiar with it, we transferred it to our lecture design and later to our teaching.

In this paper, we present our experience with designing lectures in pairs and later teaching

them in pairs. We already did this for several small units over the last year and the results

were consistently positive. Thus, we wanted to bring these positive experiences to a larger

scale for the winter semester 2017/18. Hence, we designed the whole module “Software

Development I” in this kind of setting. We will add a description and discussion of possible

definitions of roles that can be used during design as well as throughout the teaching of

lectures.

The module “Software Development I” is a compulsory module of our first semester

Computer Science Bachelor curriculum. The module has 8 ECTS and consists of two times

1.5 hours lecture and 1.5 hours lab session per week. Students need to hand in and pass

several lab exercises in order to be admitted to the final written exam.

2. Related Work

This work is guided by several influencing factors from various disciplines: pair

programming, a well-known technique in the practice of software development –

computational thinking, an overall goal in higher education – cognitive apprenticeship,

which is a teaching method adopted from craftsmen training to cognitive processes and the

distinction between cooperative teams and coach.

2.1 Pair Programming

A well-known and established approach in the domain of Software Engineering is pair

programming as part of extreme programming (Beck, 2000). Pair programming denotes the

cooperation of two people working together at one workstation on the same task and with a

well-defined role distribution: the driver and the navigator. The driver is the actively

programming person being in control of the keyboard – whereas the navigator monitors the

activities with some distance. Several positive aspects of this model of cooperation are

reported in (Williams, 2000):

 Pair Pressure: Increase of motivation as you don’t want to let your partner down.

 Pair Thinking: Especially in the complex process of developing software, several

different solution strategies are possible at any point in time. A pair of developers

helps to permanently have them in mind and distill the currently best one of them.

874

Zehetmeier, D.; Böttcher, A.; Brüggemann-Klein, A.

 Pair Relaying: Pairs achieve solutions that a single one often had not reached. The

main reason is that different points of view complement each other.

 Pair Reviews: As reviews are typically peer group discussion activities (Gilb &

Graham, 1993) they are the natural tool for cooperative work, e.g. in our case

during the preparation of lectures.

The approach of teaching in pairs or larger teams has already been described in several

publications, like (Huber, 2000), (Burden, Heldal, & Adawi, 2012) and (Liebehenschel &

Schäfer, 2017). All authors report positive influence on lecturers and students.

Nevertheless, the papers are lacking a discussion of differentiated roles. We expect added

value when taking different perspectives that are apparent to the students.

2.2 Computational Thinking

As we educate future computer scientists, we teach them specific professional competences.

Computational thinking denotes a class of many skills and abilities, computer scientists

need. These competences are independent from a specific implementation in a concrete

programming language. Thus, this might be an interesting point where to differentiate the

roles in a pair of lecturers.

The term of computational thinking is strongly influenced by Jeannette Wing. A general

definition is: “Computational thinking involves solving problems, designing systems, and

understanding human behavior, by drawing on the concepts fundamental to computer

science.” (Wing, 2006)

However, computational thinking comprises a huge variety of processes and techniques.

We focus on some that are relevant for our approach. All of these are based on (Wing,

2006):

 Evaluation of the aesthetics, and the design of a system, rather than just focusing

on correctness and efficiency.

 Applying abstraction in order to find an appropriate representation of a problem or

modelling all significant aspects.

 Using heuristic reasoning to come up with a solution.

2.3 Cognitive Apprenticeship

Most of the processes defined in computational thinking cannot be taught and done like

following instructions in a recipe. Thus, students need to learn the processes experts use to

handle complex tasks. In one characteristic, cognitive apprenticeship is defined as a

learning-through-guided-experience with focus on cognitive processes (Collins, Brown, &

Newman, 1988).

875

Designing Lectures as a Team and Teaching in Pairs

3. Patterns for Pairing of Roles

During the cooperative design and teaching of our class on software development we

experimented with various roles and their pairing. The class of patterns we propose as a

result of our experiences can be subdivided into two categories. Furthermore, we also found

a couple of anti-patterns which we include as a third category. Pair teaching can occur in

several constellations, as the lecturers can take different roles. From our perspective, each

formation has its own intended use, strategies and thus advantages and disadvantages. It is

important that each role is personalized by a lecturer (Andersson & Bendix, 2006).

From our point of view, the fundamental success factors that must be given are that both

involved persons see each other as peer and must both be committed to the success of the

module. Additionally, they should have similar didactical knowledge and teaching

experience.

3.1. Patterns for the design and preparation phase of lectures

Didactic vs. professional. On the one hand side, it is necessary to simplify examples from

professional tasks with respect to students’ current level of knowledge. On the other hand,

it is important not to design teaching examples that are contrary to professional practice.

Here both peers need to discuss and find the best way to satisfy these requirements.

Analytically vs. holistically. This setting helps us to deal with the huge content of the

curriculum. One peer focuses on the details and in-depth knowledge of a (sub)topic.

Whereas the other keeps track of the overall curriculum. In our daily practice, this

supported us to stick to our mantra: “everything we teach is correct – but we do not discuss

every detail”.

Reviewer vs. creative. After several design workshops, we came up with a process of

defining requirements and teaching goals, which we build our lecture and lab on. In order to

keep this process running, one of the peers constantly reviewed the process and investigated

whether we still work on the requirements or not. The other peer was the creative one, who

again and again came up with new ideas.

3.2 Implementation/teaching phase

As computer science is built on a solid theoretical basis like many other disciplines, it is

necessary to show novice programmers the differences between the scientific concepts and

the concrete implementation, as they need to master both later on.

Theorist vs. practitioner (Böttcher, Utesch, & Moore, 2009). This is the role distribution

for the classical situation where students learn a theory and apply it later. In this case one

lecturer takes the role of the practitioner and the other acts as theorist. The practitioner

876

Zehetmeier, D.; Böttcher, A.; Brüggemann-Klein, A.

works on a real problem that is adjusted to the students’ level of knowledge. The theorist

teaches the theory and points to the theory students learned during the lecture/module.

Audience oriented vs computer focused. In case of software development and coding live

in class it is very helpful, when one peer is coding and thus focused on the computer.

Meanwhile, the second peer can keep an eye on the audience. Usually one is able to

recognize whether students can follow the coding or not. If not, the peer in the audience

oriented role should interrupt the coding in an appropriate moment and ask the peer or the

students questions to clarify the decisions before they continue.

When considering computational thinking and cognitive apprenticeship, we came up with

several more pairs, which are focusing on education in computer science, but might be

transferrable to other disciplines.

Real world vs. software orientation. In their later profession, students need to deal with

non-computer scientists as domain experts in order to collect requirements and transfer

them to software. In this constellation, the process of translation from real-world

abstractions to programming concepts is accompanied by one person focusing on real-word

domain and one focusing on the software-based representation of that domain. Equivalent

to the case above there exists the role of a practitioner which is in our case a software

engineer. The pair is completed by a person that concentrates on the concrete real-world

entities the software is intended to represent later.

Computational thinking vs implementation. Another important aspect in teaching

computer science is to focus on processes represented in computational thinking and to

consider it independent of a concrete implementation. In this case, both roles need to have a

background in software development. One focuses on identifying the general concepts like

categorization, repetition, or discrimination of different cases in order to solve a real-world

problem. During this process, he or she demonstrates the application of key competences

like logical or abstract thinking and highlights evaluation criteria. The other transfers the

abstract concepts into appropriate constructs of a specific programming language. For both

roles, it is important that they make their thinking tangible and highlight decision-points as

expressed in the framework of cognitive apprenticeship.

Beside the technical and didactical roles, we unintentionally came up with three more roles.

Breaking point vs flow. In this setting the flow person continues with the new content. In

contrast the other peer focusses on predetermined breaking points and intervenes if students

did not come up with the predicted questions. Thus, the content flow stops here and the

lecturers start a discussion with the students. At this point we often discuss software design

decisions.

877

Designing Lectures as a Team and Teaching in Pairs

Checker vs speaker. Is similar to breaking point vs. flow. One peer focusses on the new

content. The other one asks students questions about the necessary prerequisites. A good

metaphor for this setting is “cruise control”. One concentrates on a continuous pace,

whereas the other checks for obstacles, like missing knowledge and thus adjusts the speed.

Focused vs overviewing. This last setting proved as a good tool to remind students that

they have to perform follow-up course work. While one peer again concentrates on the new

content, the other one analyses the questions immediately. If the question has already been

discussed in the lecture, we reference to the specific location or just repeated it quickly.

Otherwise we can either answer it or put a reminder to the white board.

While teaching it is not always necessary to take contrary or complementary positions. Pair

thinking also happens if both peers act on the same level. This could help to identify

misconceptions, interpretation of students’ questions as they are not also clear. Another

advantage is that the students have access to two perspectives and explanations.

Furthermore, one can write down questions, tripping points, and much more. Following the

lecture, both can reflect on the lecture in order to improve it for upcoming semester, to

identify content that needs to be repeated or to plan next steps.

3.3 Beware of Anti-Patterns

Especially during the teaching phase, the pair needs to beware of typical anti-patterns.

Often one does not intend to make this happen, but they might occur. A typical example is

that one takes the role of a professor or lecturer and the other one acts as a student or even

worse an airhead. This intellectual hierarchy lets the second person appear non-

professional.

Another anti-pattern that occurred during the design phase, did arise from the job hierarchy.

However, from personal experience, we immediately recognized this pattern and planned

the lectures in a way that this would not show up. The supervisor or professor should not

act with her or his employee e.g. PhD candidate as they are not on the same level.

4. Results of Evaluation

When starting this teaching approach, we had some criteria in mind we would like to

improve. On the one hand, we wanted to enhance constructive-alignment (Biggs, 1996)

throughout lecture, lab and exam. Furthermore, we wanted to arrange the topics to teach in

a sequence where all prerequisites have already been covered at any time. Moreover, we

wanted to create demand for the following concepts respectively.

After approximately six weeks we held a lecture where we reflected on the course with our

students. Students were asked to think of obstacles that currently reduce their speed of

learning and reflect on characteristics why software development is difficult for novices.

878

Zehetmeier, D.; Böttcher, A.; Brüggemann-Klein, A.

What we found interesting was that students were aware of thinking processes,

computational thinking and the translation of real world problems into the software context.

They were no professionals although they were already able to communicate the necessary

steps they need to understand and accomplish in order to become professionals. We

observed that the pairing of computational thinking and implementation has established at

least the awareness that typical ways of thinking exist in computer science and that the

translation of concepts into source code is a process separate from finding the right concept.

An example statement is “I have not internalized the way to think yet” or “I’m still

suffering with translating text into code”.

At the end of each semester there is a university-wide lecture evaluation, which is a solid

data basis we can use to evaluate our teaching. The questionnaire consists mainly of items,

whose answer format are Likert scales with values ranging from 1 (fully disagree) to 5

(fully agree). We have data from previous courses taught in winter semester 2014. These

can be compared with data collected with help of the same questionnaire in winter semester

2017 where we designed and taught a complete lecture in a pair.

The evaluation results we obtained for this make us feel optimistic. A statistically

significant improvement can be seen in the questions listed in Table 1. We think that these

represent our goal of increasing constructive-alignment and enhancing the topic

arrangement.

Table 1. Results of an unpaired t-test, showing the significance level for improvement between

lectures in the years 2014/15 (n=40) and 2017/18 (n=29).

Question Average

2014

Average

2017

Signifi-

cance

I can understand the content structure of the course. 3,1 4,2 ≥ 99.9%

In my opinion, the two parts of the course complement each

other well.

3,2 4,1 ≥ 99.9%

I can clearly see what the learning goals of the course are. 3,4 4,1 99.8%

The applicability of the course content is clear to me. 4,1 4,6 99.8%

Complicated issues were explained to me in a comprehensible

manner.

3,5 3,9 95%

In my opinion, the practical exercises are well adjusted to the

taught content.

3,2 3,9 99.8%

5. Conclusion

From our lecturers’ perspective, this approach is great. During the design phase, we could

experience pair pressure as we worked much longer and harder than we would have been

working on our own. If we try to quantify the additional effort we spent on the lecture, it is

about 25% more preparation effort than we invest in our regular preparation. Pair relaying

and pair thinking enhanced our work significantly, as we shared and discussed many ideas.

879

Designing Lectures as a Team and Teaching in Pairs

Even during the lecture, we experienced pair thinking and relaying for example when

dealing with students’ questions. Often students cannot formulate their questions precisely

and have underlying misconceptions. We were much more effective in identifying the

bottom line and correcting them immediately.

During the review of this semester, the question was raised, whether one can take the

different roles on his or her own when disciplined enough. In our opinion it could be

possible, but it is necessary to be aware of all the different roles and to take them one by

one. Furthermore, we think it is necessary to concern and embed the roles already in the

design phase.

Nevertheless, some constellations of roles just occurred during the phases and we did not

plan them ahead. Thus, the approach added value to our teaching. Furthermore, effects like

pair pressure, relaying and thinking can just occur in pairs. Hence, we recommend to try

this approach and experience the great improvement if possible.

References

Andersson, R., & Bendix, L. (2006). Pair Teaching--an eXtreme Teaching Practice. 4: e

Pedagogiska Inspirationskonferensen.

Beck, K. (2000). Extreme programming explained: embrace change. addison-wesley

professional.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher education, 32,

347-364.

Böttcher, A., Utesch, M. C., & Moore, A. (2009). Erfahrungen mit Pair Teaching für

Software Engineering: Kooperation von Hochschule und Industrie. SEUH, (pp. 5-15).

Burden, H., Heldal, R., & Adawi, T. (2012). Pair lecturing to model modelling and

encourage active learning. Proceedings of ALE.

Collins, A., Brown, J. S., & Newman, S. E. (1988). Cognitive apprenticeship. Thinking:

The Journal of Philosophy for Children, 8, 2-10.

Gilb, T., & Graham, D. (1993). Software inspection. (S. Finzi, Ed.) Addison-Wesley

Longman Publishing Co., Inc.

Huber, B. (2000). Team-Teaching. Bilanz und Perspektiven. Eine empirische Untersuchung

im Kärntner Volksschulbereich/Integrationsklassen (Schuljahr 1998/99) zur

Thematik/Problematik der Zusammenarbeit im Zweierteam. Frankfurt a. M.: Peter

Lang.

Liebehenschel, J., & Schäfer, J. (2017). Teamteaching-ein Fallbeispiel. SEUH, (pp. 91-99).

Williams, L. (2000). The collaborative software process. Ph.D. dissertation, The University

of Utah.

Wing, J. M. (2006, March). Computational Thinking. Commun. ACM, 49, 33-35.

880

