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Abstract 

With the increase in enrolment figures from second level education to third 

level education over the last number of decades, non-progression rates 

continue to give cause for concern in certain levels and disciplines. It has 

been widely argued that in addition to increasing enrolment numbers, higher 

education must also be concerned with the success of these students. In both 

the Irish and the international sector, the negative consequences of non-

progression has been highlighted, not just on a societal level, but also for the 

students themselves. It is crucial for first-year student experience to have a 

positive experience and be fully supported in achieving the goals of higher 

education. From researching several reports in the area of retention and in 

particular the reports published by the Irish Higher Education Authority and 

the National Forum for the Enhancement of Teaching and Learning in 

Higher Education in this area, it is clear that there is a need to analyse the 

data available and present the findings in a clear way to the key decision 

makers to allow for early intervention. This paper uses the different phases of 

the CRISP-DM methodology and applies data mining techniques and models 

to a real student dataset with the aim to predict the students that will 

progress. 
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DOI: http://dx.doi.org/10.4995/HEAd18.2018.8018

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 479
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1. Introduction 

Student retention is a big issue in the Higher Education sector both at a national and 

international level. A big challenge for the Higher Educational sector is finding students 

that are at risk of not completing their studies and dropping out before they become a 

statistic. Learning Analytics (LA) and Data Mining can help to identify such students 

months before they drop out according to O Farrell (2016). This paper investigates the issue 

of the ever increase in enrolment figures from 2nd level to 3rd level education, high non-

progression rates (see Table 1) on level 6 programmes in Institutes of Technologies Ireland 

(IOTI) and the increase in the number of students withdrawing from third level education 

throughout the Institute of Technology and the University sector in Ireland and Universities 

abroad (Frawley, Pigott, & Carroll, 2017). Retention is an issue that is being focused on 

currently at the Athlone Institute of Technology (AIT). PricewaterhouseCooper (PwC) 

auditors were commissioned to complete a review on retention (March 2017) in AIT. One 

of its objectives is to gain an understanding of progression rates for each faculty and the 

strategies employed. Using data mining techniques and models, the information captured on 

various systems employed in AIT is explored to find the most influential attributes to 

predict students that will progress.  

Table 1. Non-progression rates by level.  

Sector Level Most Common Points Attained % Non Progression 

Institutes of 

Technology 

Level 6 250-300 25% 

Level 7 250-300 26% 

Level 8 300-350 16% 

L8 3 yr duration 300-350 16% 

L8 4 yr duration 300-350 16% 

Source: Frawley, Pigott, & Carroll, (2017). 

 

2. Background 

2.1 Overview of Data 

Two datasets are used in the project (2014/15 and 2015/16). Both datasets contain the same 

variables except for the class label (Progress) included in the 2014/15 dataset. This class 

label is the outcome that will be predicted in the 2015/16 dataset and describes whether the 

student will progress or not progress into the second year of the course. 
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The 2014/15 dataset contains 1,118 examples with 2 special attributes and 62 regular 

attributes. The special attributes are the Spriden PIDM which is the unique identifier for 

each student and the class label (Progress). The 2015/16 dataset contains 1,041 examples 

with 1 special attributes (Spriden PIDM) and 62 regular attributes.  

The data is sourced from many of the internal systems in the AIT. This includes the student 

record system which store the students’ personal details, admission records, registration 

information, grant records, bio/demographic information, examination results and student 

account information; Moodle data; data from the library system; data from the disability 

office; the Student Resource Centre; and the Central Admissions Office (CAO) providing 

Maths Points, English Points, Leaving Cert Score, Acceptance Round, Acceptance Date 

and Course Preference Number. All student data was anonymised during this project. 

 

3. Related Work 

Learning Analytics and Educational Data Mining are emerging disciplines (Agudo-

Peregrina, Iglesias-Pradas, Conde-González, & Hernández-García, 2014), concerned with 

developing techniques for exploring the different types of unique data that come from the 

educational context. O Farrell (2018) mentions that the most widely-used source of data is 

student interactions within the virtual learning environment (VLE). VLE systems are online 

platforms that accumulate a vast amount of information (Thakur, Olama, McNair, Sukumar, 

& Studham, 2014) which is extremely useful for analysing students’ behaviour and trends. 

This type of analysis could be very beneficial to the Higher Educational sector in Ireland.  It 

is evident there is a link between academic performance and Moodle activity usage but 

according to (Casey, Gibson, & Paris, 2010) in their research, this is at a basic level. 

Activity log data can provide an opportunity to address some of the critical challenges 

within the Higher Education sector such as high drop-out rates (Siemens & Long, 2011), 

(Thakur, Olama, McNair, Sukumar, & Studham, 2014) and (Azcona, Corrigan, Scanlon, & 

Smeaton, 2017). O Farrell (2018) discuss in a report that for all the benefits that learning 

analytics can provide within the educational domain, it is just a resource for providing 

insights, uncovering hidden patterns in data and providing answers. In order to enhance 

teaching and learning, learning analytics must be used effectively and when this is the case, 

it can become an essential and invaluable tool for supporting and informing successful 

policies such as a retention strategy. Thoroughly tracking and assess all students’ activities 

while evaluating the structure and contents of courses and its effectiveness for the learning 

process (Zorrilla, Menasalvas, Marin, Mora, & Segovia, 2005) can pose both, an 

opportunity and a challenge. A very promising area for attaining this objective is the use of 

data mining (Zaiane, 2001).  
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4. Methodology 

The Cross-Industry Process for Data Mining (CRISP-DM) methodology provides a 

structured approach to planning a data mining project. The following stages will be 

reviewed during the lifecycle of this project: Business understanding, Data understanding, 

Data preparation, Modelling, Evaluation and Deployment. The following listing outlines 

the data mining objectives for this project: 

 Collect and clean data for the 2014/15 and 2015/16 academic years. 

 Explore / Visualise the data to identify factors predictive of students’ success at 

AIT.  

 Predictive statistical models and data mining techniques to model students 

progress:  

- ROC curves are applied and compared to the unmodified dataset to check 

which algorithm best suited the data and again after the data preparation stage.  

- Train a model using 2014/15 dataset. 

- Test and evaluate performance of the models on the unlabelled 2015/16 

dataset. 

5. Results 

During the data exploration phase of this project all of the attributes are further 

investigated. The following attribute Moodle Usage is an example of this and turns out to 

be one of the  most useful attributes for predicting the class label.  

 

Figure 1. Average Moodle Usage with GPA.  

5.1. Moodle Usage 

Taking a look at the attribute Moodle Usage, gives us an insight into how many times a 

student has logged onto their Moodle account in the 2014/15 academic year. Within the 
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data it is evident that students with the higher moodle usage have a higher GPA. Clustering 

has been added to this graph which indicates the number of different groupings (see Figure 

1). Cluster 5 and Cluster 6 have a few unusual points which could be potential outliers. 

Outliers are not always errors but they may skew the mean and standard deviation if there 

are many of them. If the values are more then +/-3 times the standard deviation from the 

mean then outlier detection methods need to implemented. The standard deviation is 343.7 

for this attribute and the values for some of the points are greater than 1,000. Knowing the 

data, these outliers are not errors. There are a number of students that have high usage on 

Moodle. 

5.2 Model Evaluation 

Most of the models using both Method 1 and Method 2 have resulted in high accuracy, 

precision, R
2
 values and fairly good predictions for the 2014/15 labelled dataset which is 

evident from the results in Table 2.  

Method 1: AcadYr and CourseYr are excluded from the dataset. These attributes exhibit 

very low variance so are not useful in the dataset when trying to predict the class label.  

Method 2: (Same attributes as Method 1) with Remove Correlated and Remove Useless 

Attributes algorithms applied. 
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Table 2. Summary of results from models tested on 2014/15 dataset using RapidMiner 

Method 1 14/15 Model R² Accuracy Percision RMSE AUC 15/16 

Misclassified  

              Progress / 

NotProgress 

Select 

Attribute 

Decision Tree 0.986 99.82+/-

0.36 

99.41+/-

1.76 

0.019+/-

0.038 

0.5 0 / 15 

  Naïve 

Bayes(Kernel) 

0.888 98.48+/-

1.39 

94.28+/-

6.74 

0.101+/-

0.052 

0.997 6 / 48 

  Logistic 

Regression 

0.937 99.2 +/-

0.84 

99.33+/-

2.00 

0.054+/-

0.058 

1 1 / 33 

  k-NN 0.159 88.01+/-

1.39 

89.67+/-

15.45 

0.299+/-

0.013 

0.83 16 / 397 

  Linear 

Regression 

0.772 97.07+/-

0.27 

98.43+/-

0.70 

0.400+/-

0.000 

0.998 6 / 265 

Method 2 14/15 Model R² Accuracy Percision RMSE AUC 15/16 

Misclassified  

Remove 

Correlated 

Attributes 

Decision Tree 0.993 99.82+/-

0.36 

99.41+/-

1.76 

0.019+/-

0.038 

0.5 0 / 15 

  Naïve 

Bayes(Kernel) 

0.825 97.67+/-

0.72 

93.09+/-

4.92 

0.147+/-

0.022 

0.976 16 / 61 

  Logistic 

Regression 

0.476 92.22+/-

2.26 

74.36+/-

8.46 

0.330+/-

0.020 

0.927 7 / 282 

  k-NN 0 85.42+/-

0.42 

0 0.229+/-

0.013 

0.656 11 / 830 

  Linear 

Regression 

0.765 96.98+/-

0.13 

98.83+/-

0.84 

0.399+/-

0.000 

0.999 6 / 91 

 

k-fold cross validation is used in all models. This divides the training dataset into k=10 

separate folds. Each time the algorithm is run, it will be trained on 90% of the data and 

tested on 10%, and each run of the algorithm will change which 10% of the data the 

algorithm is tested on. Using this method of cross-validation the entire 2014/15 dataset is 

used. The full 2014/15 dataset is used to train the model and then the 2015/16 unseen 

dataset will be used to test the model. When the trained model is applied to the unseen 

dataset the results will be evaluated using the unlabelled 2015/16 dataset for validation. 
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The decision tree is the first model that is tested on the 2014/15 dataset. Different 

parameters were applied to the decision tree. The confidence level was changed, pruning 

and pre-pruning set to on and off, information gain and gini index were tested, the minimal 

leaf size was changed from 4 to 8 and the minimal leaf size was changed from 2 to 4 but the 

output remained unchanged. The Remove Correlated Attributes operator (Method 2) was 

applied to the dataset but this did not change the result either. It is evident from the results 

in Table 2 that the Decision Tree is the most accurate and robust model, displaying high 

values for R
2
 but this is taking the attribute GPA and always splitting at the greater than 40 

and less than 40 in all cases. If the GPA is omitted the accuracy of the model will reduce to 

90% and the AUC to 0.720 which is considerably lower. k-NN produced the model with the 

lowest accuracy using both methods. This model has a very low R
2
 using both methods and 

has misclassified a large proportion of the 2015/16 dataset. Naive Bayes (Kernel) with the 

estimation mode set to greedy produces good prediction and has a high R
2
. Linear 

regression has high precision values and high values for AUC in both models with the R
2
 of 

77%. 

5.3 Logistic Regression - Results using Method 1 

In relation to the accuracy of the different models and in order to evaluate whether the 

business objective was met, the logistical regression model displayed the most accurate 

results with both accuracy and precision at 99% and a high R
2  

of 94% when applied to the 

2014/15 training dataset (see Table 3).  

 

Table 3. Logistic Regression performance on labelled 2014/15 dataset using RapidMiner 

accuracy: 99.19% +/- 0.63% true Progress true NotProgress class precision 

pred. Progress 954 8 99.17% 

pred. NotProgress 1 155 99.36% 

class recall 99.90% 95.09%  

 

After applying the trained model to the unseen 2015/16 dataset (see Figure 2) the number of 

students predicted to Progress is 865 and NotProgress is 175.  
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Figure 2. Logistic Regression Model on unlabelled 2015/16 dataset – Predicted outcome 

 

Table 4 displays a summary of results. The first column shows the class label of which 

there are 1,040 first year students. The next column ‘Predicted’ displays the predicted 

probability of the occurrence of the class label from the unlabelled 2015/16 data model (see 

Figure 2). The next column ‘Actual’ contains the exact number of student that progressed 

from first year using the 2015/16  dataset by checking their GPA and finally the last column 

gives the number of predicted outcomes that were misclassified. Looking at the 

misclassifications, one student was misclassified as Progress when they actually had a GPA 

under 40 and 33 students were misclassified as Not Progress when their actual GPA was 

greater than 40. The results for this model is showing good levels of accuracy and the 

probable classification using logistic regression of the labels is high. 

 

Table 4. Summary of Predicted class label 2015/16 validated against actual 2015/16 dataset 

Class (1040) Predicted (unlabelled 

dataset 2015/16) 

Actual (2015/16 

Student Results) 

Misclassified 

Progress 865 897 1 

Not Progress 175 143 33 

 

6. Conclusion 

The aspiration of this project was to provide a stepping stone using the outcome from the 

results in the data to start a bigger discussion in the third level institute around retention 

policies and cross-departmental initiatives. Working with real data had its advantages. It 

was difficult to spot some useful patterns in the dataset during the initial data exploration 

stage due to its complexity. There were problems with data files at the beginning of the 

project. The main issue with the dataset was the inconsistency of data that is recorded 

across the various systems in AIT. Going forward more emphasis should be placed on the 

data collection ensuring data quality and integrity.  

It is evident from the results section that implementing data mining techniques on 

educational datasets can result in good models for predicting student progression rates 
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based on the most influential attributes captured from the relevant data systems. Using the 

data mining modelling technique of logistic regression and applying to the unlabelled 

2015/16 dataset and validating against the actual values from the 2015/16 dataset it is clear 

that the number of misclassifications are minimal meaning that the predictive modelling has 

evident abilities to be applied to new and unseen data and therefore can be used to identify 

potential drop outs earlier than without using the advanced modelling techniques.  

 

References 

Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García, 

Á.  (2014). Can we predict success from log data in VLEs? Classification of interactions 

for learning analytics and their relation with performance in VLE-supported F2F and 

online learning. Computers in human behavior, 31, 542-550. 

Azcona, D., Corrigan, O., Scanlon, P., & Smeaton, A. F. (2017). Innovative learning 

analytics research at a data-driven HEI. Editorial Universitat Politecnica de Valencia. 

Casey, K., Gibson, P., & Paris, I. S. (2010). Mining moodle to understand student 

behaviour. International Conference on Engaging Pedagogy. (ICEP10), National 

University of Ireland Maynooth. Retrieved from http://www-public. tem-tsp. eu/~ 

gibson/Research/Publications/E-Copies/ICEP10. pdf. 

Frawley, D., Pigott, V., & Carroll, D. (2017, March). A Study of Progression in Irish 

Higher Education 2012/13 to 2013/14. Dublin: Higher Education Authority. 

O Farrell, L. (2016). Learning Analytics and Educational Data Mining for Learning Impact. 

O Farrell, L. (2018). Using Learning Analytics to support the enhancement of Teaching and 

Learning in Higher Education. National Forum for the Enhancement of Teaching and 

Learning in Higher Education. 

Siemens, G., & Long, P.  (2011). Penetrating the Fog: Analytics in Learning and education. 

EDUCAUSE review, 46(5), 30. 

Thakur, G., Olama, M. M., McNair, W., Sukumar, S. R., & Studham, S. (2014, January). 

Towards adaptive educational assessments: predicting student performance using 

temporal stability and data analytics in learning management systems. In Proceedings 

20th ACM SIGKDD conference on knowledge discovery and data mining.  

Zaiane, O. (2001). Web usage mining for a better web-based learning environment.  

Zorrilla, M. E., Menasalvas, E., Marin, D., Mora, E., & Segovia, J. (2005, February). Web 

usage mining project for improving web-based learning sites. In International 

Conference on Computer Aided Systems Theory (pp. 205-210). Springer, Berlin, 

Heidelberg.  

487


