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1 Introduction

In computing, large systems can be viewed or designed in terms of the services they offer and the
entities that interact to provide or consume these services. This paradigm is known as computing as
interaction [28]. Open Multi-Agent Systems (MAS), where agents can enter or leave the system, interact
and dynamically form agent’ coalitions or organisations to solve problems seems a suitable technology to
implement this new paradigm. However, the high dynamism of the domains where open MAS commonly
operate requires agents to have a way of reaching agreements that harmonise the conflicts that come out
when they have to collaborate or coordinate their activities. In addition, agents in open MAS can form
societies that link them via dependency relations. These relations can emerge from agents’ interactions
or be predefined by the system. Anyway, the dependencies between agents are part of their social
context, which has an important influence in the way agents can reach agreements with other agents.
To illustrate this idea, let us introduce an example scenario where a group of agents is arguing about
the best allocation for a water-right transfer in a river basin. A water-right is a contract with the basin
administration organism that specifies the rights that a user has over the water of the basin (e.g. the
maximum volume that he can spend, the price that he must pay for the water or the district where the
water is settled). The owner of a water-right is allowed to temporally sell this right if he is not making
use of his right. In that case, the basin administrator and some potential buyers (e.g. farmers) can argue
to reach an agreement about the final beneficiary of the transfer. In addition, different considerations can
be taken into account to make this decision, such as fairness, ecological issues, preferences over users, etc.
In this example, for instance, farmers could not be as willing to accept arguments from other farmers as
they are from the basin administrator. Similarly, business companies are other common example scenario
where the social context of agents has an important influence in the way they argue. Here, subordinates
are not as willing to accept tasks from equals as they are from superiors. Also, workers do not behave in
the same way if, for instance, they are negotiating their own salaries than if they act as representatives
of their trade unions.

Argumentation provides a fruitful means of dealing with conflicts and knowledge inconsistencies [33].
However, little work, if any, has been done to study the effect of the social context of agents in the
way that they argue. Commonly, the term agent society is used in the Argumentation and Artificial
Intelligence (AI) literature as a synonym for an agent organisation [18] or a group of agents that play
specific roles, follow some interaction patterns and collaborate to reach global objectives [30]. Our notion
of agents’ social context in an argumentation process (defined with more detail in Section 3), includes
information related to the proponent and the opponent of an argument, the group that these agents
belong to and the dependency relation that they have. In addition to the dependency relations between
agents, they can also have values. These values can be personal goods that agents want to promote or
demote (e.g. solidarity, peace, etc.) or also social goods inherited from the agents’ dependency relations
(e.g. in a negotiation, a superior could impose his values to his subordinates or, on the opposite, a trade
unionist might have to adopt the values of the collective that he represents, which can be different from
his own values). Thus, we endorse the view of value-based argumentation frameworks [9, 6], which stress
the importance of the audience in determining whether an argument is persuasive or not. Value-based
argumentation frameworks extend abstract argumentation frameworks by addressing issues about the
rational justification of choices. In their definition, they introduce the concepts of values that arguments
of an argumentation framework promote or demote and audiences, which are sets of individuals that
share a particular preference order over the set of values. Then, we also consider values as an important
element of the social context of an agent.

To our knowledge, few research has been done to adapt multi-agent argumentation frameworks to
represent arguments of agents taking into account their social context. Starting from the idea that the
social context of agents determines the way in which agents can argue and reach agreements, this context
should have a decisive influence in the computational representation of arguments. In this report, we
advance research in the area of computational frameworks for agent argumentation by proposing a new
argumentation framework (AF) for the design of open MAS in which the participating software agents
are able to manage and exchange arguments between themselves taking into account the agents’ social
context. In order to do this, we have analysed the necessary requirements for this type of framework
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and taken into account them in the design of our framework. Also, the knowledge resources that the
agents can use to manage arguments in this framework are presented in this work. In addition, if
heterogeneous agents can interact in the framework, they need a common language to represent arguments
and argumentation processes. To cope with this, we have also designed an argumentation ontology to
represent arguments and argumentation concepts in our framework.

The structure of the report is the following: Section 2 introduces our concept of agent society and
analyses the requirements that an argumentation framework for agent societies should met; Section 3
shows the knowledge resources proposed in our framework; Section 4 provides a formal specification for
the argumentation framework; Section 5 shows an example scenario in the water-rights transfer domain;
Section 6 reviews related work and discusses some assumptions made in this report and finally, Section
7 provides conclusions about the contributions of this research.

2 Requirements for an Argumentation Framework for Agent
Societies

As the first step in our research, we have identified the necessary requirements for the framework proposed
in this work, taking into account that we consider that agents belong to a society. Therefore, in this
section we introduce the formal definition of the concepts that constitute our view of agent societies.
Then, we analyse the issues that have been considered to choose a suitable argumentation framework for
agent societies.

2.1 Society Model

In this work, we extend the approach of [4] and [14], who define an agent society in terms of a group of
agents that play a set of roles, observe a set of norms and a set of dependency relations between roles and
use a communication language to collaborate and reach global objectives. This definition is generic enough
to fit most types of agent societies, such as social networks of agents [23] or open agent organisations
[15, 18]. Broadly speaking, it can be adapted to any open MAS where there are norms that regulate the
behaviour of agents, roles that agents play, a common language that allow agents to interact defining
a set of permitted locutions and a formal semantics for each of these elements. Here, we differentiate
the concept of agent society from the concept of a group of agents, in the sense that we consider that
the society is the entity that establishes the dependency relations between the agents, which have values
and can dynamically group together to pursue common objectives in a specific situation. Similarly, our
approach of an agent society differs from the notion of agent coalitions used in [2] and [11], which are
temporary associations between agents in order to carry out joint tasks, without any consideration about
the social links and values that characterise those agents.

However, we consider that the values that individual agents or groups want to promote or demote
and preference orders over them have also a crucial importance in the definition of an argumentation
framework for agent societies. These values could explain the reasons that an agent has to give preference
to certain beliefs, objectives, actions, etc. Also, dependency relations between roles or the membership to
different heterogeneous groups could imply that an agent must change or violate its own value preference
order. For instance, an agent of higher hierarchy could impose its values to a subordinate or an agent
could have to adopt a certain preference order over values to be accepted in a group. Therefore, we endorse
the view of [6], [34] and [41], who stress the importance of the audience, which has a preference order
over values, in determining whether an argument (e.g. for accepting or rejecting someone else’s beliefs,
objectives or action proposals) is persuasive or not. Thus, we have included in the above definition of
agent society the notion of values and preference orders among them. Next, we provide a formal definition
for the model of society that we have adopted:

Definition 2.1 (Agent Society). An Agent society in a certain time t is defined as a tuple St = < Ag,
Rl, D, G, N, V, Roles, Dependency, Group, val, V alprefQ > where:

• Ag = {ag1, ag2, ..., agI} is a finite set of I agents members of St in a certain time t.
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• Rl = {rl1, rl2, ..., rlJ} is a finite set of J roles that have been defined in St.

• D = {d1, d2, ..., dK} is a finite set of K possible dependency relations among roles defined in St.

• G = {g1, g2, ..., gL} is a finite set of groups that the agents of St form, where each gi, 1 ≤ i ≤ L, gi ∈
G consist of a set of agents ai ∈ Ag of St.

• N is a finite set of norms that affect the roles that the agents play in St.

• V = {v1, v2, ..., vP } is a set of P values predefined in St.

• Roles : Ag → 2Rl is a function that assigns an agent its roles in St.

• DependencySt : ∀d ∈ D,<St

d ⊆ Rl × Rl defines a reflexive, symmetric and transitive partial order
relation over roles.

• Group : Ag → 2G is a function that assigns an agent its groups in St.

• val : Ag → V is a function that assigns an agent the set of values that it has.

• V alprefQ : ∀q ∈ Ag ∪ G,<St
q ⊆ V × V defines a reflexive, symmetric and transitive partial order

relation over the values of an agent or a group.

That is, ∀r1, r2, r3 ∈ R, r1 <
St

d r2 <
St

d r3 implies that r3 has the highest rank with respect to the
dependency relation d in St. Also, r1 <St

d r2 and r2 <
St

d r1 implies that r1 and r2 have the same rank
with respect to d. Finally, ∀v1, v2, v3 ∈ V, V alprefa = {v1 <St

a v2 <
St
a v3} implies that agent a prefers

value v3 to v2 and value v2 to value v1 in St. Similarly, V alprefg = {v1 <St
g v2 <

St
g v3} implies that

group g prefers value v3 to v2 and value v2 to value v1 in St.
Once the concepts that we use to define agent societies are specified, the next section analyses the

computational requirements for argument representation in these societies.

2.2 Computational Requirements for Arguments in Agent Societies

The previous section has introduced our view of agent societies. Now, this section studies the requirements
that an argumentation framework for agent societies should met. An argumentation process is conceived
as a reasoning model with several steps [3]:

1. Building arguments (supporting or attacking conclusions) from knowledge bases.

2. Defining the strengths of those arguments.

3. Determining the different conflicts between arguments.

4. Evaluating the acceptability of arguments in view of the other arguments that are posed in the
dialogue.

5. Defining the justified conclusions of the argumentation process.

The first step to design MAS whose agents are able to perform argumentation processes is to decide
how agents represent arguments. According to the interaction problem defined in [12], “...representing
knowledge for the purpose of solving some problem is strongly affected by the nature of the problem and
the inference strategy to be applied to the problem...”. Therefore the way in which agents computationally
represent arguments should ease the automatic performance of argumentation processes.

Some research effort on the computational representation of arguments is performed in the area of
developing models for argument authoring and diagramming. Important contributions are [38, 40] and
the Online Visualisation of Argument (OVAa) project. However, these systems assume human users
interacting with the software tool and are not conceived for performing agents’ automatic reasoning
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processes. Other research works where the computational modelling of arguments has been studied are
those on case-based argumentation. From the first uses of argumentation in AI, arguments and cases
are intertwined [42]. Case-based argumentation particularly reported successful applications in American
common law [7], whose judicial standard orders that similar cases must be resolved with similar verdicts.
In [8] a model of legal reasoning with cases is proposed. But, again, this model assumed human-computer
interaction and cases were not thought to be only acceded by software agents. Case-Based Reasoning
(CBR) systems [1] allow agents to learn from their experiences. In MAS, the research in case-based
argumentation is quite recent with just a few proposals to date [21]. These proposals are highly domain-
specific (e.g. persuasion in negotiation [44], sensor networks [43] and classification [31]) or centralise the
argumentation functionality either in a mediator agent, which manages the dialogue between the agents
of the system [46], or in a specific module of the system itself [24].

As pointed out before, we focus on argumentation processes performed among a set of agents that
belong to an agent society and must reach an agreement to solve a problem taking into account their
social dependencies. Each agent builds its individual position in view of the problem (a solution for it).
At this level of abstraction, we assume that this could be a generic problem of any type (e.g. a resource
allocation problem, an agreed classification, a joint prediction, etc.) that could be characterised with a
set of features. Thus, we assume that each agent has its individual knowledge resources to generate a
potential solution. Also, agents have their own argumentation system to create arguments to support
their positions and defeat the ones of other agents.

Taking into account the above issues, we have identified a set of requirements that a suitable framework
to represent arguments in agent societies should met:

• be computationally tractable and designed to ease the performance of automatic reasoning processes
over it.

• be rich enough to represent general and context dependent knowledge about the domain and social
information about the agents’ dependency relations or the agents’ group.

• be generic enough to represent different types of arguments.

• comply with the technological standards of data and argument interchange on the web.

These requirements suggest that an argumentation framework for agent societies should be easily inter-
preted by machines and have highly expressive formal semantics to define complex concepts and relations
over them. Thus, we propose a Knowledge-Intensive (KI) case-based argumentation framework [13],
which allows automatic reasoning with semantic knowledge in addition to the syntactic properties of
cases. Reasoning with cases is especially suitable when there is a weak (or even unknown) domain the-
ory, but acquiring examples encountered in practice is easy. Most argumentation frameworks and their
resulting argumentation systems produce arguments by applying a set of inference rules. This is the case
of the recently proposed ASPIC framework [35], which is an abstract model of rule-based argumentation
with structured arguments.

Rule-based systems require to elicit a explicit model of the domain. In open MAS the domain is highly
dynamic and the set of rules that model it is difficult to specify in advance, even if they are domain-specific
inference rules intended to represent domain knowledge. However, tracking the arguments that agents put
forward in argumentation processes could be relatively simple. Therefore, these arguments can be stored
as cases codified in a specific case representation language that different agents are able to understand.
This is easier than creating an explicit domain model, as it is possible to develop case-bases avoiding
the knowledge-acquisition bottleneck. With these case-bases, agents are able to perform lazy learning
processes over argumentation information, as will be illustrated in the example of Section 5. Another
important problem with rule-based systems arises when the knowledge-base must be updated (e.g. adding
new knowledge that can invalidate the validity of a rule). Updates imply to check the knowledge-base for
conflicting or redundant rules. Case-based systems are easier to maintain than rule-based systems since,
in the worst case, the addition of new cases can give rise to updates in some previous cases, but does not
affect the correct operation of the system, although it can have an impact in its performance. Hence, a
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case-based representation of the domain knowledge of the system is more suitable for being applied in
dynamic open MAS.

Next section makes a proposal for the type of knowledge resources that agents in agent societies
could have to generate, select and evaluate positions and arguments taking into account the identified
requirements.

3 Knowledge Resources

In open multi-agent argumentation systems the arguments that an agent generates to support its posi-
tion can conflict with arguments of other agents and these conflicts are potentially solved by means of
argumentation dialogues between them (since a dialogue may still terminate in disagreement). In our
framework we propose three types of knowledge resources that the agents can use to generate, select and
evaluate arguments in view of other arguments:

• Domain-cases database, with domain-cases that represent previous problems and their solutions.
The structure of these cases is domain-dependent and thus is not detailed in this report.

• Argument-cases database, with argument-cases that represent previous argumentation experiences
and their final outcome.

• Argumentation schemes [48], with a set of argumentation schemes, which represent stereotyped
patterns of common reasoning in the application domain where the framework is implemented. An
argumentation scheme consists of a set of premises and a conclusion that is presumed to follow from
them. Also, each argumentation scheme has associated a set of critical questions that represent
potential attacks to the conclusion supported by the scheme. The concrete argumentation schemes
to be used depend on the application domain.

In addition, arguments in our framework can be attacked by putting forward the following attack
elements:

• Critical questions: when the conclusion of the argument was drawn by using an argumentation
scheme, this conclusion can be attacked by posing a critical question attached to this scheme.

• Distinguishing premises: which are premises that can invalidate the application of a knowledge
resource to generate a valid conclusion for an argument.

• Counter-examples: which are cases that are similar to a case (their descriptions match) but have
different conclusions.

Next, these attack elements are described formally. First, let us introduce some functions that are
used in the definitions. Let F be a set of features, C a set of cases and V a set of values.

Definition 3.1 (Function Value). The function value is defined as valuek(x) : C × F → V and returns
for a case k ∈ C the value of the feature x ∈ Fk (from a set of features Fk of the case k).

Definition 3.2 (Match). A match between two sets of features i, j ∈ F is defined as: match(i, j) :
F × F → true iff Fi ∩ Fj 6= ∅ and ∀f ∈ Fi ∩ Fj , vali(f) = valj(f).

Hence, two cases match if the features that appear in both cases have the same value for them. Note
that this does not mean that both cases have the same features, since any of them can have extra features
that do not appear in the other case.

Definition 3.3 (Subsumption). A case cl ∈ C subsumes other case cm ∈ C: subsumes(cl, cm) : C×C →
true iff match(cl, cm) and ∀fm ∈ cm,∃fl ∈ cl/valcl

(fl) = valcm
(fm).
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Therefore, we also describe problems as cases without solution and assume that a match between the
problem to solve and a stored case means that the latter has some features of the problem and with the
same valuesb. A total match between a problem and a case or between two cases means that both cases
have the same features and with the same values. Now, based on the above definitions we have that:

Definition 3.4 (Counter-Example). A counter-example for a case is a previous domain-case or an
argument-case that was deemed acceptable, where the problem description of the counter-example matches
the current problem to solve and also subsumes the problem description of the case, but proposing a
different solution.

Definition 3.5 (Distinguishing Premise). A distinguishing premise x with respect to a problem P between
two cases c1, c2 ∈ C is defined as: ∃x ∈ c1 ∧ @x ∈ P / ∃x ∈ c2 ∧ valuec1(x) 6= valuec2(x) or else,
∃x ∈ c1 ∧ ∃x ∈ P / valuec1(x) = valueP (x) ∧ @x ∈ c2, where P ⊆ F , x ∈ F and c1, c2 ∈ C.

That is a premise that does not appear in the problem description and has different values for two
cases or a premise that appears in the problem description that does not appear in one of the cases. Note
that distinguishing premises are sometimes implicit in counter-examples, when the counter-example has
features that do not appear in the original description of the problem to solve or in the description of the
case that the counter-example rebuts.

In this section we describe the knowledge resources introduced above by using an ontological approach
that observes the requirements put forward in the last section (see appendix for an explanation about
the notation used). Thus, this ontology provides a common language to represent the resources and
it is computationally tractable, rich enough to represent different types of domain-specific and general
knowledge, generic enough to represent different types of arguments and compliant with the technological
standards of data and argument interchange in the Web.

3.1 ArgCBROnto Ontology: General Concepts

We have designed an ontology called ArgCBROnto to define the representation language of the above
knowledge resources. Ontologies provide a common vocabulary to understand the structure of information
among different software agents. In addition, ontologies allow to make assumptions about the domain
explicit, which facilitates to change these assumptions as new knowledge about the domain is acquired.
As explained before, the high dynamism of the domains where open MAS commonly operate gives rise to
many changes in the domain knowledge that agents have available and they must be able to handle the
consequences of these changes. Thus, the vocabulary of domain-cases, argument-cases and argumentation
schemes is defined by using the ArgCBROnto ontology. In addition, the ArgCBROnto ontology follows
the approach of the case-based KI systems proposed in [13]. KI-CBR enables automatic reasoning with
semantic knowledge in addition to the syntactic properties of cases. This allows one to make semantic
inferences with the elements of cases and use more complex measures to compute the similarity between
them. Next, we provide a general view of the ArgCBROnto ontology for the argumentation framework
proposed in this report, with focus on the concepts that define the knowledge resources presented in this
section.

In the top level of abstraction, the terminological part of the ontology distinguishes between several
disjoint concepts. Among them we have the concepts of Case, which is the basic structure to store
the argumentation knowledge of agents; CaseComponent, which represents the usual parts that cases
have in CBR systems and ArgumentationScheme, which represents the argumentation schemes that the
framework has.

Case v Thing Case v ¬CaseComponent

CaseComponent v Thing CaseComponent v ¬ArgumentationScheme
bDifferent types of matches could define other types of similarity between cases. For instance, a different match function

could establish the threshold under which two features can be considered as similar or when a feature subsumes other
feature in a hierarchy (and hence the more specific feature could be considered as a matching feature).
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ArgumentationScheme v Thing ArgumentationScheme v ¬Case

As pointed out before, there are two disjoint types of cases, domain-cases and argument-cases (see
Figure 1).

ArgumentCase v Case DomainCase v Case

ArgumentCase v ¬DomainCase

Figure 1: ArgCBROnto Case

Cases have the three possible types of components that usual cases of CBR systems have (see Figure
2): the description of the state of the world when the case was stored (Problem); the solution of the case
(Conclusion); and the explanation of the process that gave rise to this conclusion (Justification). These
concepts are disjoint.

Problem v CaseComponent Solution v CaseComponent

Justification v CaseComponent

Problem v ¬Solution Conclusion v ¬Justification

Problem v ¬Justification

Domain-cases have the usual problem, conclusion and justification parts, as shown in Figure 1.

DomainCase v ∀hasProblem.Problem

DomainCase v ∀hasSolution.Solution

DomainCase v ∀hasJustification.Justification

However, argument-cases have a more specialised description for these components (ArgumentProblem,
ArgumentSolution and ArgumentJustification), which includes an extended set of properties (see Figure
1).

ArgumentProblem v Problem ArgumentSolution v Solution

ArgumentJustification v Justification
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Figure 2: ArgCBROnto CaseComponent

ArgumentCase v ∀hasArgumentProblem.ArgumentProblem

ArgumentCase v ∀hasArgumentSolution.ArgumentSolution

ArgumentCase v ∀hasArgumentJustification.ArgumentJustification

Also, cases have as properties a unique identifier ID and a creation date, with its corresponding range
and domain.

> v ∀hasID.Integer

> v ∀ hasID−.(Case t SocialEntity t Value t Norm t Argument t ArgumentationScheme t Premise)c

> v ∀ hasCreationDate.Date > v ∀hasCreationDate−.(Case t ArgumentationScheme)c

As pointed out before section, argumentation schemes represent stereotyped patterns of common
reasoning in the application domain where the framework is implemented. Each argumentation scheme
consists of a set of premises, a conclusion drawn from these premises and a set of critical questions that
represent potential attacks to the conclusion supported by the scheme. These critical questions can be
classified as presumptions that the proponent of the argumentation scheme has made or exceptions to the
general inference rule that the scheme represents [36]. In the former case, the proponent has the burden
of proof if the critical question is asked, whereas in the later the burden of proof falls on the opponent
that has questioned the conclusion of the scheme. Figure 3 shows the representation of an argumentation
scheme in the ArgCBROnto ontology.

ArgumentationScheme v Thing

ArgumentationScheme v ∀hasPremise.Premise

ArgumentationScheme v ∀hasConclusion.Conclusion

ArgumentationScheme v ∀hasPresumption.Premise

ArgumentationScheme v ∀hasException.Premise

In addition, for each argumentation scheme the ArgCBROnto ontology stores information about its
unique ID (which ontological definition was provided before in this section), its title, its creation date
and its author.

cNote that this property has as domain several concepts of the ArgCBROnto ontology, some of which will be introduced
later in this article.

8



Figure 3: ArgCBROnto ArgumentationScheme

> v ∀argT itle.String

> v ∀argT itle−.ArgumentationScheme

> v ∀creationDate.Date

> v ∀creationDate−.ArgumentationScheme

ArgumentationScheme v ∀hasAuthor.Author

The argument-cases are the main structure that we use to implement our framework and computa-
tionally represent arguments in agent societies. Also, their structure is generic and domain-independent.
Thus, next section presents the ontological description for argument-cases in detail.

3.2 Argument-case Description

Argument-cases have two main objectives:

1. They can be used by agents as knowledge resources to generate new arguments and to select the
best position to put forward in view of past argumentation experiences.

2. They can be used to store new argumentation knowledge that agents gain in each dialogue, improv-
ing the agents’ argumentation skills.

Table 1 shows the structure of a generic argument-case. As pointed out before, the argument-cases
have three main parts: the description of the problem that the case represents, the solution applied to
this problem and the justification why this particular solution was applied. An argument-case stores
the information about a previous argument that an agent posed in certain step of a dialogue with other
agents.

Problem:

The problem description has a domain context that consists of the premises of the argument and represents
the context of the domain where the argument was put forward. Each premise has a unique identifier ID
(the ontological definition is provided at the end of Section 3.1), a name and a content, which can be of
several types depending on the application domain.

Context v Thing

DomainContext v Context

Problem v ∀hasDomainContext.DomainContext

Premise v Thing
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PROBLEM

Domain Context [Premises]*

Social Context

Proponent

ID
Role
Norms
ValPref

Opponent

ID
Role
Norms
ValPref

Group

ID
Role
Norms
ValPref

Dependency Relation

SOLUTION

Argument Type
Conclusion
Value
Acceptability Status

Received Attacks
[Critical Questions]*
[Distinguishing Premises]*
[Counter Examples]*

JUSTIFICATION
[Cases]*
[Argumentation Schemes]*
Associated Dialogue Graph

Table 1: Structure of an Argument-Case.

> v ∀hasName.String > v ∀hasName−.P remise

> v ∀hasContent.Type > v ∀hasContent−.P remise

In addition, if we want to store an argument and use it to generate a persuasive argument in the
future, the features that characterise the audience of the previous argument (the social context) must
also be kept. Thus, we have two disjoint types of contexts in our ontology, the usual domain context and
the social context (shown in Figure 4).

SocialContext v Context

DomainContext v ¬SocialContext

ArgumentProblem v ∀hasSocialContext.SocialContext

For the definition of the social context of arguments, we follow our model of society presented in
Section 2.1. Therefore, we store in the argument-case the social information about each social entity
related with the argument. This social entity can be an agent (the proponent of the argument and the
opponent to which the argument is addressed) or else the group to which agents belong. Figure 5 shows
this part of the ArgCBROnto ontology.

SocialEntity v Thing

Agent v SocialEntity Group v SocialEntity

Agent v ¬Group

For the sake of simplicity, in this report we assume that in each step of the dialogue, one proponent
agent generates an argument and sends it to one opponent agent that belongs to its same group. However,
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Figure 4: ArgCBROnto Context

Figure 5: ArgCBROnto SocialEntity

either the proponent or the opponent’s features could represent information about agents that act as
representatives of a group and any agent can belong to different groups at the same time. Thus, the social
context of argument-cases include information about the proponent and the opponent of the argument
(which can be an agent or a group) and information about their group. Also, groups are formed by at
least two agents.

SocialContext v ∀hasProponent.(Agent tGroup)

SocialContext v ∀hasOpponent.(Agent tGroup)

SocialContext v ∀hasGroup.Group

Group v ∀hasMember.Agent Group v≥ 2hasMember

Concretely, each social entity of the argument-case has a unique ID that identifies it in the system
(the ontological definition is provided at the end of Section 3.1) and the role that the agent or the group
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was playing when it sent or received the argument (e.g. trade unionist, business manager, etc, do not
confuse with the role of proponent and opponent from the argumentation perspective).

> v ∀hasRole.String > v ∀hasRole−.SocialEntity

In addition, for each social entity a reference to the set of norms that governed the behaviour of the
agents at this step of the dialogue is also stored, since the normative context of agents could force or
forbid them to accept certain facts and the arguments that support them (e.g. a norm could invalidate a
dependency relation or a value preference order). Also, each norm has a unique ID that identifies it (the
ontological definition is provided at the end of Section 3.1) and a description with the semantics of the
norm.

Norm v Thing

SocialEntity v ∀hasNorm.Norm

> v ∀hasDescription.String

> v ∀hasDescription−.(Conclusion t V alue tNorm t Justification)c

Moreover, if known, we also store the preferences of each agent or group over the pre-defined set of
general values in the system (e.g. security, solidarity, economy, etc.). As pointed out before, these prefer-
ences (ValPref ) affect the persuasive power of the proponent’s argument over the opponent’s behaviour.
In the case of the group, we use this feature to store its social valuesd.

V alue v Thing

V alPref v Thing

V alPref v ∀hasPreferred.V alue

SocialEntity v ∀hasV alPref.V alPref

Finally, the dependency relation between the proponent’s and the opponent’s roles is also stored in
the social context of the argument-cases. To date, we define the possible dependency relations between
roles as in [14]:

• Power : when an agent has to accept a request from another agent because of some pre-defined
domination relationship between them (e.g. in a society St that manages the water of a river basin,
Farmer <St

Power BasinAdministrator, since farmers must comply with the laws announced by the
basin administrator e).

• Authorisation: when an agent has committed itself to another agent for a certain service and a
request from the latter leads to an obligation when the conditions are met (e.g. in the society St,
Farmeri <

St

Authorisation Farmerj , if Farmerj has contracted a service that offers Farmeri).

• Charity : when an agent is willing to answer a request from other agent without being obliged to
do so (e.g. in the society St, by default Farmeri <St

Charity Farmerj).

Therefore, in our ArgCBROnto ontology we have these three types of dependency relations:

> v ∀hasDependencyRelation.(Power tAuthorisation t Charity)

> v ∀hasDependencyRelation−.SocialContext
dWe use the term social values to refer those values that are agreed by (or commanded to) the members of a society as

the common values that this society should promote (e.g. justice and solidarity in an ideal society) or demote.
eThis example will be explained in detail in Section 5.
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Solution:

In the solution part, the conclusion of the case (for both domain-cases and argument-cases) and the value
promoted in this specific situation are stored (see Figure 6).

Conclusion v Thing

Solution v ∀hasConclusion.Conclusion

Solution v ∀promotesV alue.V alue

Figure 6: ArgCBROnto Solution

Also, for argument-cases we have a more specialised description for the solution part (ArgumentSo-
lution), including the argument type that defines the method by which the conclusion of the argument
was drawn is stored. By default, we do not assume that agents have a pre-defined set of rules to infer
deductive arguments from premises, which is difficult to maintain in open MAS. In our framework, agents
have the following ways of generating new arguments:

• Presumptive arguments: by using the premises that describe the problem to solve and an argumen-
tation scheme whose premises match them.

• Inductive arguments: by using similar argument-cases and/or domain-cases stored in the case-bases
of the system.

• Mixed arguments: by using premises, cases and argumentation schemes.

ArgumentSolution v Solution

> v ∀hasArgumentType.(Inductive t Presumptive tMixed)

> v ∀hasArgumentType−.ArgumentSolution

Moreover, the solution part of the argument-cases stores the information about the acceptability status

of the argument at the end of the dialogue. This feature shows if the argument was deemed acceptable,

unacceptable or undecided in view of the other arguments that were put forward during the dialogue (see

Section 4 for details).
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> v ∀hasAcceptabilityStatus.(Acceptable t Unacceptable t Undecided)

> v ∀hasAcceptabilityStatus−.ArgumentSolution

Regardless of the final acceptability status of the argument, the argument-case also stores in its

solution part the information about the possible attacks that the argument received. These attacks could

represent the justification for an argument to be deemed unacceptable or else reinforce the persuasive

power of an argument that, despite being attacked, was finally accepted. Argument-cases can store

different types of attacks, depending on the type of argument that they represent:

• For presumptive arguments: critical questions (presumptions or exceptions) associated with the

scheme [48].

• For inductive arguments, as proposed in [8], either:

– Premises which value in the context where the argument was posed was different (or non-

existent) than the value that it took in the cases used to generate the argument (distinguishing

premises) or

– Cases which premises also match the premises of the context where the argument was posed,

but which conclusion is different than the conclusion of the case(s) used to generate the argu-

ment (counter-examples).

• For mixed arguments: any of the above attacks.

Thus, the ArgCBROnto ontology represents the different types of attacks that arguments can receive

as follows:

ArgumentSolution v ∀hasPresumption.Premise

ArgumentSolution v ∀hasException.Premise

ArgumentSolution v ∀hasDistinguishingPremise.Premise

ArgumentSolution v ∀hasCounterExample.Case
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Justification:

In the ArgCBROnto ontology, the justification part of a case stores a description that can explain why

this particular solution was applied to solve the case and what was the final results achieved. Figure 7

shows the concepts of the ArgCBROnto ontology that are related with this part of argument-cases.

> v ∀hasDescription.String

> v ∀hasDescription−.Justification

Figure 7: ArgCBROnto Justification

In the special case of argument-cases, the justification specialises in an ArgumentJustification, which

stores the information about the knowledge resources that were used to generate the argument represented

by the argument-case (e.g. the set argumentation schemes in presumptive arguments, the set of cases in

inductive arguments and both in mixed arguments).

ArgumentJustification v Justification
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ArgumentJustification v ∀ hasArgumentationScheme.ArgumentationScheme

ArgumentJustification v ∀hasCase.Case

In addition, the justification of each argument-case has associated a dialogue-graph that represents

the dialogue where the argument was posed. The same dialogue graph can be associated with several

argument-cases and an argument-case can be associated to several graphs. Each dialogue graph has a

root and a set of nodes, which we call argument nodes. An argument node has an argument-case, a

parent argument node and a child argument node. In this way, the ArgCBROnto ontology represents

the sequence of arguments that were put forward in a dialogue, storing the complete conversation as a

directed graph that links argument-cases. This graph can be used later to develop dialogue strategies. For

instance, to improve efficiency in a negotiation an argumentation dialogue could be finished if it is being

similar to a previous one that didn’t reach an agreement. Alternatively, opponent moves in a dialogue

(the arguments that it is going to present) could be inferred by looking a similar previous dialogue with

the same opponent.

DialogueGraph v Thing

ArgumentNode v Thing

ArgumentNode v ∀hasArgumentC.ArgumentCase

ArgumentNode v ∀hasParent.ArgumentNode

ArgumentNode v ∀hasChild.ArgumentNode

DialogueGraph v ∀hasRoot.ArgumentNode

DialogueGraph v ∀hasNode.ArgumentNode

ArgumentJustification v ∀hasDialogueGraph.DialogueGraph

Following a CBR methodology, the proposed knowledge resources allow agents to automatically gen-

erate, select and evaluate arguments. However, the specification of this case-based reasoning process is
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out of the scope of this report. Here we have focused on defining how agents can represent arguments

and argumentation related information to be able to perform an efficient and automatic management of

this information. The argument-case structure presented is flexible enough to represent different types of

arguments and their associated information. Also, the KI approach followed allows a semantic reasoning

with the concepts that represent the cases. However, the value of some features on argument-cases and

domain-cases could remain unspecified in some domains. For instance, in some open MAS, the pref-

erences over values of other agents could not be previously known, although agents could try to infer

the unknown features by using CBR adaptation techniques [27]. This and other open questions will be

discussed in Section 6. The knowledge resources of our framework and the ArgCBROnto ontology that

describes them have been presented in this section. Next section provides a formal definition for the

framework.

4 Case-based Argumentation Framework for Agent Societies

Following our case-based computational representation of arguments, we have designed a formal Argumen-

tation Framework for an Agent Society (AFAS) as an instantiation of Dung’s argumentation framework

[16]:

Definition 4.1 (Argumentation Framework for an Agent Society). An argumentation framework for an

agent society is a tuple AFAS = <A, R, St > where:

• A is a set of arguments.

• R is an irreflexive binary attack relation on A.

• St is a society of agents as defined in Definition 2.1.

The main advantages that our framework contributes over other existent AFs deal with the require-

ments suggested in Section 2.2. These advantages are: 1) the ability to represent social information in

arguments; 2) the possibility of automatically managing arguments in agent societies; 3) the improvement

of the agents’ argumentation skills; and 4) the easy interoperability with other frameworks that follow the
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argument and data interchange web standards. According to Prakken [37], the elements that characterise

an AF are: the notion of argument used in the framework, the logical language that represents argumen-

tation concepts, the concept of conflict between arguments, the notion of defeat between arguments and

the acceptability status of arguments. Next, the elements that characterise our case-based argumentation

framework for agent societies are specified by using the knowledge resources defined in this section and

the ArgCBROnto ontology.

4.1 The Notion of Argument: Case-Based Arguments

We have adopted the Argument Interchange Format (AIF) [52] view of arguments as a set of inter-

linked premiss-illative-conclusion sequences. The notion of argument is determined by our KI case-based

framework to represent arguments. In our framework agents can generate arguments from the premises

that represent the context of the domain where the argument is put forward in addition to the previous

cases (domain-cases and argument-cases) and argumentation schemes used to generate the conclusion of

the argument. Therefore, agents construct arguments by using their individual knowledge bases, which

contain these types of knowledge resources.

Definition 4.2 (Knowledge Base). A Knowledge Base in a case-based argumentation framework for

agent societies consists of a finite set of K ⊆ L elements, where L is a logical language to represent these

elements and K = Kp ∪ Kdc ∪ Kac ∪ Kas, where each of these subsets are disjoint and:

• Kp is a finite set of premises.

• Kdc is a finite set of domain-cases.

• Kac is a finite set of argument-cases.

• Kas is a finite set of argumentation schemes.

Note that the fact that a proponent agent uses one or several knowledge resources to generate an

argument does not imply that it has to show all this information to its opponent. The argument-cases

of the agents’ argumentation systems and the structure of the actual arguments that are interchanged
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between agents is not the same. Thus, arguments that agents interchange are defined as tuples of the

form:

Definition 4.3 (Argument). Arg = {φ, v,< S >}, where φ is the conclusion of the argument, v is the

value that the agent wants to promote with it and < S > is a set of elements that support the argument

(support set).

In the ArgCBROnto ontology, in addition to the above elements (see Figure 8), arguments have a

unique identifier ID (which ontological definition is provided at the end of Section 3.1):

Argument v Thing

SupportSet v Thing

Argument v ∀hasConclusion.Conclusion

Argument v ∀promotesV alue.V alue

Argument v ∀hasSupportSet.SupportSet

Figure 8: ArgCBROnto Argument

This support set can consist of different elements, depending on the argument purpose. On one hand, if

the argument provides a potential solution for a problem, the support set is the set of features (premises)

that represent the context of the domain where the argument has been put forward (those premises

that match the problem to solve and other extra premises that do not appear in the description of this

problem but that have been also considered to draw the conclusion of the argument) and optionally, any

knowledge resource used by the proponent to generate the argument (domain-cases, argument-cases or
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argumentation schemes). On the other hand, if the argument attacks the argument of an opponent, the

support set can also include any of the allowed attacks in our framework (critical questions (presumptions

and exceptions), distinguishing premises or counter-examples). Then, the support set consists of the

following tuple of sets of support elements f:

Definition 4.4 (Support Set). S = < {premises}, {domainCases}, {argumentCases}, {argumentationSchemes},

{criticalQuestions},

{distinguishingPremises}, {counterExamples} >

In the ArgCBROnto ontology, the elements of the support set are represented with the following

properties (see Figure 9):

SupportSet v ∀hasPremise.Premise

SupportSet v ∀hasDomainCase.DomainCase

SupportSet v ∀hasArgumentCase.ArgumentCase

SupportSet v ∀hasArgumentationScheme.ArgumentationScheme

SupportSet v ∀hasPresumption.Premise

SupportSet v ∀hasException.Premise

SupportSet v ∀hasDistinguishingPremise.Premise

SupportSet v ∀hasCounterExample.Case

Therefore, arguments can be constructed by aggregating different support and attack elements, which

are structures that support intermediate conclusions that lead to the conclusion of the argument itself.

These elements can be viewed as the case-based version of the sub-arguments of a rule-based argumen-

tation framework such as the ASPIC framework [35, Definition 3.6]). Inferences in our framework are

fThis representation is only used for illustrative purposes and efficiency considerations about the implementation are

obviated.
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Figure 9: ArgCBROnto SupportSet

based on previous cases, on argumentation schemes and on premises (these that form part of the cases

and argumentation schemes that match the problem to solve) instead of on strict or defeasible rules.

An important difference between the definition of argument of our case-based approach and the ASPIC

rule-based approach lies in the defeasible nature of all elements of the support set, except from certain

premises, as explained below. By contrast, ASPIC arguments can be also constructed by chaining strict

inference rules that give rise to indefeasible arguments.

Intuitively, arguments cannot be attacked on the support set premises that match the description of

the problem to solve, but only on those extra premises that represent the context of the domain where

the argument was put forward and that do not appear in the description of the problem. Therefore,

the premises that describe the problem to solve can be considered as axiom premises as defined in the

ASPIC framework [35, Definition 3.5]. Similarly, the extra premises can be considered as equivalent of

the ordinary premises of the ASPIC framework and if the attacks on them result in defeats depend on

the defeat relation specified below in Definition 4.8. Alternatively, the argument can be attacked on those

premises that appear in the description of the problem to solve but have not been considered to draw the

conclusion of the argument (do not appear in the support set of the argument). Again, compared with

the ASPIC framework, these premises can be considered as assumptions and attacks on them always

succeed.

In addition to the attacks on premises by means of distinguishing premises, our framework allows

attacks on cases and argumentation schemes, which can be performed by means of counter-examples and

critical questions respectively. If these attacks result or not in an argument defeat depend on the defeat
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relation of Definition 4.8.

4.2 The Logical Language

The logical language represents argumentation concepts and possible relations among them. In our

framework, these concepts are represented in the form of KI cases and argumentation schemes. Therefore,

the logical language of the AF is defined in terms of the vocabulary to represent these resources.

The vocabulary of cases and schemes is defined by using the ArgCBROnto ontology previously pre-

sented. We have selected the Ontology Web Language OWL-DLg as the logical language to represent

the vocabulary of cases. This variant is based on Description Logics (DL) and guarantees computational

completeness and decidability. Note that OWL-DL does not assume closed world reasoning with negation

as failure. By contrast, OWL-DL uses open world reasoning with negation as unsatisfiability. Therefore,

something is false only if it can be proved to contradict other information in the ontology. This implies

that two classes (i.e. concepts in description logics terminology) are contradictory if and only if they

are specifically declared as such with the owl property complementOf and similarly, two instances (i.e.

individuals in description logics terminology) are contradictory if and only if they are specifically declared

as such with the owl property differentFrom. This differs from the contrariness relation declared in the

ASPIC framework [35], which also captures negation as failure. However, our restricted view of the

contrariness relation follows the way of reasoning that case-based reasoning systems have.

Definition 4.5 (Logical Language). Let L be an OWL-DL language, C and D two owl classes, c ∈ C

and d ∈ D two owl instances of the classes C and D respectively, and complementOf and differentFrom

two contrariness functions from L to 2L. Then, if C complementOf D (correspondingly c differentFrom

d) and D complementOf C (d differentFrom c), C and D (c and d) are called contradictory. However, if

C complementOf D (correspondingly c differentFrom d) and D ¬complementOf C (d ¬differentFrom c),

C (c) is a contrary of D (d).

To illustrate the difference between negation as failure and negation as unsatisfiability let us propose
gwww.w3.org/TR/owl-guide
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the following example (already introduced in Section 1): suppose that a basin administrator is arguing

with a farmer to decide if, based on a case-base of previous experiences, the farmer should be the

beneficiary of a water-right transfer. If the administrator cannot find a previous a case that in a similar

situation granted the transfer to this (or a similar) user, a closed world reasoner would infer that the

transfer is not appropriate (since the suitability of the transfer cannot be proved). By contrast, an OWL-

DL reasoner that follows the open world assumption would infer that, in principle, there is no reason

to approve or deny the transfer. Thus, if there are no other reasons that prevent the administrator to

permit the transfer, it could finally approve it. This reflects the usual way of reasoning of the case-

based reasoning methodology, which does not infer the negation of a conclusion by the mere fact that

there is not a case in the case-base that supports this conclusion. OWL-DL allows automatic description

logic reasoning over argument-cases and domain-cases. In addition, it facilitates the interoperability with

other systems. In Sections 3 and 4.1, we have provided a partial view of the ontology for the case-based

argumentation framework proposedh.

4.3 The Concept of Conflict between arguments

The concept of conflict between arguments defines in which way arguments can attack each other. There

are two typical attacks studied in argumentation: rebut and undercut. In an abstract definition, rebuttals

occur when two arguments have contradictory conclusions. Similarly, an argument undercuts another

argument if its conclusion is inconsistent with one of the elements of the support set of the latter argument

or its associated conclusion. This section shows how our AF instantiates these two attacks. Taking into

account the possible elements of the support set, rebut and undercut attacks can be formally defined as

follows.

Let Arg1 = {φ1, value1, < S1 >} and Arg2 = {φ2, value2, < S2 >} be two different arguments, where

S1 =< {Premises}1, ..., {CounterExamples}1 >, S2 =< {Premises}2, ..., {CounterExamples}2 >, ∼

stands for the logical negation,⇒ stands for the logical implication and conc(x) is a function that returns

the conclusion of the domain-case, argument-case or argumentation scheme x. Then:
hThe complete specification of the ontology is available at users.dsic.upv.es/∼vinglada/docs.
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Definition 4.6 (Rebut). Arg1 rebuts Arg2 iff φ1 =∼φ2 and {Premises}1 ⊇ {Premises}2

That is, if Arg1 supports a different conclusion for a problem description that includes the problem

description of Arg2 then Arg1 rebuts Arg2.

Definition 4.7 (Undercut). Arg1 undercuts Arg2 if

1)φ1 =∼conc(ask)/

∃cq ∈ {CriticalQuestions}1 ∧ ∃ask ∈ {ArgumentationSchemes}2∧

cq ⇒∼conc(ask), or

2)φ1 = dp/

(∃dp ∈ {DistinguishingPremises}1 ∧ ∃prek ∈ {Premises}2 ∧ dp =∼prek)∨

(dp 6∈ {Premises}2), or

3)φ1 = ce/

(∃ce ∈ {CounterExamples}1 ∧ ∃dck ∈ {DomainCases}2

∧ conc(ce) =∼conc(dck))∨

(∃ce ∈ {CounterExamples}1∧

∃ack ∈ {ArgumentCases}2 ∧ conc(ce) =∼conc(ack))

That is, if the conclusion drawn from Arg1 makes one of the elements of the support set of Arg2

or its conclusion non-applicable in the current context of the argumentation dialogue. In case 1 Arg1

undercuts Arg2 by posing a critical question that attacks the conclusion of Arg2, inferred by using an

argumentation scheme. In fact, the set of critical questions of an argumentation scheme constitute the

set of possible undercuts to the conclusion drawn from the scheme. In case 2, Arg1 undercuts Arg2 by

showing a new premise which value conflicts with one of the premises of Arg2 or else, appears in the

description of the problem to solve but not in the problem description of Arg2. Finally, in case 3 Arg1

undercuts Arg2 by putting forward a counter-example for a domain-case or an argument-case that was

used to generate the conclusion of Arg2.

Alternatively, the ASPIC framework considers a third kind of attack, the undermining attack [35,

Definition 3.16], first presented in [17] and [47] as the premise attack. In our framework, this attack is

24



represented by the undercutting attack of type 2, raised by putting forward a distinguishing premise.

4.4 The Notion of Defeat between arguments

Once possible conflicts between arguments have been defined, the next step in the formal specification

of an AF is to define the defeat relation between a pair of arguments. This comparison must not be

misunderstood as a strategical function to determine with which argument an argumentation dialogue

can be won [37]. A function like this must also consider other factors, such as other arguments put forward

in the dialogue or agents’ profiles. Therefore, it only tells us something about the relation between two

arguments.

The dependency relation over roles DependencySt
and the agent’s preference relation over values

V alprefagi defined in our framework establish an argument ordering that is used to determine which

attacks result in defeats. Thus, the argument ordering of the cased-based framework for agent societies

proposed in this work is based on pre-defined relations over roles and on agents’ preferences over values

instead of on strict and defeasible rules, as proposed in [35, Definition 3.10]. Hence, the relation of defeat

between two arguments is defined in our AF as follows.

Let Arg1 = {φ1, value1, < S1 >} posed by agent ag1 and Arg2 = {φ2, value2, < S2 >} posed by

agent ag2 be two conflicting arguments and V alprefagi
:<St

agi
⊆ V ×V , defines a reflexive, symmetric and

transitive partial order relation over the values of the agent agi in the society St. Then:

Definition 4.8 (Defeat). Arg1 defeats Arg2

if ((rebuts(Arg1,Arg2) ∧ ∼ undercut(Arg2,Arg1)) ∨ undercuts(Arg1,Arg2)) ∧ (value1 <St
ag1

value2 /∈

V alprefag1) ∧ (Role(ag1) <St

Pow Role(ag2) /∈ DependencySt
∧ Role(ag1) <St

Auth Role(ag2) /∈ DependencySt
)

Therefore, we express that the argument Arg1 defeatsag1 from the ag1 point of view the argument

Arg2 as defeatsag1(Arg1, Arg2) if Arg1 rebuts Arg2 and Arg2 does not undercut Arg1 or else Arg1

undercuts Arg2, and these attacks succeed. That occurs if ag1 does not prefer the value promoted by

Arg2 to the value promoted by Arg1 and ag2 does not have a power or authority relation with ag1. The

first type of defeat poses a stronger attack on an argument, directly attacking its conclusion. In addition,
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an argument can strictly defeat another argument if the first defeats the second and the second does not

defeat the first.

Definition 4.9 (Strict Defeat). Arg1 strictly defeats Arg2 if Arg1 defeats Arg2 and Arg2 does not defeat

Arg1

4.5 The Acceptability Status of arguments

The acceptability status of arguments determines their status on the basis of their interaction. Only

comparing pairs of arguments is not enough to decide if their conclusions are acceptable, since defeating

arguments can also be defeated by other arguments. Taking into account the underlying domain theory of

a dialectical system, arguments can be considered acceptable, unacceptable and undecided [16]. However,

the acquisition of new information in further steps of the dialogue could change the acceptability status

of arguments.

Therefore, to decide the acceptability status of arguments a proof theory that takes into account the

dialogical nature of the argumentation process is necessary. To evaluate the acceptability of arguments

by using a dialogue game is a common approach [37]. Dialogue games are interactions between two or

more players, where each one moves by posing statements in accordance with a set or predefined rules

[29]. In our AF, the acceptability status of arguments is decided by using a dialogue game and storing in

the argument-case associated to each argument its acceptability status when the dialogue ends. However,

the definition of this dialogue game is out of the scope of this report and is presented in [19, Chapter 4].

5 Example Scenario

To exemplify the use of our AF, let us propose a scenario of an open MAS that represents a water market

society [10], where agents are users of a river basin (RB) that can buy or sell their water-rights to other

agents. A water-right is a contract with the basin administration organism that specifies the rights that

a user has over the water of the basin (e.g. the maximum volume that he can spend, the price that he
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must pay for the water or the district where it is settledi).

The framework can be easily extended to work with farmers that belong to different groups, repre-

senting farmer cooperatives (which group together farmers that grow the same products) or irrigation

cooperatives (which group together farmers that use the same irrigation channel). In addition, agents

can play different roles in each group and even act as representatives of a group. Thus, this is a complex

scenario that requires an AF that is able to take into account the social context of agents to properly

manage the argumentation process.

For clarity purposes, in this example all agents belong to the same group (the river basin RB). In

this setting, suppose that two agents that play the role of farmers, F1 and F2, are arguing with a basin

administrator, BA, to decide over a water-right transfer agreement that will grant an offered water-right

of a farmer F3 to another farmer. Figure 10 shows a graphical representation of this scenario.

The behaviour of RB is controlled by a certain set of norms NRB , its value preference order promotes

economy (EC) over solidarity (SO) (promotes saving money in each transfer over being supportive with

the personal needs of the basin users, SO<EC) and commands a dependency relation of charity (C)

between two farmers (Farmer <St
c Farmer) and power relation (P) between a basin administrator and a

farmer (Farmer <St
p BasinAdministrator). F1 prefers economy over solidarity (SO<EC) and has a set of

norms NF1, F2 prefers solidarity over economy (EC<SO) and has a set of norms NF2 and by default, BA

has the value preference order of the basin (SO<EC) and a set of norms NBA. Also, all agents have their

own knowledge resources (domain-cases case-base, argument-cases case-base and argumentation schemes

ontology).

The premises of the domain context would store data about the water-right transfer offer and other

domain-dependent data about the current problem. For instance, the premises of the original problem

could be as shown in Figure 11 and represent the identifier of the water right owner (owner), the offered

volume in liters of water (volume), the price in euros per liter of water (price), the district where the

water right is settled (district) and the area of this district in acres (area).

In the first step of the argumentation process, both farmers F1 and F2 will search their case-bases
iFollowing the Spanish Water Law, a water-right is always associated to a district.
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Figure 10: Water Market Scenario

of domain-cases (DC1 and DC2 respectively) to generate their positions. To query the case-bases, the

problem is formatted as a target case without solution and justification, as shown in the left side of Figure

11. In this case, the solution consists of the identifier of the water-right transfer beneficiary (beneficiary)

and the district of his land where the water has to be transferred (tr district). Figure 11 also shows how

F1 has found a similar domain-case C1 that represents a similar water-right transfer that was granted to

F1 since its land DF1 was adjacent (was closer than 100 meters) to the land where the water-right was

offered. Therefore, F1 can generate position posF1 that is on the side of F1j.

In the case of F2, the figure shows that it has retrieved also a similar domain-case C2, which shows

how the same water-right transfer was granted to F2 to irrigate its dry land during a drought. Therefore,

F2 can generate a position that is on its side, posF2.

Once the agents have proposed their positions, the basin administrator BA has to decide between
jIn this example we assume that agents only propose such positions that are on their side.
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Figure 11: Generation of Positions

them. Therefore, it asks F1 and F2 to provide an argument for supporting their positions. Assuming

that F1 and F2 are willing to collaborate, they can put forward the following arguments (according with

the format proposed in Definition 4.3):

Support argument of F1:

SAF1 == {F1tr, EC,< Premises, {C1}, ∅, ∅, ∅, ∅, ∅ >}

Support argument of F2:

SAF2 = {F2tr, SO,< Premises, {C2}, ∅, ∅, ∅, ∅, ∅ >}

where the support set includes the premises of the problem description and the domain-cases used by

F1 (C1) and F2 (C2) to generate their positions. F1tr and F2tr means that the transfer is granted to

F1 and F2 respectively. According to the values of the agents, we suppose that the closer the lands the

cheaper the transfers between them and then, SAF1 would promote economy (EC). Also, we assume that
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crops are lost in dry lands and helping people to avoid losing crops promotes solidarity (SO). Thus, SAF2

would promote solidarity.

Now, the BA has to attack the arguments of F1 and F2 and decide the beneficiary of the water-right

transfer. Then, suppose that as basin administrator it knows an extra premise that states that there is

a drought in the basin. First, this new premise matches an argumentation schemes of its ontology, S1,

which changes the value preference order of the basin in case of drought (inspired by Waltons’s argument

for an exceptional case [48]):

Major Premise: if the case of x is an exception, then the value preference order of the basin

can be waived and changed by EC<SO in the case of x.

Minor Premise: the case of drought is an exception.

Conclusion: therefore the value preference order of the basin can be waived and changed by

EC<SO in the case of drought.

Thus, this scheme will change the social context of the attack argument that the BA is going to create. As

the support set of SAF1 and SAF2 contains a domain-case, the BA will try to propose a counter-example

or a distinguishing premise for these cases.

Thus, the BA will check its case-base of domain-cases (DC) to find counter-examples for C1 and C2.

As shown in Figure 12, suppose that the BA finds one counter-example for each case (C3 for C1 and C4

for C2). Thus, it could generate the following attack arguments:

AA1 = {∼C1, SO, <Premises ∪ {Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C3}>}

to undercut SAF1 by attacking its support element C1 with the counter-example C3. Here we assume

that by attacking the argument of F1, the BA supports the argument of F2 and then promotes solidarity

(SO).

AA2 = {∼C2, EC, <Premises ∪ {Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C4}>}

to undercut SAF2 by attacking its support element C2 with the counter-example C4. Here we assume

that by attacking the argument of F2, the BA supports the argument of F1 and then promotes economy

(EC).
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Domain-cases

DC

AA1

AA2

Figure 12: Counter-examples for C1 and C2

Then, it will try to find distinguishing premises and will check that the problem description of domain-

cases C1 and C2 matches the extended description of the problem (the original description plus the new

premise drought). Then, the BA realises that C1 does not match with the extended description and

generates an attack argument to F1:

AA3 = {∼C1, SO, <Premises ∪ {Drought}, ∅, ∅, S1, ∅, {Drought}, ∅, ∅ >}

to undercut SAF1 by attacking its support element C1 with the distinguishing premise drought. Again,

we assume that attacking the argument of F1, the BA supports the argument of F2 and then promotes

solidarity (SO).

Now, the BA has to select the argument that it will pose to attack the positions of the farmers. Note

that, if we assume that agents always observe their value preference orders to put forward arguments,
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PROBLEM

Domain Context Premises = {owner=F3, volume=225000, .... drought=yes}

Social Context

Proponent

ID = BA
Role = Basin Administrator
Norms = NBA

ValPref = EC<SO

Opponent

ID = F1
Role = Farmer
Norms = NF1

ValPref = SO<EC

Group

ID = G
Role = River Basin
Norms = NG

ValPref = SO<EC
Dependency Relation = Power

SOLUTION

Argument Type = Inductive
Conclusion = F2tr
Value = SO
Acceptability Status = Unaccepted

Received Attacks
Critical Questions = ∅
Distinguishing Premises = ∅
Counter Examples = ∅

JUSTIFICATION
Cases = {C5, C7}
Argumentation Schemes = ∅
Associated Dialogue Graph

Table 2: Argument-case similar to AA3

the BA would prefer to pose AA1 and AA3 first than AA2 (since the BA has the value preference order

of the basin, which has been changed to EC<SO). However, it has still to decide which AA1 or AA3

would select to attack SAF1. To do that, it generates an argument-case for each argument and checks its

argument-cases case-base to decide which is the best argument to pose in view of the previous experience.

Now, let us suppose that the BA finds a similar argument-case for AA3 that was unaccepted at the end

of the dialogue, shown in Table 2. However, the information of the group that the agents belong does

not match with the current one. Therefore, the BA can infer that in the argument represented by this

argument-case the agents belonged to a different river basin where, solidarity is not promoted in case of

drought. Finally, the BA finds a similar argument-case for AA1 that was accepted in the past. In this

case, the social context and the value promoted match the current one. Thus, the BA will pose AA1 to

attack the position of F1.

When F1 receives the attack, it has to evaluate the attack argument in view of its support argument.

Then, it will realise that SAF1 does not defeat AA1 from its point of view, since the BA has a power
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dependency relation with any farmer (Farmer <St

Power Basin Administrator). Then, it would try to

generate more support for its position. In case that it cannot find more support, the F1 would have to

withdraw posF 1 and F2 would be granted the water-right transfer agreement.

With this scenario we have demonstrated how agents’ arguments can be computationally managed

in the proposed argumentation framework. The example shows the way in which agents can use the

knowledge resources of the framework to generate, select and evaluate positions and arguments. Also,

it takes into account the social context of agents to perform these activities and meets the requirements

identified in Section 2. In [19, Chapter 6] our argumentation framework has been also implemented and

tested to enhance a real customer support application run by a Spanish company [22].

On one hand, the framework is completely case-based, which makes it computationally tractable and

eases the performance of automatic reasoning processes over it, taking advantage of previous argumenta-

tion experiences. On the other hand, the framework allows representing domain-dependent information

in the premises and social information about the agents and their group. This information is used to

select the best positions and arguments to put forward in each step of the argumentation process. In

addition, the framework allows generating arguments from different knowledge resources and represents

different types of arguments, supporting positions or attacking other arguments.

6 Discussion

This report presents a case-based argumentation framework for agent societies, where a generic KI case-

based structure for computational argument representation has been proposed. As pointed out in Section

2.2, in open MAS the domain is highly dynamic and the set of rules that model it is difficult to specify in

advance. However, tracking the arguments that agents put forward in argumentation processes could be

relatively simple. Therefore, these arguments can be stored as cases codified in an ontological language

that different agents are able to understand. This is easier than using a rule-based system, such as the

ASPIC argumentation framework [35], which requires the creation of an explicit model of the domain.

Nevertheless, the connections between the elements of our framework and their equivalences in the ASPIC
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ArgCBROnto Concepts AIF Concepts

<Premise ID, Premise Content> <Premise Description, I-Node Premise>

Argument Type Rule of Inference Scheme

Conclusion <Conclusion Description, I-Node Conclusion>

Presumptions <Presumption Description, I-Node Premise>

Exceptions <ConflictScheme, Premise Description, I-Node Premise>

Distinguishing Premise <Conflict Scheme, Premise Description, I-Node Premise>

Counter-Examples <Conflict Scheme, Premise Description, I-Node Premise>

Table 3: Correspondence between ArgCBROnto and AIF concepts

framework have been discussed in Section 4.

Other important problem with rule-based systems arises when the knowledge-base must be updated

(e.g. adding new knowledge that can invalidate the validity of a rule). Updates imply to check the

knowledge-base for conflicting or redundant rules. Case-based systems are easier to maintain than rule-

based systems since, in the worst case, the addition of new cases can give rise to updates in some

previous cases, but does affect the correct operation of the system, although it can have an impact in its

performance.

The representation of argumentation information using ontologies was first proposed in [52]. This

work develops a format for argument interchange (AIF) that can be used between argumentation tools

and/or MAS. The ArgCBROnto presented in this report follows the AIF approach, but defining a spe-

cific language for case representation that facilitates case-based reasoning processes over domain and

argumentation information. However, an argumentation system based on our framework can interact

with other systems that comply with the standard. Moreover, elements of cases are specified by using

an ontological case representation language, the ArgCBROnto ontology. Although agents in open MAS

are heterogeneous, by only sharing this ontology they can understand the arguments interchanged in

the system. An example of the translation between some concepts of ArgCBROnto and their equivalent

concepts in AIF (in the version reported in [40]) is shown in table 3.
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AIF represents actual arguments as graphs with interlinked nodes that stand for the different concepts

of the AIF ontology [52] [40]. For instance, premises in AIF are specified by using a description, which

stands for the scheme that matches that premise and a description content, which is the actual information

represented in the premise. Similarly, in ArgCBROnto premises have a name, which could be translated

into the AIF description concept and a content, which corresponds to the AIF I-Node with the content

of the premise. The same holds for presumptions and conclusions. The ArgCBROnto argument type

has the same functionality as the AIF rule of inference scheme, which is the application of a specific

type of inference (inductive, presumptive or mixed in our framework). In the case of exceptions, AIF

represents them as relations between two concepts of the ontology interlinked via a special type of node

called conflict scheme. This can be translated in the ArgCBROnto concepts of exceptions, distinguishing

premises and counter-examples, which are represented by a a name, which again, could be translated into

the AIF description concept and a content, which corresponds to the AIF I-Node with the content of the

specific concept.

As pointed out in Section 1, in our case-based argumentation framework for agent societies we endorse

the view of value-based argumentation frameworks [6], which stress the importance of the audience and the

values promoted by an argument in determining whether it is persuasive or not. A related work on abstract

argumentation scheme frameworks [5] combines argumentation frameworks with argumentation schemes

and makes use of the structure provided by the schemes to guide dialogues and provide contextual elements

of argument evaluation. However, these and most works on computational models of argument take a

narrow view on the argument structure [39]. In fact, they are abstract frameworks aimed at studying

the properties of arguments [45], which enable evaluation with respect to the logical relations between

arguments. Opposite to our framework, the actual structure of arguments and their computational

representation are obviated. In addition, previous argumentation experiences are not used to guide

current argumentation processes such as we propose.

Other works use domain-dependent structures for the computational representation of arguments.

The few current approaches for case-based argumentation in MAS, which use cases as previous knowledge

to manage arguments, suffer from this domain-dependency or centralise the case-based argumentation
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abilities in a mediator agent [21]. Close to the approaches on case-based argumentation is the research on

experience-based argumentation using association rules, presented as the PADUA protocol in [49]. This

work pools the opinions of several agents that have access to different datasets to predict the classification

of a new example. In a subsequent research, the PADUA protocol has been extended to allow multi-

agent dialogues by proposing the PISA protocol [50, 51]. Here, the authors tackle issues like the dynamic

creation of a group, the selection of a group leader and intra-group consultation to suggest moves. As

in our approach, in this research agents take profit from previous experiences to solve a new problem,

but the knowledge gained from the argumentation process is not stored nor used to improve the agents

argumentation skills. In addition, PISA and PADUA have been designed to solve classification problems

and not any type of problem that can be characterised by a set of features, which is the target of our

research. However, the extension of our framework to allow agents to dynamically create groups and

argue about the best move to make as a group in each step of the dialogue still remains future work.

In addition, the application of argumentation to agent societies is a new area or research with few

contributions to date. However, commonly the term agent society is used in the argumentation and AI

literature as a synonym for an agent organisation or a group of agents that play specific roles, follow

some interaction patterns and collaborate to reach global objectives. Many works in argumentation in

MAS that refer to the term ’agent societies’ follow this approach, which is not targeted to the study of

the structure of agent societies and the underlying social dependencies between agents.

This is the case of [18], which points out some of the drawbacks of classical ’agent centered MAS’. To

resolve these difficulties the authors propose a set of principles and an example methodology to design

organisation centered multi-agent systems. Also, [30] uses multi-agent argumentation within the agents

and artifacts meta-model to design an argumentation component based on Dung’s preferred semantics

[16]. This component manages arguments and provides a coordination service for argumentation processes

in a MAS.

Other works are focused on the study of argumentation in social networks, with a focus on the

network topology (or the structure of the group) rather than in the actual social dependencies between

software agents or human users. An example of this type is the work presented in [32], which investigates
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how argumentation processes among a group of agents may affect the outcome of group judgments in

prediction markets. Also, an example on how argumentation can enhance dialogues in social networks

can be found in [20].

However, the influence of the agent group and the social dependencies between agents in the way

agents can argue must be further investigated. For instance, an agent playing the role of employee could

accept arguments from an agent playing the role of project manager that it would never accept in other

situation, such as playing the role of general manager. In the same way, an agent representing a group of

employees (playing the role of trade unionist) is not expected to behave in the same way when arguing

with an agent playing the role of the employer’s representative than it does when arguing as an individual

employee.

Recent research presents a novel argumentation-based negotiation framework that allows agents to

detect, manage and resolve conflicts related to their social influences in a distributed manner within a

structured agent society [25, 26]. This work proposes a new argumentation scheme that captures how

agents reason about influences within a structured society, a mechanism to use this scheme to identify a

suitable set of social arguments, a language and a protocol to exchange these arguments and a decision

making functionality to generate such dialogues. However, it defines the social context of agents with

a set of roles that agents can play, a set of generic relationships over them and a set of weighted social

commitments for each of the active relationships, with no mention to values nor preferences over them.

A major difference between this proposal and our argumentation framework is the main objective

pursued. Here the focus is on solving conflicts regarding conflicting social commitments between agents,

while our framework enables argumentation to solve a generic problem by using previous experiences,

taking into account the social dependencies between agents but also their preferences over a set of values.

Also, the authors do not specify the types of dependency relations that agents can have, leaving this

concept as a generic relation. In our framework, argumentation experience is stored and reused to support

agents in making decisions about the best argument to put forward in a specific situation. Agents belong

to a society that impose dependency relations on them, so they are related via power, authorisation or

charity dependencies. Thus, the specific dependency relation between a pair of agents plays an important
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role in deciding if an argument posed in a past argumentation dialogue can be still persuasive in a current

situation (where, possibly, agents hold a different dependency relation). For the time being, we do not

deal with conflicts on dependency relations between agents, but this is an interesting extension that opens

the pathway to future work.

In real systems, some features of argument-cases could be unknown. For instance, the proponent of

an argument obviously knows its value preferences, probably knows the preferences of its group but, in

a real open MAS, it is unlikely to know the opponent’s value preferences. However, the proponent could

know the value preferences of the opponent’s group or have some previous knowledge about the value

preferences of similar agents playing the same role as the opponent. If agents belong to different groups,

the group features could be unknown, but the proponent could use its experience with other agents of

the opponent’s group and infer them. In any case, the framework is flexible enough to work with this

lack of knowledge, although the reliability of the conclusions drawn from previous experiences would be

worse.

For simplicity purposes, in the example proposed in this report we have assumed that a proponent

agent addresses its arguments to an opponent of its same group, having complete knowledge of the social

context. However, either the proponent or the opponent’s features could represent information about

agents that act as representatives of a group and any agent can belong to different groups at the same

time. In that case, other issue that this research leaves open is the problem of solving conflicts between

the values inherited from the group (or from the different groups of the agent) and the agent’s individual

values. The decision about which values are preferred would depend on the application domain. For

instance, if the argumentation framework is implemented in a collaborative application domain where

agents pursue to reach the best agreement for the whole group, the group values would be given priority

over individual values.

Also for simplicity, the example does not show how agents can use the dialogue graphs associated to

argument-cases to take strategic decisions about which arguments are more suitable in a specific situation

or about whether continuing with a current argumentation dialogue is worth. For instance, to improve

efficiency in a negotiation an argumentation dialogue could be finished if it is being similar to a previous
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one that didn’t reach an agreement. Alternatively, opponent moves in a dialogue could be inferred by

looking a similar previous dialogue with the same opponent.

The actual algorithms to implement the agents’ reasoning process and the interaction protocol to

interchange arguments between agents are not specified here. The former depends on the application

domain and the design of the real system that implements our AF. The latter defines the dialogue,

commitment and termination rules and the locutions that agents use to interchange arguments. These

locutions depend on the agents’ communication language and determine the intention of the argument

(e.g. pose an attack or ask for justifications), the argument’s sender and receiver, the format of the

argument’s content (e.g. if complete knowledge resources or parts are sent), etc. Also, the process to put

critical questions depends on the actual ontology of argumentation schemes that agents implement and

the interaction protocol that agents follow.

When we identified the research challenges for a case-based argumentation framework we noticed that

due to the dynamism of the argumentation domain applied to open MAS, cases can quickly become obso-

lete. Therefore, there is an important opportunity here to investigate new methods for the maintenance

of the case-bases that improve the adaptability of the framework. In this research, we have followed the

basic approach to update cases when a new case that is similar enough to an existent case in the case-base

has to be added. However, we acknowledge that this can give rise to too large databases with obsolete

cases that can hinder the performance of the whole system.

7 Conclusions

The main contribution of this work consists in the proposal of a case-based argumentation framework

that allows agents to argue in agent societies, taking into account their roles, preferences over values

and dependency relations. Our notion of agent society is presented and a set of requirements that a

suitable argumentation framework for agent societies should met is identified. The main advantages that

our framework contributes over other existent AFs deal with these requirements. These advantages are:

1) the ability to represent social information in arguments; 2) the possibility of automatically managing
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arguments in agent societies; 3) the improvement of the agents’ argumentation skills; and 4) the easy

interoperability with other frameworks that follow the argument and data interchange web standards.

After that, we propose a set of knowledge resources that agents can use to manage positions and

arguments in a way that they are computable. Moreover, these knowledge resources allow agents to use

previous argumentation experiences to enhance their argumentation skills. The knowledge resources that

agents use and the arguments that agents can interchange are ontologically defined in OWL-DL by using

an ontology called ArgCBROnto, which allow heterogeneous agents in an open MAS to understand these

concepts by sharing the ontology.

The framework proposed is formalised by defining the notion of argument, the logical language used to

represent arguments, the concept of conflict between arguments, the notion of defeat between arguments

and the acceptability status of arguments at the end of the argumentation dialogue.

An example scenario that shows how our framework allows agents to argue in a society taking into

account the requirements identified is also proposed. The example demonstrates how the framework

presented in this report meets all the necessary requirements for a suitable computational argumentation

framework for agent societies.

Appendix: Description Logics

Description Logics (DLs) are a family of formal knowledge representation languages that are used in AI

for formal reasoning on the concepts of an application domain (terminological knowledge). In DL the

knowledge base consist of a set of terminological axioms (or TBox ) that contains sentences describing

relations between concepts and a set of assertional axioms (or ABox ) that describes the relations be-

tween individuals and concepts (where in the hierarchy of concepts the individuals belong). Thus, DL

distinguishes between concepts, roles, which are properties of these concepts and individuals, which are

instances of the concepts. Table 4 shows the syntax and interpretation of the DL definitions provided in

this report. In the table, C and D are concepts, R is a role, a and b are individuals and n is a positive

integer.
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Description Example Interpretation

All concept names > Top

Empty concept ⊥ Bottom

Intersection of concepts C uD C and D

Union of concepts C tD C or D

Negation of concepts ¬C not C

Concept inclusion C v D All C are D

Universal restriction ∀R.C All concepts with the role R are in C

Minimal cardinality ≥ nR At least n concepts have the role R

Range > v ∀R.C The range of the role R is C

Domain > v ∀R−.C The domain of the role R is C

Table 4: DL Notation
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