
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Technical Report

Ref. No.:
Pages: 28
Title: Case-based Argumentation Framework. Dialogue Protocol
Author(s): Stella Heras and Vicente Botti and Vicente Julián
Date: June 24, 2011
Keywords: Argumentation, Case-Based Reasoning, Multi-Agent Systems

Vo Bo

Vicente Botti Stella Heras



1 Introduction

Large scale computer systems are now viewed in terms of the entities that participate in them, offering
and consuming services [16]. Commonly, these systems are implemented as open Multi-Agent Systems
(MAS) which software agents are able to interact to solve complex tasks. Agents are autonomous entities
that can have their own knowledge resources, can play different roles and can have different objectives
and preferences over values that they want to promote with their actions (e.g. an interested agent could
want to promote its own wealth in spite of the fairness in a negotiation to allocate any scarce resource).
In addition, they can be linked by different types of dependency relations in what we call an agent
society [11]. On top of the simpler ability to interact, open MAS must include mechanisms for their
agents to reach agreements [34] by also taking into account their social context. This context determines
the way in which agents can reach these agreements. For instance, an agent representing a worker in a
company could be forced to violate its preferences about the outcome of an agreement process due to a
power dependency relation that commits it to accept the decisions of a superior.

Argumentation provides MAS with a framework that assures a rational communication, which allows
agents to reach agreements when conflicts of opinion arise. The dialogue typology of Walton and Krabbe
[38] has been adopted in MAS to classify the different types of dialogues between agents depending
on the objective of the interaction. Other concept of the argumentation theory, the theory of dialogue
games [10, 17] has also been applied to structure the dialogue between agents with different points of
view. Formal dialogue games are interactions between several players (agents in our case) where each
player moves by making utterances in accordance to a defined set of rules [23]. Recently, a wide range
of approaches that formalise interaction protocols by using different dialogue games have been published
[23]. Some examples of dialogue game protocols about specific types of dialogues are: inquiry [13],
persuasion [2], negotiation [32] and deliberation [21].

In [11], we have proposed a case-based argumentation framework that allows agents of an agent
society to reach agreements by taking into account their social context. In this report we present the
communication protocol that agents of our argumentation framework use to interact when they engage
in argumentation dialogues. Considerable research has been performed on the design of artificial agent
communication languages, such as DARPA’s Knowledge Query and Manipulation Language (KQML)a

and the IEEE Foundation for Intelligent Physical Agents Agent Communications Language (FIPA ACL)b.
These languages provide agents with a high flexibility of expression. However, in a dialogue agents can
have too many choices of what to utter in each step of the conversation. Therefore, this flexibility can
also be an important downside if it gives rise to a state-space explosion and leads agents to engage in
unending dialogues [26, Chapter 13]. A possible solution for this problem consists in limiting the allowed
set of utterances for each step of the dialogue by defining the agents communication protocol with a
dialogue game.

The structure of this report is as follows: Section 2 briefly introduces our case-based argumentation
framework for agent societies; Section 3 introduces the notation used along the report; Section 4 presents
the syntax of the protocol, as the set of defined locutions, their combinatorial properties and the rules
that govern the dialogue; after that, Section 5 provides the axiomatic semantics and the operational
semantics of the locutions. The former defines the pre-conditions that should be met to put forward each
locution (or set of locutions) and the post-conditions that apply before their utterance. The latter views
each locution as a transition in an abstract state-machine that represents the possible stages that can be
reached during the dialogue; finally, section 7 summarises the contents of this report.

2 Case-based Argumentation Framework

In [11] a case-based argumentation framework for agent societies has been proposed. Many argumentation
frameworks require to create an explicit rule-based model of the domain [28]. In open MAS, the domain
is highly dynamic and the set of rules that model it is difficult to specify in advance. However, tracking

awww.cs.umbc.edu/research/kqml/
bwww.fipa.org/repository/aclspecs.html

1

http://www.cs.umbc.edu/research/kqml/
http://www.fipa.org/repository/aclspecs.html


the arguments that agents put forward in argumentation processes could be relatively simple. Therefore,
these arguments can be stored as cases codified in a common language (e.g. an ontological language, as
will be proposed in next section) that different agents are able to understand. Other important problem
with rule-based systems arises when the knowledge-base must be updated (e.g. adding new knowledge
that can invalidate the validity of a rule). Updates imply to check the knowledge-base for conflicting or
redundant rules. Case-based systems are easier to maintain than rule-based systems since, in the worst
case, the addition of new cases can give rise to updates in some previous cases, but does affect the correct
operation of the system, although it can have an impact in its performance.

In this section, we briefly introduce the elements of our framework. Concretely, we propose three
types of knowledge resources that the agents can use to generate, select and evaluate arguments:

A case-base with domain-cases that represent previous problems and their solutions. Agents can use
this knowledge resource to generate their positions in a dialogue and arguments to support them.
Also, the acquisition of new domain-cases increases the knowledge of agents about the domain under
discussion.

A case-base with argument-cases that store previous argumentation experiences and their final out-
come. Argument-cases have three main objectives: they can be used by agents 1) to generate new
arguments; 2) to strategically select the best position to put forward in view of past argumentation
experiences; and 3) to store the new argumentation knowledge gained in each agreement process,
improving the agents’ argumentation skills.

A database of Argumentation schemes with a set of argumentation schemes [39], which represent
stereotyped patterns of common reasoning in the application domain where the framework is imple-
mented. An argumentation scheme consists of a set of premises and a conclusion that is presumed
to follow from them. Also, each argumentation scheme has associated a set of critical questions that
represent potential attacks to the conclusion supported by the scheme. The concrete argumentation
schemes to be used depend on the application domain.

The structure of domain-cases and the concrete set of argumentation schemes that an argumentation
system that implements our framework has depends on the application domain. Argument-cases are
the main structure that we use to computationally represent arguments in agent societies. In addition,
their structure is generic and domain-independent. Argument-cases have the three possible types of
components that usual cases of CBR systems have: the description of the state of the world when the
case was stored (Problem); the solution of the case (Conclusion); and the explanation of the process that
gave rise to this conclusion (Justification).

The problem description has a domain context that consists of the premises that characterise the
argument. In addition, if we want to store an argument and use it to generate a persuasive argument
in the future, the features that characterise its social context must also be kept. The social context
of the argument-case includes information about the proponent and the opponent of the argument and
about their group. Moreover, we also store the preferences (ValPref ) of each agent or group over the set
of values pre-defined in the system. Finally, the dependency relation between the proponent’s and the
opponent’s roles is also stored. In our framework, we consider three types of dependency relations as
defined in [9]: Power, when an agent has to accept a request from other agent because of some pre-defined
domination relationship between them; Authorisation, when an agent has signed a contract with other
agent to provide it with a service and hence, the contractor agent is able to impose its authority over
the contracted agent and Charity, when an agent is willing to answer a request from other agent without
being obliged to do so.

In the solution part, the conclusion of the case, the value promoted, and the acceptability status
of the argument at the end of the dialogue are stored. The last feature shows if the argument was
deemed acceptable, unacceptable or undecided in view of the other arguments that were put forward in
the agreement process. In addition, the conclusion part includes information about the possible attacks
that the argument received during the process. These attacks could represent the justification for an
argument to be deemed unacceptable or else reinforce the persuasive power of an argument that, despite

2



being attacked, was finally accepted. Concretely, arguments in our framework can be attacked by putting
forward distinguishing premises or counter-examples to them, as proposed in [5], and also by questioning
the validity of the conclusion drawn from an argumentation scheme by instantiating a critical question.

A distinguishing premise is a premise that does not appear in the description of the problem to solve
and has different values for two cases or a premise that appears in the problem description and does not
appear in one of the cases. A counter-example for a case is a previous domain-case or an argument-case
that was deemed acceptable, where the problem description of the counter-example matches the current
problem to solve and also subsumes the problem description of the case, but proposing a different solution.
A critical question is a question associated to an argumentation scheme that represents a potential way
in which the conclusion drawn from the scheme can be attacked. Critical questions can be classified as
presumptions that the proponent of the argumentation scheme has made or exceptions to the general
inference rule that the scheme represents [29]. In the former case, the proponent has the burden of proof
if the critical question is asked, whereas in the later the burden of proof falls on the opponent that has
questioned the conclusion of the scheme. Therefore, if the opponent asks a critical question, the argument
that supports this argumentation scheme remains temporally rebutted until the question is conveniently
answered. This characteristic of argumentation schemes makes them very suitable to devise ways of
attack the conclusions drawn from other agents.

Finally, the justification part of an argument-case stores the information about the knowledge re-
sources that were used to generate the argument represented by the argument-case (the set of domain-
cases and argument-cases). In addition, the justification of each argument-case has a dialogue-graph (or
several) associated, which represents the dialogue where the argument was proposed. In this way, the
sequence of arguments that were put forward in a dialogue is represented, storing the complete conversa-
tion as a directed graph that links argument-cases. This graph can be used later to improve the efficiency
in an argumentation dialogue in view of a similar dialogue that was held in the past.

As pointed out before, in our framework agents can generate arguments from previous cases (domain-
cases and argument-cases) and from argumentation schemes. However, note that the fact that a proponent
agent uses one or several knowledge resources to generate an argument does not imply that it has to show
all this information to its opponent. The argument-cases of the agents’ argumentation systems and the
structure of the actual arguments that are interchanged between agents is not the same. Thus, arguments
that agents interchange are defined as tuples of the form:

Definition 2.1 (Argument). Arg = {φ, v,< S >}, where φ is the conclusion of the argument, v is the
value that the agent wants to promote with it and < S > is a set of elements that support the argument
(support set).

This support set can consist of different elements, depending on the argument purpose. On one hand,
if the argument provides a potential solution for a problem, the support set is the set of features (premises)
that represent the context of the domain where the argument has been proposed (those premises that
match the problem to solve and other extra premises that do not appear in the description of this
problem but that have been also considered to draw the conclusion of the argument) and optionally, any
knowledge resource used by the proponent to generate the argument (domain-cases, argument-cases or
argumentation schemes). On the other hand, if the argument attacks the argument of an opponent, the
support set can also include any of the allowed attacks in our framework (critical questions, distinguishing
premises or counter-examples).

3 Preliminaries

Along this report we follow the standard that views utterances as composed by two layers: an internal
layer that represents the topics of the dialogue and an external layer that consists of the locutions or
performatives that define the allowed speech acts. On one hand, we assume that the topics of the
inner layer can be represented with well-formed formulae of the Description Logic (DL) SHOIN(D)
[12], which forms the basis of the Web Ontology Language OWL-DL. In our argumentation framework,
we have designed an ontology called ArgCBROnto to define the representation language of arguments

3



and argumentation conceptsc. Ontologies provide a common vocabulary to understand the structure of
information among different software agents. In addition, ontologies allow to make assumptions about
the domain explicit, which facilitates to change these assumptions as new knowledge about the domain
is acquired. The high dynamism of the domains where open MAS operate gives rise to many changes in
the domain knowledge that agents have available. Therefore, they must be able to efficiently handle the
consequences of these changes. On the other hand, we use the standard operators and axioms of modal
logics of knowledge and believe [33, Chapter 13] to define the semantics of locutions.

In DLs, the important notions of the domain are described by concept descriptions, which are expres-
sions that are built from atomic concepts (unary predicates) and atomic roles (binary predicates relating
concepts) using the concept and role constructors provided by the particular DL. The semantics of DLs
is given in terms of interpretations [4]:

Definition 3.1 (Interpretation:). An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , called
the domain of I, and a function ·I that maps every concept to a subset of ∆I , and every role name to a
subset of ∆I ×∆I such that, for all concepts C, D and all role names R,
>I = {∆I | for all CI ∈ ∆I , then >I = CI ∪ ¬CI},
⊥I = {∅| for all C ∈ ∆I , then ⊥I = CI ∩ ¬CI},
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
(∃R.C)I = {x ∈ ∆I | there is some y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | for all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI}. We say that CI (RI) is the extension
of the concept C (role name R) in the interpretation I. If x ∈ CI , then we say that x is an instance of
C in I.

Table 1 shows the syntax and semantics of the constructors of SHOIN(D), using Roman upper-case
letters to represent concepts, datatypes and roles and Roman lower-case letters to represent individuals
and data values.

As any description logic, SHOIN(D) uses concept descriptions to build statements in a DL knowledge
base K (the analogue of an ontology in OWL-DL), which typically comes in two parts: a terminological
(TBox) and an assertional (ABox). In the TBox, we can describe the relevant notions of an application
domain by stating properties of concepts and roles and relationships between them. For instance, the
notions of agents and arguments are defined in our argumentation framework with the concepts of Agent
and Argument of the ArgCBROnto and the following axioms:

SocialEntity v Thing

Agent v SocialEntity

Argument v Thing

The properties of an argument are defined with the roles hasConclusion, promotesV alue and hasSupportSet
and the following axioms and value restrictions:

Argument v ∀hasConclusion.Conclusion

Argument v ∀promotesV alue.V alue

Argument v ∀hasSupportSet.SupportSet

which say that arguments can have three properties that relate them with objects of the class
Conclusion, V alue and SupportSet. Correspondingly, the ABox represents the concrete data of the
database K, with the individuals of concepts (instances) and their properties. For instance, the ABox of
the ArgCBROnto ontology can include an argument arg that promotes a value solidarity:

Argument(arg)

cThe complete specification of the ontology is available at users.dsic.upv.es/∼vinglada/docs.

4

http://users.dsic.upv.es/~vinglada/docs/


Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆ID
abstrac role RA R RI ⊆ ∆I ×∆I

datatype role RD U UI ⊆ ∆I ×∆ID
individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

conjunction C1 u C2 (C1 u C2)I = CI1 ∩ CI2
disjunction C1 t C2 (C1 t C2)I = CI1 ∪ CI2
negation ¬C1 (¬C1)I = ∆I \ CI1
oneOf {o1, ...} {o1, ...}I = {oI1 , ...}
exists restriction ∃R.C (∃R.C)I = {x|∃y. 〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x|∀y. 〈x, y〉 ∈ RI → y ∈ CI}
atleast restriction ≥ nR (≥ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≥ n}
atmost restriction ≤ nR (≤ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≤ n}
datatype exists ∃U.D (∃U.D)I = {x|∃y. 〈x, y〉 ∈ UI and y ∈ DD}
datatype value ∀U.D (∀U.D)I = {x|∀y. 〈x, y〉 ∈ UI → y ∈ DD}
datatype atleast ≥ nU (≥ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≥ n}
datatype atmost ≤ nU (≤ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≤ n}
datatype oneOf {v1, ...} {v1, ...}I = {vI1 , ...}
Axiom Name Syntax Semantics
concept inclusion C1 v C2 CI1 ⊆ CI2
object role inclusion R1 v R2 RI1 ⊆ RI2
object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 UI1 ⊆ UI2
individual inclusione a : C aI ∈ CI
individual equality a = b aI = bI

individual inequality a 6= b aI 6= bI

concept existence ∃C #(CI) ≥ 1

Table 1: Syntax and Semantics of SHOIN(D) [12].

promotesV alue(arg, solidarity)

On the other hand, the syntax of the external layer of utterances (locutions) is as proposed in [25]:

locution(as, φ) or locution(as, ar, φ)

where Agent(as) (the sender) and Agent(ar) (the receiver) are individuals of the Agent concept
and φ is the content of the utterance. The former locution is addressed to all participants in the dia-
logue, whereas the latter is specifically sent to Agent(ar). We denote the set of well-formed formulae in
SHOIN(D) as D. Then, φ ∈ D can represent statements about problems to solve, evidences about the
world or different types of arguments. Also, we denote the set of individuals members of the concept
Argument as A such that ∀arg ∈ A, Argument(arg). Therefore, Φ is said to be an argument in support
of φ if Φ ∈ A/Φ `+ φ. Correspondingly, Φ is said to be an argument against φ if Φ ∈ A/Φ `− φ.

Also, agents make propositional commitments (also known as dialogical commitments) with each
locution that they put forward. Therefore, if an agent asserts some locution and other agent challenges
it, the first has the commitment to provide reasons (or arguments) to justify the validity of such assertion
or else, has to retract it. All commitments made by an agent during the dialogue are commonly stored
in an individual database called commitment store (CS) [10] (there is one commitment store per agent),
which is accessible by other agents that are engaged in a dialogue with the agent.

5



As pointed out before, we follow the standard notation of modal logics of knowledge and believe
described in [33, report 13]. Thus, we use the modal operators

Kiφ: “Agent ai knows φ”

Biφ: “Agent ai believes that φ is true”

Cgφ: “φ is common knowledge for any agent in the group g if any agent of the group knows it and
knows that it is common knowledge”

and the modal connective

♦φ is satisfied now if φ is satisfied either now or at some future moment.

Note that here we make a distinction between what agents know (which is considered to be true) and
what agents believe (which forms part of the mental state of an agent and can be true or not).For instance,
all agents that belong to a society that represents the workers of a car rental company can know that
the business manager believe that Volvo is the safest brand that they can offer to its customers. The
workers know what the manager believe, and the fact that everybody knows the opinion of the manager
is true. However, this doesn’t mean that such opinion has to be true and in fact, any worker can believe
that BMW is safer than Volvo. Therefore, the belief of the manager is subjective and depends on its
individual knowledge.

In addition, as proposed in [25], we use the following simplified elements of FIPA’s communicative
act library specificationf:

Done[locution(as, φ), preconditions]

which indicates that locution(as, φ) (or correspondingly locution(as, ar, φ)) has been put forward by agent
as (addressed to agent(s) ar) with content φ and the specified preconditions hold before this utterance
and

Feasible[condition, locution(as, φ)]

which means that if condition can take place, locution(as, φ) (or correspondingly locution(as, ar, φ)) will
be put forward by agent as (addressed to agent(s) ar) with content φ.

Further notation that we use throughout this report is the next:

as: the Agent(as) sender of the locution.

ar: the Agent(ar) receiver of the locution.

argi: an Argument(argi) of an Agent(ai).

SSi: the SupportSet(SSi) of the Argument(argi) that has put forward an Agent(ai).

CSi: the commitment store of an Agent(ai).

q: the Problem(q) under discussion.

pi: the Solution(pi) (or position) proposed by an Agent(ai) to solve the Problem(q).

fhttp://www.fipa.org/specs/fipa00037/SC00037J.html

6

file:www.fipa.org/specs/fipa00037/SC00037J.html


4 Syntax

In this section we provide the syntax of the communication protocol that follow the agents of our ar-
gumentation framework. To formalise it, we follow the dialogue game approach proposed in [24] and
extended in [26]. This approach is prospective (intended to modeling systems to represent the reality and
that do not exist yet), which fits the objective of most open MAS. Other approaches to formalise dialogue
systems have been reviewed in [27] (concretely, formal systems for persuasion dialogue). However, most
of these proposals are retrospective (intended to reconstruct/explain what happened in a dialogue, using
a legal dispute as typical example). Furthermore, they assume a consistent and presupposed context that
represents fixed and indisputable knowledge that cannot be changed during the dialogue. This assump-
tion cannot be made in open MAS where heterogeneous agents with potentially partial knowledge about
the context of the dispute can enter or leave the system (and hence the dialogue) at any time.

Along this report, we assume that a set of agents with different positions (points of view) are arguing
to reach an agreement to solve a complex problem. Thus, our basic notion of agreement consists of a
solution for a generic problem that several agents must solve. At this level of abstraction, we assume
that this is a generic problem of any type (e.g. resource allocation, classification, prediction, etc.) that
could be described with a set of features. However, different notions of agreement can be found in the
literature of agreement technologies [7, 8].

Next, we present the elements of the dialogue: the set of allowed locutions, the commencement rules,
the combination rules that govern the course of the dialogue, the commitment rules that define the
commitments that each agent makes when it utters each locution and how these commitments can be
combined, the rules for speaker order and the termination rules. The dialogue game presented in this
section is aimed at providing a communication protocol for agents that engage in an agreement process.
This process can be seen as a collaborative deliberation, where all agents follow to select the best solution
for a problem at hand and do not perceive any reinforcement or reward if their position is selected as the
final solution to apply, as a negotiation, where agents try to convince other agents to apply its solution as
the best for solving the problem and have individual utility functions that increase its perceived utility
in that case, or also as a persuasion, where each agent tries to persuade the rest of agents to change their
opinions and support its solution as the best option to solve the problem.

Locutions

The set of allowed locutions of our dialogue game are the following:

L1: open dialogue(as, φ), where φ is a problem q to solve in the system application domain. With
this locution, an agent as opens the argumentation dialogue, asking other agents to collaborate or
negotiate to solve a problem that it has been presented with.

L2: enter dialogue(as, φ), where φ is a problem q to solve in the system application domain. With this
locution, an agent as engages in the argumentation dialogue to solve the problem.

L3: withdraw dialogue(as, φ), where φ is a problem q to solve in the system application domain. With
this locution, an agent as leaves the argumentation dialogue to solve the problem.

L4: propose(as, φ), where φ is a position p. With this locution, an agent as puts forward the position
p as its proposed solution to solve the problem under discussion in the argumentation dialogue.

L5: why(as, ar, φ), where φ can be a position p or an argument arg ∈ A. With this locution, an agent
as challenges the position p or the argument arg of an agent ar, asking it for a support argument.

L6: noCommit(as, φ), where φ is a position p. With this locution, an agent as withdraws its position
p as a solution for the problem under discussion in the argumentation dialogue.

L7: assert(as, ar, φ), where φ can be an argument arg ∈ A that supports a position, other argument
or an objectively verifiable evidence about the system application domain. With this locution, an

7



agent as sends to an agent ar an argument or an evidence that supports its position or a previous
argument that ar has put forward.

L8: accept(as, ar, φ), where φ can be an argument arg ∈ A or a position p to solve a problem. With
this locution, an agent as accepts the argument arg or the position p of an agent ar. Also, this
locution can be used at the end of the dialogue to inform all agents about the final position agreed
as the best position to solve the problem. In that case, ar denotes all individuals that belong to
the concept Agent, except for the sender as (all : ∀ai, ai 6= as/Agent(ai)).

L9: attack(as, ar, φ), where φ is an argument arg ∈ A of an agent as. With this locution, an agent as

challenges an argument of an agent ar with its argument arg.

L10: retract(as, ar, φ), where φ is an argument arg ∈ A. With this locution, an agent as informs an agent
ar that it withdraws the argument arg that it put forward in a previous step of the argumentation
dialogue.

Commencement Rules

The dialogue starts when an agent as is presented with a new problem q to solve. First, the agent tries
to solve it by using its own knowledge resources. Then, it opens a dialogue with other agents by sending
them the locution open dialogue(as, ar, q), where ar can be any agent ai that as knows. After that, ai

enters in the dialogue by posing the locution enter dialogue(as, q) (where as = ai). After that, if ai has
been able to found a solution for q, it proposes this initial position p to solve the problem q with the
locution propose(as, p) (where as = ai) and waits for the challenges of other agents or for other position
proposals. Otherwise, it can challenge the positions of other agents engaged in the dialogue with the
locution why(as, ar, p) (where as = ai).

Rules for the Combination of Locutions

The rules for the combination of locutions define which locution can be put forward at each step of
the dialogue game. Figure 1 represents a state machine with the possible stages of our dialogue game
protocol. As shown in the figure, the protocol has three main stages: the opening stage, where the agent
that initiates the dialogue opens the argumentation process to solve a problem; the argumentation stage,
where agents argue to reach an agreement about the best solution to apply to solve the problem; and the
closing stage, where the final decision about the position selected to solve the problem is reported to all
agents that have participated in the dialogue. Next, the stages of our dialogue game and the rules for
the combination of locutions in each stage are presented.

Opening Stage:
The opening stage commences when an agent as wants to establish an agreement process with other

agents to solve a problem q that it has been faced with. Then, it uses the locution open dialogue(as, q)
to start the dialogue.

Argumentation Stage:
The argumentation stage follows the opening stage. Here, agents argue to reach an agreement about

the solution to apply to the problem q. As shown in Figure 2, this stage is divided into a set of substages
which activation is defined by the following rules (for clarity reasons, substages are labelled with the
name of the rule that applies in each case):

R1: Once the dialogue has been opened, any agent that has been informed about it can enter in by
using the locution enter dialogue(as, q).

R2: After entering the dialogue, an agent can propose its position p to solve the problem q by putting for-
ward the locution propose(as, p). Alternatively, the agent can challenge the positions of other agents
engaged in the dialogue (without being proposed its own position) with the locution why(as, ar, p).
Also, in this substage the agent can withdraw from the dialogue by using the locution withdraw dialogue(as, q).

8



open_dialogue(as, q)

accept(as, all, p)

OPENING

STAGE

ARGUMENTATION

STAGE

CLOSING

STAGE

Figure 1: State Machine of the Dialogue Game

R3: In this substage, an agent that has proposed its position p to solve the problem q can be asked
by other agent for an argument to support this position with the locution why(as, ar, p). Also, p
can be accepted by an agent engaged in the dialogue, which reports the proponent agent with
the locution accept(as, ar, p). Furthermore, the proponent agent can withdraw its position p
with the locution noCommit(as, p). Alternatively, it can leave the dialogue with the locution
withdraw dialogue(as, q).

R4: After being asked for an argument to support its position p, an agent can use its knowledge resources
to provide the requester agent with this argument arg by means of the locution assert(as, ar, arg).
Alternatively, it can withdraw its position p by using the locution noCommit(as, p).

R5: An agent that has received a support or an attack argument from other agent can use its knowl-
edge resources to create an attack argument arg and send it to the other agent with the locution
attack(as, ar, arg). Also, the agent can accept the support argument and report to the other agent
with the locution accept(as, ar, arg), where arg is the support argument received. In its turn, an
agent that has asserted the argument arg can withdraw it with the locution retract(as, ar, arg).

R6: When an agent receives an attack argument from other agent, it analyses the type of the attack and
can use its knowledge resources to try to rebut the attack. Therefore, if the attacking argument arg
was a distinguishing premise or a counter-example (arg = (DP ∨ CE)), the agent can distinguish
the argument of the other agent with other distinguishing premise, or else counter-attack with
other counter-example by using the locution attack(as, ar, arg). If the attacking argument was a
critical question of the type presumption (arg = CQ∧CQ.type = presumption), the agent can use
its knowledge resources to create and show to the other agent an argument arg with an evidence
that supports that presumption by using the locution assert(as, ar, arg). Finally, if the attacking
argument was a critical question of the type exception (arg = CQ∧CQ.type = exception), the agent
can ask the other agent for an argument to support such critical question by stating the locution
why(as, ar, arg). Alternatively, if the agent cannot rebut the attack, it can retract its argument
with the locution retract(as, ar, arg). In its turn, any agent that has asserted the argument arg
can withdraw it with the locution retract(as, ar, arg).

9



R1 R2 R3 R4 R5 R6

R7

withdraw_dialogue(as, q)

propose(as, p)

withdraw_dialogue(aj, q)

why(as,ar, p)

noCommit(as, p)

assert(as, ar, arg)

accept(as, ar, arg)

attack(as, ar, arg) 

retract(as, ar, arg)

assert(as, ar, arg)/

[arg = CQ ∧

CQ.type = presumption]

why(as,ar, arg)/

[arg = CQ ∧

CQ.type = exception]

retract(as, ar, arg)

R8
assert(as, ar, arg)

retract(as, ar, arg)

attack(as, ar, arg) /

 [arg = DP ∨ CE]

enter_dialogue(as, q)

attack(as, ar, arg)

accept(as, ar, p)

noCommit(as, p)

retract(as, ar, arg)

retract(as, ar, arg)

why(as,ar, p)

Figure 2: State Machine of the Argumentation Stage

R7: If an agent is asked by other agent for providing a support argument for its critical question of the
type exception, this agent must use the locution assert(as, ar, arg) to assert an argument arg with
an evidence to support such critical question attack or else, retract the attack by putting forward
the locution retract(as, ar, arg).

R8: Once an agent has been provided by other agent with an evidence that supports the other agent’s
critical question of the type exception, this agent can retract its argument arg and report to the
other with the locution retract(as, ar, arg) or else can try to generate an attack argument arg for
the other agent’s argument and send it the locution attack(as, ar, arg).

Also, note that any agent can withdraw its position at any stage of the dialogue. It implies that there
are a transaction labelled with the locution noCommit(as, p) from substages R5...R8 to substage R2,
although they do not appear in Figure 2 for clarity purposes.

Closing Stage:
The closing stage can be activated at any time of the dialogue by the agent ai that opened it. This stage

is reached by putting forward the locution accept(as, all, p) (where as = ai) that informs all participating
agents about the final position p agreed as the solution for the problem q. Here, the commitment store
of all agents is deleted.

Commitment Rules

As pointed out before, agents make dialogical commitments with each locution that they put forward.
These commitments are stored in an individual commitments database called commitment store (CS).
Also, the inclusion of a new commitment in the commitment store can make previous commitments to be
inconsistent or invalid. Next, the commitment rules that define the commitments associated with each
locution and how they inclusion in the commitment store affect to previous commitments are presented.

CR1: The locution enter dialogue(as, q) gives rise to the creation of the commitment store CSs of the
sender agent.

CR2: The locution propose(as, p) inserts the position p into the commitment store CSs of the sender
agent. If there is a previous position in CSs, this position is replaced with the new position p.
Thus, only one position can prevail in any commitment store.

10



CR3: The locution withdraw dialogue(as, q) deletes the commitment store CSs of the sender agent.
This implies that the final agreement is only taken among the agents that remain listening in the
substages R2 or R3. Also, agents cannot withdraw the dialogue before withdrawing any position
that they have proposed with the locution noCommit(as, p).

CR4: The locution accept(as, ar, p) inserts the position p into the commitment store CSs of the sender.
If there is a previous position in CSs, this position is replaced with the new position p.

CR5: The locution noCommit(as, p) deletes p from the commitment store CSs of the sender.

CR6: The locution why(as, ar, p) commits the receiver to provide the sender with a supporting argument
arg for p or else, to withdraw p with the locution noCommit(as, p).

CR7: The locution assert(as, ar, arg) inserts the argument arg in the commitment store CSs of the
sender. Also, commitment stores cannot have inconsistent arguments. Then, if the conclusion
of arg contradicts the conclusion of a previous argument stored in CSs, the sender cannot put
forward the locution assert(as, ar, arg) before deleting the inconsistent argument from CSs with
the locution retract(as, ar, arg) addressed to any agent that is maintaining a dialogue with the
sender.

CR8: The locution accept(as, ar, arg) inserts the argument arg into the commitment store CSs of the
sender. Again, commitment stores cannot have inconsistent arguments. Then, if the conclusion
of arg contradicts the conclusion of a previous argument stored in CSs, the sender cannot put
forward the locution assert(as, ar, arg) before deleting the inconsistent argument from CSs with
the locution retract(as, ar, arg) addressed to any agent that is maintaining a dialogue with the
sender.

CR9: The locution retract(aj , ak, arg) deletes the argument arg from the commitment store CSj of aj .

CR10: The locution attack(as, ar, arg) inserts the argument arg in the commitment store CSs of the
sender. As pointed out before, commitment stores cannot have inconsistent arguments. Then, if
the conclusion of arg contradicts the conclusion of a previous argument stored in CSs, the sender
cannot put forward the locution attack(as, ar, arg) before deleting the inconsistent argument from
CSs with the locution retract(as, ar, arg) addressed to any agent that is maintaining a dialogue with
the sender. Also, if arg is a critical question of the type presumption, the locution attack(as, ar, arg)
commits the receiver to providing an argument as evidence to support its last argument or else to
retracting it.

CR11 : The locution why(as, ar, arg) where arg is an attack argument of the type exception put forward
by the receiver to the last argument of the sender commits the receiver to having an argument to
support its challenge or else to retracting it.

CR12: The locution accept(as, all, p) (all : ∀ai, ai 6= as/Agent(ai)) deletes the commitment stores of all
agents that are still participating in the dialogue (including the initiator).

Rules for Speaker Order

During the dialogue, agents take turns to put forward locutions. Each time an agent as sends a locution
to other agent ar, it waits for an answer from ar. However, any agent can held parallel argumentation
dialogues with several agents. Then, in each of these dialogues, the argumentation succeeds as a two
party dialogue between two agents, the one sending a locution to the other and waiting for a response.
Nevertheless, the locution open dialogue(as, q) is received by all agents of the society St. The locu-
tions accept(as, all, p), propose(as, p), noCommit(as, p) and withdraw dialogue(as, p) are received by all
agents that are engaged in the dialogue. Also, with these locutions, the sender agent does not wait for
any response.

11



In this dialogue game protocol, we assume that all participating agents are able to see at each time the
positions of the other agents by looking at their commitment stores. Also, when two agents are engaged
in a dialogue, each agent has full access to the commitment store of the other. In this way, these agents
can see the commitments associated to the arguments of their partners, but other agents can only have
access to the positions proposed by each agent in the dialogue (also stored in the commitment stores).
This preserves the privacy of the arguments that an agent puts forward in its argumentation dialogue
with other agent. Note that if an agent wants to ask other agents for an opinion about an argument that
it has received, it only has to send to these agents the argument, as it was its own argument. This simple
rule allow us to use the same dialogue game to govern both collaborative deliberations and negotiations.
In the former, all agents follow the common objective of proposing the best solution for a problem at
hand. Therefore, there are not interested agents trying to take profit of the information interchanged
between other agents to get a greater benefit with the final agreement reached. However, it could be
the case in a negotiation, where each agent tries to increase its utility value perceived with the final
agreement and use any extra information about other agents’ knowledge and preferences to achieve that.

Termination Rules

The normal termination of the dialogue occurs when the argumentation process ends with all participating
agents having proposed a prevailing position or having accepted the position of other agent. Then, agents
may reach a decision about the final solution for the problem under discussion. In the ideal case, only the
position of one participating agent prevails, while the other agents have withdrawn theirs and accepted
this position by using the locution accept(as, ar, p). However, if at the end of the dialogue more than one
position are still undefeated, agents can use a voting mechanism (selecting the position most accepted)
or a random selection to decide the final outcome of the agreement process.

In any case, the agent ai that opened the dialogue is responsible for reporting all participating agents
the final position p selected as solution for the problem q at hand, by using the locution accept(as, all, p)
(where as = ai). To avoid infinite dialogues, agents cannot put forward the same argument twice during
a dialogue with other agent. Furthermore, a maximum time to reach an agreement can be established
and agents must accept a position among those available at that moment to solve the problem.

Note that agents can maintain several parallel dialogues with other agents. Thus, once an agent
has entered in the argumentation process with the locution enter dialogue(as, q) it remains waiting to
propose a position in the substage R2 or listening to incoming locutions of other agents in the substage
R3. Then, the specific dialogue with an agent that has asked other agent for a support argument for
its position p follows to the subsequent substages, but the agent still remains listening in R3 to other
requests. Finally, the locution noCommit(as, p) commits the sender to terminate any dialogue that its
has started to defend p.

5 Semantics

In this section, we provide the formal semantics for the locutions of our dialogue game protocol. This
semantics provides a common understanding about the properties of the communication language between
agents. There are different methods to provide a communication language with a semantics [36], for
instance, the axiomatic approach and the operational approach. The semantics of the locutions that
define the communication language of the dialogue game presented in this report are provided in the
following sections.

5.1 Axiomatic Semantics

The basic approach of semantics for communication languages is the axiomatic approach. With this
approach, the meaning of the language is not explicitly defined but given in terms of properties that the
language concepts satisfy [37]. Thus, in axiomatic semantics the semantics of a locution L is defined as
a triple:

12



{pre} L {post}

where pre represents the preconditions that must hold before the locution is uttered and post represents
the postconditions that apply after this utterance. Also, we can distinguish between private axiomatic
semantics, where some preconditions or postconditions describe conditions of the dialogue that can only
be observed by some agents and public axiomatic semantics, where all conditions are accessible to all
agents. In our dialogue game protocol, the preconditions and postconditions of some locutions can only
be observed by the sender and receiver agents. Thus, we present in this section the private axiomatic
semantics for the locutions of our dialogue game. For clarity purposes, the preconditions that hold
before the utterance of each locution in the communicative act Done are assumed to be the preconditions
specified in the axiomatic semantics definition of the locution and thus, are omitted in the text.

Locutions Axiomatic Semantics

• {pre} open dialogue(as, φ) {post}

pre : Agent(as) wants to inform other agents of the society St about the proposition φ, which is
a Problem(q) to solve. Note that until agents do not enter the dialogue, their commitment
stores CS are not created.
(Ksq) ∧ (@CSs)

post : All agents in the society St know that Agent(as) wants to solve Problem(q).
(♦CSt

Ksq)

• {pre} enter dialogue(as, φ) {post}

pre : Agent(as) knows φ (the Problem(q) reported by Agent(ai)) and informs other participants
of the Group(g)g that are engaged in the dialogue that it is willing to enter the dialogue to
solve Problem(q).
(Done[open dialogue(ai, q), ...]) ∧ (Ksq)

post : Other participants of the Group(g) are informed that Agent(as) is willing to engage in a
dialogue to solve Problem(q). Also, the commitment store CSs is created and Agent(as) starts
to belong to the Group(g) of agents engaged in the dialogue.
(♦Cg(as ∈ g)) ∧ (∃CSs)

• {pre} withdraw dialogue(as, φ) {post}

pre : Agent(as) that has engaged in the argumentation dialogue to solve φ (the Problem(q)) wants
to leave from the dialogue and report it to the other agents of the Group(g) that are engaged in
the dialogue. Note that agents cannot withdraw the dialogue before withdrawing any position
Solution(p) that they have proposed.
(Done[enter dialogue(as, q),Ksq]) ∧ (@p ∈ CSs)

post : Other participating agents of the Group(g) know that Agent(as) no longer participates in
the dialogue to solve Problem(q). Also, the commitment store CSs of Agent(as) is deleted.
(♦Cg(as 6∈ g)) ∧ (@CSs)

• {pre} propose(as, φ) {post}

pre : An Agent(as) that has engaged in a dialogue to solve φ (the Problem(q)) wants to propose
its position Solution(p) as a solution for the problem and reports it to the other agents of
the Group(g). An agent cannot propose a new position without withdrawing a previous
Solution(r) from its commitment store, if any.
(Done[enter dialogue(as, q), ...]) ∧ (Bsp) ∧ (∀r 6= p)(@r ∈ CSs)

gAgents know which other agents are participating in the dialogue by looking at their commitment stores.

13



post : Other participating agents of the Group(g) know that Agent(as) has proposed position
Solution(p) as solution for Problem(q) and it is inserted in the commitment store CSs of
Agent(as).
(♦CgBsp) ∧ (p ∈ CSs)

• {pre} why(as, ar, φ) {post}
This locution has different semantics depending on its content φ. On one hand, if φ is a position
Solution(p) to solve the problem under discussion we have the following conditions:

pre : Agent(as) wants to challenge Agent(ar) to provide a justification for the position Solution(p).
(Done[propose(ar, p), Brp]) ∧ (KsBrp) ∧ (p 6∈ CSs)

post : Agent(ar) knows that Agent(as) does not believe Solution(p) and has the dialogical com-
mitment of justifying it with an Argument(arg) `+ Solution(p) or else of withdrawing it.
(♦Kr¬Bsp) ∧ ((Feasible[∃arg/arg `+ p), assert(ar, as, arg)]) ∨
(Feasible[@arg/arg `+ p), noCommit(ar, p)]))

On the other hand, if φ is an attacking Argument(argr) of Agent(ar) that poses a critical ques-
tion Premise(exc) of the type exception to a previous Argument(args) of Agent(as) (such that
hasSupportSet(argr, SSr) ∧ hasException(SSr, exc) ∧ Argument(argr) `− Argument(args)) we
have the following conditions:

pre : Agent(as) wants to challenge Agent(ar) to provide a justification
Argument(argr′) for its attack Argument(argr) to Argument(args).
(Done[attack(ar, as, argr),¬Brargs]) ∧ (KsBrargr) ∧ (argr 6∈ CSs)

post : Agent(ar) knows that Agent(as) does not believe its Argument(argr). Thus, it is committed
to providing a justification Argument(argr′) for its attacking argument Argument(argr) such
that Argument(argr′) `+

Argument(argr) or else, to withdrawing the it.
(♦Kr¬Bsargr) ∧ ((Feasible[∃argr′/argr′ `+ argr), assert(ar, as, argr′)]) ∨ (Feasible[@argr′/argr′ `+

argr), retract(ar, as, argr)]))

• {pre} noCommit(as, φ) {post}

pre : Agent(as) that has put forward φ (the position Solution(p)) wants to withdraw it and report
this change to the other participating agents of the Group(g) engaged in the dialogue.
(p ∈ CSs) ∧ (CgBsp)

post : Other participating agents of theGroup(g) know thatAgent(as) no longer proposes Solution(p)
as its position to solve the problem at hand. Also, Solution(p) is deleted from the commitment
store CSs of Agent(as).
(♦Cg¬Bsp) ∧ (p 6∈ CSs)

• {pre} assert(as, ar, φ) {post}
This locution has different semantics depending on its content φ. However, in any case an argument
cannot be inserted in the commitment store of an agent without deleting first any inconsistent
argument. Then, on one hand, it could be the case that Agent(ar) has challenged the position
Solution(p) of Agent(as). In this case, φ is an Argument(arg) that supports this position, such
that Argument(arg) `+ Solution(p).

pre : An Agent(as) wants to provide a justification for its position Solution(p) and reports it to
an agent Agent(ar) that has challenged it.
(Done[why(ar, as, p), ...]) ∧ (∃arg)(arg `+ p) ∧ (@args ∈ CSs)(arg `− args)

post : Agent(ar) knows that Agent(as) has provided Argument(arg) as a justification for its
position and it is inserted in the commitment store CSs of Agent(as).
(♦KrBsarg) ∧ (arg ∈ CSs)

14



On the other hand, Agent(ar) could have attacked the argumentArgument(args) with anArgument(argr)
that poses a critical question Premise(pre) of the type presumption such that hasSupportSet(argr, SSr)
∧ hasPresumption(argr, pre) ∧ Argument(argr) `− Argument(args). In this case, φ is an
Argument(args′) of Agent(as) that supports its previous argument Argument(args), such that
Argument(args′) `+ Argument(args).

pre : Agent(as) wants to rebut a critical question attack of the type presumption posed by
Agent(ar), such thatArgument(argr) `− Argument(args), butArgument(args′) `+ Argument(args)
and hence rebuts Argument(argr).
Done[attack(ar, as, argr), ...] ∧ (∃args′)(args′

`+ args) ∧ (@args′′ ∈ CSs)(args′ `− args′′)

post : Agent(ar) knows that Agent(as) has provided Argument(args′) as a justification for its
Argument(args) and it is inserted in the commitment store CSs of Agent(as).
(♦KrBsargs′) ∧ (args′ ∈ CSs)

Finally, Agent(ar) could have challenged the argument Argument(args) that poses a critical ques-
tion Premise(exc) of the type exception to itsArgument(argr) such that hasSupportSet(args, SSs)
∧ hasException(SSs, exc) ∧ Argument(args)
`− Argument(argr). In this case, φ is an Argument(args′) of Agent(as) that supports its critical
question attack posed with Argument(args), such that
Argument(args′) `+ Argument(args).

pre : Agent(as) wants to support a critical question attack of the type exception, such that
Argument(args) `− Argument(argr) and Argument(args′) `+ Argument(args).
Done[why(ar, as, args), ...] ∧ (∃args′)(args′ `+ args) ∧
(@args′′ ∈ CSs)(args′ `− args′′)

post : Agent(ar) knows that Agent(as) has provided Argument(args′) as a justification for its
Argument(args) and it is inserted in the commitment store CSs of Agent(as).
(♦KrBsargs′) ∧ (args′ ∈ CSs)

• {pre} attack(as, ar, φ) {post}
This locution has different semantics depending on its content φ, which represents different types
of arguments. Again, in any case an argument cannot be inserted in the commitment store
of an agent without deleting first any inconsistent argument. With the attack locution, the
Agent(as) puts forward an Argument(args) to attack the Argument(argr) of an Agent(ar), such
that Argument(args) `− Argument(argr). Argument(args) can be of different types. On one
hand, if Argument(argr) is a support argument with one or more premises in its support set, such
that hasSupportSet(argr, SSr) ∧ Premise(prr) ∧ hasPremise(SSr, prr), Argument(args) can be
a distinguishing-premise attack.

pre : Agent(as) wants to attack the supportArgument(argr) of anAgent(ar) with anArgument(args),
such that hasSupportSet(arg, SSs) ∧
Premise(DP ) ∧ hasDistinguishingPremise(SSs, DP ).
(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧ (@args′ ∈ CSs)
(args `− args′)

post : Agent(ar) knows thatAgent(as) does not believe its supportArgument(argr) andArgument(args)
is inserted into the commitment store CSs of Agent(as).
(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

On the other hand, if Argument(argr) is a support argument with one or more argument-cases or
domain-cases in its support set, such that
hasSupportSet(argr, SSr) ∧ Case(cr) ∧ (hasDomainCase(SSr, cr) ∨
hasArgumentCase(SSr, cr)), then Argument(args) can be a counter-example attack. In that case,
the axiomatic semantics coincide with the previous case.

15



Alternatively, if Argument(argr) is a support argument with one or more
argumentation-schemes in its support set, such that hasSupportSet(argr, SSr) ∧
ArgumentationScheme(asr) ∧ (hasArgumentationScheme(SSr, asr), then
Argument(args) can be a critical question attack. In the case of critical questions of the type
presumption the locution has the semantics specified next:

pre : Agent(as) wants to attack the supportArgument(argr) of anAgent(ar) with anArgument(args),
such that hasSupportSet(arg, SSs) ∧ Premise(pres) ∧ hasPresumption(SSs, pres) ∧ hasPresumption(asr, pres).
(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′ ∈ CSs)(args `− args′)

post : Agent(ar) knows that Agent(as) does not believe its support Argument(argr) and it is
committed to provide an Argument(argrr) to support it or else to withdrawing it. Also,
Argument(arg) is inserted into the commitment store CSs of Agent(as).
(♦Kr¬Bsargr) ∧ (KrBsarg) ∧ ((Feasible[∃argrr `+ argr),
assert(ar, as, argrr)]) ∨ (Feasible[@argrr `+ argr), retract(ar, as, argr)])) ∧ (arg ∈ CSs)

In the case of critical questions of the type exception the locution has the following semantics:

pre : Agent(as) wants to attack the supportArgument(argr) of anAgent(ar) with anArgument(args),
such that hasSupportSet(args, SSs) ∧
Premise(pres) ∧ hasException(SSs, pres) ∧ hasException(asr, pres).
(Done[assert(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′ ∈ CSs)(args `− args′)

post : Agent(ar) knows thatAgent(as) does not believe its support Argument(argr). Also, Argument(args)
is inserted into the commitment store CSs of Agent(as).
(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

Finally, Argument(argr) can be an attack argument to the Argument(args′) of Agent(as) with a
distinguishing-premise or a counter-example in its support set such that hasSupportSet(argr, SSr)
∧ ((Premise(prr) ∧
hasDistinguishingPremise(SSr, prr) ∨ (Case(cr) ∧
hasCounterExample(SSr, cr))). Then, Argument(args) can be an attack argument that rebuts
Argument(argr) with other counter-example or distinguishing-premise.

pre : Agent(as) wants to rebut the attackArgument(argr) of anAgent(ar) with anArgument(args),
such that hasSupportSet(args, SSs) ∧ ((Case(cs) ∧ hasCounterExample(SSs, cs)) ∨ ((Premise(prs)
∧
hasDistinguishingPremise(SSs, prs))).
(Done[attack(ar, as, argr), ...]) ∧ (∃args)(args `− argr) ∧
(@args′′ ∈ CSs)(args `− args′′)

post : Agent(ar) knows thatAgent(as) does not believe its attackArgument(argr). Also, Argument(args)
is inserted into the commitment store CSs of Agent(as).
(♦Kr¬Bsargr) ∧ (KrBsargs) ∧ (args ∈ CSs)

• {pre} accept(as, ar, φ) {post}
This locution has different semantics depending on the content of φ. On one hand, φ can be a
position Solution(p) proposed by Agent(ar).

pre : Agent(as) wants to accept a position Solution(p) proposed by Agent(ar).
(KsBrp) ∧ (Bsp)

post : Agent(ar) knows that Agent(as) has accepted its position. Also, this position is inserted
into the commitment store CSs of Agent(as) (and replaces a previous position if any).
(♦KrBsp) ∧ (p ∈ CSs) ∧ (@ps ∈ CSs)(ps 6= p)

On the other hand, φ can be an argument Argument(argr) proposed by Agent(ar).

16



pre : Agent(as) wants to accept the Argument(argr) proposed by Agent(ar) and there is not any
inconsistent argument in the commitment store CSs of Agent(as).
(KsBrargr) ∧ (Bsargr) ∧ (@args ∈ CSs)(argr `− args)

post : Agent(ar) knows that Agent(as) has accepted its argument. Also, this argument is inserted
into the commitment store CSs of Agent(as).
(♦KrBsargj) ∧ (argr ∈ CSs)

• {pre} retract(as, ar, φ) {post}

pre : Agent(as) wants to withdraw φ, which is an Argument(args) from its commitment store
CSs and reports it to any agent of the Group(g) that is engaged in a dialogue with it.
(¬Bsargs) ∧ (CgBsargs)

post : Every agent of the Group(g) knows that Agent(as) no longer believes Argument(args) and
it is deleted from its commitment store.
(♦Cg¬Bsargs) ∧ (args 6∈ CSs)

• {pre} accept(as, all, φ) {post}

pre : Agent(as) wants to close the dialogue and report all agents of the Group(g) engaged in it
the final Solution(p) agreed to apply to the Problem(q) at hand.
(Cgq) ∧ (Cgp)

post : All agents Agent(ag) of Group(g) know that Agent(as) believes Solution(p). Also, their
commitment stores are deleted and the dialogue ends.
(♦CgBsp) ∧ (∀ag ∈ g)(@CSag)

The axiomatic semantics is typically used to provide preliminary specifications of communication
languages, but the knowledge of only its properties is not sufficient to understand a language.Thus, next
section complements this semantics with an additional form of semantics that provide meaning for the
transitions between the stages of the dialogue.

5.2 Operational Semantics

The operational semantics views the dialogue game protocol as an abstract state machine and defines
precisely the transitions between states. These transitions are triggered by the utterance of each locu-
tion. However, from some stages an agent can utter different locutions following different agent decision
mechanisms, which are reasoning mechanisms that agents can use to choose the locution to utter in the
next step of the dialogue among a set of candidates. These mechanisms depend on the knowledge that
agents can infer from their knowledge resources or even on the specific design of agents. For instance,
agents that are designed to be more competitive and, if possible, always put forward attack arguments
or agents that are designed to remain listening and only engage in a dialogue if their positions or argu-
ments are attacked. Figure 3 shows the decision mechanisms that agents can use in each substage of the
argumentation stage of our protocol. For clarity purposes, arrows labelled with the decision mechanism
D8 (presented below) from substages R5, R6, R7 and R8 to substage R2 are omitted in the figure.

To define the transition rules of our protocol we follow the notation of [25]:

〈ai,K, o〉

where ai is an agent, K is a decision mechanism (or the terminal state T ) and o is the output of the
mechanism K (send a locution or remain listening to incoming locutions). Some transitions are labelled
with the locutions that trigger them while others, which occur between the mechanisms of a single agent,
remain unlabeled. Also, if no specific output is invoked we denote this by a period in the third parameter
of the triple (〈ai,K, .〉).

Concretely, we have identified the following decision mechanisms:

17



R1 R2 R3 R4 R5 R6

R7

D3: withdraw_dialogue(as, q)

D4: propose(as, p)

D3: withdraw_dialogue(aj, q)

D5: why(as,ar, p)

D6: noCommit(as, p)

D6: assert(as, ar, arg)

D9: accept(as, ar, arg)

D9: attack(as, ar, arg) 

D13: retract(as, ar, arg)

D11: assert(as, ar, arg)/

[arg = CQ ∧

CQ.type = presumption]

D11: why(as,ar, arg)/

[arg = CQ ∧

CQ.type = exception]

D11: retract(as, ar, arg)

R8
D12: assert(as, ar, arg)

D12: retract(as, ar, arg)

D11: attack(as, ar, arg) /

 [arg = DP ∨ CE]

D2: enter_dialogue(as, q)

D13: attack(as, ar, arg)

D5: accept(as, ar, p)

D8: noCommit(as, p)

D7: retract(as, ar, arg)

D10: retract(as, ar, arg)

D4: why(as,ar, p)

D1: open_dialogue(as, q)

D12: close_dialogue(as, all, p)

Figure 3: Decision Mechanisms of the Dialogue Game

• D1 Open Dialogue: A mechanism that allows an agent to open a dialogue with other agents of
the society St that the agent belongs to, uttering the locution open dialogue(as, q) or not. The
output of this mechanism is: send(open dialogue(as, φ)).

• D2 Enter or Close Dialogue: A mechanism that allows an agent to decide to engage in a
dialogue and utter the locution enter dialogue(as, q) or not. By this mechanism, the agent makes
a query to its knowledge resources, trying to find a solution for the problem to solve. If the agent
can provide a solution for the problem, the agent uses the mechanism to decide whether it enters
in the dialogue or not. Alternatively, the agent that started the dialogue can also close it with the
locution accept(as, all, p). The outputs of this mechanism are: send(enter dialogue(as, φ)), listen()
or send(close dialogue(as, all, φ)).

• D3 Withdraw from Dialogue: A mechanism that allows an agent to withdraw from the dialogue
and put forward the locution withdraw dialogue(as, q). The mechanism first checks that the agent
has not any active position to solve the problem (agents cannot withdraw from the dialogue before
withdrawing their positions). Possible outputs are: send(withdraw dialogue(as, φ)).

• D4 Propose or Challenge: A mechanism that allows an agent to make a proposal to solve
the problem under discussion and utter the locution propose(as, p) or to challenge the positions of
other agents uttering the locution why(as, ar, p). By this mechanism the agent uses its knowledge
resources to generate and select the position to propose. If the agent has been able to generate
a position to solve the problem, it uses the mechanism to decide whether to put forward that
position. In any case, the agent can challenge other positions or remain listening to the utterances
of other agents. The outcomes for this mechanism are: send(propose(as, φ)), send(why(as, ar, φ))
or listen().

• D5 Accept or Challenge: A mechanism that allows an agent to query its knowledge resources
and decide to accept or challenge the position of other agent. If the agent is able to generate the
same position as its candidate to solve the problem, it can utter the locution accept(as, ar, p) to
accept the other’s position. Else, if the position cannot be generated or is generated but not ranked
as the most suitable solution for the problem, the agent can use this mechanism and decide to
accept the other agent’s position or to challenge it with the locution why(as, ar, p). Thus, possible
outcomes are: send(accept(as, φ)) or send(why(as, ar, φ)).

• D6 Defend Position: A mechanism that allows an agent to defend its position from a challenge or
else, to withdraw it. By this mechanism the agent decides if it is able to use its knowledge resources

18



to provide the challenger with an argument that supports its position. In that case, it can utter
the locution assert(as, ar, arg). Otherwise, the agent has to withdraw the position by using the
locution noCommit(as, p). Also, the agent that put forward the challenge can use this mechanism
to listen for the answer to its challenge. The outcomes of this mechanism are: send(assert(as, ar,
φ)), send(noCommit(as, φ)) or listen().

• D7 Withdraw Argument: This mechanism allows an agent to decide whether to withdraw an
argument that it has put forward, using the locution retract(as, ar, φ). Possible outcomes are:
send(retract(as, ar, φ)).

• D8 Withdraw Position: A mechanism that allows an agent to decide whether to withdraw its pro-
posed position with the locution noCommit(as, p). The output of this mechanism is: send(noCommit(as,
φ)).

• D9 Accept or Attack: A mechanism that allows an agent to query its knowledge resources and de-
cide to accept or attack the argument of other agent. If the argument is consistent with the informa-
tion inferred from the knowledge resources of the agent, it can utter the locution accept(as, ar, arg)
to accept the other’s argument. Else, if the argument is inconsistent and an attack argument can be
generated from the knowledge resources, the agent can use this mechanism to decide to attack the
argument by uttering the locution attack(as, ar, arg). Otherwise, if the argument cannot be decided
(there is not enough information in the knowledge resources to support or rebut the argument) the
agent also accepts it. Thus, possible outcomes are: send(accept(as, φ)) or send(attack(as, ar, φ)).

• D10 Withdraw Attack: This mechanism allows an agent to decide whether to withdraw an attack
that it has put forward, using the locution retract(as, ar, φ). Possible outcomes are: send(retract(as,
ar, φ)) or listen().

• D11 Rebut Attack: A mechanism that allows an agent to rebut an attack to its argument. By this
mechanism the agent evaluates the attack argument received and queries its knowledge resources
to search for information that supports or rebuts the attack. If the attack argument poses a critical
question of the type presumption, the agent can rebut the attack by showing information that
supports its argument with the locution assert(as, ar, φ). If the attack argument poses a critical
question of the type exception, the agent can rebut the attack by challenging it with the locution
why(as, ar, φ). Otherwise, if the attack argument poses a distinguishing-premise or a counter-
example to the agent’s argument, it can use the locution attack(as, ar, arg) to rebut the attack
by counter-attacking with another distinguishing-premise or counter-example. In any case, if the
agent is not able to rebut the attack with the information inferred from its knowledge resources,
it can retract its argument by uttering the locution retract(as, ar, φ). Therefore, the outcomes
of this mechanism are: send(assert(as, ar, φ)), send(why(as, ar, φ)), send(attack(as, ar, φ)) or
send(retract(as, ar, φ)).

• D12 Defend Argument: This mechanism allows an agent to rebut a challenge to its argument,
which poses a critical question of the type exception. With this mechanism, the agent queries its
knowledge resources an tries to find information that supports its attack argument. In that case,
the agent can rebut the attack by showing this information uttering the locution assert(as, ar, arg).
Otherwise, the agent has to withdraw the attack by uttering retract(as, ar, arg). Also, the agent
that put forward the challenge can use this mechanism to listen for the answer to its challenge.
Possible outcomes are: send(assert(as, ar, φ)), send(retract(as, ar, φ)) or listen().

• D13 Retract or Attack: This mechanism allows an agent to counter-attack a critical question
attack of the type exception posed to its argument. With this mechanism, the agent queries its
knowledge resources to search for information that rebuts the attack. Then, if the agent finds such
information, it can counter-attack uttering the locution attack(as, ar, φ). Otherwise, the agent
has to withdraw its argument uttering the locution retract(as, ar, φ). Thus, the outcomes of the
mechanism are: send(attack(as, ar, φ)) or send(retract(as, ar, φ)).

19



Now, we define the transition rules of the operational semantics of our protocol.

• TR1: 〈as, D1, send(opendialogue(as, φ))〉 L1−−→ 〈as, D2, .〉

• TR2: 〈as, D2, send(enterdialogue(as, φ))〉 L2−−→ 〈as, D3, .〉

• TR3: 〈as, D2, send(enterdialogue(as, φ))〉 L2−−→ 〈as, D4, .〉

• TR4: 〈as, D2, listen()〉 −→ 〈as, D2, .〉

• TR5: 〈as, D2, send(closedialogue(as, all, φ))〉 L8−−→ 〈all, T, .〉

• TR6: 〈as, D3, send(withdrawdialogue(as, φ))〉 L3−−→ 〈as, D2, listen()〉

• TR7: 〈as, D4, send(propose(as, p))〉
L4−−→ 〈as, D8, .〉

• TR8: 〈as, D4, send(propose(as, p))〉
L4−−→ 〈as, D5, .〉

• TR9: 〈as, D4, send(propose(as, p))〉
L4−−→ 〈ar, D5, .〉

• TR10: 〈as, D4, send(why(as, ar, φ))〉 L5−−→ 〈as, D4, listen()〉

• TR11: 〈as, D4, send(why(as, ar, φ))〉 L5−−→ 〈ar, D6, .〉

• TR12: 〈as, D4, listen()〉 −→ 〈as, D4, .〉

• TR13: 〈as, D8, send(noCommit(as, φ))〉 L6−−→ 〈as, D4, listen()〉

• TR14: 〈as, D8, send(noCommit(as, φ))〉 L6−−→ 〈as, D3, .〉

• TR15: 〈as, D5, send(accept(as, ar, φ))〉 L8−−→ 〈as, D5, .〉

• TR16: 〈as, D5, send(accept(as, ar, φ))〉 L8−−→ 〈ar, D5, .〉

• TR17: 〈as, D5, send(why(as, ar, φ))〉 L5−−→ 〈as, D6, listen()〉

• TR18: 〈as, D5, send(why(as, ar, φ))〉 L5−−→ 〈ar, D6, .〉

• TR19: 〈as, D6, listen()〉 −→ 〈as, D6, .〉

• TR20: 〈as, D6, send(assert(as, ar, φ))〉 L7−−→ 〈as, D7, .〉

• TR21: 〈as, D6, send(assert(as, ar, φ))〉 L7−−→ 〈as, D8, .〉

• TR22: 〈as, D6, send(assert(as, ar, φ))〉 L7−−→ 〈ar, D9, .〉

• TR23: 〈as, D6, send(noCommit(as, φ))〉 L6−−→ 〈as, D3, .〉

• TR24: 〈as, D6, send(noCommit(as, φ))〉 L6−−→ 〈as, D4, listen()〉

• TR25: 〈as, D7, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉

• TR26: 〈as, D9, send(accept(as, ar, φ))〉 L8−−→ 〈as, D3, .〉

• TR27: 〈as, D9, send(accept(as, ar, φ))〉 L8−−→ 〈as, D5, .〉

• TR28: 〈as, D9, send(accept(as, ar, φ))〉 L8−−→ 〈ar, D8, .〉

20



• TR29: 〈as, D9, send(attack(as, ar, φ))〉 L9−−→ 〈as, D10, .〉

• TR30: 〈as, D9, send(attack(as, ar, φ))〉 L9−−→ 〈ar, D8, .〉

• TR31: 〈as, D9, send(attack(as, ar, φ))〉 L9−−→ 〈ar, D11, .〉

• TR32: 〈as, D10, listen()〉 −→ 〈as, D10, .〉

• TR33: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈as, D9, .〉

• TR34: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D7, .〉

• TR35: 〈as, D10, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D8, .〉

• TR36: 〈as, D11, send(assert(as, ar, φ))〉 L7−−→ 〈as, D7, .〉

• TR37: 〈as, D11, send(assert(as, ar, φ))〉 L7−−→ 〈as, D8, .〉

• TR38: 〈as, D11, send(assert(as, ar, φ))〉 L7−−→ 〈ar, D9, .〉

• TR39: 〈as, D11, send(why(as, ar, φ))〉 L5−−→ 〈as, D12, listen()〉

• TR40: 〈as, D11, send(why(as, ar, φ))〉 L5−−→ 〈ar, D8, .〉

• TR41: 〈as, D11, send(why(as, ar, φ))〉 L5−−→ 〈ar, D12, .〉

• TR42: 〈as, D11, send(attack(as, ar, φ))〉 L9−−→ 〈as, D7, .〉

• TR43: 〈as, D11, send(attack(as, ar, φ))〉 L9−−→ 〈as, D8, .〉

• TR44: 〈as, D11, send(attack(as, ar, φ))〉 L9−−→ 〈ar, D9, .〉

• TR45: 〈as, D11, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉

• TR46: 〈as, D11, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D6, listen()〉

• TR47: 〈as, D12, listen()〉 −→ 〈as, D12, .〉

• TR48: 〈as, D12, send(assert(as, ar, φ))〉 L7−−→ 〈as, D8, .〉

• TR49: 〈as, D12, send(assert(as, ar, φ))〉 L7−−→ 〈ar, D13, .〉

• TR50: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈as, D7, .〉

• TR51: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈as, D8, .〉

• TR52: 〈as, D12, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D9, .〉

• TR53: 〈as, D13, send(attack(as, ar, φ))〉 L9−−→ 〈as, D7, .〉

• TR54: 〈as, D13, send(attack(as, ar, φ))〉 L9−−→ 〈as, D8, .〉

• TR55: 〈as, D13, send(attack(as, ar, φ))〉 L9−−→ 〈ar, D9, .〉

• TR56: 〈as, D13, send(retract(as, ar, φ))〉 L10−−→ 〈as, D6, .〉

• TR57: 〈as, D13, send(retract(as, ar, φ))〉 L10−−→ 〈ar, D6, listen()〉

These transition rules provides the operational semantics of the dialogue, defining which is the range
of potential decisions that agents can make in each stage of the dialogue.

21



6 Related Work

Dialogue games are interactions between two or more players, where each player ’moves’ by making
statements observing a pre-defined set of rules [23]. They are a specific type of games of the game theory
that are different from the classical games studied in the economy research area in the sense that the
profits or losses for the victory or defeat are not considered. Another important difference is that in
dialogue games participants are not able to model the potential moves or other participants by using
some uncertainty measure, for instance, some probabilistic measure. Dialogue games have been used
with multiple purposes in computational linguistics, AI [6] and philosophy (concretely in argumentation
theory [10, 17]). In CBR systems dialogue games have been applied to model human reasoning about
legal precedents [30]. In MAS, their more recent and successful application consist in using them as
a tool for the specification of communication protocols between agents. Thus, we can find abundant
bibliography that formalises agent interaction protocols by using different dialogue games [1, 18]. Some
other examples of dialogue game protocols about specific types of dialogues are: information seeking [13],
persuasion [30, 3, 40], negotiation [20, 31, 14], inquiry [22] and deliberation [21]. To our knowledge, no
research has been done to propose a dialogue game based on case-based resources that agents can use to
manage agreement processes in agent societies. In the protocol presented this work, we do not focus on a
specific type of dialogue, but we have proposed a generic dialogue game that can be used in deliberative,
persuasive or negotiation dialogues where a group of agents must reach an agreement about the solution
to apply to a generic problem of any type (e.g. resource allocation, classification, prediction, etc.) that
could be described with a set of features.

A particular element of dialogue games, commitment stores, has been widely used in the area of
MAS. The fact that an agent utters certain proposition during the dialogue means that this agent incurs
certain level of commitment to this proposition and its implications or, at least, that the agent has
certain support to justify this utterance. The concept of commitment stores comes from the study
of fallacies (poor reasoning patterns that in some way imitate valid reasoning patterns) developed by
Hamblin in [10]. According to this work, formal reasoning systems have public commitment stores for
each participant, whose commitments can be withdrawn under certain circumstances. The inclusion of
a new commitment gives rise to a previous verification that guarantees the coherence of the information
of the store. Following Hamblin’s approach, commitments have a purely dialogical processing (he calls
them propositional commitments) and represent beliefs that do not necessary correspond with the actual
beliefs of the participant. Furthermore, commitments may not hold out of the dialogue context. In this
work, we use the concept of dialogue games to model the interaction between the agents that belong to
a society. In doing so, we assume that the commitments that the agents make during the dialogue are
stored in commitment stores accessible to the participants of the dialogue. Also, we endorse the view of
Hamblin and define our notion of commitments as propositional commitments that agents incur during
the dialogue, with no effect once the dialogue is terminated.

Other approach for the concept of commitment was provided by Walton and Krabbe in [38]. In this
work commitments are understood as obligations of participants to incur, maintain or execute certain
curse of action (they are action commitments). In this case, the commitments made during the dialogue
can force the participants to perform certain actions out of the dialogue context. For these authors,
commitments can also represent the fact of uttering statement in the dialogue. Therefore, propositional
commitments are viewed as a specific type of action commitments.

Finally, a different approach for commitments was presented by Singh in [35], who proposes a social
semantics for the agent communication languages. According to Singh, the participants of the dialogue
have to express their social commitments. These commitments represent their beliefs about certain
propositions and their intentions to execute actions in the future.

Despite the prolific applications of dialogue games in MAS, as discussed by Maudet in [19], a commonly
accepted theory of dialogue games that is generic and suitable to any type of dialogue does not exist yet.
However, there are a common set of requirements among the models based on dialogue games which
define their syntax. Based on Maudet’s requirements and the approaches found in the literature, in [23]
a definition for the components that a dialogue game should have is proposed. However, a different view
of the elements of dialogue games is presented in [30].

22



The components of the approach of McBurney and Parsons are the following:

• Commencement rules: rules that define the circumstances under which the dialogue commences.

• Locutions: rules which indicate what utterances are permitted. In legal contexts, for instance,
locutions allow participants to express propositions, opponents to refute these propositions and
again participants to refute this rebuttal justifying their propositions. Justifications imply to present
proofs or arguments that defend these propositions.

• Rules for combination of locutions: rules that define the dialogical contexts under which particular
locutions are permitted or not, or obligatory or not.

• Commitment rules: rules which define the circumstances under which participants incur dialogical
commitment by their utterances. Also, these rules define how commitments are combined when
utterances incurring conflicting commitments are made.

• Rules for speaker order : rules which define the order in which speakers can make utterances.

• Termination rules: rules that define the circumstances under which the dialogue ends.

Following Prakken’s approach the common elements of dialogue systems are:

• A topic language Lt, closed under classical negation.

• A communication language Lc, where the set of dialogues, denoted byM≤∞, is the set of sequences
from Lc, and the set of finite dialogues, denoted byM<∞, is the set of all finite sequences from Lc.

• A dialogue purpose.

• A set A of participants, and a set R of roles, defined as disjoint subsets of A. A participant a may
or may not have a, possibly inconsistent, belief base Σa ⊆ Pow(Lt), which may or may not change
during the dialogue. Furthermore, each participant has a, possibly empty set of commitments
Ca ⊆Lt, which usually changes during the dialogue.

• A context K⊆Lt, containing the knowledge that is presupposed and must be respected during the
dialogue. The context is assumed consistent and remains the same throughout a dialogue.

• A logic L for Lt, which may or may not be monotonic and which may or may not be argument-based.

• A set of effect rules E for Lc, specifying for each utterance ϕ ∈Lc its effects on the commitments
of the participants.

• A protocol P for Lc, specifying the legal moves at each stage of a dialogue. It is useful (although
not strictly necessary) to explicitly distinguish elements of a protocol that regulate turntaking and
termination.

• Outcome rules O, defining the outcome of the dialogue. For instance, in a negotiation the outcome
is an allocation of resources, in a deliberation it is a decision on a course of action, and in persuasion
dialogue it is a winner and a loser of the persuasion dialogue.

The approach of McBurney and Parsons is prospective (looking forward to model systems that do not
exist yet). Opposite to this proposal, Prakken’s approach is retrospective (looking back to reconstruct or
explain what happened in a dialogue). Therefore, McBurney and Parson’s approach can be considered
as more suitable for modelling the dialogue between a set of heterogeneous agents whose interactions
will determine the dynamics and operation of the system. In this work, hence, we have followed this
approach. By contrast, Prakken’s approach assumes a presupposed knowledge about the domain, which
remains inalterable throughout the dialogue. However, in open MAS the context can also be changed as
new agents enter in the system and new common knowledge is available.

Together with the definition of the syntax, a definition of semantics must be specified to provide a
formal definition of the dialogue game. This semantics is concerned with the truth of falsity of utterances.
The semantics of a dialogue game have the following functions [26, Chapter 13]:

23



• To provide a shared understanding to participants of the meaning of utterances, sequences of
utterances and dialogues.

• To provide a shared understanding to designers of agent protocols of the meaning of utterances,
sequences of utterances and dialogues.

• To provide a means of studying the properties of the protocol formally and with rigour.

• To provide a means of comparing protocols formally and with rigour.

• To provide a means of readily implementing protocols in production systems.

• To help ensure that implementation of agent communications in open MAS is undertaken uniformly.

There are different types of semantics for agent communication protocols and dialogue games [37].
One type of semantics, the axiomatic semantics, defines each locution of the protocol in terms of the pre-
conditions that must exists before the locution can be uttered and the post-conditions which apply after
its utterance. Axiomatic semantics can be public or private. In the former, the pre-conditions and post-
conditions describe states or conditions of the dialogue that are publicly observable by all its participants
whereas in the later some pre-conditions or post-conditions describe states or conditions of the dialogue
that are only observable by some participants. Other type of semantics is called operational semantics.
This semantics views the dialogue game protocol as an abstract state machine and defines precisely the
transitions between states. The transitions are triggered by the utterance of each locution. The dialogue
game proposed in this report has been formalised by specifying its axiomatic and operational semantics.

In a third type of semantics, the denotational semantics, each element of the language syntax is
assigned a relationship to an abstract mathematical entity (its denotation). The possible worlds of
Kripke [15] is an example of such semantics. Finally, there are a specific type of denotational semantics,
the game-theoretic semantics, where each well-formed statement of the language is associated with a
conceptual game between two players, a protagonist and an antagonist. A statement is considered to be
true if there is a winning strategy for the protagonist in the associated game (a rule giving that player
moves such that executing them guarantees the player can win the game, no matter what moves are made
by the antagonist).

Game theoretic semantics are usually applied to abstract argumentation frameworks where the strate-
gies of agents determine which argument(s) they will reveal in each argumentation step. However, they
assume the existence of a pre-defined utility function about the payoff that an agent gets for the fact of
winning the dialogue or having accepted more or less arguments. Finally, game theory assumes complete
knowledge of the space of arguments proposed in the argumentation framework. This assumption is un-
realistic in an argumentation dialogue between heterogeneous agents which have individual and private
knowledge resources to generate arguments.

7 Conclusions

This report has presented the dialogue game protocol that agents of a case-based argumentation frame-
work can use to interact and engage in argumentation dialogues. First, the syntax of the protocol has
been detailed by defining its locutions, commencement rules, rules for the combination of locutions,
commitment rules, rules for the speaker order and termination rules.

Finally, the axiomatic semantics and the operational semantics of the locutions are defined. The
former specifies the pre-conditions that should be met to put forward each locution (or set of locutions)
and the post-conditions that apply before their utterance. The latter views each locution as a transition
in an abstract state-machine that represents the possible stages that can be reached during the dialogue.

Funding

This work is supported by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-
00022, TIN2008-04446, and TIN2009-13839-C03-01] and by the GVA project [PROMETEO 2008/051].

24



References

[1] L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In 4th Interna-
tional Conference on MultiAgent Systems, ICMAS-00. IEEE Press, 2000.

[2] K. Atkinson. A dialogue game protocol for multi-agent argument over proposals for action. Au-
tonomous Agents and Multi-Agent Systems. Special issue on Argumentation in Multi-Agent Systems,
11(2):153–171, 2005.

[3] K. Atkinson. What Should We Do?: Computational Representation of Persuasive Argument in
Practical Reasoning. PhD thesis, Liverpool University, 2005.

[4] F. Baader, I. Horrocks, and U. Sattler. Handbook of Knowledge Representation, chapter Description
Logics, pages 135–179. Elsevier, 2007.

[5] T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating theories and
values. Artificial Intelligence, 150(1-2):97–143, 2003.

[6] T. J. Bench-Capon. Specification and implementation of toulmin dialogue game. In International
Conferences on Legal Knowledge and Information Systems, JURIX-98, Frontiers of Artificial Intel-
ligence and Applications, pages 5–20. IOS Press, 1998.

[7] C. Carrascosa and M. Rebollo. Modelling agreement spaces. In IBERAMIA 2008 Workshop on
Agreement Technologies, WAT-08, pages 79–88, 2008.

[8] C. Carrascosa and M. Rebollo. Agreement spaces for counselor agents. In 8th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS-09, pages 1205–1206. ACM Press,
2009.

[9] F. Dignum and H. Weigand. Communication and Deontic Logic. In R. Wieringa and R. Feen-
stra, editors, Information Systems - Correctness and Reusability. Selected papers from the IS-CORE
Workshop, pages 242–260. World Scientific Publishing Co., 1995.

[10] C. L. Hamblin. Fallacies. Methuen Co. Ltd., 1970.

[11] S. Heras, V. Botti, and V. Julián. A computational argumentation framework for agent societies.
Technical Report http://hdl.handle.net/10251/11034, Universitat Politècnica de València, 2011.

[12] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description logic satisfiability.
Journal of Web Semantics, 1(4):345–357, 2004.

[13] J. Hulstijn. Dialogue Models for Inquiry and Transaction. PhD thesis, University of Twente, 2000.

[14] N. C. Karunatillake, N. R. Jennings, I. Rahwan, and P. McBurney. Dialogue Games that Agents
Play within a Society. Artificial Intelligence, 173(9-10):935–981, 2009.

[15] S. Kripke. A completeness proof in modal logic. Journal of Symbolic Logic, 24:1–14, 1959.

[16] M. Luck and P. McBurney. Computing as interaction: agent and agreement technologies. In IEEE
International Conference on Distributed Human-Machine Systems. IEEE Press, 2008.

[17] J. D. MacKenzie. Question-begging in non-cumulative systems. Philosophical Logic, 8(1):117–133,
1978.

[18] N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game based protocols-news trends
in agent communication language. Knowledge Engineering Review, 17(2):157–179, 2002.

[19] N. Maudet and F. Evrard. A generic framework for dialogue game implementation. In 2nd Workshop
on Formal Semantics and Pragmatics of Dialogue, pages 185–198. University of Twente, 1998.

25



[20] P. McBurney, R. M. V. Eijk, S. Parsons, and L. Amgoud. A dialogue game protocol for agent
purchase negotiations. Autonomous Agents and Multi-Agent Systems, 7(3):235–273, 2003.

[21] P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of deliberation dialogue. International
Journal of Intelligent Systems, 22(1):95–132, 2007.

[22] P. McBurney and S. Parsons. Representing epistemic uncertainty by means of dialectical argu-
mentation. Annals of Mathematics and Artificial Intelligence, Special Issue on Representations of
Uncertainty, 32(1-4):125–169, 2001.

[23] P. McBurney and S. Parsons. Dialogue games in multi-agent systems. Informal Logic. Special Issue
on Applications of Argumentation in Computer Science, 22(3):257–274, 2002.

[24] P. McBurney and S. Parsons. Games that agents play: A formal framework for dialogues between
autonomous agents. Journal of Logic, Language and Information, 11(3):315–334, 2002.

[25] P. McBurney and S. Parsons. Locutions for argumentation in agent interaction protocols. In Revised
Proceedings of the International Workshop on Agent Communication, AC-04, volume 3396 of LNAI,
pages 209–225. Springer, 2004.

[26] P. McBurney and S. Parsons. Argumentation in Artificial Intelligence, chapter Dialogue games for
agent argumentation, pages 261–280. Springer, 2009.

[27] H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review, 21:163–
188, 2006.

[28] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and
Computation, (1):93–124, 2010.

[29] H. Prakken, C. Reed, and D. Walton. Dialogues about the burden of proof. In Proceedings of the
10th International Conference on Artificial Intelligence and Law, ICAIL-05, pages 115–124. ACM
Press, 2005.

[30] H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue game. Artificial
Intelligence and Law, 6:231–287, 1998.

[31] F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: Agent varieties and dialogue sequences.
In Revised Papers from the 8th International Workshop on Intelligent Agents VIII, ATAL-01, volume
2333, pages 405–421. Springer, 2001.

[32] F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogue, negotiation - an abductive approach. In
Convention of The Society for the Study of Artificial Intelligence and the Simulation of Behaviour,
AISB-01. AISB, 2001.

[33] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game Theoretic and Logical
Foundations. Cambridge University Press, 2009.

[34] C. Sierra, V. Botti, and S. Ossowski. Agreement Computing. KI - Künstliche Intelligenz, DOI:
10.1007/s13218-010-0070-y, 2011.

[35] M. Singh. A social semantics for agent communication languages. volume 1916 of LNCS, pages
31–45. Springer, 2000.

[36] R. D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[37] R. M. van Eijk. Semantics of Agent Communication: An Introduction. In Foundations and Appli-
cations of Multi-Agent Systems, UKMAS 1996-2000, Selected Papers, volume 2403 of LNAI, pages
152–168. Springer-Verlag, 2002.

26



[38] D. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal Rea-
soning. State University of New York Press, 1995.

[39] D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge University Press, 2008.

[40] M. Wardeh, T. Bench-Capon, and F. P. Coenen. PISA - Pooling Information from Several Agents:
Multiplayer Argumentation From Experience. In Proceedings of the 28th SGAI International Con-
ference on Artificial Intelligence, AI-2008, pages 133–146. Springer, 2008.

27


	Introduction
	Case-based Argumentation Framework
	Preliminaries
	Syntax
	Semantics
	Axiomatic Semantics
	Operational Semantics

	Related Work
	Conclusions

