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Abstract

Most optical processes occurring in nature are based on the well-known selection

rules for optical transitions between electronic levels of atoms, molecules, and solids.

Since in most situations the magnetic component of light has a negligible contribu-

tion, the dipolar electric approximation is generally assumed. However, this traditional

understanding is challenged by nanostructured materials, which interact strongly with

light and produce very large enhancements of the magnetic field in its surroundings.

Here we report on the magnetic response of different metallic nanostructures and its

influence on the spectroscopy of molecular oxygen, a paradigmatic example of dipole-

forbidden optical transitions in photochemistry.
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Science and technological applications based on photochemical processes are restricted

to those situations involving states of matter that are accessible through light excitation.1

From a theoretical point of view, photochemical processes are governed by the light-matter

interaction Hamiltonian, which, for material systems with subwavelength dimensions such

as chemical species (i.e., atoms, molecules, etc...), can be conveniently written using a mul-

tipolar expansion of the electric and magnetic fields2,3

H = −p · E−m ·B−Q : ∇E + . . . . (1)

The first term of this expansion involves the electric dipole moment, p, of the chemical species

and, consequently, is known as electric dipole (ED) term. In a similar way, the second and

the third terms contain the magnetic dipole, m, and the electric quadrupole, Q, moments,

and therefore are known as the magnetic dipole (MD), and electric quadrupole (EQ) terms,

respectively. Each of these terms presents specific selection rules that control the conditions

under which the associated optical transitions can occur.3 Usually, the electric component

of an electromagnetic field is much larger than the magnetic one. For instance, for a plane

wave, their ratio is E/B = c, where c is the speed of light. As a consequence of this, most

optical processes in light-matter interaction are dominated by dipolar electric transitions.3

The situation is completely different when the chemical species undergoing the optical

transition is placed near a metallic nanostructure. These systems are well known to support

coherent oscillations of their conduction electrons, commonly known as surface plasmons,

that couple strongly with light and generate large electromagnetic fields around them.4,5

Such extraordinary properties have already been exploited in different research areas includ-

ing biosensing,6–8 photovoltaics,9–11 and photocatalysis,12–14 to cite some. Interestingly, the

enhancement of the electromagnetic field produced by these nanostructures comes associ-
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ated with a strong magnetic response15–19 that changes dramatically the usual light-matter

interaction, thus enabling new amazing phenomena such as negative refraction,20–22 per-

fect lensing,23 or even optical cloaking.24 To this end, different structures fabricated using

top-down15,25–28 or bottom-up29–32 techniques have been explored. These include, for in-

stance, metallic split-ring resonators25 and cut-wire pairs,26,27 whose magnetic response in

the optical region33,34 has been characterized both at the single particle level35,36 and for

ordered arrays.15,16,25–27 It is worth to note that high-refractive nanostructures can also pro-

duce strong magnetic fields, which are, in this case, associated with photonic cavity modes

supported by these systems.37–43

The strong magnetic field produced by metallic nanostructures can be used to enhance

the MD transitions of chemical species placed in their vicinity (see reference 44 for a com-

prehensive review). Such possibility has been theoretically explored,45–47 and experimentally

verified using principally rare-earth ions, which exhibit strong MD in the optical range as-

sociated with their 4f orbitals,48–50 placed in closed proximity to plasmonic structures with

different designs.51–59 It is important to note that the strong magnetic field enhancement pro-

duced by plasmonic nanostructures in their surroundings normally comes together with an

even stronger amplification of its electric counterpart,60 which enhances the ED transitions

of the chemical species. This can be very relevant for species having MD and ED transitions

closely located in the spectrum, since, in these cases, the ED transition can obscure the MD

transition.61 A similar effect is expected for EQ transitions, which are enhanced by the large

electric field gradients (see Eq. (1)) produced near plasmonic nanostructures.62–66

Among the many different chemical species that could benefit from the enhancement of

the MD optical transitions provided by surface plasmons, molecular oxygen, O2, constitutes

a very relevant example. This molecule is a key specie in nature and, despite its apparent

simplicity, it exhibits a number of rather unusual properties that strongly influence its spec-

troscopic behavior, as well as its chemical reactivity.67 As shown in Figure 1(a), O2 has a

triplet multiplicity ground state, 3Σg. Conversely, its lowest lying excited states, 1∆g and 1Σg,
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Figure 1: (a) Relevant energy levels of molecular oxygen. (b),(c) Schematics of the two
optical processes that can be enhanced by the presence of a resonant metallic nanostructure:
(b) an oxygen molecule absorbs a photon and is excited from the 3Σg to the 1∆g level,
(c) an excited oxygen molecule emits a photon and decays from1∆g to 3Σg. In (b), the
absorption probability is increased by the strong enhancement of the magnetic field produced
by the metallic nanostructure, while in (c), the emission probability is amplified by the large
scattering cross-section of the metallic nanostructure.

are of singlet nature and appear at relatively low energies above the ground state. Therefore

due to spin conservation, any transition between the ground 3Σg and the excited states 1∆g

and 1Σg of O2 cannot involve the ED and the EQ terms appearing in Equation (1)68. Only

the MD term, which is proportional to the magnetic field, can connect these levels. Such

transitions are commonly referred to as forbidden optical transitions. Interestingly, their

forbidden nature prevents the spontaneous photo-oxidation of living systems upon exposure

to natural sunlight in an aerobic atmosphere. On the other hand, singlet O2 is not just a

relevant model for fundamental chemical and physical phenomena; it also has important ap-

plications in fields ranging from atmospheric chemistry and material science to biology and

medicine, including photodynamic therapy (PDT) of cancer.67,69 Singlet molecular oxygen

exhibits a unique reactivity as synthetic reagent, as intermediate in oxygenation reactions of

polymers, and as part of reactive oxygen species in a range of biological systems.70

Usually, the optical activation of O2, i.e., its transition from the triplet to the singlet

state, is achieved through the electronic excitation of photosensitizers, typically visible light-

absorbing aromatic compounds with a high intersystem crossing quantum yield.71 The col-
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lected triplet energy is then transferred to molecular oxygen, affording the 1∆g and/or 1Σg

excited states of molecular oxygen.72,73 Direct optical excitation is very challenging as demon-

strated by the orders of magnitude of the Einstein coefficients for spontaneous emission

from the singlet states, which in the gas phase are 10−3 s−1, 10−1 s−1, and 10−4 s−1, for the

1Σg → 1∆g, 1Σg → 3Σg, and 1∆g → 3Σg transitions, respectively. While for O2 dissolved in

a liquid such as water, they increase to 103 s−1, 100 s−1, and 10−1 s−1, respectively.67 These

numbers clearly make the excitation and deexcitation of singlet O2 ideal optical processes

that can benefit from the plasmonic enhancement of MD transitions.

In this paper, we investigate the enhancement of the magnetic dipole transitions con-

necting the triplet 3Σg and singlet state 1∆g of O2 in the presence of different metallic

nanostructures. Despite the variety of optimized structures already characterized in liter-

ature, including split-ring resonators,46 or diabolo structures,47,74 here we choose to work

with single and tip-to-tip welded gold nanorods.75 The reason for our choice is that, in spite

of their simplicity, these structures produce large magnetic field enhancements over a large

volume around them, with peak values close to those of optimized nanostructures, but, as

opposed to them, can be efficiently synthesized using colloidal chemistry and used in liquid

suspension (customarily water), thus providing a larger region for interaction with O2 than

surface patterned nanostructures.76 This is of vital importance to maximizing the enhance-

ment of photochemical processes as the one investigated here. Using rigorous solutions of

Maxwell’s equations, we analyze the impact of these structures both in the excitation and

deexcitation processes involving singlet O2, and we discuss different potential experiments

for testing the generation and detection of singlet oxygen.

Results

The two different optical processes that we consider in this work are described in Figures 1

(b) and (c). The first case corresponds to the excitation of O2 from the 3Σg to the 1∆g
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excited state by absorption of a photon. To this end, both the metallic nanostructure and

the O2 molecule are illuminated with an external light source of energy ~ω, resonant with the

transition wavelength λ0 = 1269 nm. The probability per unit time of inducing a transition

can be calculated using Fermi’s golden rule3

P =
2π

~2
∑
f

|〈f |H |i〉|2 δ (ωi − ωf ) ,

where |i〉 and |f〉 are the initial and final states, and and H is the Hamiltonian connecting

them. In our case, since the transition is forbidden, the only relevant term of the Hamiltonian

given in Equation (1) is the MD, and therefore the probability per unit time of absorption is

proportional to |m ·B(r0)|2. Consequently, the increase of this quantity due to the presence

of the metallic nanoparticle is given by

Pa

P 0
a

=

∣∣∣∣ B(r0)

B0(r0)

∣∣∣∣2 ,
and therefore is determined by the enhancement of the magnetic field intensity at the po-

sition of the O2 molecule produced by the plasmonic resonances supported by the metallic

nanoparticle. To reproduce an experimental situation, this expression has to be averaged

over all possible relative orientations between the external illumination, the metallic nanos-

tructure, and the molecule transition dipole.

The second process considered here corresponds to the spontaneous deexcitation of O2

from the singlet 1∆g state to the triplet 3Σg ground state, which is sketched in Figure 1(c). In

this case, the enhancement of the transition probability relative to free space can be written

as77,78

Pe

P 0
e

= −2πc3

ω
Im {TrG (r0, r0)} , (2)

where G (r, r′) is the magnetic Green’s tensor of Maxwell’s equations,79 defined as the solution
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of

∇×∇× G (r, r′)− ε (r)
ω2

c2
G (r, r′) = − 1

c2
δ (r− r′) ,

with the appropriate boundary conditions. It corresponds to the magnetic field produced at

r by a magnetic dipole placed at r′ in the presence of the metallic nanostructure. The symbol

Tr in Eq. (2) indicates the trace over G (r, r) necessary to average over all possible dipole

orientations. In absence of the metallic nanostructure, Pe reduces to P 0
e , which is the Einstein

coefficient for spontaneous emission of the 1∆g → 3Σg transition.79 The enhancement of the

emission probability produced by the nanoparticle takes place through two different channels:

radiative and nonradiative. In the first case, the nanoparticle acts as an antenna and helps

to radiate the photon produced in the deexcitation of O2. In the second situation, the

nanoparticle also enhances the deexcitation process, however, in this case, the generated

photon is absorbed by the nanoparticle. Since we are interested in the detection of singlet

O2 through the measurement of the emitted photons, i.e., the photoluminescence, we want

to enhance only the first of these two channels. Therefore, we can separate the Green’s tensor

into two terms: one associated with the radiative channel and the other one corresponding to

the nonradiative decay: G (r, r′) = Gr (r, r′)+Gnr (r, r′). This allows us to write an expression

for the photoluminescence enhancement due to the metallic nanostructure

Pe,r

P 0
e

= −2πc3

ω
Im {TrGr (r0, r0)} . (3)

The photoluminiscence enhancement can be directly obtained from the calculation of the far-

field emission of a classical magnetic dipole in presence and in absence of the nanostructure.

In the following, we investigate the enhancement of the absorption and the emission

processes associated with the singlet O2 molecule produced by metallic nanostructures. In

particular, we focus on two different systems, namely a pair of tip-to-tip welded nanorods

and a single nanorod. The geometry of the first structure resembles that of the systems tra-

ditionally considered to achieve large enhancement of the magnetic field, usually consisting

7



(a)
10nm

20nm

13
6n

m

0 20 40-20-40
-90

-60

-30

0

30

60

90

x(nm)

z(
nm

)

(b)

1

130

0 20 40-20-40
-90

-60

-30

0

30

60

90

x(nm)

z(
nm

)

1

1300

0 20 40-20-40
-90

-60

-30

0

30

60

90

x(nm)

z(
nm

)

1

130

(d)(c)

10nm

49
nm

Figure 2: Optical response of a pair of tip-to-tip welded gold nanorods. (a) Geometry of
the nanostructure. (b) Magnetic field intensity enhancement |B|2 / |B0|2, averaged over all
possible light incidence directions and polarizations. (c) Electric field intensity enhancement
|E|2 / |E0|2, averaged over all possible light incidence directions and polarizations. (d) Photo-
luminescence enhancement Pe,r/P

0
e . The dashed and solid white contours signal the regions

for which the enhancement is larger than 10 and 50 for panels (b) and (d), and larger than
100 and 500 for panel (c). All calculations are performed at λ0 = 1269 nm.
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of two identical nanostructures connected by a narrow junction.47,74 On the other hand, the

single nanorod represents a simpler geometry and consequently involves a less demanding

synthesis. In both cases, the dimensions of the nanostructure are chosen to ensure they sup-

port a plasmon resonant with the 1∆g → 3Σg transition wavelength λ0 = 1269 nm. Figure 2

shows the results obtained for the tip-to-tip welded nanorods. The dimensions of the nanos-

tructure are specified in panel (a); each individual nanorod consists of a cylinder of 49 nm

of length and a diameter of 20 nm terminated by two hemispheres of radius 10 nm. The

two rods are welded together resulting in a structure with a total length of 136 nm. All the

results discussed in the following are obtained by rigorously solving Maxwell’s equations us-

ing the boundary element method (BEM).80,81 The dielectric function for gold is taken from

tabulated data,82 and the nanostructures are assumed to be surrounded by water (ε = 1.77).

We restrict the calculations to points separated by at least 0.5 nm from the surface of the

structure. The reason is that classical calculations for points located closer to the surface

are nonphysical due to nonlocal effects. Furthermore, this distance also corresponds to the

typical size of molecules like cetyltrimethylammonium bromide (CTAB) that are custom-

arily used for obtaining high aspect ratio gold nanorods and stabilizing them in aqueous

suspensions.83,84

Upon illumination, the nanorod pair generates a strong electromagnetic field around it.

Figure 2(b) shows the magnetic field intensity enhancement |B|2 / |B0|2 produced by this

structure, averaged over all possible incidence angles and polarizations. This enhancement

can be intuitively understood by noticing that the electron oscillation associated with the

longitudinal plasmon supported by the metallic nanostructure produces an electric current

that, by virtue of Ampère-Maxwell’s law, generates the magnetic field. The narrowing of

the structure at its central region, produces an increase of the current density, and therefore

an even higher enhancement of the magnetic field that can reach values above 100 near the

contact point between the nanorods, and, as expected, it decays as we move away from that

region. The dashed and solid white curves indicate the regions for which the enhancement
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is above 10 and 50, respectively. Although here we are interested in the magnetic field

enhancement, it is important to analyze the response of the electric field, and in particular

its gradient since, for instance, the transition 1∆g → 1Σg, which has resonant wavelength

λ0 = 1908 nm, is EQ allowed. Not surprisingly, the electric field is strongly enhanced near

the nanostructure. In particular, as shown in Figure 2 (c), |E|2 / |E0|2 can reach values above

1000, both at the contact region and at the ends of the nanorods. The dashed and solid

white curves indicate, in this case, the region for which the enhancement is above 100 and

500, respectively.

The increase in the photoluminescence produced by this nanostructure is studied in

Figure 2(d), where we plot the results obtained with Equation (3) for the tip-to-tip welded

nanorods of panel (a). Examining these results, we observe that both the enhancement values

and the spatial distribution are similar to those of the magnetic field intensity shown in panel

(b). In particular, there is a significant volume around the particle for which the enhancement

of the emission probability enhancement is above 10 (dashed white curve), while closer to the

contact region, these values increase above 50 (solid white curves). These results are coherent

with the smaller quenching near metallic structures expected for magnetic transitions as

compared with their electric counterparts.85

Figure 3 is devoted to the analysis of the different enhancements associated to the second

geometry under consideration, namely a single nanorod, whose synthesis is more direct. As

shown in panel (a), the total length of the this nanostructure including the hemispheres at

the ends is 156 nm, while the diameter is again 20 nm. Such dimensions are chosen to ensure

the existence of a plasmon resonance at 1269 nm. Examining panel (b) we observe that the

single nanorod produces similar peak values for the magnetic field intensity enhancement as

the tip-to-tip welded nanorods, however this enhancement is extended over a larger volume as

inferred from the comparison of the regions enclosed by the dashed and solid white curves of

Figures 2(b) and 3(b). A similar behavior is obtained for the electric field (c.f. Figure 3(c)),

whose extrema, in this case, appear only at the ends of the nanostructure. Regarding the
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Figure 3: Optical response of a single gold nanorod. (a) Geometry of the nanostructure. (b)
Magnetic field intensity enhancement |B|2 / |B0|2, averaged over all possible light incidence
directions and polarizations. (c) Electric field intensity enhancement |E|2 / |E0|2, averaged
over all possible light incidence directions and polarizations. (d) Photoluminescence en-
hancement Pe,r/P

0
e . The dashed and solid white contours signal the regions for which the

enhancement is larger than 10 and 50 for panels (b) and (d), and larger than 100 and 500
for panel (c). All calculations are performed at λ0 = 1269 nm.
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enhancement of the photoluminescence, as shown in panel (d), it reaches values very similar

to those displayed by the tip-to-tip welded nanorods of Figure 2, but extended over a larger

region around the nanostructure. It is important to remark that the enhancement values

provided by the structures studied here are not far from those reported for optimized planar

geometries such as diabolo nanostructures once one takes into account the averaging over

all possible relative orientations between the dipole and the nanostructure,47 but with the

advantage that both the single and tip-to-tip welded nanorods can be efficiently synthesized

using colloidal chemistry techniques and used in liquid suspension, thus enabling much larger

interaction volumes with O2.

In the following part we discuss the potential photochemical reactions that we can carry

out for sensing the generation of singlet oxygen in the presence of gold nanorods.

Discussion of the potential photochemical reactions

The formation of singlet O2 can be monitored by steady state and time resolved absorption

and/or emission measurements, as well as by chemical trapping using selected probes we

describe hereafter, or even trough quartz enhanced photoacoustic spectroscopy86. As the

photoactivation yields of different species are very low we can either use high intensity light

sources, but at the risk of damaging the sample, or time accumulative experiments. We

prefer the second option where the existence of a certain product in a given solution proves

the photoactivation of oxygen because the chemical reaction generating such a product can

only occur whenever oxygen is excited to its singlet state. It is important to notice that

the rate of this chemical reaction is expected to be larger than the radiative decay rate of

singlet O2, even with the enhancement provided by the metallic nanostructure. Specifically,

the following test reactions would be of interest to prove the concept (see the Support-

ing Information): (i) “ene” reactions to give allylic hydroperoxides, (ii) dioxetane formation

through [2 + 2] cycloadditions and (iii) [4 + 2] cycloadditions to diene systems. The results
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(reactivity, chemo-, regio- and steroselectivity) could be compared with those obtained using

organic dyes as photosensitizers. An appropriate system to examine singlet oxygen-mediated

photoadditions could be the trapping of this species by anthracene derivatives such as (1) in

Figure 4. Thus, [4+2] cycloaddition of 1O2 to the central anthracene ring would afford an en-

doperoxide. Depending on the substitution, this endoperoxide (2) could be directly detected

or can rearrange with cleavage of the 9− and/or 10−substituent to afford anthraquinone

(3), as depicted in Figure 4. The photoreaction could, in principle, be monitored by UV

absorption spectroscopy, following the decrease of the characteristic long-wavelength bands

of the anthracene chromophore.87

O
O

R2

O

O

(3)(2)

R1
R1

(1)
R2

1O2

Figure 4: General reactivity of 9,10-disubstituted anthracenes (1) with formation of an
endoperoxide (2) upon addition of singlet oxygen, and rearrangement into an anthraquinone
derivative (3).

Conclusions

In summary, we have reported on the near-field magnetic response of different gold nanos-

tructures and investigated their potential application for the enhancement of photochemical

processes involving singlet molecular oxygen. In particular, we have focused on the mag-

netic dipole transitions connecting the triplet 3Σg and singlet state 1∆g of O2, which is a

good example of dipole-forbidden transition. We have explored the response of single and

tip-to-tip welded gold nanorods, which support strong dipolar plasmonic resonances involv-

ing large currents flowing along the axis of the nanostructure, and therefore produce strong

magnetic fields in their vicinity. These nanoparticles have been designed for providing max-

imum response when used in liquid suspensions, where customarily photochemical reactions
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take place, and for which planar nanostructures are not suitable. Upon rigorous solution

of Maxwell’s equations we have shown that the studied nanostructures display large mag-

netic field enhancement factors over significant volumes around them, which enhance both

absorption and the emission transitions involving single oxygen. We have also provided a

discussion of potential chemical reactions that could be used to detect and monitor the for-

mation of singlet oxygen. The results of this work serve to shed light on the use of plasmonic

nanostructures to realize forbidden photochemistry.
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