

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/112120

Furió Novejarque, C.; Feliu-Pérez, J.; Petit Martí, SV.; Duro-Gómez, J.; Sahuquillo Borrás, J.
(2018). A Workload Generator for Evaluating SMT Real-Time Systems. IEEE Computer
Society. 367-374. doi:10.1109/HPCS.2018.00067

http://doi.org/10.1109/HPCS.2018.00067

IEEE Computer Society

A Workload Generator
for Evaluating SMT Real-Time Systems

Clara Furió, Josué Feliu, Salvador Petit, José Duro, and Julio Sahuquillo
Departamento de Informática de Sistemas y Computadores (DISCA)

Universitat Politècnica de València, Spain
Email: clafuno@upv.es

Abstract—Real-time tasks have experience a significant com-
plexity increase in the last years. We can find examples of real-
time tasks in nowadays systems that control self-driving cars
or multimedia systems, among others. To cope with the high
performance requirements of such systems, real-time systems are
moving from simple in-order processor to complex out-of-order
multicore processors. Furthermore, we expect real-time systems
to use simultaneous multithreading (SMT) processors in a near
future since these architectures address two key design concerns
of embedded systems, that is, they provide higher performance
and power efficiency than single-threaded multicores.

The main drawback that multicores and SMT architectures
present from a real-time perspective is that they implement
shared resources. Single-threaded multicores usually share the
main memory and the LLC, and SMT processor share addi-
tionally most of the microarchitectural core resources. Processes
running concurrently can interfere in the shared resources, which
increases the performance variability and predictability of these
systems. We expect an increasing effort in the next years to
mitigate these drawbacks and implement real-time systems with
multicore SMT processors.

Workload generation is a tedious and time-consuming task
in the real-time research field because the workloads dispose of
many parameters that should be correctly adjusted to provide
flexible and representative workloads. Typically used workload
generators, however, fail when designing workloads for theses
architectures because they are not aware of the architectural
characteristics of SMT systems. In this paper we present the
task class-based (TCB) workload generator aimed at providing
workloads to evaluate real-time systems with SMT multicore
processors in an ease and automatized way.

Keywords—Real-time systems; Simultaneous multithreading
(SMT); Workload generator.

I. INTRODUCTION

Real-time systems are systems that should produce their
outputs within certain time constraints. Unlike other systems
such as high-performance computing (HPC) systems, the
correctness, or at least the quality of service, of real-time
systems does not only depend on the computation of the
correct outputs, but also on obtaining these outputs within the
defined time constraints.

The computational requirements of real-time systems have
been growing during the last decade. Former real-time systems
used to perform relatively simple control tasks with tight time
constraints. Nowadays, real-time systems carry out multiple
tasks that require higher performance such as self-driving cars,
multimedia systems, pattern recognition, etc. [1] [2] [3] In
some systems, the real-time constraints are strict or hard, but

other systems such as the multimedia ones can tolerate small
percentages of deadline misses, which translates in a small but
acceptable reduction in the quality of service.

To reach the required performance, many of these real-time
systems are moving from simple processors to current mul-
ticore architectures [4] because of their higher performance.
Following this trend, we expect them to move to multithreaded
cores in a near future since they improve both performance
and power efficiency, two main design concerns in embedded
systems. The key challenge that multicore and multithreaded
processors must address to be used in real-time systems is that
they implement resources that are shared among the processes
running concurrently. Resource sharing increases execution
time variability due to the inter-application interference, which
can be partially mitigated with specific hardware and software
mechanisms [5]. Therefore, it is expected that these research
topics will pay a lot of attention both from the academia and
the industry in the near future.

To evaluate a real-time system during the design phase,
a wide and representative set of real-time workloads needs
to be used. However, the design of real-time workloads is
much complex than the design of conventional benchmarks,
such as high-performance benchmark suites. These workloads
must consider not only the computational component, but also
the deadline and period for each task. A workload generator
should be able to adjust them in order to facilitate or difficult
the fulfilling of certain deadlines. Either tasks whose deadlines
can be easily meet or are impossible to meet will not have
much interest and will be hardly representative of an actual
real-time system. In addition, workload generators such as the
UUniFast algorithm that have been typically used to generate
workloads for real time systems fail to meet their goal when
requiring workloads with an utilization greater than one, which
is the case of multicores with SMT cores. To overcome this
issue, in this paper we propose the task class-based (TCB)
workload generator designed to facilitate and automatize the
process of generating workloads to evaluate real-time systems
with these architectures.

The rest of the paper is organized as follows. Section II
reviews the key concepts of real-time systems and SMT
processors. Section III presents the TCB workload generator
devised in this work. Section IV describes the experimental
framework and Section V discusses the validation of the work-

load obtained with the proposed generator. Finally, Section VI
presents some concluding remarks.

II. BACKGROUND

This section presents key concepts about real-time systems
and SMT processors to help understand this work as well as
the used terminology.

A. Real-Time Systems

Nowadays, real-time computing plays a crucial role since
more and more complex systems rely, partially or completely,
on computer-based control. Although advances in computer
hardware technology help improve system throughput and
increases the computational power, this does not guarantee
that the timing constraints of a given application will be
met. In fact, whereas the main goal of high performance
computing is, in general, to minimize the execution time of the
running workload (i.e. the set of tasks) the objective of real-
time computing is to meet the individual timing requirements
for each task of the workload. In this context, a real-time
system is a computer-based system which has to execute their
applications within a specified time. In other words, it is not
only important that the system provides the correct output, but
also the point of time when it does.

A real-time task is typically a sequential process that is
executed in a conventional single-threaded processor or in a
hardware context of a multi-threaded processor. From now on,
task and process will be used as synonyms. A real-time system
must execute a set of recurrent tasks. The set of rules that
determines the order in which tasks are executed is coded in
the so called scheduling algorithm. A task that can be executed
on the processor is called an active task. A task waiting for the
processor is called a ready task, whereas the task in execution
is the running task. All ready tasks waiting for the processor
are kept in the so called ready queue.

Real-time tasks are characterized by a series of timing
constraints. One of the most representative constraint is the
task deadline, which represents the maximum time before
which the task has to complete its execution. Depending on the
consequences on the system of a missed deadline, real-time
tasks can be classified into hard real-time (HRT) tasks or soft
real-time (SRT) tasks. HRT tasks must fulfill their deadline.
Otherwise, the system integrity could be compromised and the
consequences could lead to important damages; for instance,
the altitude control in an aircraft. On the other hand, SRT
tasks are required to achieve a minimum number of deadlines
to guarantee a certain QoS; for example, a minimum number
of frames per second in a video streaming. In this case, a late
response does not derive in harm but in a deterioration of the
user satisfaction.

Each task Ti of a group of tasks or workload T =
{T1, . . . , Tn} is modeled with a series of parameters. In
this work, we focus on three main parameters: worst case
execution time (WCET), period, and deadline; that is, Ti =
{WCETi, Pi, Di} (see Figure 1):

Fig. 1. Real-time task model.

• WCET refers to the execution time in the worst possible
scenario and is a critical feature of real-time applications.
This time can be approached either by measurement
techniques or delimited using analytical techniques. For
instance, in case of single-threaded multicore systems
where cores only share the last level cache (LLC) and
main memory, WCETs can be estimated by running ap-
plications concurrently with microbenchmarks that stress
these resources.

• Pi is the time interval between two successive activations
of the task.

• Di represents the maximum allowed time for the task
to execute. That is, it determines the time at which a
task run must be completed with respect to the beginning
of each active period. As discussed previously, missing
deadlines compromises the QoS on SRT systems and
can be equivalent to a complete system failure in HRT
systems. Note that, in order to simplify the analysis of
real-time systems, it is usually assumed that Di = Pi [6].

Another important factor in the analysis of real-time systems
is the processor utilization factor, which represents the fraction
of processor time used by the workload. It is typically obtained
using Equation 1, where Ci is the execution time of task i
(usually considered equal to the task WCET), and Pi is the
period of the task.

U =

N∑
i=1

Ci

Pi
≈

N∑
i=1

WCETi

Pi
, (1)

The utilization determines whether a system is schedulable
or not according to the scheduler policy. In other words,
it helps analyze if a system would correctly work (i.e. no
deadlines are missed) with a specific workload and scheduling
algorithm. Moreover, the number of missed deadlines in a
given execution is related to the utilization so higher processor
utilizations imply more deadline misses and vice-versa.

B. Simultaneous Multithreading

Multicore processors with simultaneous multithreading
(SMT) [7] cores are able to execute multiple threads simul-
taneously in each core. To this end, they implement multiple
hardware contexts that maintain the state of each individual
thread independently. From the operating system point of view,

I – cache PCs Issue
queue

Decode /
Rename Table

Register file

Functional
units

ROB

Load/store
queue

D – cache

Fig. 2. Pipeline of a generic SMT processor.

one physical SMT core is seen as multiple logical cores, as
many as hardware contexts supported by the SMT core.

SMT processors improve throughput with minimal hardware
increase over single-threaded processors, enhancing the per-
formance for a given area and power budget [8] [9]. Thus,
they have become the de facto design choice in current high-
performance commercial processors. In this context, due to
the convergence among different segments of the processor
market, it is expected that these processors proliferate across
embedded devices in the near future.

SMT processors replicate the hardware that supports the
state of processes for each hardware context. The hardware
overhead for this purpose, however, is relatively low since most
of the remaining CPU resources, such as the execution units,
the branch prediction units, the instruction fetch and decode
units, and the caches are either partitioned or competitively
shared among the hardware contexts. Figure 2 shows a dia-
gram of the pipeline of a SMT processor where the blue and
orange colors represent instructions from different threads that
are executed simultaneously on the processor. Note that some
resources are replicated and privately accessed by each thread
(e.g. the program counters) but others are shared, such as the
caches or the execution units.

Deciding which resources are replicated and made private
for each thread and which ones are shared among threads
at run-time is one of the most important design issues that
characterizes SMT processors. On the one hand, partitioning
is the easiest solution but it does not allow a thread to use
resources assigned to other threads, even if these resources
are underutilized. In other words, partitioning presents a worse
resource utilization. On the other hand, if resources are shared
the utilization increases but also does contention.

C. Challenges of SMT-Based Real-Time Systems

In spite of the aforementioned advantages of SMT pro-
cessors, which have spread their use in high performance
systems, they present important issues in the context of real-
time systems that should be taken into account.

One of the main drawbacks of SMT processors is that
the shared resources they implement negatively affect their
predictability, which is an important property that real-time
systems should present in order to fulfill the timing constraints
of critical applications. Predictability means that task results
must be correct and provided within a given time domain. In
order to do so, a minimum level of per-process performance
must be guaranteed.

Unfortunately, ensuring predictability in SMT-based sys-
tems is difficult. Tasks running on the same physical core
compete among them in the access to the shared resources and
thus, interference appears. Interference causes task execution
times to increase with respect to standalone execution. The
impact of interference on the WCET of a particular appli-
cation is variable and difficult to predict due to the high
amount of core resources that are shared among co-runners
in SMT architectures. Moreover, the impact also depends on
the other applications that are being executed in the same
core (co-runners) and on the sensitivity of each application
to contention [10]. This means that some applications suffer
a minimal performance penalty over their isolated execution
while others experience serious slowdowns. For instance, the
execution time of some tasks with co-runners can be doubled
with respect to their execution time in isolation. Despite these
issues, since SMT processors increase system productivity and
power efficiency, they are being integrated in more and more
systems, reaching real-time systems.

Algorithm 1 UUniFast algorithm

f u n c t i o n vectU = UUniFast (n ,U)
sumU = U;
f o r i =1 : n−1

nextSumU = sumU . ∗ r and ˆ (1 / (n−i)) ;
vectU (i) = sumU − nextSumU ;
sumU = nextSumU ;

end
vectU (n) = sumU ;

III. WORKLOAD GENERATORS

Research on real-time systems requires studying the behav-
ior of multiple workloads that present different characteristics.
However, designing real-time workloads is more complex that
designing workloads for evaluating HPC systems. A real-time
workload is composed of tasks with their corresponding timing
parameters (e.g. WCET, deadline, etc.). In this context, a
realistic workload should present task deadlines long enough
to allow most task execution instances to correctly complete,
which does not only depend on single tasks but on all the tasks
that compose the workload. Nevertheless, deadline misses
should be possible to quantitatively explore the potential
benefits of research proposals. Otherwise, the workload will
lack of any interest for real-time systems evaluation.

Consequently, designing useful and representative work-
loads for real-time systems can become a tedious and time-
consuming task, particularly when the number of applications
grows, if the researcher needs to tune the workloads by
hand to ensure certain schedulability level. To address this
issue, several automatic real-time workload generators have
been developed and used in the related work [11] [12] [13].
A workload generator automatically provides experimental
workloads (i.e. task sets) that feed a real-time system to study
its behavior.

Typically, a workload generator produces workloads com-
posed of random tasks targeting a given theoretical processor
utilization (see Equation 1). This is because, as explained
above, the theoretical utilization is highly related with the
number of deadline misses, which is a key performance metric
for evaluating real-time systems.

A. UUniFast Workload Generator

One of the most widely known workload generators for
real-time systems is UUniFast [11]. The code in Algorithm 1
illustrates the implementation of UUniFast in Matlab, as
shown in the original work by Bini and Butazzo. UUniFast is
used to generate task sets with a random uniform distribution
of tasks theoretical utilizations.

More precisely, given a target number of tasks n and
utilization U , UUniFast just provides a random set of tasks
utilizations (i.e. a set of Ci/Pi ratios, where 0 ≤ i < n). Thus,
to completely define the generated workload, an algorithm
like Algorithm 2 must be used. This algorithm receives n
and U as input parameters and gets from UUniFast the

Algorithm 2 UUniFast-based Workload Generator

1: Inputs:
2: n: number of tasks in the generated workload
3: U : workload utilization

4: UUniFast returns vector U [1..n] with tasks utilizations
5: Pick n random applications from available benchmark sets

as tasks
6: for 1 ≤ i ≤ n do
7: periodi =

WCETi

U [i]
8: end for

mentioned set of tasks utilizations. Then, it randomly selects
n applications from the available benchmark suites in the
experimental framework and, for each selected application i,
calculates its period taking into account both the WCETi and
the random task utilization Ci/Pi provided by UUniFast.

However, as Section V will show, in an SMT-based real-time
system, the execution of workloads generated with UUniFast
suffers an unexpectedly high number of deadline misses,
even for relatively low processor utilizations. We found that
this occurs because the UUniFast algorithm is not aware
of the increase of execution time that co-runners cause due
to the inter-application interference in an SMT system. In
fact, the UUniFast algorithm is designed for the analysis of
theoretical real-time models that do not take into account
system details that increase the effective processor utilization
and consequently, the number of deadline misses in some
cases.

In addition, UUniFast lacks enough flexibility to specify
workload restrictions that can be of interest for real-time
research. For instance, workloads where some tasks have high
utilizations, that is, tight periods and thus they are more likely
to suffer deadline misses while the remaining tasks experience
more relaxed deadlines. This happens because in UUniFast, a
low target utilization value causes most task deadlines to be
significantly far from the end of their corresponding WCETs,
whereas a high target utilization produces deadline misses in
most tasks.

B. Task Class-Based Workload Generator

The mentioned problems motivated us to design a novel
workload generator aimed at SMT-based real-time systems,
whose first main goal is to be more flexible than UUniFast.
This is done by introducing a new concept, the task class.
A task class c corresponds to a given rank of possible task
utilizations [MinUc,MaxUc], so tasks pertaining to the task
class present similar timing constraints. The tasks in a gener-
ated workload are distributed among different task classes.

By controlling the task utilization bounds of classes and
the amount of tasks pertaining to each class, a wide variety
of workloads with different characteristics can be designed to
simulate distinct real-time scenarios. In particular, we pursue
to generate workloads with tasks presenting a wide diversity of
real-time constraints, avoiding task sets where all tasks present

Algorithm 3 TCB Workload Generator
1: Inputs:
2: n: number of tasks in the generated workload
3: Percentages of tasks for each class
4: Utilization bounds for each class (MinUc, MaxUc)

5: Pick n random applications from available benchmark sets
as tasks

6: Distribute the tasks among the classes complying with the
input percentages

7: for each class c do
8: for each task i in c do
9: Periodi = WCETi

Random Utilization [MinUc, MaxUc]

10: end for
11: end for
12: Return workload

either relatively relaxed or tight deadlines. In this work, for
illustrative purposes, it is studied and checked the behavior of
the workload generator using three different classes.

The second main goal of the proposed workload generator
is to enable the designer to control the tasks that will be more
affected (i.e. will be more prone to lose their deadlines) by
the inter-application interference at the shared resources. This
also can be done with task classes, since the utilization bounds
of a task class imply a certain level of deadline adjustment.

Traditional workloads generators like UUniFast target a
simple processor utilization value. However, this approach,
mainly due to inter-application interference, is hard to fulfill.
In the TCB workload generator we have devised a novel
approach, where a range of utilization (utilization bounds)
is defined to each class. Flexibility has been enhanced by
specifying the percentage of tasks in the class.

The TCB workload generator requires a set of available
applications or tasks. Note that the generator working prin-
ciples can be extrapolated to any set of applications. The
user configures the number of processes in a workload and
their distribution in task classes and, as a result, the generator
returns the real-time workload. That is, a list of randomly
selected applications with their assigned random (within the
class limits) periods.

Algorithm 3 summarizes the operation of the task class-
based workload generator. Lines 2 to 4 show the input pa-
rameters that the TCB workload generator should receive to
obtain a new workload. These parameters are the number of
tasks of the workload, the distribution of these tasks across
the configured classes, and the utilization bounds for the tasks
of each class.

First, the workload generator randomly selects n appli-
cations from the set of available benchmarks (line 5) and
distributes them among the different classes (line 6), obeying
the percentage of tasks that should be assigned to each class as
defined by the user. By default, we let any task to be assigned
to any class, but the algorithm can be easily tuned to bind
certain tasks to particular classes.

Then, the algorithm iterates trough the tasks to assign them
a period (line 9). Periods are calculated as the WCET of the
task divided by a random utilization, determined following a
uniform distribution between the lower and upper utilization
bounds defined for the task class.

Finally, the workload generator returns the list of tasks that
form the devised workload with their assigned periods.

IV. EXPERIMENTAL FRAMEWORK

We have tested the TCB workload generator in a Intel Xeon
E5645 system, which is a six-core SMT processor where each
core can simultaneously run up to two threads (SMT2). Each
core implements private L1 (32 KB) and L2 (256 KB) caches,
and all the cores share a 12 MB LLC and 12 GB DDR3
SDRAM main memory. The system has installed a Fedora
Core 10 Linux distribution with kernel 3.11.4.

To evaluate the workloads we have extended an in-house
user-level scheduler developed in previous works [10], [14] to
consider the specific characteristics of real-time workloads.
More precisely, we have added the deadline and period
parameters to the tasks and modified the scheduler to: 1)
automatically kill tasks that have not complete before their
deadline when it is reached, 2) automatically activate the tasks
on each period, and 3) account for real-time statistics such
as deadline hits and misses for the tasks. In addition, we
have implemented the Early Deadline First (EDF) scheduling
algorithm [15], which is a widely used scheduling policy for
real-time systems.

Finally, a set of eleven benchmarks taken from different
benchmark suites has been considered as tasks. The bench-
marks share two characteristics. First, they include tasks typi-
cally performed by nowadays real-time systems such as video
and audio encoding and decoding, artificial intelligence pro-
cesses, or image processing. Second, they are computationally
intense and thus workloads composed of these tasks should run
on a multicore processor with relatively high performance.

V. TCB WORKING EXAMPLES

This section illustrates how mixes generated by the proposed
algorithm are more appropriate to evaluate current real-time
systems than mixes generated with the UUniFast workload
generator. For this purpose, a sample of three workloads
obtained with both the UUniFast and the TCB workload
generators is presented. These workloads are analyzed using
two SMT2 cores of the experimental platform (i.e. the number
of active hardware contexts is equal to 4) and the EDF
scheduling policy.

Figure 3 shows a sample execution of the three 8-task
workloads obtained with UUniFast. Note that, as discussed
in Section III-A, the UUniFast algorithm receives as inputs
the number of tasks of the workload and the overall target
utilization, but it does not allow distinct real-time constraints
for different tasks. Accordingly to the number of active
hardware contexts, we set the UUniFast target utilization to
4.

(a) UUniFast workload 1 (Theoretical utilization = 4)

(b) UUniFast workload 2 (Theoretical utilization = 4)

(c) UUniFast Workload 3 (Theoretical utilization = 4)

Fig. 3. Sample workloads obtained with UUniFast. X-axis represents execution time in quanta and Y-axis the applications that form the workload.

In the figure, for each task, the colored line represents the
task execution and the small squares represent the deadlines.
Tasks should complete their execution before a new instance
of the task is launched (Di = Pi). Brown squares represent a
deadline hit (the task completes execution before the deadline)
and blue squares represent deadline misses. Tasks are labeled
as X Y, where X refers to the application id and Y refers
to the task position within the workload. The three workloads
have a theoretical utilization of 4 since the UUniFast algorithm
generates workloads with the exactly requested utilization.

The plots illustrate the two main shortcomings that work-
loads generated with the UUniFast algorithm can present. On
the one hand, even with a theoretical utilization set to 4, all
the tasks of the first two workloads present too relaxed time
constraints and tasks complete execution long before their
deadline. This type of workload does not present any interest
for SMT research, since the interference among applications
that are running concurrently do not prevent any deadline to
be fulfilled. To increase the probability of suffering deadline
misses due to the inter-application interference in UUniFast
workloads, the target utilization needs to be increased. How-

ever, in this case most applications suffer deadline misses,
which is not representative of real life scenarios.

On the other hand, when the overall target utilization in
UUniFast is higher than 1 (as it is in our scenario), deadlines
can be placed too strictly, which takes to scenarios where some
applications can suffer continuous deadline misses [16]. For
instance, task 18 5 in the third sample workload presents too
strict time constraints so it can only meet its deadline one time
out of seven executions. We have checked that this problem
occurs even in low interference situations. Notice that this type
of workloads would not be benefited by interference-aware
schedulers.

Figure 4 presents three sample workloads obtained with
our TCB workload generator. The generator is configured
to work with three task classes according to the following
specifications: 40% of tasks belong to the first class, 50% to
the second class, and the remaining 10% to the third one.
Recall that task classes differ among them in the limits that
restrict the random task utilization, which, at the same time,
determine how tight the deadlines are. The tasks of the first
class are assigned higher individual utilizations and thus will

(a) TCB workload 1 (Theoretical utilization = 3.64)

(b) TCB workload 2 (Theoretical utilization = 3.46)

(c) TCB workload 3 (Theoretical utilization = 3.49)

Fig. 4. Example of workloads obtained with TCB. X-axis represents execution time in quanta and Y-axis the applications that form the workload.

present tighter periods. To this end, the upper and lower
bounds of the first class were set to 0.95 and 0.65, respectively.
On the contrary, the tasks of the third class present the lowest
utilization and hence more relaxed periods, setting its lower
and upper bounds to 0.20 and 0.33, respectively. Tasks in the
second class receive an utilization falling in between the first
and third classes. Notice that by distributing tasks into these
categories we generate workloads that will have tight, medium,
and relaxed deadlines.

It can be observed that the tasks in these plots present
heterogeneous time restrictions depending on their class. For
instance, in the first workload, task 4 0 and 9 1 present shorter
periods and thus they are more exposed to deadline misses due
to interference. In contrast, other tasks like 30 7 present wider
periods and should not be a problem for the scheduler.

Unlike the workloads obtained by the UUniFast algorithm,
the workloads generated with our proposed TCB generator
do not match an exact utilization. The three generated work-
loads present theoretical utilizations of 3.64, 3.46, and 3.49.
Despite their lower theoretical utilization, these workloads are
more meaningful for SMT-based real-time systems research,

since TCB includes applications potentially affected by key
interference-related issues that can be solved by a smart
scheduler. For example, one possible strategy could be to place
applications that cause low interference in the same core as
applications that are sensitive to interference. In this way,
the impact on the performance of the interference-sensitive
application is lower, which reduces the amount of deadline
misses.

VI. CONCLUSIONS AND FUTURE WORK

The complexity of tasks requiring real-time execution has
been increasing lately and it is expected to keep increasing
in the next years. Multimedia systems and self-driving cars
are only two examples of scenarios where both real-time and
high performance are required. To cope with the performance
requirements, real-time systems are nowadays moving to mul-
ticore processors and will likely move to SMT processors
in the next years. Research on real-time systems with these
architectures is therefore expected to grow.

In this paper we have proposed the task class-based (TCB)
workload generator, which aims at easing and automating
the process of designing meaningful real-time workloads for

these systems. Unlike previous workload generators such as
UUniFast, the TCB generator is designed aimed at help-
ing researchers investigate on sharing resources and meeting
deadlines in SMT multicore systems. A novel feature of
TCB is the concept of task classes that allows setting the
percentage of tasks with deadline tightness bounded within
defined thresholds. TCB has been checked and compared to
UUniFast. For this purpose multiple workloads have been
generated and their characteristics analyzed. It has been proven
that TCB provides more meaningful real-time workloads for
SMT-based real-time systems research.

As a future work, we plan to design different scheduling
policies to minimize the performance variability and maximize
the throughput of real-time systems with SMT multicore
processors. The TCB workload generator will be used to
easily obtain meaningful workloads to evaluate the different
scheduling algorithms on the scenarios under study.

ACKNOWLEDGMENTS

This work has been has been funded by the Spanish Min-
isterio de Economı́a y Competitividad (MINECO) and Plan
E funds, under grants TIN2015-66972-C5-1-R and TIN2017-
92139-EXP, and ExaNest project funded by the European
Union’s Horizon 2020 under grant agreement No 671553.
Josué Feliu has been supported through a postdoctoral fel-
lowship by the Generalitat Valenciana (APOSTD/2017/052).

REFERENCES

[1] L. Dozio and P. Mantegazza, “Linux real time application interface (rtai)
in low cost high performance motion control,” 2003.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully
autonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent
Vehicles Symposium (IV), 2011, pp. 163–168.

[3] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, 2003, pp. 149–163.

[4] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-criticality real-time scheduling for multicore
systems,” in 10th IEEE International Conference on Computer and
Information Technology, 2010, pp. 1864–1871.

[5] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hard-
ware support for wcet analysis of hard real-time multicore systems,”
SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 57–68, 2009.

[6] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiones, M. Gerdes, M. Paolieri, J. Wolf, H. Cass, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische,
“Merasa: Multicore Execution of Hard Real-Time Applications Sup-
porting Analyzability,” IEEE Micro, vol. 30, no. 5, pp. 66–75, 2010.

[7] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” SIGARCH Comput. Archit. News,
vol. 23, no. 2, pp. 392–403, May 1995.

[8] J. Burns and J.-L. Gaudiot, “Smt layout overhead and scalability,” in
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 2,
2002, pp. 142–155.

[9] D. B. Y. Li, K. Skadron and Z. Hu, “Performance, energy, and thermal
considerations for smt and cmp architectures,” in International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2005, pp.
71–82.

[10] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Bandwidth-aware on-
line scheduling in smt multicores,” IEEE Transactions on Computers,
vol. 65, no. 2, pp. 422–434, Feb 2016.

[11] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1, pp. 129–154, 2005.

[12] M. Cirinei and T. P. Baker, “Edzl scheduling analysis,” in 19th Euromi-
cro Conference on Real-Time Systems (ECRTS’07), 2007, pp. 9–18.

[13] R. I. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, vol. 47, no. 1, pp. 1–40, Jan 2011.

[14] J. Feliu, S. Eyerman, J. Sahuquillo, and S. Petit, “Symbiotic Job Schedul-
ing on the IBM POWER8,” in Proceedings of the 22nd International
Symposium on High-Performance Computer Architecture (HPCA), 2016,
pp. 669–680.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” in Journal of the ACM, vol. 20,
no. 1, 1973, pp. 46–61.

[16] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS workshop at the Euromicro
Conference on Real-Time Systems, 2010, pp. 6–11.

