

Doctoral Thesis

Functional Size Measurement and Model

Verification for Software Model-Driven
Developments: A COSMIC-based Approach

Beatriz Marín Campusano

Advisors: Dr. Oscar Pastor
 Dr. Alain Abran

July 2011

Functional Size Measurement and Model Verification for

Software Model-Driven Developments: A COSMIC-based

Approach

This report was prepared by

Beatriz Marín Campusano

Advisors

Oscar Pastor López, Universitat Politèctnica de València
Alan Abran, Université du Québec à Montréal

Members of the Thesis Committee:

Prof. Vicente Pelechano Ferragud, Universitat Politèctnica de València
Prof. Juan José Cuadrado Gallego, Universidad Carlos III de Madrid
Prof. Antonio Vallecillo Moreno, Universidad de Málaga
Prof. Natalia Juristo Juzgado, Universidad Politécnica de Madrid
Prof. Pedro Valderas Aranda, Universitat Politèctnica de València

Centro de Investigación en Métodos de Producción de Software (PROS)
Universitat Politècnica de València
Camino de Vera s/n, 46022 Valencia, Spain
Tel: +34-963877007 Ext. 83530
Fax: +34-963877359
Web: www.pros.upv.es

To Giovanni, Bianca, and Caterina

__

I

Acknowledgement

The development of this thesis has been an exciting challenge, with several
discussions, meetings, and years of work. During this academic journey, I
have been encouraged and accompanied by many people that I would like to
thank.

First of all, I would like to thank my advisor and friend Oscar Pastor for
his confidence, affection, support, and encouragement. He gave me the
possibility to start researching, and throughout these years, he has always
supported my ideas, giving me valuable assistance in every step done to face
the challenging life of a researcher.

I would also like to thank my advisor Alain Abran for his assistance,
confidence, and encouragement. All our meetings and e-mails have been
very helpful to develop, improve, and communicate this work.

A special gratitude is to Vicente Pelechano for show me that the hard
work had always the best reward and for his extremely quick feedback that I
always have received.

I extend many thanks to Tanja Vos for her responsibility and enthusiasm
in every work that we had performed. Tanja, you are an example of the work
well done.

A special mention is for Juan Sánchez for his affection and generous
advice.

Also, I would like to thank Vicky, Ana, Fani, Paqui, Nata, Marce,
Mariajo, Pedro, J-Lu, Paco, Pau, Carlos, Ignacio, Sergio E., Arthur, and

__

II

Sergio S. for all the great moments that we have had inside and outside of
the lab. Dear friends, thanks for your affection, friendly conversations,
coffees, and dinners, which have been essential for the happy ending of this
thesis.

I extend these thanks to all my colleagues at the PROS research center,
and the administrative personnel and colleagues at DSIC for their
friendliness and good vibrations at work, which make a really delight to
work in this department.

I would like to thank my parents, my sisters and brothers, and my
nephews and nieces for all their unconditional love and support throughout
my life.

Finally, my special thanks to my beloved husband and colleague
Giovanni for his love, understanding, and encouragement. Without him, this
work would not have been possible. I would also thank to my babies Bianca
and Caterina for their love, happiness, and for give me time to carry out this
work.

__

III

Abstract

Historically, software production methods and tools have a unique goal: to

produce high quality software. Since the goal of Model-Driven Development
(MDD) methods is no different, MDD methods have emerged to take
advantage of the benefits of using conceptual models to produce high quality
software.

In such MDD contexts, conceptual models are used as input to
automatically generate final applications. Thus, we advocate that there is a
relation between the quality of the final software product and the quality of
the models used to generate it. The quality of conceptual models can be
influenced by many factors. In this thesis, we focus on the accuracy of the
techniques used to predict the characteristics of the development process and
the generated products.

In terms of the prediction techniques for software development
processes, it is widely accepted that knowing the functional size of
applications in order to successfully apply effort models and budget models
is essential. In order to evaluate the quality of generated applications, defect
detection is considered to be the most suitable technique.

The research goal of this thesis is to provide an accurate measurement
procedure based on COSMIC for the automatic sizing of object-oriented
OO-Method MDD applications. To achieve this research goal, it is necessary
to accurately measure the conceptual models used in the generation of
object-oriented applications. It is also very important for these models not to

__

IV

have defects so that the applications to be measured are correctly
represented.

In this thesis, we present the OOmCFP (OO-Method COSMIC Function
Points) measurement procedure. This procedure makes a twofold contribution:
the accurate measurement of object-oriented applications generated in MDD
environments from the conceptual models involved, and the verification of
conceptual models to allow the complete generation of correct final
applications from the conceptual models involved.

The OOmCFP procedure has been systematically designed, applied, and
automated. This measurement procedure has been validated to conform to the
ISO 14143 standard, the metrology concepts defined in the ISO VIM, and the
accuracy of the measurements obtained according to ISO 5725. This
procedure has also been validated by performing empirical studies.

The results of the empirical studies demonstrate that OOmCFP can obtain
accurate measures of the functional size of applications generated in MDD
environments from the corresponding conceptual models. They also
demonstrate that OOmCFP is useful in finding defects in conceptual models
that are related to the consistency and the correctness of the conceptual model.

__

V

Resumen

Históricamente, los métodos y herramientas desarrollados para producir
software han tenido un único objetivo: producir software de alta calidad.
Dado que el objetivo de los métodos de Desarrollo de Software Dirigidos
por Modelos (DSDM) no es diferente, estos métodos han surgido para tomar
ventaja de los beneficios de usar modelos conceptuales para producir
software de alta calidad.

En el contexto del DSDM, los modelos conceptuales son usados como
entrada para generar automáticamente las aplicaciones finales. Por esto,
creemos que existe una relación entre la calidad del producto de software
generado y la calidad de los modelos utilizados para generarlo. La calidad de
modelos conceptuales puede ser influenciada por muchos factores. En esta
tesis, nos enfocamos en la exactitud de las técnicas utilizadas para predecir
características del proceso de desarrollo y de los productos generados.

Respecto a las técnicas predictivas para los procesos de desarrollo de
software, es ampliamente aceptado que el conocimiento del tamaño
funcional de las aplicaciones es esencial para aplicar satisfactoriamente
modelos de esfuerzo y presupuesto. Respecto a la evaluación de la calidad de
las aplicaciones generadas, la detección de defectos es considerada como la
técnica más apropiada.

El objetivo de investigación de esta tesis es proveer un procedimiento de
medición exacto basado en COSMIC para la medición automática de

__

VI

aplicaciones orientadas a objeto del método DSDM OO-Method. Para lograr
este objetivo de investigación, es necesario medir exactamente los modelos
conceptuales usados en la generación de esas aplicaciones orientadas a
objeto. También es muy importante que esos modelos no tengan defectos
para que las aplicaciones medidas sean correctamente representadas.

En esta tesis, presentamos el procedimiento de medición OOmCFP
(Puntos de Función COSMIC para OO-Method). Este procedimiento hace
una contribución doble: la medición exacta de aplicaciones orientadas a
objeto generadas en entornos DSDM a partir de los modelos conceptuales
involucrados, y la verificación de los modelos conceptuales para permitir la
generación de aplicaciones finales correctas a partir de los modelos
conceptuales involucrados.

El procedimiento OOmCFP ha sido sistemáticamente diseñado, aplicado y
automatizado. Este procedimiento de medición ha sido validado respecto a su
conformidad con el estándar ISO 14143, con los conceptos de metrología
definidos en el estándar ISO VIM, y respecto a la exactitud de las medidas
obtenidas de acuerdo al estándar ISO 5725. El procedimiento OOmCFP
también ha sido validado mediante la realización de estudios empíricos.

Los resultados de los estudios empíricos demuestran que OOmCFP puede
obtener medidas exactas del tamaño funcional de aplicaciones generadas en
entornos DSDM a partir de los modelos conceptuales involucrados. Además,
los resultados demuestran que OOmCFP es útil encontrando defectos en
modelos conceptuales, los cuales están relacionados a la consistencia y la
correctitud de los modelos conceptuales.

__

VII

Resum

Històricament, els mètodes i eines desenvolupades per tal de produir
programari han tingut un únic objectiu: produir programari d'alta qualitat.
Atès que l'objectiu dels mètodes de Desenvolupament de Programari Dirigit
per Models (DSDM) no és diferent, aquests mètodes han sorgit per aprofitar
els beneficis d'usar models conceptuals per i així produir programari d'alta
qualitat.

En el context del DSDM, els models conceptuals són usats com entrada
per a generar automàticament les aplicacions finals. Així, nosaltres creiem
que existeix una relació entre la qualitat del producte de programari generat i
la qualitat dels models utilitzats per generar-lo. La qualitat dels models
conceptuals pot estar influenciada per molts factors. En aquesta tesi, ens
centrem en l'exactitud de les tècniques utilitzades per predir característiques
del procés de desenvolupament i dels productes generats.

Respecte a les tècniques predictives per als processos de
desenvolupament de programari, és àmpliament acceptat que el coneixement
de la grandària funcional de les aplicacions és essencial per aplicar
satisfactòriament models d'esforç i pressupost. Respecte a l'avaluació de la
qualitat de les aplicacions generades, la detecció de defectes és considerada
com la tècnica més apropiada.

L'objectiu d'investigació d'aquesta tesi és obtindre un procediment de
mesura exacte basat en COSMIC per mesurar automàticament aplicacions

__

VIII

orientades a objecte del mètode DSDM OO-Method. Per aconseguir aquest
objectiu d'investigació, és necessari mesurar exactament els models
conceptuals usats en la generació de les aplicacions orientades a objecte.
També és molt important per a eixos models no tindre defectes perquè les
aplicacions mesurades estiguen correctament representades.

En esta tesi, presentem el procediment de mesura OOmCFP (Punts de
Funció COSMIC per a OO-Method). Este procediment fa una contribució
doble: la mesura exacta d'aplicacions orientades a objecte generades en
entorns DSDM a partir dels models conceptuals involucrats, i la verificació
dels models conceptuals per permetre la generació d'aplicacions finals
correctes a partir dels models conceptuals involucrats.

El procediment OOmCFP ha estat sistemàticament dissenyat, aplicat i
automatitzat. Aquest procediment de mesura ha estat validat respecte a la
seua conformitat amb l'estàndard ISO 14143, amb els conceptes de
metodologia definits en l'estàndard ISO VIM, i respecte a l'exactitud de les
mesures obtingudes d'acord a l'estàndard ISO 5725. El procediment
OOmCFP també ha estat validat mitjançant la realització d'estudis empírics.

Els resultats dels estudis empírics demostren que OOmCFP pot obtindre
mesures exactes de la grandària funcional d'aplicacions generades en entorns
DSDM a partir dels models conceptuals involucrats. Els resultats també
demostren que OOmCFP és útil trobant defectes en models conceptuals, els
quals estan relacionats a la consistència i la correctitud dels models
conceptuals.

__

IX

Table of Contents

Chapter 1 Introduction .. 1

1.1 Motivation .. 3

1.2 Problem Statement ... 5

1.3 Research Goal... 9

1.4 Research Methodology ... 11

1.5 Context of the Thesis .. 15

1.6 Thesis Structure .. 16

Chapter 2 Foundations .. 21

2.1 The COSMIC Measurement Method ... 21

2.2 The OO-Method Approach: A MDD Method 24

2.2.1 The OO-Method Object Model .. 26

2.2.2 The OO-Method Dynamic Model .. 27

2.2.3 The OO-Method Functional Model .. 28

2.2.4 The OO-Method Presentation Model 29

2.3 A Software Measurement Process Model 32

2.4 Conclusions .. 33

Chapter 3 State of the Art ... 35

3.1 Functional Size Measurement Procedures based on COSMIC 36

3.1.1 Proposal of Bévo et al. (1999) .. 36

3.1.2 Proposal of Jenner (2001) ... 37

__

X

3.1.3 Proposal of Diab et al. (2001) ... 38

3.1.4 Proposal of Poels (2002) ... 39

3.1.5 Proposal of Nagano et al. (2003) ... 41

3.1.6 Proposal of Azzouz et al. (2004) ... 42

3.1.7 Proposal of Condori-Fernández et al. (2004) 43

3.1.8 Proposal of Habela et al. (2005) .. 44

3.1.9 Proposal of Grau et al. (2007) ... 45

3.1.10 Proposal of Levesque et al. (2008) .. 46

3.1.11 General Analysis of Measurement Procedures 47

3.2 Approaches to Detect Defects in Conceptual Models 50

3.2.1 Proposal of Travassos et al. (1999) ... 51

3.2.2 Proposal of Laitenberger et al. (2000) 52

3.2.3 Proposal of Conradi et al. (2003) .. 53

3.2.4 Proposal of Gomma et al. (2003) .. 54

3.2.5 Proposal of Kuzniarz et al. (2003) .. 55

3.2.6 Proposal of Berenbach (2004) ... 56

3.2.7 Proposal of Lange et al. (2004) ... 57

3.2.8 Proposal of Leung et al. (2005) ... 59

3.2.9 Proposal of Bellur et al. (2006) ... 61

3.2.10 Proposal of Egyed (2006) .. 61

3.2.11 General Analysis of Defect Detection Proposals 63

3.3 Conclusions .. 64

Chapter 4 Design of a FSM Procedure ... 67

4.1 Definition of the Objectives ... 70

4.1.1 Purpose of the Measurement .. 71

4.1.2 Scope of the Measurement ... 72

4.1.3 Granularity Level of the Software .. 74

4.2 Characterization of the Concept ... 74

4.3 Selection of the Metamodel.. 75

4.3.1 Functional Users and Boundaries ... 77

__

XI

4.3.2 Functional Processes .. 80

4.3.3 Data Groups .. 88

4.3.4 Data Attributes ... 89

4.3.5 Data Movements ... 89

4.4 Definition of the Numerical Assignment Rules 122

4.4.1 Measurement Function ... 122

4.4.2 Aggregation of Results ... 123

4.5 Conclusions .. 125

Chapter 5 Evaluation of the Design of OOmCFP 127

5.1 Conformity Evaluation of OOmCFP .. 129

5.2 Metrology Evaluation of the Design of OOmCFP 131

5.2.1 Measurement Foundation ... 133

5.2.2 Quantities and Units ... 135

5.2.3 Measurement Standards - Etalons .. 139

5.3 Precision Evaluation of OOmCFP.. 140

5.3.1 A Method for the Evaluation of Precision 143

5.3.2 A Pilot Study to Evaluate the Precision of OOmCFP 153

5.3.3 Lessons Learned from the Pilot Study 156

5.4 Conclusions .. 159

Chapter 6 Application of OOmCFP ... 161

6.1 Manual Application of OOmCFP ... 162

6.1.1 Software Documentation Gathering 163

6.1.2 Construction of the COSMIC Software Model 167

6.1.3 The Measurement Phase: Assignment of Numerical Rules ... 181

6.2 Automatic Application of OOmCFP .. 182

6.2.1 Architecture of OOmCFP Tool .. 182

6.2.2 Efficiency in the Measurement ... 184

6.2.3 Using the OOmCFP Tool ... 186

6.2.4 Verification of the OOmCFP Tool ... 191

__

XII

6.3 Conclusions .. 193

Chapter 7 Evaluation of the Application of OOmCFP 195

7.1 Metrology Evaluation of the Application of OOmCFP.............. 196

7.1.1 Measurement Procedure ... 197

7.1.2 Devices for Measurement ... 199

7.1.3 Operations with Devices... 200

7.1.4 Properties of Measuring Devices .. 202

7.2 Precision Evaluation of the Application of OOmCFP................ 202

7.2.1 The Definition Phase of the Experiment 204

7.2.2 The Measurement Phase of the Experiment 205

7.2.3 The Evaluation Phase of the Experiment 206

7.2.4 Validity of Experimental Results ... 209

7.3 Accuracy Evaluation of the Application of OOmCFP 211

7.4 Conclusions .. 213

Chapter 8 Defect Detection in MDD Conceptual Models 215

8.1 A Metamodel for Defect Detection .. 218

8.2 Using OOmCFP to Detect Defects ... 223

8.3 Formalization of Defect Detection Rules 229

8.4 A Defect Detection Tool .. 234

8.4.1 The OOmCFP Tool .. 235

8.5 Conclusions .. 237

Chapter 9 Defect Detection Case Study.. 239

9.1 Design of the Case Study ... 240

9.1.1 Case and Subjects Selection .. 241

9.1.2 Data Collection Procedure .. 244

9.1.3 Analysis Procedure .. 245

9.1.4 Validity Procedure .. 247

9.2 Results .. 250

__

XIII

9.2.1 Execution Description ... 251

9.2.2 Analysis and Interpretation Issues ... 252

9.3 Conclusions .. 265

Chapter 10 Conclusions ... 267

10.1 Contributions ... 268

10.2 Publications ... 270

10.3 Future Work .. 275

References ... 279

Appendix A OOmCFP Measurement Guide ... 297

Appendix B Conformity Evaluation Checklist 321

Appendix C Number of Defects in the Case Study 327

__

XIV

__

XV

List of Figures

Figure 1.1 Design Research Methodology. .. 11

Figure 1.2 First cycle of the methodology applied to this thesis. 12

Figure 1.3 Second cycle of the methodology applied to this thesis. 14

Figure 2.1 Phases and activities in COSMIC version 3.0 22

Figure 2.2 Models and transformations of the OO-Method approach. 24

Figure 2.3 The Jacquet and Abran software measurement process model. .. 33

Figure 3.1 Main methods related to this thesis. .. 35

Figure 4.1 Design Process of the OOmCFP Measurement Procedure. 69

Figure 4.2 Pieces of software and layers of an OO-Method application. 74

Figure 4.3 Metamodel of COSMIC version 3.0 ... 76

Figure 4.4 Functional users and boundaries of an OO-Method application. 78

Figure 4.5 Data movements between users and layers of an OO-Method
application. ... 90

Figure 4.6 Data movements in a Display Set without derived attributes. 91

Figure 4.7 Data movements in a Display Set with derived attributes. 93

Figure 4.8 Data movements in a Filter. .. 95

Figure 4.9 Data movements in a Filter with variables that have default values
specified. .. 97

__

XVI

Figure 4.10 Data movements in a Service with preconditions that are
fulfilled. .. 100

Figure 4.11 Data movements in a Service with preconditions that are not
fulfilled. .. 101

Figure 4.12 Data movements in a Service. ... 103

Figure 4.13 Data movements in a Service with default values for its entry
arguments. .. 107

Figure 4.14 Data movements in a Service of a class with integrity constraints
that are fulfilled. ... 110

Figure 4.15 Data movements in a Service of a class with an integrity
constraint that is not fulfilled. ... 111

Figure 4.16 Data movements in a Service with a control condition. 113

Figure 4.17 Data movements in a Service that is contained in a class with
triggers specified. ... 115

Figure 4.18 Data movements in a Service with arguments that have defined
dependency rules. ... 116

Figure 4.19 Data movements in a Service with a conditional navigation
fulfilled and an initialization of an argument. .. 118

Figure 4.20 Data movements in a Service with a conditional navigation
fulfilled and a navigational filtering. .. 121

Figure 5.1 Conformity evaluation process for OOmCFP. 130

Figure 5.2 High-level model of categories of metrology terms [Abran and
Sellami 2002]. .. 132

Figure 5.3 Levels of the Measurement Foundation. 134

Figure 5.4 Measurement Foundations for OOmCFP. 135

Figure 5.5 High-level model of Quantity category. 135

Figure 5.6 High-level model of Measurement Standards - Etalons
category. ... 139

Figure 5.7 Measurement of accuracy under ISO 5725. 141

Figure 5.8 Method for evaluation of precision of software measures. 145

__

XVII

Figure 6.1 Application of OOmCFP Measurement Procedure. 162

Figure 6.2 Object model of a rent-a-car system. .. 164

Figure 6.3 Example functional model of the Vehicle class. 165

Figure 6.4 Dynamic model of the Client class of the rent-a-car system. ... 165

Figure 6.5 Menu (HAT) specified for the rent-a-car system. 166

Figure 6.6. Attributes for the PIU_RentsDetails of the rent-a-car system.. 166

Figure 6.7. Functional users, Pieces of software, layers, and boundaries of
the rent-a-car system. ... 168

Figure 6.8. Data movements that occur in the rent-a-car system. 174

Figure 6.9. Analysis process in the OOmCFP tool. 183

Figure 6.10 Schema of the solution to avoid overflow problems. 185

Figure 6.11 First Interface of OOmCFP tool.. 186

Figure 6.12 Second Interface of OOmCFP tool. .. 188

Figure 6.13 Third Interface of OOmCFP tool. ... 188

Figure 6.14 Main page of the measurement report for the rent-a-car
application. ... 189

Figure 6.15 Data movements in the elements contained in the functional
processes of the rent-a-car application. .. 190

Figure 6.16 Data groups related to the data movements identified in the rent-
a-car application. .. 190

Figure 7.1 High-level model of categories of metrology terms [Abran and
Sellami 2002]. .. 196

Figure 7.2 Topology of measurement procedure. 197

Figure 7.3 Topology of measurement instrument. 199

Figure 8.1 A metamodel for defects detection in conceptual models 222

Figure 8.2 Process of the defect detection tool ... 235

Figure 8.3 Screenshot of the tool and HTML defects report 237

Figure 9.1 Defects found by each inspector in Model2 253

__

XVIII

Figure 9.2 Distinct defects found in Model4 .. 254

Figure 9.3 Defect Types found by the inspection team in Model1 256

Figure 9.4 Defect Types found by the inspection teams 259

Figure 9.5 Defect Types found by the OOmCFP tool. 262

__

XIX

List of Tables

Table 1. Defect Types presented by Laitenberger et al. (2000). 53

Table 2. Defect Types presented by Gomma et al. (2003). 55

Table 3. Defect Types presented by Kuzniarz et al. (2003)........................ 56

Table 4. Defect Types presented by Berenbach (2004). 58

Table 5. Defect Types presented by Lange et al. (2004 and 2006). 59

Table 6. Defect Types presented by Leung et al. (2005). 60

Table 7. Defect Types presented by Bellur et al. (2006). 62

Table 8. Presentation elements contained in the interaction units. 83

Table 9. Quality criteria for the design of a measurement method. 133

Table 10. Instantiation of ISO 5725 with software engineering concepts. 144

Table 11. Table to collect the results of the measures (adapted from ISO
5725)... 149

Table 12. Table to collect the arithmetic means of cells (adapted from ISO
5725)... 150

Table 13. Table for recording the spread of cells. 151

Table 14. Contained elements in PIU_Rental. .. 170

Table 15. Contained elements in PIU_Vehicle. .. 171

Table 16. Contained elements in PIU_Office. .. 172

Table 17. Functional Processes, data groups, and data attributes of the rent-
a-car application. .. 173

Table 18. Data movements that occur in PIU_Rental............................... 176

Table 19. Data movements that occur in PIU_Vehicle............................. 179

__

XX

Table 20. Data movements that occur in PIU_Office. 181

Table 21. Results obtained by the OOmCFP tool for 6 conceptual models of
real projects. ... 192

Table 22. Models used to test the performance of the OOmCFP tool. 193

Table 23. Quality criteria for the application of a measurement method
according to metrology concepts. ... 197

Table 24. Results of the measurement exercise. 206

Table 25. Arithmetic means of cells. .. 207

Table 26. Spread of cells. ... 207

Table 27. Repeatability variance and reproducibility variance of each
level. ... 208

Table 28. Results obtained by the OOmCFP tool. 212

Table 29. Defects related to mapping rules of OOmCFP. 224

Table 30. Defects related to display and filter patterns OOmCFP rules. ... 225

Table 31. Rules to identify the data movements of OOmCFP. 226

Table 32. Rules to identify the data movements of OOmCFP. 227

Table 33. Rules to identify the data movements of OOmCFP. 228

Table 34. 8 Defect Types of Conceptual Models found using OOmCFP and
OCL Rules. ... 230

Table 35. 9 Defect Types of Conceptual Models found using OOmCFP and
OCL Rules. ... 231

Table 36. 6 Defect Types of Conceptual Models found using OOmCFP and
OCL Rules. ... 232

Table 37. 5 Defect Types of Conceptual Models found in the literature and
OCL Rules. ... 233

Table 38. Distribution of subjects in the inspection teams for the five
models. ... 251

Table 39. Analysis of Defects found in Model4. 255

Table 40. Description of Defect types related to the correctness and
consistency found by the inspection teams. ... 257

__

XXI

Table 41. Description of Defect types related to the completeness found by
the inspection teams. .. 258

Table 42. Description of Defect types found by the OOmCFP tool. 260

Table 43. Defects found by the inspection teams (IT) and OOmCFP. 262

Table 44. Summary of publications related to this thesis. 275

__

XXII

__

1

Chapter 1

Introduction

Model-Driven Development (MDD) technologies attempt to separate the
business logic from the platform technology in order to allow for the
automatic generation of software through well-defined model
transformations. In a software production process based on MDD
technology, the conceptual models are the key artifacts that are used as input
in the process of code generation. For this reason, the conceptual models
must provide a holistic view of all the components of the final application
(including the structure of the system, the behavior of the system, the
interaction between the users and the system, and the interaction among the
components of the system) in order to be able to automatically generate the
final application.

In this context, we advocate that there is a relation between the quality of
the final software product and the quality of the models used to generate it.
Therefore, it would be possible to improve the quality of the software
products that are generated using MDD technologies by evaluating and
improving the quality of the conceptual models involved.

The quality of conceptual models is influenced by many factors, for
instance, the suitability of the modeling language for the problem domain,
the compliance of the tools used for modeling and performing the
transformations over the modeling language, the convenience of the

1. Introduction

__

2

modeling process with respect to the language and the tools used, the
accuracy of the techniques applied to predict the characteristics of the
development process and the generated products, etc. Thus, in order to
evaluate the quality of conceptual models, it is necessary to select adequate
techniques to control these factors. In this thesis, we focus on the accuracy of
the techniques used to predict the characteristics of the development process
and the generated products.

In terms of the prediction techniques for software development
processes, it is widely accepted that knowing the functional size of
applications is essential in order to successfully apply effort models (to
predict the efforts that will be required in the project) and budget models (to
predict the money that will be spent on the project) [Meli et al. 2000]. This
knowledge can be used to generate indicators that facilitate the management
of development projects.

To evaluate the quality of generated applications, defect detection is
considered to be a suitable technique since it offers a high level of empirical
validity that is provided by the variety of applications that are observed.

In a MDD context, where models are representing the different
perspectives of the intended software applications, the functional size of the
generated applications can be directly measured from the corresponding
conceptual models. Thus, relevant indicators can be obtained in early stages
of the development cycle.

 Furthermore, since a functional size measurement procedure analyzes all
the elements of the conceptual model that participate in the system
functionality, the functional size procedure can be used to identify defects in
the conceptual models. Thus, the aim of this work is to present a functional
size measurement procedure that (1) allows the accurate measurement of
final applications generated in MDD environments from their conceptual
models, and (2) uses the analysis performed by the functional size
measurement procedure to automatically detect defects in the conceptual
models of the generated applications.

1. Introduction

__

3

The rest of this chapter is organized as follows: Section 1.1 presents the
reasons that inspire this thesis, and Section 1.2 presents the problem tackled
in this work. Section 1.3 presents the goals of this research, and Section 1.4
presents the research methodology followed to achieve these goals. Section
1.5 presents the development context of this thesis, and finally, Section 1.6
presents the structure of the rest of the document.

1.1 Motivation

According to the 2011 Gartner study [Gartner 2011], global IT spending
totaled $3.4 trillion, up 5.4 percent from 2009 levels. However, although
there is a continual increase in IT investments, the success of IT projects is
still low. The latest CHAOS study published in 2010 [Standish_Group 2010]
shows a decrease in project success rates, with only 32% of all projects
being delivered on time, on budget, and with the required features and
functions.

To achieve success in IT projects, the management and control of these
kind of products is crucial. However, as Tom de Marco says [DeMarco
1982]: “you can not control what you can not measure”, and as Norman
Fenton says [Fenton and Pfleeger 1996]: “you can not predict what you can
not measure”. Taking into account these celebrated phrases, it is possible to
state that the measurement of software products is crucial for the
management and control of software products.

Software measurement can be performed from several different points of
view, which can be grouped into two different approaches: a priori and a

posteriori [Tran-Cao et al. 2002]. Since the a posteriori approaches (for
instance, kilobytes of the product, code lines [Conte86], etc.) have a high
dependency on the technological platform, these approaches have the
disadvantage of providing measures too late and with little relevance for
management. In contrast, since the a priori approaches (for instance,

1. Introduction

__

4

functional size) are independent of the technological platform, these
approaches are gaining more and more attention in the software
measurement community because they allow the generation of indicators at
early stages of the software development cycle.

Functional Size Measurement (FSM) was defined in the late 1970’s
mainly through the Function Point Analysis (FPA) proposal [Albrecht 1979].
Later, FPA was adapted by other proposals, from which five proposals have
been recognized as standard measurement methods: IFPUG FPA [ISO/IEC
2003b], MK II FPA [ISO/IEC 2002], NESMA FPA [ISO/IEC 2005],
COSMIC FFP [ISO/IEC 2003a], and FISMA [ISO/IEC 2008]. In general
terms, these standards define a set of concepts and steps that must be taken
into account to obtain the functional size of applications. Thus, the result of
the application of a functional size measurement standard is a number that
represents the amount of functionality of an application.

The functional size can be used to control the development of software
products by calculation of indicators and comparison with the indicators of
other software projects. Also, the functional size can be used in effort or
budget models to predict these issues of the projects. In addition, since the
process used to obtain the functional size takes into account all the concepts
related to the functionality of an application, it is possible to exploit the
measurement process in order to find defects that are related to these
concepts.

In a MDD context [Mellor et al. 2003] [Selic 2003], where conceptual
models are used as inputs in the generation process of the final application,
the use of functional size measurement procedures can improve the quality
of the generated applications by means of the improvement of the quality of
the corresponding conceptual models. Thus, functional size measurement
procedures can be used as suitable techniques to generate indicators of the
conceptual models and to find defects in the conceptual models.

1. Introduction

__

5

1.2 Problem Statement

The ISO/IEC 14143-1 [ISO 1998] standard defines functional size as the size
of the software derived by quantifying the functional user requirements. This
standard also defines a Functional Size Measurement (FSM) as the process
of measuring the functional size. In addition, this standard defines a FSM
method as the implementation of a FSM that is defined by a set of rules,
which is defined in accordance with the mandatory features defined in the
ISO/IEC 14143-1.

The measurement methods that fulfill the characteristics defined in the
ISO/IEC 14143-1 [ISO 1998] and that have been verified with the ISO/IEC
14143-2 [ISO 2002] have been recognized as standards. These measurement
methods are: IFPUG FPA [ISO/IEC 2003b], MK II FPA [ISO/IEC 2002],
NESMA FPA [ISO/IEC 2005], COSMIC [ISO/IEC 2011], and FISMA
[ISO/IEC 2008]. The first three methods are based on the Function Point
Analysis proposal [Albrecht 1979], which takes into account only the
functionality of the system that the human user observes.

Later, FPA has been adapted to object-oriented models aligned with the
UML standard [Lehne 1997] [Tavares et al. 2002] [Uemura et al. 1999].
These FPA-based methods have several limitations for the correct
measurement of systems: for instance, they only allow the measurement of
the functionality that the human user sees, ignoring all the functionality that
is needed for the correct operation of the application (which must be built by
the developer, even though it is not seen by the human user); they only allow
the measurement of Management Information Systems, which excludes the
measurement of other types of software (such as real time software); and
they do not consider the functionality that allows communication between
layers in systems with a layer-based architecture.

Another significant limitation of FPA-based methods is that the size of
any elementary process within a model is limited to only three intervals of
classifications for DET (Data Element Types), RET (Record Element

1. Introduction

__

6

Types), or FTR (File Types Referenced). These intervals assign a specific
functional size for the elementary process in the complexity tables of the
FSM method. Therefore, the functional size of a model will not vary even if
some elementary processes have a very large number of DET, RET, or FTR
[Giachetti et al. 2007; Kitchenham 1997]. Even though we found approaches
that measure the functional size in MDD environments in the literature
[Abrahão et al. 2006] [Abrahão et al. 2007], these approaches are FPA-
based and also have the FPA limitations.

To overcome the limitations of the FPA-based measurement methods,
the COSMIC measurement method [Abran et al. 2001] was defined in the
late 1990’s as the second generation of the functional size measurement
method. It has been adopted as an international standard: ISO 19761
[ISO/IEC 2003a]. One of the advantages of COSMIC on FPA is that it
allows the measurement of the functional size from different points of view,
for instance, the functionality that the users see and the functionality that the
developer has to build. Another advantage is that COSMIC uses a
mathematical function that is not limited by maximum values to aggregate
the functional size of the functional processes specified in the conceptual
models. This helps to better distinguish the size of large conceptual models.
Another advantage of COSMIC is that it allows the measurement of
applications that are generated in layers, which allows the measurement of
the whole application or the measurement of every layer of the application.

Currently, there are some measurement procedures that apply COSMIC
to estimate the functional size of future software applications from models.
A measurement procedure is defined by the International Vocabulary of
Basic and General Terms in Metrology (VIM) [ISO 2004] as a “set of

operations, described specifically, used in the performance of particular

measurements according to a given method of measurement”. Some
measurement procedures apply COSMIC to requirement models [Bévo et al.
1999] [Jenner 2001] [Condori-Fernández 2004] [Grau and Franch 2007b].
These proposals use scenarios, use-case diagrams, sequence diagrams, and i*

1. Introduction

__

7

models to estimate the functional size. However, these models do not have
enough semantic expressiveness to specify all the functionality of the
involved systems (for instance, in these models it is not possible to specify
the way in which the values of the attributes of a class changes); therefore,
the functional size obtained by these proposals is not the accurate functional
size of the final application.

There are other proposals that are designed to measure the functional
size of conceptual models used in the automatic generation of final
applications. These conceptual models provide more functional
expressiveness than requirement models. This is the case of Diab’s proposal
[Diab et al. 2001] and Poels’ proposal [Poels 2002].

Diab’s proposal presents a measurement procedure to measure real-time
applications modeled with the ROOM language [Selic et al. 1994]. Poels’
proposal presents a measurement procedure to object-oriented applications
of the domain of Management Information Systems (MIS) that are modeled
with an event-based method named MERODE [Dedene and Snoeck 1994].
The main disadvantage of these two proposals is that the conceptual model
does not allow the specification of all the functionality of the final
application; for instance, that conceptual model does not allow the
specification of the presentation of the application. Also, Poels’ proposal is
restricted to a specific technology because it uses the AndroMDA tool to
specify the presentation of the application and to generate the final
application. This generates a traceability problem between the generated
application and the conceptual model. In addition, both proposals were
defined using an old version of the COSMIC measurement method.
Therefore, these proposals do not take into account the improvements made
to the COSMIC measurement method, for instance, the capability to measure
the functional size of a piece of software depending on the functionality that
another piece of software requires. Other FSM procedures (based on
COSMIC) for measuring the functional size of conceptual models can be
found in the survey presented in [Marín et al. 2008].

1. Introduction

__

8

In summary, none of the proposals for measurement procedures allows
an accurate measurement of the functional size of MIS applications from the
related conceptual model. Thus, the prediction of productivity, effort,
budget, and other indicators using these proposals is very far from the real
values. Moreover, none of them take advantage of the procedure used to
obtain the functional size or the automation of the procedure in order to find
defects in the models. In some cases, measurement procedures have been
automated to obtain the functional size, but they do not take advantage of
automation to improve the quality of the conceptual models. The main
limitation of the approaches presented above comes from the lack of
expressiveness of the conceptual models that are involved in the generation
of the final application.

If the conceptual model has enough expressiveness to specify all the
functionality of the final application, then a measurement procedure can
accurately measure the functional size of the final application from its
conceptual model. In addition, since a functional size measurement
procedure analyzes the conceptual models in order to identify and count the
elements that represent the functionality of the final applications, the
measurement procedure can be used to detect the defects that the models
may have.

In order to solve the problem statement, this thesis proposes a functional
size measurement procedure based on COSMIC for the measurement of the
conceptual models of a specific MDD environment called OO-Method.

The OO-Method approach is an object-oriented method that puts the
MDD technology into practice [Pastor et al. 2001], separating the business
logic from the platform technology, allowing the automatic generation of
final applications by means of well-defined model transformations [Pastor
and Molina 2007]. It provides the semantic formalization needed to define
complete and unambiguous conceptual models, thereby allowing the
specification of all the functionality of the final application at the conceptual
level. This method has been implemented in an industrial tool [CARE-

1. Introduction

__

9

Technologies 2011] that allows the automatic generation of fully working
applications. The applications generated can be desktop or web MIS
applications and can be generated in several technologies (for instance, java,
C#, visual basic, etc.).

Therefore, the measurement procedure proposed in this thesis performs
an accurate measurement of the functional size of final applications from the
corresponding conceptual models and is also used to detect defects that the
conceptual models may have.

1.3 Research Goal

The research goal of this thesis is to provide an accurate measurement

procedure based on COSMIC for the automatic sizing of object-oriented

OO-Method MDD applications. To reach this research goal, it is necessary
to accurately size the conceptual models used in the generation of object-
oriented applications, and it is also very important for these models not to
have defects in order to correctly represent the applications to be measured.
Thus, our research goal will be satisfied by dealing with and achieving the
following sub-goals:

• To provide an accurate measurement procedure based on
COSMIC for the automatic sizing of OO-Method conceptual
models.

• To ensure that OO-Method conceptual models are defect-free
models to allow for the generation and the measurement of object-
oriented applications.

The first sub-goal will be reached by satisfying the following research
objectives:

• To design a functional size measurement procedure based on
COSMIC for the measurement of OO-Method applications from

1. Introduction

__

10

their conceptual models. This design includes a set of mapping
rules between the concepts of COSMIC and OO-Method, and the
definition of a set of rules that allow the quantification of the
functional size of OO-Method conceptual models.

• To apply the measurement procedure. This application includes
the definition of a procedure that guides the application of the
measurement procedure and the definition of an example to apply
the measurement procedure.

• To verify the accuracy of the measurement procedure. This
verification will be performed using standards, metrology
concepts, and controlled experiments.

• To automate the measurement of the functional size of OO-
Method conceptual models. This automation includes an analysis
of the existing tools, the implementation of a measurement tool,
and the verification of the implemented tool.

To reach the second sub-goal, the following research objectives must be

satisfied:

• To study the defects types that can be identified using the
functional size measurement procedure proposed. This study
includes the definition of a list of defect types and their
classification.

• To verify the use of the functional size measurement procedure to
identify defects in the conceptual models. This verification
includes the measurement of conceptual models that have defects
and conceptual models that do not have defects.

• To automate the detection of defects in conceptual models. This
automation includes an analysis of the existing tools, the
implementation of a defect detection tool, and the verification of
the implemented tool.

1. Introduction

__

11

1.4 Research Methodology

To perform the work of this thesis, the design methodology for performing
research in information systems as described by [March and Smith 1995]
and [Vaishnavi and Kuechler 2007] has been selected. Design Research
involves the analysis and performance of designed artifacts to understand,
explain, and, very frequently, to improve the behavior of aspects of
Information Systems. The Design Research Methodology is comprised of
five phases (see Figure 1.1): Awareness of Problem, Suggestion,
Development, Evaluation, and Conclusion.

Figure 1.1 Design Research Methodology.

The awareness of an interesting problem may come from academia or

industry. The output of this first phase is a proposal for a new research
effort. The suggestion phase is a creative step that has a tentative design for
the proposal as result. The tentative design is implemented in the

Awareness of Problem

Suggestion

Development

Evaluation

Conclusion

Proposal

Tentative Design

Artefact

Measures

Results

Phases Outputs
Knowledge

Flows

1. Introduction

__

12

development phase. The output of this phase corresponds to an artefact,
which can vary depending on the tentative design to be constructed. In the
evaluation phase, the artefact is evaluated according to the criteria that are in
the proposal. The measurements of this phase, which are joined to additional
information gained in the construction of the artefact, can deliver feedback
to another design suggestion. Finally, the conclusion phase is the final step
of the research effort. The output of this phase is the result of the research
effort and the knowledge gained.

Following the cycle defined in the Design Research Methodology (see
Figure 1.2), we started with the Awareness of Problem. By performing
systematic reviews of the literature, we have found that none of the
proposals for functional size measurement procedures allows the accurate
measurement of the functional size of MIS applications in the conceptual
models. Therefore, in this thesis, we propose the definition of a measurement
procedure that can obtain accurate functional size measures of the final
software products from the corresponding conceptual models.

Figure 1.2 First cycle of the methodology applied to this thesis.

1. Introduction

__

13

Next, we performed the second phase of the methodology which
corresponds to the Suggestion. In this phase, the design of the functional size
measurement procedure has been performed. This procedure is called
OOmCFP. The OOmCFP procedure has been systematically designed to
obtain accurate measurement results of the application that is generated from
the conceptual models. In this phase, the application of the OOmCFP
procedure to different conceptual models has also been performed.

At this point, we decided that it is very important to evaluate the design
of the measurement procedure before the implementation in order to prevent
the propagation of design defects. Therefore, we proceeded with the
Evaluation phase. To verify the accuracy of the functional size measurement
results obtained by the procedure designed (OOmCFP), we performed the
evaluation phase in accordance with the concepts defined for functional size
methods, the definition of metrology concepts, the accuracy of the
measurement results obtained, and some empirical studies. The results of the
evaluation have been used to correct the design of the OOmCFP
measurement procedure.

Once the solution to the problem was designed, we performed the
Development phase. In this phase, we developed a tool that automates the
application of the OOmCFP measurement procedure. Then, we performed
the Evaluation phase again. In this phase, we verified the OOmCFP tool
empirically. To do this, we used several conceptual models (student
conceptual models and industrial conceptual models). The results of this
phase have been used to correct the OOmCFP tool.

Finally, we performed the Conclusion phase. In this phase, we analyzed
the results of our research work. As the main result, we have designed a
measurement procedure that can obtain accurate measures of the functional
size of object-oriented applications from the corresponding conceptual
models, and we have also automated the application of this procedure.

Even though the measurement procedure is essential to be able to obtain
accurate measures, other factors can also influence the measurement: for

1. Introduction

__

14

instance, the use of models that do not completely specify the final
application. Thus, given that a functional size measurement procedure
analyzes all the elements of the conceptual model that fulfill the functional
user requirements, the measurement procedure can be used as a very
valuable tool to identify defects in the conceptual models. Therefore, in this
thesis we initiated a second cycle of the design research methodology (see
Figure 1.3).

Figure 1.3 Second cycle of the methodology applied to this thesis.

In the Awareness of Problem phase of the second cycle of the
methodology, we found that none of the measurement procedures take
advantage of their design and automation to identify defects. Therefore, in
this thesis, we also propose that a functional size measurement procedure
can be used to detect defects in the conceptual models.

In the Suggestion phase, we identified what kind of defects can be
detected in the conceptual models using the OOmCFP functional size
measurement procedure. As in the first cycle of the application of the Design
Research Methodology, we performed the Evaluation phase to verify that the
OOmCFP procedure found defects in erroneous conceptual models.

1. Introduction

__

15

Then, we performed the Development phase. In this phase, we updated
the OOmCFP tool in order to deliver (1) a set of defects when the conceptual
models have defects, or (2) the functional size when the conceptual models
have a high quality (complete and correct). Next, we performed the
Evaluation phase of this second cycle of the Design Research Methodology.
In this phase, we verified the OOmCFP tool with erroneous conceptual
models as well as with high-quality conceptual models.

At the end of the second cycle of the Design Research Methodology, we
performed the Conclusion phase. In this phase, we concluded the research
effort of this thesis. However, taking into account the evolving nature of the
design research methodology, many areas for further research can emerge,
such as testing of conceptual models. Therefore, we have also delimitated
the areas for further research in this phase.

1.5 Context of the Thesis

This thesis was developed at the Software Production Methods Research
Center (ProS) at the Universidad Politécnica de Valencia.

The current working lines in which the ProS Research Center is involved
are mainly focused on the following aspects:

• Model Driven Development and Code Generation

• Organizational Modelling and Requirements Engineering

• Development of Ambient Intelligence Systems

• Human-Computer Interaction and Usability

• Web Engineering

• Conceptual Modelling and Development of Services and Web
Applications

• Empirical Software Engineering

• Software Quality and Automated Testing

1. Introduction

__

16

• Genome Conceptual Modelling

The work presented in this thesis has been developed combining the

following research lines: Model-Driven Development and Code Generation,
Empirical Software Engineering, and Software Quality and Automated
Testing.

This work has been made possible thanks to the following enterprises
and R&D Spain and European projects:

• “CONCOM: Construcción de Compiladores” CARE-Technologies
Project referenced as UPV 20060745.

• “SESAMO: Construcción de Servicios de Software a partir de
Modelos” CICYT Project referenced as TIN2007-62894.

• “OSAMI Commons: Open Source Ambient Intelligence Commons”.
ITEA 2 project referenced as TSI-020400-2008-114.

• “PISA: Producción de Software en Ambientes MDA” CARE-
Technologies Project referenced as UPV 20080250.

• “MYMOBILEWEB: Tecnologías Avanzadas para el Acceso Movil,
Independiente de Dispositivo e Inteligente (Guiado por Semántica) a
Aplicaciones, Servicios y Portales de Información” ITEA 2 Project
referenced as TSI-020400-2010-118

• “Verificación de Proceso y Validación de Producto Software de
Equipos Digitales Simples relacionados con la Seguridad para
Centrales Nucleares” IBERDROLA Project referenced as UPV
20100652.

• “FITTEST: Future Internet Testing”. FP7 project referenced as FP7-
ICT-2009-5 / INFSO-ICT-257574.

1.6 Thesis Structure

The remainder of the thesis is organized as follows:

1. Introduction

__

17

Chapter 2: Foundations

This chapter presents the methods that we use as the foundations of this
thesis. Initially, we present the COSMIC Functional Size Measurement
Method. Then, we introduce the OO-Method approach. Since this thesis uses
the conceptual model of the OO-Method approach, we explain in detail all
the conceptual constructs that make up this model. Next, we present a
process model that we follow for the systematic specification of the
measurement procedure.

Chapter 3: State of the Art

This chapter presents an analysis of the works related to this thesis. First of
all, we analyze several functional size measurement procedures that have
been defined to measure conceptual models in accordance with COSMIC.
Next, we present a set of proposals that have been defined to detect defects
in conceptual models.

Chapter 4: Design of a FSM Procedure

This chapter presents the design of the OOmCFP (OO-Method COSMIC
Function Points) measurement procedure. The design of OOmCFP has been
systematically carried out in order to obtain accurate measurement results,
which is the most important contribution of this thesis. The design of the
OOmCFP procedure contains a set of rules to identify the conceptual
constructs that contribute to the functional size of software applications.
Also, the design contains a set of rules to calculate the functional size of
software applications from their conceptual models.

Chapter 5: Evaluation of the Design of OOmCFP

This chapter presents the evaluation of the design of the OOmCFP FSM
procedure. This evaluation has been carried out by using the ISO/IEC
14143-2 standard for the conformity evaluation of software size
measurement methods, the International vocabulary of basic and general

1. Introduction

__

18

terms in metrology (VIM), and the precision of the measurement results
obtained by OOmCFP. To evaluate the precision, a method based on the ISO
5725-2 for the Accuracy (trueness and precision) of measurement methods
and results has been defined, and a pilot study has been carried out. This
method is also an important contribution of this thesis.

Chapter 6: Application of OOmCFP

This chapter presents a process for the application of the OOmCFP
measurement procedure and it also presents an example of the manual
application of OOmCFP. In addition, this chapter presents a strategy for
automatically applying OOmCFP to OO-Method conceptual schemas. This
strategy has been implemented in a tool to perform the measurement of the
functional size efficiently. This is another important contribution of this
thesis. Finally, the application of the OOmCFP tool to real projects is
presented.

Chapter 7: Evaluation of the Application of OOmCFP

This chapter presents the evaluation of the application of OOmCFP. This
validation has been carried out using the International Vocabulary of Basic
and General Terms in Metrology (VIM), performing a laboratory experiment
to evaluate the precision using the method defined in Chapter 5, and
performing a comparison of the results obtained by the OOmCFP tool with
results obtained by experts.

Chapter 8: Defect Detection in MDD Conceptual Models

This chapter introduces how a functional size measurement procedure can be
used to find defects in conceptual models. A set of defect types that can be
identified in the conceptual models using OOmCFP is defined. Then, the
conceptual constructs involved in the defect types are formalized by means
of a metamodel and a set of OCL rules. Next, a strategy to automatically
apply OOmCFP to detect defects is presented.

1. Introduction

__

19

Chapter 9: Defect Detection Case Study

This chapter presents a case study that has been carried out to evaluate the
usefulness of the application of a functional size measurement procedure to
detect defects. The results indicate that the FSM is useful since it finds all
the defects related to a specific defect type, it finds different defect types
than an inspection team; and it finds defects related to the correctness and
the consistency of the models.

Chapter 10: Conclusions

This chapter concludes this work by presenting the contributions of this
thesis, the publications that this work has originated, and future works.

1. Introduction

__

20

__

21

Chapter 2

Foundations

The COSMIC [ISO/IEC 2003a] measurement method allows the
measurement of functional size by means of the identification of data
movements that occur between functional users and functional processes
(and vice versa). Since the objective of this thesis is to present a
measurement procedure based on the COSMIC measurement method, this
chapter presents a brief explanation of the COSMIC measurement method, a
brief explanation of the OO-Method MDD approach, and a process model
for the definition of software measurement procedures.

2.1 The COSMIC Measurement Method

In 1997, St-Pierre et al. [St-Pierre et al. 1997] define the Full Function
Points (FFP) method for the measurement of control systems, real-time
systems, and embedded systems. This measurement procedure obtains the
functional size of an application by means of the identification of functional
processes and data movements that occur in these processes. The data
movements can be Entry to the functional process, Exit from the functional
process, Read data from persistent storage, and Write to persistent storage.

2. Foundations

__

22

When all the data movements have been identified, they are aggregated to
obtain the functional size of each functional process.

Later, in 1999 the Common Software Measurement International
Consortium (COSMIC) publishes the 2.0 version of the COSMIC-FFP
measurement method [Abran et al. 1999]. Since some modifications were
performed to the 2.0 version of COSMIC-FFP, the 2.1 version was published
in 2001 [Abran et al. 2001] and the 2.2 version was published in 2003
[Abran et al. 2003]. This last version was recognized as the ISO/IEC 19761
standard [ISO/IEC 2003a]. In 2007, a new version of COSMIC was
published [Abran et al. 2007]. This last version aggregates a phase for the
definition of the measurement strategy. Therefore, the last version of the
COSMIC measurement method [Abran et al. 2007] includes three phases:
the measurement strategy, the mapping of concepts, and the measurements
of the identified concepts (see Figure 2.1).

Figure 2.1 Phases and activities in COSMIC version 3.0

2. Foundations

__

23

In the strategy phase, the purpose of the measurement exercise must be
defined to explain why it is necessary to measure and what the measurement
result will be used for. Next, the scope of the measurement must be defined
in order to select the set of user functional requirements that will be included
in the measurement task. Then, the functional users of the application to be
measured must be identified. The functional users are the types of users that
send (or receive) data to (from) the functional processes of a piece of
software. This phase also includes the identification of the boundary, which
is a conceptual interface between the functional user and the piece of
software that will be measured. Finally, the level of granularity of the
description of a piece of software to be measured is identified.

In the mapping phase, the functional processes must be identified (i.e.,
the elementary components of a set of functional user requirements). Every
functional process is triggered by a data movement from the functional user,
and the functional process is completed when it has executed all the data
movements required for the triggering event. It should be kept in mind that a
triggering event is an event that causes a functional user of the piece of
software to initiate one or more functional processes. Next, the data groups
must be identified. A data group is a set of data attributes that are distinct,
non empty, non ordered, non redundant, and that participates in a functional
process. Finally, the identification of the data attributes, which comprise the
smallest part of information of a data group, is optional.

In the measurement phase, the data movements (Entry, Exit, Read and
Write) for every functional process must be identified. When all the data
movements of the functional process are identified, the measurement
function for the functional process must be applied. This is a mathematical
function that assigns 1 CFP (Cosmic Function Point) to each data movement
of the functional process. Then, after all the functional processes are
measured, the measurement results are aggregated to obtain the functional
size of the piece of software that has been measured.

2. Foundations

__

24

2.2 The OO-Method Approach: A MDD Method

The OO-Method approach is an object-oriented method that separates the
business logic from the platform technology in order to allow the automatic
generation of final applications by means of well-defined model
transformations [Pastor et al. 2001]. This MDD approach allows the
generation of applications that correspond to the domain of Management
Information System (MIS).

The OO-Method approach puts the MDD technology into practice
[Pastor and Molina 2007]. Its software production process is comprised of
four models (see Figure 2.2): the Requirements Model, the Conceptual

Model, the Execution Model, and the Implementation Model. These models
have a direct correspondence with the models of the MDA architecture: the
Computation-Independent Model (CIM), the Platform-Independent Model
(PIM), the Platform-Specific Model (PSM), and the Implementation Model
(IM).

Figure 2.2 Models and transformations of the OO-Method approach.

In the Requirements Model [Diaz et al. 2005] [Insfrán et al. 2002], the

systems analyst specifies the requirements of the system describing the
mission statement, a function refinement tree, and a set of corresponding
use-case diagrams. Then, the use-case diagrams are used to semi-
automatically generate sequence diagrams.

From the Requirements Model, it is possible to semi-automatically
generate the basis of the Conceptual Model [Pastor and Molina 2007]. The
Conceptual Model captures the static and the dynamic part of a system by

2. Foundations

__

25

means of an object model, a dynamic model, and a functional model. The
Conceptual Model also captures the presentation of a system and the
interaction with the system, allowing the specification of the graphical user
interface in an abstract way by means of a presentation model.

From the Conceptual Model, it is possible to automatically generate the
corresponding software product by applying a predefined Execution Model
[Gómez et al. 1998]. The Execution model is based on the transformation of
the basic building units of the Conceptual Model (which are defined in a
formal language named OASIS [Pastor et al. 1992]) into their associated
software representations. In fact, a Conceptual Model Compiler is
responsible for executing that task. The OASIS language [Pastor et al. 1992]
is used to specify the basic conceptual constructs used for building
conceptual schemas (i.e. the preconditions of services, the derivation
formula for the derived attributes, the body of the services, the integrity
constraints for classes, the valid state transitions, the filters formula for the
presentation, etc.).

Finally, the OO-Method Model Compiler generates applications in a
three-tier architecture: one tier for the client component, which contains the
graphical user interface; one tier for the server component, which contains
the business rules and the connections to the database; and one tier for the
database component, which contains the persistence aspects of the
applications. An industrial implementation has been developed by the
enterprise CARE Technologies [CARE-Technologies 2011]. This has also
guided our selection of tools in order to apply our ideas in an industrial
Model Compiler. The OO-Method Model Compiler allows the generation of
applications in several technologies, such as JSP, ASP, C#, EJB, VB, SQL,
ORACLE, DB2, etc., depending on the software architecture selected by the
user when performing the model compilation process.

In this work, we need only focus on the Conceptual Model, which has
the artefacts that are required to measure the functional size of the final
application through the corresponding measurement process. For a better

2. Foundations

__

26

understanding of the Conceptual Model, the OO-Method constructs specified
in the object model, the dynamic model, the functional model, and the
presentation model are briefly described in the following paragraphs.

2.2.1 The OO-Method Object Model

The object model of the OO-Method approach describes the static part of the
system. This model allows the specification of classes, attributes, derived
attributes, events, transactions, operations, preconditions, integrity
constraints, agents, and relationships between classes. The main concepts of
the object model are well-known because they are the same as those used in
the UML class diagram [OMG 2010].

The main conceptual construct of the object model is the class. A class
describes a set of objects that share the same specifications of characteristics,
constraints, and semantics. A class can have attributes, services, integrity
constraints and relationships with other classes.

The attributes of a class represents characteristics of this class. The
attributes of a class can also be derived attributes, which obtain their value
from the values of other attributes or constants.

The services of a class are basic components that are associated with the
specification of the behavior of a class. The services can be events,
transactions or operations. The events are atomic services, indivisible, which
can assign a value to an attribute. The transactions are a sequence of events
or other transactions that have two ways to end the execution: either all
involved services are correctly executed, or none of the services are
executed. Finally, the operations are a sequence of events, transitions or
other operations, which are executed sequentially independently of whether
or not the involved services have been executed correctly. The services can
have preconditions that limit its execution because the preconditions are
conditions that must be true for the execution of a service, which can be an
event, a transaction or an operation

2. Foundations

__

27

The classes also can have integrity constraints, which are expressions of
a semantic condition that must be preserved in every valid state of an object.

The agents are active classes that can access specific attributes of the
classes of the model and that can execute specific services of the classes of
the model.

Finally, the relationships between classes can be agent relationships (that
represent which object can activate which services); association,
aggregation, and composition relationships; and specialization relationships.

2.2.2 The OO-Method Dynamic Model

The OO-Method dynamic model is comprised of two diagrams: the state
transition diagram and the object interaction diagram.

The state transition diagram defines the valid lives of the objects that
belong to a class. This diagram has the following conceptual constructs:
initial state, final state, intermediate states, and transitions. Most of the
concepts of this diagram are the same as those used in the UML state
transition diagram [OMG 2010].

The initial state represents the state that objects are in immediately
before they are created. The final state represents the state that objects are in
immediately after they are destroyed. And, the intermediate states represent
different situations that an object of a class may find itself in at any point
during its life. The intermediate states have incoming and outgoing
transitions, which represent a change of the state of an object. The transitions
are activated by an agent that executes a service and can also have a
condition to execute the service when it is required.

The object interaction diagram defines the interactions among the objects
of the system. To do this, the triggers of the classes of the system and the
global transactions or operations of the system are defined. The triggers are
defined in a specific class. Each trigger is composed by a trigger condition
and a service to be executed after a successful execution of a service that

2. Foundations

__

28

activates the trigger. The triggers can be executed for: (1) the same object
that has been used to activate the trigger, (2) a particular object of the class,
(3) several objects of the class, or (4) all the objects of the class. Each trigger
service is executed in the background in a transparent way for the user, who
does not know the result of the execution (either success or failure).

The global transactions and operations are sequences of services, like the
transactions and operations of the object model. The global services can
involve services of any class of the system. Usually, these services are
defined when it is necessary to execute services of objects that are not
related.

2.2.3 The OO-Method Functional Model

The functional model of the OO-Method approach allows the specification
of the effects that the execution of an event has over the value of the
attributes of the class that owns the event.

The functional model uses valuations to assign values to the
corresponding attributes. The valuations can have preconditions. These
preconditions and the effect of the valuation must be specified by means of
well-formed, first-order logic formulae that are defined using the OASIS
language.

The change that a valuation produces in the value of an attribute is
classified into three different categories: state, cardinal, and situation. The
state category implies that the change of the value of an attribute depends
only on the effect specified in the valuation for the event, and it does not
depend on the value in the previous state. The cardinal category increases,
decreases or initializes the numeric-type attributes. The situation category
implies that the valuation effect is applied only if the value of the attribute is
equal to a predefined value specified as current value of the attribute.

2. Foundations

__

29

2.2.4 The OO-Method Presentation Model

In order to specify the interaction between the users of an application and the
system, the OO-Method approach allows the specification of views in the
object model. A view corresponds to a set of interfaces, which are the
communication point between agents and classes of the OO-Method object
model. When the views of a system have been defined, the interaction model
of each view must be specified.

The presentation model allows the specification of the graphical user
interface of an application in an abstract way [Molina 2003]. To do this, the
presentation model has a set of abstract presentation patterns that are
organized hierarchically in three levels: access structure, interaction units,
and auxiliary patterns.

The first level allows the specification of the system access structure. In
this level, the set of entry options that each user of the application will have
available is specified by means of a Hierarchy Action Tree (HAT).

Based on the menu-like view provided by the first level, the second level
allows the specification of the interaction units of the system. The interaction
units are groups of functionality that allow the users of the application to
interact with the system. Thus, the interaction units of the presentation model
represent entry-points for the application, and they can be:

• A Service Interaction Unit (SIU). This interaction unit represents the
interaction between a user of the application and the execution of a
system service. In other words, the SIUs allow the users of the
application to enter the values for the arguments of a service, to
execute the service, and to offer to the users the feedback of the
results of the execution of the service.

• A Population Interaction Unit (PIU). This interaction unit represents
the interaction with the system that deals with the presentation of a set
of instances of a class. In a PIU, an instance can be selected, and the

2. Foundations

__

30

corresponding set of actions and/or navigations for the selected
instance are offered to the user.

• An Instance Interaction Unit (IIU). This interaction unit represents
the interaction with an object of the system. In an IIU, as well as in a
PIU, the corresponding set of actions and/or navigations for the
instance are offered to the user.

• A Master Detail Interaction Unit (MDIU). This interaction unit
represents the interaction with the system through a composite
interaction unit. A MDIU corresponds to the joining of a master
interaction unit (which can be an IIU or a PIU) and a detail interaction
unit (which can be a set of IIUs, PIUs, or SIUs).

The third level of the presentation model allows the specification of the

auxiliary patterns that characterize lower level details about the behaviour of
the interaction units. These auxiliary patterns are:

• The entry pattern, which is used to indicate that the user can enter
values for the arguments of the SIUs.

• The defined selection pattern, which is used to specify a list of
specific values to be selected by the user.

• The introduction pattern, which is used to define masks for the
introduction of values by the user.

• The arguments grouping pattern, which is used to group a set of
arguments of the SIUs in order to facilitate the user interaction with
the system.

• The arguments dependency pattern, which is used to define
dependencies among the values of the arguments of a service. To do
this, Event-Condition-Action (ECA) rules are defined for each
argument of the service. The ECA rules have the following
semantics: when an interface event occurs in an argument of a
service (i.e., the user enters a value), an action is performed if a
given condition is satisfied.

2. Foundations

__

31

• The arguments pre-charge pattern, which is used to define a set of
objects that can be selected as arguments of a SIU.

• The order criteria pattern, which allows the objects of a PIU to be
ordered. This pattern consists of the ascendant/descendant order over
the values of the attributes of the objects presented in the PIU.

• The display set pattern, which is used to specify which attributes of a
class or its related classes will be shown to the user in a PIU or an
IIU.

• The navigation pattern, which allows the navigation from an
interaction unit to another interaction unit.

• The action pattern, which allows the execution of services by joining
and activating the corresponding SIUs by means of actions.

• The filter pattern, which allows a restricted search of objects for a
population interaction unit. A filter can have data-valued variables
and object-valued variables. These variables can have a default
value defined, a PIU related to select the value of the object-valued
variables, and pre-charge capabilities for the values of the object-
valued arguments.

• The navigational filtering pattern, which allows the navigation to
related objects to be restricted using a filter condition.

• The initialization of arguments pattern, which allows the argument
of a SIU to be initialized when it is accessed directly from another
SIU.

• The conditional navigation pattern, which allows the navigation
from a SIU to other interaction units, depending on the execution
result (success or failure) of the SIU.

Each auxiliary pattern has its own scope that states the context in which
it can be applied. Taking into account the characteristics of the presentation
model of the OO-Method approach, it is possible to completely specify the
abstract graphical user interface of applications that correspond to the OO-

2. Foundations

__

32

Method domain (MIS applications). Then, the Model Compiler transforms
the presentation model into the corresponding concrete user interface to
characterize those parts of the final software product that represent the user
interaction.

2.3 A Software Measurement Process Model

The process model for software measurement proposed by Jacquet et al.

[Jacquet and Abran 1997] has been used in the development of other
functional size measurement procedures, such as [Abrahão et al. 2006],
[Abrahão et al. 2007], [Condori-Fernández et al. 2007], [Grau and Franch
2007b]. This process model is comprised of four steps (see Figure 2.3):
design of a measurement method, application of the measurement method
rules, measurement results analysis, and exploitation of the measurement
results.

In the first step, the concept to be measured and the rules to measure this
concept must been defined. This step is divided into four sub-steps to
complete the design of the measurement method: definition of the objectives,
characterization of the concept to be measured, selection of the metamodel,
and definition of the numerical assignment rules.

In the second step, the designed measurement method must be applied to
the software or a piece of the software. This step is divided into three sub-
steps: software documentation gathering, construction of the software model,
and assignment of the numerical rules.

In the third step, the measurement result obtained in the second step must
be documented and audited. This step is divided into two sub-steps:
presentation of the measurement results and the audit of the results. In the
fourth step, the results obtained from the application of the method are used
in different ways, for instance in quality models, in estimation processes, in
budget models, in productivity models, etc.

2. Foundations

__

33

Figure 2.3 The Jacquet and Abran software measurement process model.

2.4 Conclusions

In this chapter, we have presented the methods and process that were
selected to perform the thesis work: the COSMIC Functional Size
measurement method, the OO-Method Model-Driven Development method,
and the process defined by Jacquet et al. to develop measurement
procedures. These methods are the basis for the development of the
measurement procedure that is presented in the following chapters.

2. Foundations

__

34

35

Chapter 3

State of the Art

This work deals with Functional Size Measurement (FSM) and defect
detection of models used to generate applications in Model-Driven
Development environments (see Figure 3.1). Thus, we have systematically
reviewed the state of the art focusing on (1) functional size measurement
procedures based on COSMIC for conceptual models, and (2) proposals for
defect detection in conceptual models. Therefore, Section 3.1 presents FSM
procedures; Section 3.2 presents approaches to detect defects; and Section
3.3 presents some conclusions.

Figure 3.1 Main methods related to this thesis.

3. State of the Art

36

3.1 Functional Size Measurement Procedures

based on COSMIC

Currently, many functional size measurement procedures have been
developed for applying the COSMIC measurement method to the conceptual
models of particular software production methods. We summarize these
measurement procedures according to the following criteria [Lother and
Dumke 2001]: the version of the measurement method, the context of the
proposal, the functional domain (i.e., real time systems, management
information systems), the input artifact (i.e., a requirements model, an
analysis model, and a design model), the rules to apply the procedure, the
instrument to apply the procedure, and the verification of the procedure.

Thus, we present ten proposals of functional size measurement
procedures based on COSMIC, and then, we present an overall analysis of
the proposals using the criteria presented above. It is important to note that
only the proposals by Nagano et al. [Nagano and Ajisaka 2003], and
Condori-Fernádez et al. [Condori-Fernández et al. 2007] were correctly
defined as measurement procedures. Even though the rest of the proposals
presented in this analysis were not originally defined as measurement
procedures, they do correspond to measurement procedures according to the
definition of the International Vocabulary of Basic and General Terms of
Metrology [ISO 2004], which defines a measurement procedure as: a

detailed description of a measurement according to one or more

measurement principles and to a given measurement method.

3.1.1 Proposal of Bévo et al. (1999)

Bévo et al. [Bévo et al. 1999] perform a mapping between concepts of UML
diagrams (use cases, scenarios, and classes) and concepts of COSMIC. A
general description of this proposal is presented below:

3. State of the Art

__

37

• Version of the Measurement Method. Cosmic-FFP version 2.0
[Abran et al. 1999]

• Context of the Proposal. Unified Modelling Language (UML)
version 1.0

• Functional Domain. Management information systems.

• Input Artifact. Diagrams of use cases, scenarios, and classes.

• Rules to Apply the Procedure. The boundary of the system to be
measured is included in the use case diagram. Each use case
corresponds to a functional process. The data movements are
represented in scenarios, which are sequences of interactions that
occur within a use case. Each class of the class diagram corresponds
to a data group, and the attributes of those classes correspond to the
data attributes. Each actor corresponds to a functional user. The
triggering events and the layers are not represented with concepts of
UML diagrams.

• Instrument to Apply the Procedure. A tool named Metric Xpert

[Bevo 2005].

• Verification of the Procedure. The accuracy of the proposal was
verified [Bevo 2005]. To perform this verification, five case studies
were measured with the Metric Xpert tool. Then, the results were
compared with the measures obtained by experts, obtaining
differences that fluctuated between 11% and 33%.

3.1.2 Proposal of Jenner (2001)

Jenner [Jenner 2001] discusses the granularity aspect of the use cases in the
proposal by Bévo et al. presented above. For this reason, the general
characteristics of the Jenner proposal are very similar to the characteristics of
the Bévo et al. proposal.

• Version of the Measurement Method. Cosmic-FFP version 2.0
[Abran et al. 1999]

3. State of the Art

38

• Context of the Proposal. UML version 1.0

• Functional Domain. Management information systems.

• Input Artifact. Diagrams of use cases, sequences, and classes.

• Rules to Apply the Procedure. Each functional process is represented
by a sequence diagram because Jenner considers that sequence
diagrams represent an adequate abstraction level of the use cases.
The data movements are represented by the interaction messages of
the sequence diagrams. This proposal also uses swimlanes to
represent the layers of a system.

• Instrument to Apply the Procedure. This procedure has a tool
[Jenner 2002].

• Verification of the Procedure. The proposal has been verified using
case studies.

3.1.3 Proposal of Diab et al. (2001)

Diab et al. [Diab et al. 2001] present a set of formal rules that allow the
measurement of the functional size of real time applications that are
specified with Real-Time Object Oriented Modelling (ROOM) [Selic et al.
1994]. The ROOM specifications are used by the Rational Rose Real Time
(RRRT) tool for the design and specification of real-time systems. The
general characteristics of this proposal are the following:

• Version of the Measurement Method. Cosmic-FFP version 2.0
[Abran et al. 1999]

• Context of the Proposal. The design of an RRRT model might be
observed through two different view points: structure and behavior.
The structure of an RRRT model is based on three kinds of entities:
actors, protocols, and data objects. An actor is an active object that
has restricted visibility of and by other actors. A protocol represents
a set of messages that can be exchanged among the actors. A data

3. State of the Art

__

39

object is the basic unit of the system data. On the other hand, the
dynamic part of an RRRT model is specified with a finite state
machine for each actor. Each state machine can be defined with
states, sub-states, actions, and transitions between the states.

• Functional Domain. Real-time systems.

• Input Artifact. RRRT model (static and dynamic part).

• Rules to Apply the Procedure. The boundary of the system to be
measured is represented by a set of actors. The layers correspond to
a set of actors with the same level of abstraction, which must be
selected by the practitioners using their human judgment. Each
transition corresponds to a functional process. The data movements
are represented by actions and messages. Actors and protocol classes
correspond to data groups, and the attributes and variables of these
classes correspond to the data attributes.

• Instrument to Apply the Procedure. A tool named µcRose [Diab et

al. 2005]. This tool implements the measurement procedure that is
updated to version 2.2 of Cosmic-FFP [ISO/IEC 2003a].

• Verification of the Procedure. The rules of the proposal have been
verified by experts of COSMIC. In addition, this proposal has been
applied to case studies, and the results have been compared with the
measures obtained by experts. Finally, the tool assures the
repeatability and consistency of the proposal.

3.1.4 Proposal of Poels (2002)

Poels [Poels 2002] presents a mapping between concepts of COSMIC and
the concepts of the business and services models of MERODE [Dedene and
Snoeck 1994]. Later, this proposal was extended to allow the measurement
of multilayer applications [Poels 2003b], specifying that the business model
corresponds to a layer, and the services model corresponds to another layer.
The general characteristics of this proposal are the following:

3. State of the Art

40

• Version of the Measurement Method. Cosmic-FFP version 2.1
[Abran et al. 2001]

• Context of the Proposal. The MERODE development method. This
method is based on the MERODE conceptual model, which is
comprised of a business model and a services model. The business
model is composed by a class diagram, an object-event table, and a
state transition diagram. The services model specifies the generation
of events by the user and their transmission to the business model.

• Functional Domain. Management information systems.

• Input Artifact. MERODE model (business and services models).

• Rules to Apply the Procedure. Poels defines the rules separately for
each model of MERODE. The users of the business model
correspond to the services model. The boundary of the business
model corresponds to the boundary between the business model and
the users. Each functional process of the business model corresponds
to a set of class methods over all of the enterprise objects, which are
invoked by the occurrence of a type of business event. Each data
movement corresponds to each class method that composes a
functional process. In the business model, the exit data movements
are not represented. The data groups correspond to the classes of the
business model. On the other hand, the users of the services model
correspond to the user interface model (this model is not specified in
the MERODE model). The boundary of the services model
corresponds to the boundary between the services model and the
users. Each functional process of the services model corresponds to
a non-persistent service object that is invoked by an input, output or
control service request message or by a business event occurrence
(for output object only). Again, each data movement corresponds to
each class method that composes a functional process, and all the
types of data movements are represented in the services model.

3. State of the Art

__

41

• Instrument to Apply the Procedure. Manual application of the
procedure.

• Verification of the Procedure. This proposal has been validated
theoretically [Poels 2003a].

3.1.5 Proposal of Nagano et al. (2003)

Nagano et al. [Nagano and Ajisaka 2003] present a measurement procedure
to measure the functional size of real-time applications specified using
xUML [Mellor and Balcer 2002]. The general characteristics of this proposal
are:

• Version of the Measurement Method. Cosmic-FFP version 2.0
[Abran et al. 1999]

• Context of the Proposal. The Shlaer-Mellor development method
[Shlaer and Mellor 1992]. This method is an object-oriented method
that uses xUML to specify systems.

• Functional Domain. Real-time systems.

• Input Artifact. Classes, state-transition, and collaboration diagrams.

• Rules to Apply the Procedure. The candidate data groups are
attributes and relationships between objects of the class diagram.
Also, the parameters of messages and control signals are candidate
data groups. The triggering events are identified in the collaboration
diagrams, which include the relationship between the external entity
and the objects of the system. The functional processes correspond
to a sequence of data movements. Finally, the data movements
correspond to the actions that an object performs to move it from
one state to the next state according to the collaboration diagram.

• Instrument to Apply the Procedure. Manual application of the
procedure.

3. State of the Art

42

• Verification of the Procedure. This proposal has been applied to the
Rice Cooker case study [COSMIC_Group 2003], and the results
were compared with the results obtained by experts, obtaining a
difference of 53%.

3.1.6 Proposal of Azzouz et al. (2004)

Azzouz et al. [Azzouz and Abran 2004] present a tool that automates the
measurement of the functional size of applications developed with the
Rational Unified Process (RUP) [Kruchten 2000]. The general
characteristics of this proposal are:

• Version of the Measurement Method. Cosmic-FFP version 2.2
[Abran et al. 2003]

• Context of the Proposal. Rational Unified Process. This method uses
UML to specify the systems.

• Functional Domain. Management information systems.

• Input Artifact. Use case diagrams, scenarios, and detailed scenarios.

• Rules to Apply the Procedure. Azzouz et al. base their proposal on
the rules described by Bévo [Bévo et al. 1999] and Jenner [Jenner
2001]. However, Azzouz considers that the layer cannot be
represented in the UML diagrams. Therefore, the user of the tool
must manually identify the layers of the system. Also, this proposal
adds a stereotype to identify the triggering events in the use case
diagrams. The measurement is performed in three phases of RUP: in
the business modeling and requirement analysis phase, the artifact
used is the use case diagram; in the analysis phase, the artifact used
is the scenario; and in the design phase, the artifact used is the
detailed scenario.

• Instrument to Apply the Procedure. A tool integrated in the Rational
Rose tool.

3. State of the Art

__

43

• Verification of the Procedure. The tool was verified using the Rice
Cooker case study [COSMIC_Group 2003].

3.1.7 Proposal of Condori-Fernández et al. (2004)

Condori-Fernández et al. [Condori-Fernández et al. 2007] present a
measurement procedure to estimate the functional size of object-oriented
systems from the requirements specifications that are defined using the OO-
Method approach [Pastor et al. 2001]. The general characteristics of this
proposal are:

• Version of the Measurement Method. Cosmic-FFP version 2.2
[Abran et al. 2003]

• Context of the Proposal. The development method OO-Method.
This method is based on a formal language. It is an object-oriented
method that allows the automatic generation of final applications by
means of model transformations [Pastor and Molina 2007]. The
software production process in OO-Method is represented by four
models: the requirements model, the conceptual model, the
execution model, and the implementation model. The requirement
model specifies the system requirements using a set of techniques
such as the mission statement, the functions refinement tree, and the
use case diagram. To establish the traceability between the
requirements model and the conceptual model, the requirements
model uses sequence diagrams. The conceptual model captures the
static and dynamic properties of the functional requirements of the
system (object, dynamic, and functional models). The conceptual
model also allows the specification of the user interfaces in an
abstract way through the presentation model. The execution model
allows the transition from the problem space to the solution space.
The implementation model corresponds to the final application.

3. State of the Art

44

Thus, the software product can be generated in a systematic and
automatic way for different platforms.

• Functional Domain. Management information systems.

• Input Artifact. OO-Method requirements model (functions
refinement tree, use case diagrams, and sequence diagrams).

• Rules to Apply the Procedure. The boundary of the system to be
measured corresponds to the border between the set of use cases and
the actors of the use case diagram. Each functional process
corresponds to each elementary function of the functions refinement
tree (primary use case). Also, each secondary use case corresponds
to a functional process. The data groups are identified in the
sequence diagram. Each different actor, control class, or entity class
of the sequence diagram corresponds to a data group. The data
movements correspond to the messages of the sequence diagrams. In
this proposal a single layer is identified because there is not a
functional partition at the requirements level. The triggering events
are not represented.

• Instrument to Apply the Procedure. Manual application of the
procedure.

• Verification of the Procedure. This proposal has been rigorously
verified in several ways [Condori-Fernández 2007]: according to
measurement theory; in conformity with COSMIC; using the formal
framework DISTANCE; evaluating the repeatability and
reproducibility of the measures obtained [Condori-Fernández and
Pastor 2006], and evaluating its adoption in practice.

3.1.8 Proposal of Habela et al. (2005)

Habela et al. [Habela et al. 2005] present an extension of the use case model,
which allows the measurement of the functional size using COSMIC. The
general characteristics of this proposal are:

3. State of the Art

__

45

• Version of the Measurement Method. Cosmic-FFP version 2.2
[Abran et al. 2003].

• Context of the Proposal. UML version 1.5

• Functional Domain. Management information systems.

• Input Artifact. Use case diagrams, and detailed use cases using a
template that includes references to business rules, pre-conditions,
post-conditions, and a description in steps of the main and
alternatives scenarios.

• Rules to Apply the Procedure. Each use case corresponds to one or
more functional processes. The data movements are identified in
each step described in the scenarios. Each step specifies the
movement of a set of data attributes. The uses, extends, and
generalizations between use cases are taken into account to avoid
redundancies in the measurement.

• Instrument to apply the Procedure. Manual application of the
procedure.

• Verification of the Procedure. We did not find studies of validation,
verification, or application of this proposal.

3.1.9 Proposal of Grau et al. (2007)

Grau et al. [Grau and Franch 2007b] present a set of mapping rules to
measure the functional size of i* models generated by means of
reengineering of systems using PRiM [Grau and Franch 2007a]. The general
characteristics of the Grau et al. proposal are the following:

• Version of the Measurement Method. Cosmic-FFP version 2.2
[Abran et al. 2003]

• Context of the Proposal. The PRiM method, which is a process
reengineering i* method that addresses the specification, analysis
and design of information systems from a reengineering point of

3. State of the Art

46

view. In PRiM, the i* model is comprised of two models: an
operational i* model (that contains the functionality of the system),
and an intentional i* model (that contains the non-functional
requirements). To generate the operational i* model, scenario-based
templates named Detailed Interaction Scripts are used. These
templates describe the information of each activity of the current
process by means of pre-conditions, post-conditions, triggering
events, and a list of actions undertaken in the activity.

• Functional Domain. Management information systems.

• Input Artifact. Detailed interaction scripts, and an operational i*
model.

• Rules to Apply the Procedure. The boundary of the system to be
measured corresponds to the actor of the operational i* model that
represents the different pieces of the system. The users are actors of
the operational i* model that represent one or more human roles.
The data movements are identified in the operational i* model and
correspond to any dependency where the dependum is a resource.
Each functional process corresponds to an activity of the detailed
interaction scripts. The triggering events are part of the conditions
associated to the activity. Finally, the data groups correspond to the
resources of the detailed interaction script.

• Instrument to Apply the Procedure. A tool named J-PRiM.

• Verification of the Procedure. This proposal has been applied to the
C-Registration case study [Khelifi et al. 2003], and the results have
been compared with the results obtained by experts, obtaining a
difference of 53%.

3.1.10 Proposal of Levesque et al. (2008)

Levesque et al. [Levesque et al. 2008] apply COSMIC to measure the
functional size of systems from use case diagrams and sequence diagrams.

3. State of the Art

__

47

This proposal classifies the functional processes in two groups: data
movement types and data manipulation types. The general characteristics of
the Levesque et al. proposal are the following:

• Version of the Measurement Method. Cosmic-FFP version 2.1
[Abran et al. 2007]

• Context of the Proposal. UML version 1.4, and UML version 2.0

• Functional Domain. Management information systems.

• Input Artifact. Use cases and sequence diagrams.

• Rules to Apply the Procedure. For the functional processes
corresponding to the data movement type, each use case is a
functional process. The actors of the use case are the users. The
entities of the sequence diagram are the data groups. The data
movements correspond to the messages among the entities of the
sequence diagram. On the other hand, the data manipulations
correspond to the conditions associated to the error messages of the
sequence diagrams. Finally, this proposal obtains the functional size
aggregating the messages between the actors and objects of the
sequence diagrams.

• Instrument to Apply the Procedure. Manual application of the
procedure.

• Verification of the Procedure. This proposal has been applied to the
Rice Cooker case study [COSMIC_Group 2003], and the results
have been compared with the results obtained by experts, obtaining a
difference of 8%.

3.1.11 General Analysis of Measurement Procedures

In this section, a general analysis of the COSMIC measurement procedures
found in the literature review is presented according to the following criteria:
version of the COSMIC method, context of the proposal, functional domain,

3. State of the Art

48

input artifact, rules to apply the procedure, instrument to apply the
procedure, and verification of the procedure.

With respect to the version of the COSMIC measurement method, we
observed that four proposals (Bévo, Jenner, Diab, and Nagano) use the 2.0
version, two proposals (Poels and Levesque) use the 2.1 version, and four
proposals (Azzouz, Condori-Fernández, Habela, and Grau) use the 2.2
version. It is important to note that the proposal by Nagano (which was
defined in 2003) uses the 2.0 version in spite of newer versions of COSMIC
already existed in 2003. It is also important to note that the proposal by
Levesque (which was defined in 2008) uses the 2.1 version in spite of the
version 3.0 of COSMIC already existed in 2008. Our opinion is that newer
versions of COSMIC provide improvements and clarifications that help to
better understand the measurement method and to obtain accurate measures.
Therefore, we consider that the use of the last version of the method is very
important for the correct development of measurement procedures.

With regard to the context of the procedure, five proposals (Bévo,
Jenner, Azzouz, Habela, and Levesque) allow the measurement of the
functional size of Management Information Systems (MIS) using UML
models. As is well known, the UML models don’t allow the specification of
all the functionality of the final application and also can have consistency
and ambiguity problems [Berkenkötter 2008] [France et al. 2006] [Opdahl
and Henderson-Sellers 2005]. One proposal (Diab) measures RRRT models,
one proposal (Poels) measures MERODE models, one proposal (Nagano)
measures xUML specifications, one proposal (Condori-Fernández) measure
OO-Method requirement models, and one proposal (Grau) measures i*
models.

The UML, MERODE, and i* models do not have enough expressivity to
specify all the functional requirements of the applications (for instance, these
models do not allow the specification of the values assigned to the attributes
of the classes, the interaction units, etc.). The same situation occurs with the
OO-Method requirement model. In addition, the Poels’ proposal is restricted

3. State of the Art

__

49

to a specific technology because it uses the AndroMDA tool to specify the
presentation of the application and to generate the final application.
Therefore, the proposals based on these models incorrectly measure the
functional size of applications. The proposals based on the RRRT model and
the xUML specification have enough semantic formalization to specify all
the functional requirements, allowing the measurement of the functional size
of the applications.

With respect to the functional domain, we observed that only two
proposals (Diab, Nagano) have been developed for the domain of real time
systems. The remaining nine proposals have been developed for the domain
of management information systems. We did not find any measurement
procedure proposal for other domains (such as algorithmic systems,
geographical systems, or ubiquitous systems), in spite of the COSMIC
measurement method can be also applied to other software system domains.

With regards to the input artifact, all the proposals use more than one
input artifact. Seven proposals (Bévo, Jenner, Azzouz, Condori-Fernández,
Habela, Grau, and Levesque) use input artifacts obtained in the requirements
phase, and three proposals (Diab, Poels, Nagano) use input artifacts obtained
in the analysis phase. However, the requirements and analysis models don’t
have enough expressiveness to specify all the functionality of final
applications.

With respect to the rules to apply the procedure, only one proposal
(Condori-Fernández) perform the design of the measurement procedure,
defining the objectives of the procedure, the characterization of the concept
to be measured, the mapping with the concepts of COSMIC, and the
measurement rules. The remaining nine proposals only define some
mappings between the concepts of COSMIC and the concepts of the
conceptual models to be measured.

The design of a measurement procedure is a key stage in the
development of a measurement procedure (correctly abstracting the elements
that will be measured), since, otherwise, the procedure may not measure

3. State of the Art

50

what should be measured according to the specifications of the base
measurement method selected. It is also important to keep in mind the direct
influence that the design of a measurement procedure has on the application
and possible automations of the procedure.

With regard to the instrument to apply the procedure, five proposals
(Bévo, Jenner, Diab, Azzouz, Grau) have been automated, and five proposals
(Poels, Nagano, Condori-Fernández, Habela, and Levesque) must be applied
manually. The manual measurement of functional size is generally a very
time-consuming and error-prone task. Therefore, it is very important to
automate the measurement procedures in order to obtain a solution that can
be efficiently applied in academic and industrial environments. Also, a tool
that automates the measurement procedures reduces the measurement costs
and the measurement training, and ensures repeatability of the measures.

Finally, with respect to the verification of the procedure, we observed
that only one proposal (Habela) has not been verified in some way. The
remaining nine proposals have been verified using different techniques:
using case studies, performing theoretical validations, performing
conformity validations, using controlled experiments, etc. Thus, it is
important to keep in mind that a high quality design of a functional size
measurement procedure is not enough to assure the quality of the measures
obtained by this procedure. To ensure the quality of the results obtained, it is
also essential to verify the developed procedure.

3.2 Approaches to Detect Defects in Conceptual

Models

Defect detection refers to anomalies found in software products in order to
correct them and, therefore, obtain software products of better quality. The
IEEE 1012 standard for software verification and validation [IEEE 2004]

3. State of the Art

__

51

define an anomaly as anything observed in the documentation or operation

of software that deviates from expectations based on previously verified

software products or reference documents. This definition is very broad, so
that different people can find different anomalies in the same software
artifact, and even the anomalies that one person found could have been not
perceived as anomalies by another person. This situation has caused many
researchers to redefine the concepts of error, defect, failure, fault, etc.; and
many times these concepts have been used indistinctly [Fenton and Neil
1999].

In order to avoid the proliferation of concepts related to software
anomalies, the lastest version of the IEEE 1044 standard [IEEE 2009]
defines the concepts of error, defect and fault. We use these concepts to
apply them to MDD processes as follows:

• Error: is a human action that produces an incorrect result in a model.

• Defect: is a deficiency in a model, meaning that the model does not
meet its requirements or specifications and needs to be either
repaired or replaced.

• Fault: is a manifestation of a defect in software.

Currently, there are several proposals to detect defects in models that can

be used in a MDD context. These approaches usually apply reading
techniques or rules defined from the experience of some researchers. We
analyze the literature according to the models inspected, the defect types
found, and the instrument applied in each proposal.

3.2.1 Proposal of Travassos et al. (1999)

Guilherme Travassos et al. [Travassos et al. 1999] use reading techniques to
perform software inspections in high-level, object-oriented designs. They
use UML diagrams that are focused on data structure and behavior. These
authors advocate that the design artifacts (a set of well-related diagrams)

3. State of the Art

52

should be read in order to determine whether they are consistent with each
other and whether they adequately capture the requirements. Design defects
occur when these conditions are not met.

These authors use a defect taxonomy that is borrowed from requirements
defects [Basili et al. 1996], which classifies the defects as Omission,
Incorrect Fact, Inconsistency, Ambiguity, and Extraneous Information.
These authors perform an empirical study to evaluate the defect detection in
design models. The general characteristics of this proposal are the following:

• Models. UML Class, UML State-transition, and UML Sequence.

• Defect Types. They present one example defect type for each
classification. However, these authors do not present the types of
defects found in the empirical study.

• Instrument to Apply the Proposal. Manual application.

3.2.2 Proposal of Laitenberger et al. (2000)

Laitenberger et al. [Laitenberger et al. 2000] present a controlled experiment
that compares the checklist-based reading (CBR) technique with the
perspective-based reading (PBR) technique to detect defects in UML
models.

These authors define three inspection scenarios in the UML models in
order to detect defects from different viewpoints (designers, testers, and
programmers). A brief description of this proposal is the following:

• Models. UML Class, UML Collaboration, and Fusion Operation
Model.

• Defect Types. These authors do not explicitly identify the types of
defects found in UML models. However, they present a set of
concepts that must be checked in the UML models from different
viewpoints, which are used to infer the types of defects from these
concepts. Table 1 presents the defect types inferred.

• Instrument to Apply the Proposal. Manual application.

3. State of the Art

__

53

Table 1. Defect Types presented by Laitenberger et al. (2000).

Quality Model Defect Types

Consistency
among
diagrams

UML Class

- A class in the design class diagram is not a class in
the system class diagram (with the same name).
- The number, types, and names of the attributes of a
class in the design class diagram are not the same in
the class of the system class diagram.
- The number, names, and arguments of the methods
of a class in the design class diagram are not the
same in the class of the system class diagram.
- The associations with their cardinality and arity in
the design class diagram are not the same in the
system class diagram.
- The constraints between classes of the design class
diagram are not the same constraints for these
classes in the system class diagram.

UML
Collaboration

- An object that does not correspond to a class of the
class diagram.
- The collaboration diagram has messages that do
not correspond to the system operation.
- The messages do not have the same number and
type of arguments as the operations of the system
described in the Operation model.

Fusion
Operation
Model

- Operations (read, change, send, and result) that do
not have the corresponding message in the
collaboration diagram.

Correctness UML Class - The types of the attributes of a class are not
specified.
- The methods of a class are not specified.
- Parameters that do not have a type associated.

3.2.3 Proposal of Conradi et al. (2003)

Conradi et al. [Conradi et al. 2003] present a controlled experiment that was
designed to perform a comparison between an old reading technique used by
the Ericsson company and an Object-Oriented Reading Technique (OORT)
for detecting defects in UML models. These authors present a summary of

3. State of the Art

54

the defects detected using both inspection techniques for the same project.
The general characteristics of the Conradi et al. proposal are the following:

• Models. UML Class, UML Sequence, UML State-transition, and
UML Use-Case.

• Defect Types. The findings of the controlled experiment are that one
group of subjects detected 25 defects using the old technique
(without any overlaps of the defects detected), while the other group
of subjects detected 39 defects using the OORT technique (with 8
overlaps in the defects detected). However, these authors do not
present the types of defects found in the experiment.

• Instrument to Apply the Proposal. Manual application.

3.2.4 Proposal of Gomma et al. (2003)

Gomma et al. [Gomaa and Wijesekera 2003] present an approach for the
identification and correction of inconsistency and incompleteness across
UML views. This approach is applied in the COMET method [Gomaa 2000],
which uses the UML notation. The general characteristics of the Gomma et
al. proposal are the following:

• Models. UML Use-case, UML Sequence, UML Class, and COMET
State-transition diagram.

• Defect Types. The authors present 7 defect types related to the
consistency between models (see Table 2): 1 defect type for the
consistency between use-case diagrams and sequence diagrams; 4
defect types for the consistency between class diagrams and state-
transition diagrams; and 2 defect types for the consistency between
sequence diagrams and state-transition diagrams.

• Instrument to Apply the Proposal. Manual application.

3. State of the Art

__

55

Table 2. Defect Types presented by Gomma et al. (2003).

Quality Model Defect Types

Consistency
among
diagrams

UML Use-
case

- A use case that does not correspond to at least one
scenario described by an interaction diagram.

COMET
state
transition

- Each Statechart that does not correspond to a state
that is dependent on the control class in a class
diagram.
- The values of the current states, events, actions, and
activities that appear on a Statechart that are not
declared as attribute values of the respective state,
event, action, and activity attributes for the state that is
dependent on the control class.
- An event on a Statechart that does not correspond to
a method of the state of the control class in the class
diagram.
- Variables used to define conditions in any Statechart
that are not attributes of the state that is dependent on
the control class in the corresponding class diagram.
- Each event on a Statechart that corresponds to an
incoming message on the state that is dependent on the
control object, which is not represented in an
interaction diagram (which executes the Statechart).
- Each action on a Statechart that corresponds to an
outgoing message on the state that is dependent on the
control object, which is not represented in an
interaction diagram (which executes the Statechart).

3.2.5 Proposal of Kuzniarz et al. (2003)

Kuzniarz et al. [Kuzniarz 2003] present a set of inconsistencies manually
found in student designs produced in a sample didactic development process.
This proposal corresponds to a laboratory experiment that was developed to
explore the nature of inconsistency in UML designs. The general
characteristics of the Kuzniarz et al. proposal are the following:

• Models. UML Use-case, and UML Sequence.

3. State of the Art

56

• Defect Types. The authors present 8 defect types (Table 3) based on
subjective but common-sense judgment.

• Instrument to Apply the Proposal. Manual application.

Table 3. Defect Types presented by Kuzniarz et al. (2003).

Quality Model Defect Types

Consistency
among
diagrams

UML Use-
case

- The actor that is defined in the use case diagram is
not the same actor that takes part in the interaction that
is defined in the corresponding sequence diagram.
- Not all the steps that are defined in the use case
description correspond to messages in the system
sequence diagram.
- There are extension points for the extension of use
cases that are missing (not represented) in the diagram
of the controller use case.

UML
Sequence

- An iteration symbol that is related to an iterative task
is missing in the sequence diagram.
- There are links used in sequence diagrams that are
not associations in the class diagram.
- There are sequences of messages in the sequence
diagram that are not acceptable for the controller use
case.
- There are elements used in pre- and post-conditions
of the contracts that are not defined in the class model.
- There are sequences of messages in the sequence
diagram that are not an acceptable subsequence for the
state machines that take part in the sequence diagram.

3.2.6 Proposal of Berenbach (2004)

Berenbach [Berenbach 2004] presents a set of heuristics for analysis and
design models that prevents the introduction of defects in the models. This
allows semantically correct models to be developed. In addition, Berenbach
presents the DesignAdvisor tool created by Siemens to facilitate the
inspection of large models. This tool implements the heuristics proposed by

3. State of the Art

__

57

Berenbach for evaluating the goodness of the analysis and design models.
The general characteristics of the Berenbach proposal are the following:

• Models. UML Use-case, UML Class, and UML Business.

• Defect Types. For the analysis models, Berenbach presents 10
heuristics for model organization, 5 heuristics for use case
definition, 3 heuristics related to the use-case relationships, and 14
heuristics related to business object modeling. For the design
models, he presents 2 heuristics for the class model. Table 4 presents
the defect types inferred from the heuristics.

• Instrument to Apply the Proposal. DesignAdvisor tool.

3.2.7 Proposal of Lange et al. (2004)

Lange et al. [Lange and Chaudron 2004] identify the incompleteness of
UML diagrams as a potential problem in the subsequent stages of a model-
oriented software development. These authors refer to the completeness of a
model by means of the aggregation of three characteristics: (1) the well-
formedness of each diagram that comprises the model; (2) the consistency
between the diagrams that comprise the model; and (3) the completeness
among the diagrams that comprise the model. Note that the authors use the
completeness concept to define the completeness of a model. Since this is
equivalent to reusing the same concept (completeness) for its own definition,
they do not really describe what is understood by completeness. The general
characteristics of the Lange et al. proposal are the following:

• Models. UML Use-case, UML Sequence, and UML Class.

• Defect Types. These authors identify eleven types of defects of UML
models in their study (see Table 5): 5 types of defects related to the
well-formedness of the diagrams, 3 types related to the consistency
among the diagrams, and 3 other types related to the completeness
among the diagrams. In 2006, Lange et al. [Lange and Chaudron
2006] present an experimental study to identify the risks related to

3. State of the Art

58

eight defect types, four of which were presented in the previous
study. Table 5 presents the defect types of both works.

• Instrument to Apply the Proposal. They use the MetricView tool
[Lange et al. 2007] to analyze the models, which graphically shows
the defects found in UML models.

Table 4. Defect Types presented by Berenbach (2004).

Quality Model Defect Types

Consistency
among
diagrams

UML Use-
case

- Actors in use-case diagrams that are not specified
in the context diagram.
- Use case without an interaction diagram that shows
the possible scenarios.

UML Class - An interface in the class diagram that is not used to
communicate with a concrete use case.
- A class that is not instantiated in any process of the
system (sequence and collaboration diagrams).
- Methods of the interface class that are not
represented in the process of the system (sequence
and collaboration diagrams).
- Classes in the class diagram that are not specified in
the use-case diagram.
- Interfaces in the class diagram that are not specified
in the use-case diagram.

Correctness UML Use-
case

- Multiple entry point for the system in the use-case
diagram.
- Diagrams without a description and status.
- Concrete use cases without a definition.
- Abstract use cases that are not realized by a
concrete use-case.
- Extends use-case relationship that is specified
between use cases that are not concrete.
- A concrete use case that includes an abstract use
case.

UML
Business

- Services of business objects that do not have
defined pre- and post-conditions.

UML Class - An interface class with private methods.

3. State of the Art

__

59

Table 5. Defect Types presented by Lange et al. (2004 and 2006).

Quality Model Defect Types

Consistency
among
diagrams

UML
Sequence

- Messages between unrelated classes.
- Objects of the sequence diagram that are not related
to a class in the class diagram. (2006)

UML
Class

- Classes that are not called in the sequence diagram.
- Interfaces that are not called in the sequence diagram.
- Methods that are not called in the sequence diagram.

UML Use-
case

- Use cases without sequence diagrams. (2006)

Correctness UML
Sequence

- Objects without a name.
- Abstract classes in sequence diagrams.
- Messages without a name.
- Messages without a method.
- Message in wrong direction. (2006)

UML
Class

- Classes without methods.
- Interfaces without methods.
- Classes with public attributes.
- Multiple definitions of classes with equal names.
(2006)

3.2.8 Proposal of Leung et al. (2005)

Leung et al. [Leung and Bolloju 2005] present a study that aims to
understand the defects frequently committed by novice analysts in the
development of UML Class models.

These authors use Lindland et al.’s quality framework [Lindland et al.
1994] to evaluate the quality of the class diagrams. They distinguish five
classifications that allow the evaluation of the syntactic quality, semantic
quality, and pragmatic quality. These five classifications are: syntactic (for
the syntactic quality); validity and completeness (for the semantic quality);
and the expected is missing and the unexpected is present (for the pragmatic
quality). The general characteristics of the Leung et al. proposal are the
following:

3. State of the Art

60

• Models. UML Class.

• Defect Types. The authors obtain 103 different types of defects in 14
projects. However, the authors only detail 21 types of defects for one
class diagram (see Table 6).

• Instrument to Apply the Proposal. This approach is applied
manually.

Table 6. Defect Types presented by Leung et al. (2005).

Quality Model Defect Types

Correctness UML Class - Missing association label or cardinality detail.
- Improper label for a class, an association, an
attribute, or an operation.
- Improper notation for an association, an aggregation,
or a generalization.
- The non-implicit operations that are present in
sequence diagram are not included.
- Implicit operation is listed.
- Wrong association cardinality (reversed or wrong
range).
- Wrong location of an attribute or an operation.
- Wrong association grouping.
- Missing class, attribute, operation, or association.
- Incomplete class description.
- Operation that cannot be realized (using attributes
and relationships).
- Does not use domain-specific terminology
- Poor layout of the class diagram
- Insufficient distinction among sub-classes.
- Operation naming is improper or ambiguous.
- Associations are replicated at sub-classes.
- Manual operation is represented as association.
- Excessive use of generalization, PK concept, FK
concept, or emphasis on statistical information.
- Redundant attributes.
- Redundant associations.
- Implementation detail is present in the diagram.

3. State of the Art

__

61

3.2.9 Proposal of Bellur et al. (2006)

Bellur et al. [Bellur and Vallieswaran 2006] perform an impact analysis of
UML design models. This analysis evaluates the consistency of the design
and the impact of a design change over the code. In order to evaluate the
consistency of the design models, these authors propose the evaluation of the
well-formedness of UML diagrams.

The proposal of Bellur et al. [Bellur and Vallieswaran 2006] extends the
proposal of Lange et al. [Lange and Chaudron 2004] focusing on the quality
of UML conceptual models as well as on the code. The general
characteristics of the Bellur et al. proposal are the following:

• Models. UML Use-Case, UML Sequence, UML Class, UML State
transition, UML Component, and UML Deployment.

• Defect Types. These authors identify 4 types of defects for use-case
diagrams, 2 types of defects for sequence diagrams, 5 types of
defects for the specification of the method sequences, 3 types of
defects for the class diagram, 8 types of defects for the state
transition diagrams, 2 types of defects for the component diagram,
and 2 types of defects for the deployment diagram. Table 7 presents
the defect types found by these authors.

• Instrument to Apply the Proposal. They analyze the models using
their consistency checking tool.

3.2.10 Proposal of Egyed (2006)

Egyed [Egyed 2006] presents an approach to automatically detect
inconsistencies among UML models by means of instant checking of the
models. The UML / Analyzer tool implements this approach to evaluate the
models when a change happens. This tool shows the elements where the
inconsistency is produced in the models.

3. State of the Art

62

Table 7. Defect Types presented by Bellur et al. (2006).

Quality Model Defect Types

Consistency
among
diagrams

UML Use-
case

- A use case that does not reference a use-case sequence
diagram.

UML
Sequence

- A variable of a general class used in the sequence diagram
that is null or is not a valid class in the class diagram.
- A method referenced in the sequence diagram that is null or
is not a valid method in the method sequence charts.
- An object that is not the sender or the receiver in any
interaction.
- An object that does not reference a valid class and state
diagram.
- A message that is not an instance of one class method for
some class defined in the system.

UML State
Transition

- A state diagram that is not related to one and only one class.
- A state that is not described by one or more attributes of the
class.
- State change events that do not correspond to messages in the
method sequence diagrams.

UML
Component

- An inter-component relationship that does not have 2
terminating end classes which are valid classes in the class
diagram.
- A component in the component diagram that is not mapped
to a physical system described in the deployment diagram.

UML
Deployment

- A deployment diagram that is not related to one or more
component diagrams.

Correctness UML Use-
case

- An actor that does not use one or more use cases.
- A use case that is not used by one or more actors.
- A use case that does not belong to system.

UML
Sequence

- A message that does not have a sender and a receiver object.
- A message that does not conform to the signature of the
method corresponding to the message.

UML Class - A class diagram without classes.
- An association without a source and target class.
- A class that does not have at least one attribute or method.

UML State
Transition

- A state diagram without one start state and one end state.
- A state that has overlap of attribute values describing the
state.
- A state that is not reachable from the start state.
- A state that cannot reach the end state.

UML
Component

- A component diagram without components.

3. State of the Art

__

63

The general characteristics of the Egyed proposal are the following:

• Models. UML Sequence, UML Class, and UML State-transition.

• Defect Types. These authors uses 24 consistency rules that covered
all relevant situations for the consistency of sequence diagrams with
class and statechart diagrams (in their domains). However, they do
not present the rules or the defect types found in the application of
the tool to 29 models.

• Instrument to Apply the Proposal. UML/Analyzer tool.

3.2.11 General Analysis of Defect Detection Proposals

The proposals analyzed present defect types that are related to the
consistency among diagrams and defect types that are related to the
correctness of a particular diagram. The consistency is defined in the IEEE
610 standard [IEEE 1990] as the degree of uniformity, standardization, and
freedom from contradiction among the documents or parts of a system or
component. The correctness is defined by the same standard [IEEE 1990] as
the degree to which a system or component is free from faults in its
specification, design, and implementation.

We noticed that all the proposals for defect detection in conceptual
models are focused on UML models. However, it is well-known that UML
diagrams do not have enough semantic precision to allow the specification of
a complete and unambiguous software application [Berkenkötter 2008]
[France et al. 2006] [Opdahl and Henderson-Sellers 2005], which is clearly
observed in the semantic extension points that are defined in the UML
specification [OMG 2010]. For this reason, many methodologies have
selected a subset of UML diagrams and conceptual constructs and have
aggregated the needed semantic expressiveness in order to completely
specify the final applications in the conceptual model, making the
implementation of MDD technology a reality.

3. State of the Art

64

Regarding to the technique used to find defects, some of the proposals
use reading techniques, which require to instruct the inspection team on what
to look for and how to scrutinize software documents in a systematic manner
[Laitenberger et al. 2000]. Empirical studies have indicated that these
techniques are effective for finding defects. However, reading techniques
also have limitations; for instance, the manual inspection of models takes a
lot of time, which increases the costs and the delivery date of software
products. The remainder of the proposals of defect detection use rules
defined by the researchers from their own expertise. However, since these
works do not explicitly present how they are defined these rules for the
specific diagrams analyzed, it is difficult to define new rules for these
diagrams or other kind of diagrams.

3.3 Conclusions

In the systematic revision of the state of the art, we noticed that none of the
proposals for measurement procedures based on COSMIC allows the
accurate measurement of the functional size of MIS applications from their
conceptual models. Therefore, we can state that the prediction of
productivity, effort, budget and other indicators using these proposals it is
very far from the real values.

Also, we noticed that none of the analyzed proposals on defect detection
of models present the rationale involved in the specification of defect
detection rules, making it difficult to apply them to other kind of models.

The main limitation of the approaches presented above comes from the
lack of expressiveness of the conceptual model that allows the generation of
the final application. Additionally, none of the measurement procedures of
the state of the art takes advantage of the procedure used to obtain the
functional size or the automation of the procedure in order to find defects in
the models. We want to tackle these limitations defining an accurate

3. State of the Art

__

65

Functional Size measurement procedure that can be used to detect defects in
conceptual models of an MDD environment.

3. State of the Art

66

__

67

Chapter 4

Design of a FSM Procedure

The capability to accurately quantify the size of software developed with a
Model-Driven Development (MDD) method is very important to software
project managers for evaluating risks, developing project estimates, and
having early project indicators. To accurately measure the functional size of
MDD applications, a measurement procedure must be designed. This chapter
presents the design of a measurement procedure developed according to the
COSMIC measurement method version 3.0 [Abran et al. 2007].

The design of a measurement procedure includes the definition of the
objective of the measurement, the artifact that will be measured, the
measurement rules, and the measurement strategy. To do this, it is very
important to correctly abstract the elements that will be measured according
to the specifications in the selected base measurement method. It is also
important to note the direct influence that the design of a measurement
procedure has on the application of this procedure. For instance, if the design
is incorrect, then the application of the procedure might be misinterpreted
and erroneous measures may be obtained. In order to correctly design a
measurement procedure, a process for the design must be systematically
followed.

4. Design of a Functional Size Measurement Procedure

68

Thus, in this chapter we present the activities that must be performed to
complete the design of a measurement procedure following the software
measurement process model proposed by Jacquet and Abran [Jacquet and
Abran 1997]: definition of the objectives, characterization of the concept to

be measured, selection of the metamodel, and definition of the numerical

assignment rules. Since the measurement procedure presented in this chapter
has been designed selecting the COSMIC version 3.0 as the base
measurement method, we identify that there exist correspondences between
the steps and activities of the software measurement process model and the
phases and activities of the COSMIC measurement method (see Figure 4.1).

The definition of objectives step has a direct correspondence with the
determination of the purpose of the measurement in the strategy phase of
COSMIC because both specify the objective of the measurement procedure.
Moreover, for the correct definition of the objective, it is important to
determine the input artefact to perform the measurement and the detail level
that must have this artefact to perform a measurement. Thus, the definition
of objectives step has also a correspondence with the determination of the
scope of the measurement (where the input artefact is specified including its
layers and pieces of software) and the determination of the granularity level
of the strategy phase of COSMIC.

The characterization of the concept to be measured step does not have
any correspondence with the phases of the COSMIC measurement method.
This makes sense since the COSMIC measurement method has been
designed to measure the functional size of software applications without
having to characterize what the functional size means in its measurement
process.

The selection of the metamodel step has a direct correspondence with the
mapping phase of COSMIC, because both perform a mapping between the
concepts of the artefact to be measured and the concepts of the measurement
method. Also, the identification of functional users and boundaries of the
strategy phase of COSMIC is performed in this step since this activity

4. Design of a Functional Size Measurement Procedure

__

69

involves the concepts of the metamodel of COSMIC. Moreover, the
selection of the metamodel step has a correspondence with the activity
‘identification of data movements’ of the measurement phase of COSMIC,
since this activity also involves concepts of the metamodel of COSMIC.

Figure 4.1 Design Process of the OOmCFP Measurement Procedure.

The definition of the numerical assignment rules step has a

correspondence with the definition and application of measurement rules of

4. Design of a Functional Size Measurement Procedure

70

the measurement phase of COSMIC. Figure 4.1 shows the activities of the
software measurement process model and their correspondences with the
COSMIC activities, which we have followed to design the OO-Method

COSMIC Function Points (OOmCFP) measurement procedure.

4.1 Definition of the Objectives

Before designing a measurement procedure, it is important to know what we
want to measure [Jacquet and Abran 1997], for instance which kind of
software, which attribute, etc. Also, it is important to know what is the
viewpoint used to perform the measurement, since different viewpoints can
obtain different measures of the same software. For instance, the developer
viewpoint (which contains all the functionality developed), the user
viewpoint (which contains the set of functions developed that the user can
access), etc. Finally, in the objective must be specified the intended use of
the measures obtained by the measurement procedure. Thus, we define the
objective as:

To design a procedure for measuring the accurate functional size from the

developer viewpoint of MDD-based software applications that are generated

using an object-oriented conceptual model developed with OO-Method. The

measures obtained will be used in estimation and budget models.

In this step, the COSMIC strategy phase for the measurement procedure

starts (see Figure 4.1). The strategy phase is a relevant phase, which
addresses the four key parameters of software functional size measurement
that must be considered before actually starting to measure, namely the
purpose of the measurement, the scope of the measurement, the
identification of functional users, and the level of granularity that should be
measured. Determining these parameters helps to address the questions of

4. Design of a Functional Size Measurement Procedure

__

71

‘Which size should be measured?’ or, for an existing measurement, ‘How
should we interpret this measurement?’. As Figure 4.1 shows, the purpose,
the scope, and the granularity level of the measurement must be defined.

4.1.1 Purpose of the Measurement

The purpose of a measurement is a statement that defines why a
measurement is required, and what the result will be used for [Abran et al.
2007]. There are many reasons to measure the functional size, so that, the
purpose must be clearly state in order to select the most appropriate artifacts
for the measurement.

The purpose of the measurement in OOmCFP is defined as measuring
the accurate functional size of the OO-Method applications generated in an
MDD environment from the involved conceptual models. As in the specific
case of CARE Technologies company [CARE-Technologies 2011], this
functional size will be used to estimate the cost of the OO-Method
applications that are specifically generated by the OlivaNova Suite.
Although the code of the OO-Method applications is generated
automatically, it is important to note that the effort of programming is
substituted by a modeling effort. Thus, for the applications generated in an
MDD environment, dealing with the cost means dealing with how to
measure cost from the involved models.

With the OOmCFP measurement procedure, companies can use the
functional size measured from the models to adjust the budget in order to
prorate the cost of the software product development. CARE Technologies
[CARE-Technologies 2011], which has implemented the tools that support
the OO-Method approach, bases its business model on functional size to
calculate the cost of the generated applications, prorating the cost of the
development and improvement of the tools between the generated
applications.

4. Design of a Functional Size Measurement Procedure

72

4.1.2 Scope of the Measurement

The scope of the measurement defines a set of functional user requirements
that will be included in a measurement exercise. The functional user
requirements are defined in the ISO 14143-1 [ISO 1998] as a sub-set of the
user requirements. The functional user requirements represent the user
practices and procedures that the software must perform to fulfill the users’
needs. They exclude quality requirements and any technical requirements.

The OOmCFP measurement procedure uses the OO-Method conceptual
model as the input artefact for the measurement of the functional size of
applications generated in MDD environments. This conceptual model
formally and unambiguously specifies the functional requirements of the
applications independently of the technological characteristics that the
generated applications will have. The applications generated using the OO-
Method approach have a direct correspondence with the involved conceptual
model. Thus, these applications do not need manual changes for their correct
operation because their complete specification is performed at an abstract
level in the conceptual model.

For this reason, the scope of the measurement in OOmCFP is the OO-
Method conceptual model, which is comprised of four models (Object,
Dynamic, Functional, and Presentation). The object model defines the
structure and static relationships between the classes. The dynamic model
defines the possible valid lives for the objects of a class and the interaction
among objects. The functional model captures the semantics associated to
object state changes, triggered by the occurrence of events. Finally, the
presentation model allows the specification of the user interfaces in an
abstract way. With all of these models, the conceptual model has all the
details needed for the generation of the final application. The complete
definition of the elements of the conceptual model of OO-Method is
described in detail in [19].

4. Design of a Functional Size Measurement Procedure

__

73

Once the scope of the measurement has been determined, it is important
to identify the layers, the pieces of software, and the peer components that
make up the applications. In order to correctly identify the architecture of the
software applications, we have used the definitions of layer and piece of
software that are presented in the COSMIC Measurement Manual [Abran et

al. 2007]:

• Layer: A layer is a partition resulting from the functional division of
a software architecture that together with hardware forms a whole
computer system, where: layers are organized in a hierarchy; there is
only one layer at each level in the hierarchy; there is a
‘superior/subordinate’ hierarchical dependency between the
functional services provided by the software of the layers; and the
software of a layer that interchanges data with other layers interprets
only the part of the data that interchanged.

• Piece of Software: A piece of software is the part of the software that
is implemented in each layer.

The OO-Method software applications are generated according to a

three-tier software architecture: presentation, logical, and database. Each tier
of the architecture is associated with the other tiers in a superior/subordinate
hierarchical dependency. Therefore, the presentation tier can use the services
of the logic tier because the logic tier is beneath the presentation tier in the
hierarchy. In the same way, the logic tier can use the services of the database
tier because the database tier is beneath the logic tier in the hierarchy. These
tiers correspond with the layer definition of the COSMIC Measurement
Manual [Abran et al. 2007]. Thus, we distinguish three layers in an OO-
Method application: a client layer, which contains the graphical user
interface; a server layer, which contains the business logic of the application;
and a database layer, which contains the persistence of the applications.

In each layer of an OO-Method application, there is a piece of software
that can interchange data with the pieces of software of the other layers.

4. Design of a Functional Size Measurement Procedure

74

Thus, we distinguish, respectively, three pieces of software in an OO-
Method application: the client piece of software, the server piece of
software, and the database piece of software. Figure 4.2 illustrates the layers
and pieces of software of an OO-Method application.

Figure 4.2 Pieces of software and layers of an OO-Method application.

4.1.3 Granularity Level of the Software

The granularity level is the level of detail that the pieces of software
included in the measurement must have. Since the measurement will be
performed in conceptual models that must be valid to generate the final
applications in an MDD environment, the granularity level is a low level
because all the details in the OO-Method conceptual model are needed to
automatically generate the final applications.

4.2 Characterization of the Concept

The objective of OOmCFP measurement procedure states (see section 4.1)
that the concept to be measured by OOmCFP is the functional size. The
functional size is defined by the ISO/IEC 14143-1 standard [ISO 1998] as
the size of software derived by quantifying the functional user requirements.

4. Design of a Functional Size Measurement Procedure

__

75

The input artefact used by OOmCFP to measure the functional size of
the OO-Method applications is the conceptual model that is used to generate
these applications. Considering that the functional user requirements
represent a sub-set of the user requirements that specifies what must be done
by an application (excluding its technological features and non-functional
characteristics), the OO-Method conceptual model contains the set of
functional requirements of the OO-Method applications. Thus, the entity to
be measured by the OOmCFP measurement procedure will be an OO-
Method conceptual model, and the attribute to be measured will be the
functional size.

4.3 Selection of the Metamodel

Since software is not a tangible product, it can be made visible through its
metamodel representation [Jacquet and Abran 1997]. In general terms, a
metamodel is the artifact used to specify the abstract syntax of a modeling
language: the structural definition of the involved conceptual constructs with
their properties, the definition of relationships among the different
constructs, and the definition of a set of rules to control the interaction
among the different constructs specified [Selic 2007].

In EMOF, a metamodel is represented by means of a class diagram,
where each class of the diagram corresponds to a construct of the modeling
language involved. A metamodel for a FSM provides the basis for the design
of the measurement rules that identify and measure the elements contained in
the metamodel. Figure 4.3 shows the COSMIC metamodel, which illustrates
the information that should be represented by the software artifact to be
measured. This metamodel was designed from the COSMIC measurement
manual version 3.0 [Abran et al. 2007]. We selected this metamodel for the
design of OOmCFP for the simplicity of the metamodel in quantifying

4. Design of a Functional Size Measurement Procedure

76

functional size without being limited by maximum values (as occurs in
IFPUG-FPA).

Figure 4.3 Metamodel of COSMIC version 3.0

As Figure 4.3 shows, the scope of the measurement is determined by the

purpose of the measurement. The purpose and the scope define the set of
pieces of the software that will be measured and the level of detail of each
piece of software (granularity level).

 Each measurand is focused on a set of objects of interest that can be
physical or conceptual and that are related to data groups. Every data group
has a set of attributes. Also, every data group participates in one or more
data movements, which can be an entry data movement (E), an exit data
movement (X), a read data movement (R), or a write data movement (W).
Two or more data movements occur in a functional process that belongs to a

piece of software of the layer to be measured. Each layer of the piece of
software is associated to one operative software environment.

FunctionalProcess TriggeringEvent FunctionalUser

BoundarySoftwarePiece

Layer OperationalEnvironment

Scope

Purpose GranularityLevel

DataMovement DataGroup

Entry Exit Read Write ObjectInterest

Attribute

 [1..*] [1..*]

 [1..*]

 [1..*]

 [1..*]

 [1..*] [1..*]

 [1..*]

 [1..*]

 [1..*] [1..*]

 [1..*]

4. Design of a Functional Size Measurement Procedure

__

77

Finally, every functional process is triggered by triggering events carried
out by the functional user. The functional users are the users of the pieces of
software that have been measured and are separated by a boundary from the
pieces of software. A user is defined in the ISO 14143-1 [ISO 1998] as any
person that specifies Functional User Requirements and/or any person or
thing that communicates or interacts with the software at any time. Also, the
ISO 14143-1 clarifies that thing includes software applications, animals,
sensors, other hardware, etc. For a measurement of a multilayer application,
the functionality that must be built by the developer is very important
because it allows the accurate size of the application to be determined.

In the selection of the metamodel step, the identification of functional
users and the boundaries of the COSMIC strategy phase are performed (see
Figure 4.1). Also, Figure 4.1 shows that the COSMIC mapping phase is
completely performed in this step. The mapping phase presents the rules to
identify the functional processes, data groups, and data attributes in the
software specification (i.e., in the conceptual model) depending on the
parameters defined in the strategy phase. Finally, in this step, the
identification of data movements of the COSMIC measurement phase is also
performed.

4.3.1 Functional Users and Boundaries

The functional users are users that interact with the system being measured.
These users are the types of users that send (or receive) data to (from) the
functional processes of a system. A boundary is a conceptual interface
between the functional users and the pieces of software being measured
[Abran et al. 2007].

In the OO-Method applications, the human user interacts with the
application sending and receiving data to the functional processes. Also, the
pieces of software that compose the application interact with the remainder
pieces of software of the application. For the OO-Method applications, it is

4. Design of a Functional Size Measurement Procedure

78

possible to specify the legacy systems that interact with the system
modelled. Thus, we identify the following functional users for OO-Method
applications: the human users, the client piece of the software, the server
piece of the software, and the legacy views specified in the conceptual
model. These functional users are separated by a boundary from the pieces
of software of the application (see Figure 4.4).

Figure 4.4 Functional users and boundaries of an OO-Method application.

The users of the OO-Method applications are represented in the

conceptual model as agent classes of the object model (i.e. Agents are
classes that can access specific attributes or services of other classes of the
model). These users are generally human users that send or receive data to
the client layer of the software. From now on, we refer to this type of users
as the ‘human functional user’. This user is a functional user of the client
layer of the software and is separated by a boundary from the client layer of
the software. To identify the human functional user and the corresponding
boundary, we have defined the following rules:

4. Design of a Functional Size Measurement Procedure

__

79

Rule 1: Identify a human functional user for each agent class in the
OO-Method object model.

Rule 2: Identify one boundary between the human functional user
and the client layer.

The client component of the software is a functional user that sends and

receives data to (from) the server piece of software. We refer to this type of
user as the ‘client functional user’. This user is a functional user of the server
layer of the software and is separated by a boundary from the server layer of
the software. To identify the client functional user and the corresponding
boundary, we have defined the following rules:

Rule 3: Identify a client functional user for the client component of

an OO-Method application.

Rule 4: Identify one boundary between the client functional user and
the server layer.

The server component of the software sends and receives data to (from)

the client layer of the software and the database layer of the software. We
refer to this type of user as the ‘server functional user’. This user is a
functional user for both layers of the software: the client layer and the
database layer. The server functional user is separated by a boundary from
the client layer of the software, and by a boundary from the database layer of
the software. To identify the server functional user and the corresponding
boundary, we have defined the following rules:

Rule 5: Identify a server functional user for the server component of

an OO-Method application.

4. Design of a Functional Size Measurement Procedure

80

Rule 6: Identify one boundary between the server functional user and
the database layer.

The OO-Method conceptual model allows the definition of legacy views

(which are classes implemented in other systems) as well as the definition of
their relationships with the classes of the system. The legacy views can enter
values to the server layer of the software. Thus, legacy views represent
functional users of the OO-Method applications and are separated by a
boundary from the server layer of the software. We refer to this type of user
as the ‘legacy functional user’. To identify the legacy functional user and
the corresponding boundary, we have defined the following rules:

Rule 7: Identify a legacy functional user for each legacy view in the

OO-Method object model.

Rule 8: If exists a legacy functional user, identify one boundary
between the legacy functional user and the server layer.

4.3.2 Functional Processes

In general terms, a functional process corresponds to a set of Functional User
Requirements comprising a unique, cohesive, and independently executable
set of data movements [Abran et al. 2007]. A functional process starts with
an entry data movement carried out by a functional user given that an event
(triggering event) has happened. A functional process ends when all the data
movements needed to generate the answer to this event have been executed.
Thus, a functional process has at least two data movements (1 entry/read
data movement + 1 exit/write data movement).

In the context of OOmCFP, the ‘human functional user’, the ‘client
functional user’, the ‘server functional user’, and the ‘legacy functional user’
start functional processes.

4. Design of a Functional Size Measurement Procedure

__

81

Functional Processes started by the Human Functional User

The ‘human functional user’ carries out the triggering events that occur in
the real world. This functional user starts the functional processes that occur
in the client layer of the application. In this layer, the functional processes
are represented by the interaction units of the OO-Method presentation
model that can be directly accessed by the ‘human functional user’.

These interaction units correspond to the direct successors of the
hierarchy action tree (HAT) of the presentation model of the OO-Method
conceptual model. Therefore, every child of the HAT will be one functional
process, representing either a selection of a given class population (a
Population Interaction Unit (PIU)), an execution of a service (a Service
Interaction Unit (SIU)), or more complex interaction units (such as a Master
Detail Interaction Unit (MDIU)).

To identify the functional processes that occur in the client layer of an
OO-Method application, we have defined the following rule:

Rule 9: Identify a functional process in the client layer for each

Population Interaction Unit (PIU), Service Interaction Unit
(SIU) or Master-Detail Interaction Unit (MDIU) that is a
direct child of the hierarchy action tree (HAT) of the
presentation model of the OO-Method conceptual model.

Nevertheless, in order to correctly identify the functionality that the

interaction units have, it is important to identify the elements that compose
the interaction unit in addition to it, since they are also relevant to the
measurement of the functional size.

The functional processes that correspond to PIUs can contain display
sets, actions, navigations, filters, and order criteria. In turn, actions,
navigations and filters can contain interaction units that also make up the
corresponding functional processes. In order to calculate the functional size

4. Design of a Functional Size Measurement Procedure

82

of a functional process that corresponds to a PIU, it must be decomposed in
presentation patterns and interaction units. Thus, to identify the elements
contained in a functional process that corresponds to a PIU we have defined
the following rule:

Rule 9.1: For each PIU, identify the Display Set, Action Set,

Navigation Set, Filter, Order Criteria, and the interaction
units that are contained in these patterns.

The functional processes that correspond to SIUs can contain arguments
(using entry patterns, selection patterns, dependency rules, or pre-charge
patterns) and conditional navigations. The arguments and conditional
navigations can also contain interaction units. Thus, we have defined the
following rule to identify the elements that are contained in a functional
process that correspond to a SIU:

Rule 9.2: For each SIU, identify the arguments, the Conditional

Navigations, and the interaction units that are contained in
these patterns.

The functional processes that correspond to MDIUs are comprised of a

master part and a detail part. In turn, these parts can be comprised of
instance interaction units (IIU), population interaction units (PIU), or other
master detail interaction units (MDIU). To facilitate the identification of the
elements that compose the MDIUs that have been identified as functional
processes, we have defined the following rule:

Rule 9.3: For each MDIU, identify the master part and the detail part,

and the interaction units that are contained in these patterns.

4. Design of a Functional Size Measurement Procedure

__

83

When a functional process contains IIUs, the elements contained in the
IIU must also be identified for the functional process. These elements are
display sets, actions, and navigations. In turn, actions, and navigations can
contain other interaction units. Thus, we have defined the following rule to
identify the elements contained in the IIUs:

Rule 9.4: For each IIU, identify the Display Set, Action Set,

Navigation Set, and the interaction units that are contained
in these patterns.

Therefore, in order to completely identify a functional process, once

Rule 9 has been applied, then Rules 9.1, 9.2, 9.3, and 9.4 must be applied
iteratively until terminating with the identification of all the elements
contained in the functional process. Table 8 summarizes the elements that
can be contained in the interaction units and the interaction units that are
transitively contained.

Table 8. Presentation elements contained in the interaction units.

Interaction Units (IU) Contained Elements Contained IUs

Instance Interaction Unit

(IIU)

Display Set -

Action Set SIU, IIU, PIU, MDIU

Navigation Set IIU, PIU, MDIU

Population Interaction

Unit (PIU)

Display Set -

Action Set SIU, IIU, PIU, MDIU

Navigation Set IIU, PIU, MDIU

Filter PIU

Order Criteria -

Master Detail Interaction

Unit (MDIU)

Master IIU, PIU

Detail IIU, PIU, MDIU

Service Interaction Unit

(SIU)

Arguments PIU

Conditional Navigation SIU, IIU, PIU, MDIU

4. Design of a Functional Size Measurement Procedure

84

Functional Processes started by the Client Functional User

The ‘client functional user’ activates triggering events that occur in the
interaction units of the presentation model of the OO-Method conceptual
model. The ‘client functional user’ starts functional processes, which are the
actions that carry out the server layer of the software in response to the
triggering events that occur in the client layer of the software.

To identify the elements that are contained in the functional processes of
the server layer, it is necessary to identify the actions that this layer performs
in response to the triggering events carried out by the interactions units of
the client layer. These triggering events are the following:

• The Instance Interaction Units (IIU) require from the server layer the
values of the attributes that compose a display set, the execution of a
service, or the default values of the arguments of a service.

• The Population Interaction Units (PIU) require from the server layer
the values of the attributes that compose a display set, the values of
the filter variables that have defined a default value, the execution of
a service, or the default values of the arguments of a service.

• The Master Detail Interaction Units (MDIU) is comprised of
combinations of IIUs or PIUs. Therefore, they require from the
server layer the information that the IIUs or the PIUs require.

• The Service Interaction Units (SIU) require from the server layer the
default values of the arguments of a service, the values of the
derived attributes used in a service, and the initialization of
arguments. SIUs also require from the server layer the execution of
the following: services associated to the interaction units,
dependency rules of the arguments, valuations, conditional
navigation for the success or failure cases of the execution of a
service, navigational filtering, validation of the preconditions of a
service, check integrity constraints, triggers activated by a service,

4. Design of a Functional Size Measurement Procedure

__

85

or the change of state of an object by means of the transitions of a
service.

Therefore, we have defined the following rule to identify the functional

processes of the server layer:

Rule 10: A functional process corresponds to the set of formulae
(derivations, default values, filters, valuations, integrity
constraints, triggers, transactions, preconditions, dependency
rules, control conditions, and conditional navigation) that
solve the Server layer in response to the events that occur in
the functional processes of the Client layer.

We have decided that the functional processes of the server layer have

the same name of the functional process that contains the interaction units
where the triggering events occur. Thus, we have defined the following rule
to name the functional processes that occur in the server layer:

Rule 10.1: For each functional process in the server layer, name it

using the name of the client functional process that
started it.

Functional Processes started by the Server Functional User

The ‘server functional user’ carries out the triggering events that occur in the
server layer of the software. The ‘server functional user’ starts functional

processes, which are the actions that the database layer carries out in
response to the triggering events of the server layer, and the actions that the
client layer carries out in response to triggering events of the server layer of
the software.

4. Design of a Functional Size Measurement Procedure

86

The database layer adds, edits, and deletes the persistent information of
the system. To do this, the database layer receives triggering events from the
server layer of a system. Since the OO-Method applications use commercial
Database Management Systems (DBMS), which has functionality that is not
generated from the OO-Method model, the OOmCFP measurement
procedure does not consider the functional processes that occur in the
database layer for the calculation of the functional size of OO-Method
applications. However, OOmCFP considers the communication with the
database layer that is performed to write or read data by means of the
services executed by the functional processes of the server layer.

On the other hand, the ‘server functional user’ starts functional processes
in the client layer that deliver information by means of display sets, default
values of filter variables and arguments, or error messages. These conceptual
elements are contained in the interaction units defined in the client layer, so
that, they are identified in the functional process that occur in the client layer
since they cannot be executed outside the interaction units. Therefore,
OOmCFP does not consider different functional processes for these
elements.

Functional Processes started by the Legacy Functional User

The ‘legacy functional user’ activates triggering events that occur in the
legacy system. The ‘legacy functional user’ starts functional processes,
which are the actions that the server layer of the software carries out to
interact with the legacy system. These actions correspond to the set of
formulae that the server layer solves in response to requests of the legacy
system.

Since the legacy views represent external systems (pre-existing software)
that interacts with the system modelled using OO-Method, some changes
must be developed outside the models to connect both systems. Thus, when
the system modeled needs information of the legacy system, it uses the

4. Design of a Functional Size Measurement Procedure

__

87

attributes defined in the legacy views specified in the model. In contrast,
when the legacy system needs some information of the system modeled, it
recovers the information using its own services. Taking into account that the
information needed by a legacy system is not specified in the model, it is not
possible to infer the functional processes that the ‘legacy functional user’
starts. Hence, we have not defined rules to identify these functional
processes.

Eliminate Duplicity in the Identification of Functional Processes

It is important to note that the interaction units that already have been
identified as a functional process must not be identified as a contained
element since they will be analyzed separately. Thus, we have defined the
following rule to avoid counting the interaction units that correspond to a
functional process inside other functional process:

Rule 11: Do not consider in the functional size of a functional process

FP_B the functional size of a functional process FP_A that is
contained in the functional process FP_B.

Many times, in order to facilitate to the user the interaction with the

functionality of an application, the functional processes have many ways to
go to the same functionality (for instance, a contained interaction unit can be
accessed by an action or a navigation). However, the functional size must be
counted only one time. So that, we have defined the following rule to avoid
the duplicate counting of the functionality of the interaction units contained
in a functional process:

Rule 12: Only consider one time the functional size of an IIU, PIU,

MDIU or SIU that is auto contained.

4. Design of a Functional Size Measurement Procedure

88

4.3.3 Data Groups

The data groups correspond to a set of different attributes that describe an
object of interest. The object of interest corresponds to physical objects,
conceptual objects, or even parts of conceptual objects.

Taking into account that the OOmCFP uses the OO-Method conceptual
model to measure the functional size, the data groups are the classes of the
object model of the OO-Method conceptual model that participate in a
functional process. Of course, identified data groups always correspond to a
conceptual object of interest.

Nevertheless, when a class is part of an inheritance hierarchy, the parent
class corresponds to a data group, and when the child class has different
attributes than the parent class, it will correspond to another data group.
Thus, to correctly identify the data groups, we have defined the following
rules:

Rule 13: Identify a data group for each class that is not part of an

inheritance hierarchy in the object model that participates in a
functional process.

Rule 14: Identify a data group for the parent class of an inheritance

hierarchy in the object model of a class that participates in a
functional process belongs to.

Rule 15: Identify a data group for each child class that has different

attributes than his parent in an inheritance hierarchy in the
object model of a class that participates in a functional
process belongs to.

4. Design of a Functional Size Measurement Procedure

__

89

4.3.4 Data Attributes

The data attributes correspond to the smallest pieces of information of a data
group. In the context of OOmCFP, the data attributes of a data group
correspond to the attributes of the classes that have been identified as a data
group. We have defined the following rule to identify the attributes:

Rule 16: Identify a data attribute for each attribute of the classes in the

object model that are identified as data groups.

4.3.5 Data Movements

With regard to the identification of data movements, every functional
process has a set of data movements that can be entry data movements (E),
exit data movements (X), read data movements (R) or write data movements
(W). Each single data movement must move a single data group. An entry

data movement is a movement that moves one data group from a functional
user across the boundary into the functional process where it is required. An
exit data movement is a movement that moves a data group from a functional
process across the boundary to the functional user that requires it. A read

data movement is a movement that moves a data group from the persistence
storage that is in contact with the functional process that requires it. A write

data movement is a movement that moves a data group from a functional
process to the persistence storage.

Figure 4.5 shows the data movements that could occur in the OO-
Method applications. In this figure, it is possible to observe that the human
functional user enters and receives data from the client layer of the software,
the client layer and the server layer interchanges data to each other, only the
server layer reads and writes the database, and only the server layer receives
data from legacy systems.

4. Design of a Functional Size Measurement Procedure

90

Figure 4.5 Data movements between users and layers of an OO-Method
application.

We have defined 74 counting rules for the identification of the data

movements that occur in the OO-Method applications. All these counting
rules are structured with a concept of the COSMIC measurement method, a
concept of the OO-Method approach, and the cardinalities that associate
these concepts. Thus, these counting rules detect the data movements of all
the functionality needed for the correct operation of the generated
application, which is built by the model compiler of the MDD method. Since
all the data movements of the generated applications can be identified
focusing in three main conceptual constructs (display sets, filters, and
services), the counting rules are grouped by these constructs.

Data Movements in Display Sets

A display set presents the information of the system to the ‘human functional
user’. To do this, the attributes that will be shown by the display set must be
specified in the presentation model. Once the application has been generated,

4. Design of a Functional Size Measurement Procedure

__

91

the following data movements occur in the display set if it does not contain
derived attributes (see Figure 4.6):

1) The server layer reads from the database the values of the attributes
that will be shown by the display set.

2) If the display set has attributes that are specified in a legacy view,
the server layer receives the values for these attributes from the
legacy views.

3) The server layer delivers the values to the client layer.
4) The client layer receives the values from the server layer.
5) The client layer displays the values to the ‘human functional user’.

Figure 4.6 Data movements in a Display Set without derived attributes.

In order to correctly identify the data movements that occur in a display
set, we have defined the following rules:

Counting Rule 1: 1 read data movement for each different class that

contributes with attributes to the display set of a PIU
or IIU that participates in a functional process of the
server layer.

4. Design of a Functional Size Measurement Procedure

92

Counting Rule 2: 1 entry data movement for each different legacy view
that contributes with attributes to the display set of a
PIU or IIU that participates in a functional process in
the server layer.

Counting Rule 3: 1 exit data movement for each different class or

legacy view that contributes with attributes to the
display set of a PIU or IIU that participates in a
functional process in the server layer.

Counting Rule 4: 1 entry data movement for each different class or

legacy view that contributes with attributes to the
display set of a PIU or IIU that participates in a
functional process of the client layer.

Counting Rule 5: 1 exit data movement for all the attributes that are

shown in a display set of a PIU or IIU that
participates in a functional process of the client

layer.

However, if the display set contains derived attributes, the following data

movements occur (see Figure 4.7):
1) The server layer reads from the database the values of the attributes

that are used to calculate the condition of the derivation.
2) If the derivation condition has legacy views, the server layer

receives the values of the attributes that are used to calculate the
condition of the derivation from the legacy views.

3) If the derivation condition is true, the server layer reads from the
database the values of the attributes that are used to calculate the
derivation value.

4. Design of a Functional Size Measurement Procedure

__

93

4) If the derivation value has legacy views, and the derivation condition
is true, the server layer receives the values of the attributes that are
used to calculate the derivation value from the legacy views.

5) The server layer reads from the database the values of the not
derived attributes that will be shown by the display set.

6) The server layer delivers the values to the client layer.
7) The client layer receives the values from the server layer.
8) The client layer displays the values to the ‘human functional user’.

Figure 4.7 Data movements in a Display Set with derived attributes.

We have defined extra rules to identify the data movements that occur in

a display set that has derived attributes. These rules are the following:

Counting Rule 6: 1 read data movement for each different class that is
used in the derivation formula of the derived
attributes of the display set of a PIU or IIU that
participates in a functional process in the server

layer.

4. Design of a Functional Size Measurement Procedure

94

Counting Rule 7: 1 read data movement for each different class that is
used in the condition of the derivation formula of the
derived attributes of the display set of a PIU or IIU
that participates in a functional process in the server

layer.

Counting Rule 8: 1 entry data movement for each different legacy view
that is used in the derivation formula of an attribute
of a display set of a PIU or IIU that participates in a
functional process in the server layer.

Counting Rule 9: 1 entry data movement for each different legacy

view that is used in the condition of a derivation

formula of an attribute of a display set of a PIU or
IIU that participates in a functional process in the
server layer.

Data Movements in Filters

A filter allows restricting the set of instances that will be shown by the
system to the ‘human functional user’ using conditions over the values of a
set of filter variables previously specified by the ‘human functional user’. To
do this, a filter for the involved class must be specified in the presentation
model. In this definition, the filter condition and the filter variables must be
specified. The filter variables can be data-valued or object-valued, and also,
they can have a default value specified.

Once the application has been generated, the following data movements
occur in a filter that has filter variables with a default value specified (see
Figure 4.8):

1) The ‘human functional user’ enters the adequate values for the filter
variables.

4. Design of a Functional Size Measurement Procedure

__

95

2) The client layer delivers the values entered by the ‘human functional
user’ to the server layer.

3) The server layer receives the values for the filter variables.
4) The server layer reads from the database the information that is

necessary to solve the filter formula.
5) If a legacy view is used in the filter formula, the legacy system

delivers the corresponding values to solve the filter formula to the
server layer.

Figure 4.8 Data movements in a Filter.

We have defined the following rules to identify the data movements that

occur in a filter:

Counting Rule 10: 1 entry data movement (represented by the class that

contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process of the client

layer.

4. Design of a Functional Size Measurement Procedure

96

Counting Rule 11: 1 entry data movement for each different object-

valued variables that is associated to a filter of a PIU
that participates in a functional process in the client

layer.

Counting Rule 12: 1 exit data movement (represented by the class that
contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process in the client

layer.

Counting Rule 13: 1 exit data movement for each different object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the client

layer.

Counting Rule 14: 1 entry data movement (represented by the class that
contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process in the server

layer.

Counting Rule 15: 1 entry data movement for each different object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the server

layer.

Counting Rule 16: 1 read data movement for each different class that is

used in the filter formula of a filter of a PIU that
participates in a functional process in the server

layer.

4. Design of a Functional Size Measurement Procedure

__

97

Counting Rule 17: 1 entry data movement for each different legacy view
that is used in the filter formula of a filter of a PIU
that participates in a functional process in the server

layer.

However, if the filter has defined default variables for its variables, then
the following data movements occur in a filter (see Figure 4.9):

Figure 4.9 Data movements in a Filter with variables that have default

values specified.

1) The server layer calculates the default values of the data-valued and

object-valued filter variables using constants and functions that are
inside the server layer, and deliver the default values to the client
functional user.

2) The client layer receives the values for the filter variables from the
server layer.

3) The client layer displays the values of the filter variables to the
‘human functional user’.

4. Design of a Functional Size Measurement Procedure

98

4) The ‘human functional user’ observes the default values displayed in
the filter variables and enters the adequate values for these variables.

5) The client layer delivers the values entered by the ‘human functional
user’ to the server layer.

6) The server layer receives the values for the filter variables.
7) The server layer reads from the database the information that is

necessary to solve the filter formula.
8) If a legacy view is used in the filter formula, the legacy system

delivers the corresponding values to solve the filter formula to the
server layer.

Thus, we have defined the following extra rules to identify the data

movements that occur in the filter variables that have default values
specified:

Counting Rule 18: 1 exit data movement for each different class that is

used in the formula of the default value of an object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the server

layer.

Counting Rule 19: 1 exit data movement (represented by the class that
contains the filter) for the set of data-valued

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the server layer.

Counting Rule 20: 1 entry data movement for the default value of an

object-valued variable that is associated to a filter of
a PIU that participates in a functional process in the
client layer.

4. Design of a Functional Size Measurement Procedure

__

99

Counting Rule 21: 1 entry data movement (represented by the class that
contains the filter) for the set of data-valued

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the client layer.

Counting Rule 22: 1 exit data movement (represented by the class that

contains the filter) for the set of data-valued

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the client layer.

Counting Rule 23: 1 exit data movement for the default value of an

object-valued variable that is associated to a filter of
a PIU that participates in a functional process in the
client layer.

Data Movements in Services

A service allows changing the state of an object. To do this, a set of services
are defined in each class of the object model. The arguments (data-valued or
object-valued), the preconditions, the valuations for the events, and the
service formula for the transactions and operations must be specified for
each service. Also, in the class that contains the services, the integrity
constraints (conditions that must be satisfied by all the objects of a class at
any state) must be specified.

Once the application has been generated, different kinds of data
movements may occur depending of the conceptual constructs that the
service has and the satisfaction of the conditions that these conceptual
constructs reach. If a service has preconditions, the following data
movements occur for each precondition (Figure 4.10):

4. Design of a Functional Size Measurement Procedure

100

1) The server layer reads from the database the values that are
necessary to solve the precondition of the service.

2) If a legacy view is used in the precondition formula, the legacy
system delivers the corresponding values to solve the precondition
formula to the server layer.

3) The server layer calculates the value of the precondition. If the
precondition is fulfilled, the server layer continues with the
following precondition repeating step 1 and 2 until it finishes the
analysis of all the preconditions.

Figure 4.10 Data movements in a Service with preconditions that are

fulfilled.

We have defined the following rules to identify the data movements that

occur in the preconditions of a service:

Counting Rule 24: 1 read data movement for each different class that is
used in the formula of the preconditions of a service
related to a SIU that participates in a functional
process in the server layer.

4. Design of a Functional Size Measurement Procedure

__

101

Counting Rule 25: 1 entry data movement for each different legacy view
that is used in the formula of the preconditions of a
SIU that participates in a functional process in the
server layer.

However, for a service that has a precondition that is not fulfilled, the

following data movements occur (see Figure 4.11):
1) If the precondition is not fulfilled, the server layer reads from the

database the values that are necessary to solve the error formula of
the precondition of the service.

2) If a legacy view is used in the error formula, the legacy system
delivers the corresponding values to solve the error formula to the
server layer.

3) The server layer calculates the value of the error formula and
delivers it to the client layer.

4) The client layer receives the value and generates an error message.
5) The client layer displays the error message to the ‘human functional

user’.

Figure 4.11 Data movements in a Service with preconditions that are not

fulfilled.

4. Design of a Functional Size Measurement Procedure

102

We have defined the following rules to identify the data movements that
occur in the error messages of the preconditions of a service:

Counting Rule 26: 1 read data movement for each different class that is

used in the formula of the error messages associated
to the preconditions of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 27: 1 entry data movement for each different legacy view
that is used in the formula of the error messages
associated to the preconditions of a SIU that
participates in a functional process in the server

layer.

Counting Rule 28: 1 exit data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the preconditions of a service
related to a SIU that participates in a functional
process in the server layer.

Counting Rule 29: 1 entry data movement for each different class or

legacy view that is used in the formula of the error

messages associated to the preconditions of a service
related to a SIU that participates in a functional
process in the client layer.

Counting Rule 30: 1 exit data movement for all the error messages

associated to the preconditions of a service related to
a SIU that participates in a functional process in the
client layer.

4. Design of a Functional Size Measurement Procedure

__

103

Taking into account that a service can be an event, a transaction, an
operation, or a global service; the following data movements occur for a
service (see Figure 4.12):

Figure 4.12 Data movements in a Service.

1) The ‘human functional user’ enters the adequate values for the

arguments of the service.
2) The client layer delivers the values entered by the ‘human functional

user’ to the server layer.
3) The server layer receives the values for the arguments of the service.
4) If the service is an event with a valuation specified, the server layer

reads from the database the information that is necessary to solve the
condition of the valuation.

5) If a legacy view is used in the condition of the valuation formula, the
legacy system delivers the corresponding values to solve the
condition of the valuation formula to the server layer.

6) The server layer reads from the database the information that is
necessary to solve the service formula (valuation, transaction
formula, operation formula, or global formula).

4. Design of a Functional Size Measurement Procedure

104

7) If a legacy view is used in the service formula, the legacy system
delivers the corresponding values to solve the service formula to the
server layer.

8) If the service is an event for creation, destruction, carrier, liberator
or it has valuations, the server layer writes in the database.

We have defined the following rules to identify the data movements that

occur in a service:

Counting Rule 31: 1 entry data movement (represented by the class that
contains the SIU) for the set of data-valued

arguments of a SIU that participates in a functional
process in the client layer.

Counting Rule 32: 1 entry data movement for each different class that

corresponds to an object-valued argument of a SIU
that participates in a functional process in the client

layer.

Counting Rule 33: 1 exit data movement (represented by the class that
contains the SIU) for the set of data-valued

arguments of a SIU that participates in a functional
process in the client layer.

Counting Rule 34: 1 exit data movement for each different class that

corresponds to an object-valued argument of a SIU
that participates in a functional process in the client

layer.

Counting Rule 35: 1 entry data movement (represented by the class that
contains the SIU) for the set of data-valued

4. Design of a Functional Size Measurement Procedure

__

105

arguments of a SIU that participate in a functional
process in the server layer.

Counting Rule 36: 1 entry data movement for each different class that

corresponds to an object-valued argument of a SIU
that participates in a functional process in the server

layer.

Counting Rule 37: 1 read data movement for each different class that is
used in the condition of the valuation formula of the
event related to a SIU that participates in a functional
process in the server layer.

Counting Rule 38: 1 read data movement for each different class that is

used in the valuation formula of the event related to a
SIU that participates in a functional process in the
server layer.

Counting Rule 39: 1 read data movement for each different class that is

used in the formula of the transaction, operation or

global service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 40: 1 entry data movement for each different legacy view

that is used in the condition of the valuation formula
of a SIU that participates in a functional process in
the server layer.

Counting Rule 41: 1 entry data movement for each different legacy view

that is used in the valuation formula of a SIU that

4. Design of a Functional Size Measurement Procedure

106

participates in a functional process in the server

layer.

Counting Rule 42: 1 entry data movement for each different legacy view
that is used in the formula of the transaction,

operation or global service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 43: 1 write data movement for the class that contains a
destroy event or a liberator event related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 44: 1 write data movement for the class that contains a
creation event of a carrier event related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 45: 1 write data movement for the class that contains an
event that has valuations and that is related to a SIU
that participates in a functional process in the server

layer.

Also, for a service that has default values specified for its entry

arguments, the following data movements occur (see Figure 4.13):
1) The server layer calculates the default values of the data-valued and

object-valued entry arguments of the service using constants and
functions that are inside the server layer, and deliver the default
values to the client functional user.

4. Design of a Functional Size Measurement Procedure

__

107

Figure 4.13 Data movements in a Service with default values for its entry

arguments.

2) The client layer receives the values for the arguments that have a
default value specified from the server layer.

3) The client layer displays the values of the arguments to the ‘human
functional user’.

4) The ‘human functional user’ observes the values of the arguments
and enters the adequate values for the arguments of the service.

5) The client layer delivers the values entered by the ‘human functional
user’ to the server layer.

6) The server layer receives the values for the arguments of the service.
7) If the service is an event with a valuation specified, the server layer

reads from the database the information that is necessary to solve the
condition of the valuation.

8) If a legacy view is used in the condition of the valuation formula, the
legacy system delivers the corresponding values to solve the
condition of the valuation formula to the server layer.

9) The server layer reads from the database the information that is
necessary to solve the service formula (valuation, transaction
formula, operation formula, or global formula).

4. Design of a Functional Size Measurement Procedure

108

10) If a legacy view is used in the service formula, the legacy system
delivers the corresponding values to solve the service formula to the
server layer.

11) If the service is an event for creation, destruction, or it has
valuations, the server layer writes in the database.

Thus, we have defined the following extra rules to identify the data

movements that occur in a service that has default values specified for its
arguments:

Counting Rule 46: 1 exit data movement for each different class that is

used in the formula of the default value of an object-

valued argument that is associated to a service related
to a SIU that participates in a functional process in
the server layer.

Counting Rule 47: 1 exit data movement (represented by the class that

contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 48: 1 entry data movement for each different class that is

used in the formula of the default value of an object-

valued argument that is associated to a service related
to a SIU that participates in a functional process in
the client layer.

Counting Rule 49: 1 entry data movement (represented by the class that

contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a

4. Design of a Functional Size Measurement Procedure

__

109

service related to a SIU that participates in a
functional process in the client layer.

Counting Rule 50: 1 exit data movement (represented by the class that

contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a
service related to a SIU that participates in a
functional process in the client layer.

Counting Rule 51: 1 exit data movement for the default value of an

object-valued argument that is associated to a service
related to a SIU that participates in a functional
process in the client layer.

If the class that contains the service has integrity constraints defined, the

following data movements occur for each integrity constraint after the
execution of the service (see Figure 4.14):

1) The server layer reads from the database the values that are
necessary to solve the integrity constraint of the service.

2) If a legacy view is used in the integrity constraint formula, the
legacy system delivers the corresponding values to solve the
integrity constraint formula to the server layer.

3) The server layer calculates the value of the integrity constraint. If the
integrity constraint is fulfilled, the server layer continues with the
following integrity constraint repeating step 1 and 2 until it finishes
the analysis of all the integrity constraints.

We have defined the following rules to identify the data movements that
occur in the integrity constraints of the class that contains a service:

4. Design of a Functional Size Measurement Procedure

110

Counting Rule 52: 1 read data movement for each different class that is
used in the formula of the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 53: 1 entry data movement for each different legacy view
that is used in the formula of the integrity constraints
of a class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Figure 4.14 Data movements in a Service of a class with integrity

constraints that are fulfilled.

But, when the integrity constraints of the class that contains the service

are not fulfilled, the following data movements occur (see Figure 4.15):
1) If the integrity constraint is not fulfilled, the server layer reads from

the database the values that are necessary to solve the error formula
of the integrity constraint.

4. Design of a Functional Size Measurement Procedure

__

111

2) If a legacy view is used in the error formula, the legacy system
delivers the corresponding values to solve the error formula to the
server layer.

3) The server layer calculates the value of the error formula and
delivers it to the client layer.

4) The client layer receives the value and generates an error message.
5) The client layer displays the error message to the ‘human functional

user’.

Figure 4.15 Data movements in a Service of a class with an integrity

constraint that is not fulfilled.

Thus, we have defined the following rules to identify the data

movements that occur in the error messages of the integrity constraints of the
class that contains the service:

Counting Rule 54: 1 read data movement for each different class that is

used in the formula of the error messages associated
to the integrity constraints of a class that contains a

4. Design of a Functional Size Measurement Procedure

112

service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 55: 1 entry data movement for each different legacy view

that is used in the formula of the error messages
associated to the integrity constraints of a class that
contains a service related to a SIU that participates in
a functional process in the server layer.

Counting Rule 56: 1 exit data movement for each different class or

legacy view that is used in the formula of the error

messages associated to the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 57: 1 entry data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the client

layer.

Counting Rule 58: 1 exit data movement for all the error messages
associated to the integrity constraints of a class that
contains a service related to a SIU that participates in
a functional process in the client layer.

In the dynamic model of the system, it is possible to specify restrictions

to the execution of the services specified in the object model. Thus, in the
state transition diagram it is possible to specify a condition that must be

4. Design of a Functional Size Measurement Procedure

__

113

previously fulfilled to allow the execution of the service. Therefore, the
following data movement occur in a service with a control condition (see
Figure 4.16):

1) The server layer reads from the database the values that are
necessary to solve the control condition of the service.

2) If a legacy view is used in the control condition, the legacy system
delivers the corresponding values to solve the control condition to
the server layer.

3) The server layer calculates the value of the control condition. If the
condition is fulfilled, the server layer executes the service
performing all the data movements specified for the service and its
conceptual constructs.

Figure 4.16 Data movements in a Service with a control condition.

Thus, we have defined the following rules for the services that have

control conditions specified in the state transition diagram:

Counting Rule 59: 1 read data movement for each different class that is
used in the formula of the control condition of a

4. Design of a Functional Size Measurement Procedure

114

service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 60: 1 entry data movement for each different legacy view

that is used in the formula of the control condition of
a service related to a SIU that participates in a
functional process in the server layer.

In the object interaction diagram of the dynamic model, it is possible to

specify the services that will be automatically executed by means of triggers
when a condition of the class that contains the service is fulfilled. These
conditions are evaluated when a service has been executed. Thus, the
following data movements occur for each trigger specified in the class that
contains the executed service (see Figure 4.17):

1) The server layer reads from the database the values that are
necessary to solve the condition of the trigger that are related to the
class that contains the service.

2) If a legacy view is used in the condition of a trigger, the legacy
system delivers the corresponding values to solve the trigger
condition to the server layer.

3) When the condition of the trigger is fulfilled, the server layer
triggers the service specified performing all the data movements
specified for the service and its conceptual constructs.

4) If there are more triggers specified, the server layer continues with
the following trigger repeating step 1 and 2 until it finishes the
analysis of all the triggers.

Thus, we have defined the following rules for the services that are

contained in a class that has triggers specified:

4. Design of a Functional Size Measurement Procedure

__

115

Counting Rule 61: 1 read data movement for each different class that is
used in the condition formula of the triggers of the
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 62: 1 entry data movement for each different legacy view
that is used in the condition formula of the triggers of
the class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Figure 4.17 Data movements in a Service that is contained in a class

with triggers specified.

In the presentation model of a system, it is possible to specify the value

of an argument when an interface event occurs in other argument of a service
by means of Event-Condition-Action (ECA) rules. To do this, dependency
rules are specified in the arguments of a service. The following data

4. Design of a Functional Size Measurement Procedure

116

movements occur for each argument that has dependency rules specified (see
Figure 4.18):

1) The server layer reads from the database the information that is
necessary to solve the condition of the dependency rule.

2) If a legacy view is used in the condition of the dependency rule, the
legacy system delivers the corresponding values to solve the
condition of the dependency rule to the server layer.

3) The server layer reads from the database the information that is
necessary to solve the dependency formula.

4) If a legacy view is used in the dependency formula, the legacy
system delivers the corresponding values to solve the dependency
formula to the server layer.

Figure 4.18 Data movements in a Service with arguments that have

defined dependency rules.

We have defined the following rules to identify the data movements that
occur in the arguments of a service that have dependency rules specified,
which has a SIU related:

4. Design of a Functional Size Measurement Procedure

__

117

Counting Rule 63: 1 entry data movement for each different legacy view
that is used in the action formulae of the dependency

rules of the arguments of a service related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 64: 1 entry data movement for each different legacy view
that is used in the condition formulae of the

dependency rules of the arguments of a service
related to a SIU that participates in a functional
process in the server layer.

Counting Rule 65: 1 read data movement for each different class that is

used in the formulae of the dependency rules of the

arguments of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 66: 1 read data movement for each different class that is
used in the condition formulae of the dependency

rules of the arguments of a service related to a SIU
that participates in a functional process in the server

layer.

In addition, in the presentation model of the system, it is possible to

specify the graphical interface that will be shown when the execution of a
service ends. To do this, conditional navigations are specified. A conditional
navigation allows the specification of the interaction units that must be
displayed to the ‘human functional user’ when a condition is fulfilled after
the execution of a service, whether be success or failure. If a SIU is specified
in the conditional navigation, it is possible to specify the values of its entry

4. Design of a Functional Size Measurement Procedure

118

arguments using the initialization of arguments pattern. Thus, once the
application has been generated, the following data movements occur for each
condition (success or failure) that has a SIU related in the conditional
navigation (see Figure 4.19):

Figure 4.19 Data movements in a Service with a conditional navigation

fulfilled and an initialization of an argument.

1) The server layer reads from the database the values that are

necessary to solve the condition of the conditional navigation.
2) If a legacy view is used in the conditional navigation, the legacy

system delivers the corresponding values to solve the conditional
navigation to the server layer.

3) The server layer calculates the value of the condition of the
conditional navigation. If the condition of the conditional navigation
is fulfilled, the server layer reads from the database the values that
are necessary to calculate the condition of the initialization of
arguments of the SIU.

4) If a legacy view is used in the condition of the initialization of
arguments, the legacy system delivers the corresponding values to

4. Design of a Functional Size Measurement Procedure

__

119

solve the condition of the initialization of arguments to the server
layer.

5) The server layer calculates the value of the condition of the
initialization of arguments. If the condition of the initialization of
arguments is fulfilled, the server layer reads from the database the
values that are necessary initialize for the arguments of the SIU.

6) If a legacy view is used in the initialization of arguments, the legacy
system delivers the corresponding values to solve the initialization
of arguments to the server layer.

7) The server layer executes the SIU performing all the data
movements specified for a service and its conceptual constructs.

We have defined the following rules to identify the data movements that

occur in the conditional navigations of a service that have a SIU related:

Counting Rule 67: 1 read data movement for each different class that is
used in the conditional navigation formula of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 68: 1 entry data movement for each different legacy view

that is used in the conditional navigation formula of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 69: 1 read data movement for each different class that is

used in the condition of the formula of the arguments

initialization of a SIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

4. Design of a Functional Size Measurement Procedure

120

Counting Rule 70: 1 entry data movement for each different legacy view
that is used in the condition of the formula of the

arguments initialization of a SIU associated to the
conditional navigation of a service related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 71: 1 read data movement for each different class that is
used in the formula of the arguments initialization of
a SIU associated to the conditional navigation of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 72: 1 entry data movement for each different legacy view

that is used in the formula of the arguments

initialization of a SIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

If an IIU, a PIU, or a MDIU are specified in the conditional navigation, it

is possible to specify the set of instances that will be shown in the
corresponding IIU, PIU, or MDIU using the navigational filtering pattern.
Thus, the following data movements occur for each condition (success or
failure) that has an IIU, PIU, or MDIU related in the conditional navigation
(see Figure 4.20):

1) If the condition of the conditional navigation is fulfilled, the server
layer reads from the database the values that are necessary to filter
the instances of the IIU, PIU, or MDIU.

4. Design of a Functional Size Measurement Procedure

__

121

2) If a legacy view is used in the navigational filtering formula, the
legacy system delivers the corresponding values to solve the filter to
the server layer.

3) The server layer executes the IIU, PIU, or MDIU performing all the
data movements specified for its conceptual constructs.

Figure 4.20 Data movements in a Service with a conditional navigation

fulfilled and a navigational filtering.

Thus, we have defined extra rules to identify the data movements that
occur in the navigational filtering of conditional navigations of a service:

Counting Rule 73: 1 read data movement for each different class that is

used in the formula of the navigational filtering of an
IIU, PIU, or MDIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

4. Design of a Functional Size Measurement Procedure

122

Counting Rule 74: 1 entry data movement for each different legacy view

that is used in the formula of the navigational

filtering of an IIU, PIU, or MDIU associated to the
conditional navigation of a service related to a SIU
that participates in a functional process in the server

layer.

4.4 Definition of the Numerical Assignment Rules

The measurement rules are rules that assign a numerical value to the data
movements that take place between the functional users and the pieces of
software of an application. This numerical value represents the functional
size of the generated software application.

In this step, the definition of the measurement function and the
aggregation of the results are performed. With this, the COSMIC
measurement phase ends (see Figure 4.1), which implies that the design of
the OOmCFP measurement procedure is complete.

4.4.1 Measurement Function

According to the COSMIC functional size measurement method, each data
movement will be assigned one size unit, which is referred to as 1 CFP
(COSMIC Function Point).

In the OOmCFP procedure, the measurement function is identical to the
COSMIC measurement function. That is, OOmCFP assigns 1 CFP to each
data movement.

4. Design of a Functional Size Measurement Procedure

__

123

4.4.2 Aggregation of Results

To measure the functional size of a functional process, the functional size of
all the data movements of the functional process should be added. Formula
(1) illustrates how to calculate the functional size of a functional process:

∑
=

=

n

i

intDataMoveme
1

 v3.0)(CFP sonalProcesSizeFuncti (1)

Taking into account that the measurement function assigns 1 CFP to
each data movement, the result of Formula 1 corresponds to the functional
size that is measured in CFPs. From Formula 1 it can be observed that the
functional size is expressed in CFP v3.0. We have defined the following
rules to aggregate the data movements of each functional process of an OO-
Method application:

Measurement Rule 1: Aggregate the data movements of a functional

process that occur in the client layer to obtain
the functional size of the functional process.

Measurement Rule 2: Aggregate the data movements of a functional

process that occur in the server layer to obtain
the functional size of the functional process.

Once all the functional processes are measured, the functional size of
these processes should be added to obtain the functional size of the layer that
contains them. Formula (2) shows how to calculate the functional size of a
layer:

∑
=

=

n

i

iocessPronalSizeFuncti
1

 v3.0)(CFPSizeLayer
(2)

Thus, we have defined the following rules to obtain the functional size of
each layer:

4. Design of a Functional Size Measurement Procedure

124

Measurement Rule 3: Aggregate the functional size of each
functional process of the client layer to obtain
the functional size of the client layer.

Measurement Rule 4: Aggregate the functional size of each
functional process of the server layer to obtain
the functional size of the server layer.

For the measurement of the generated software applications from the

developer’s viewpoint, it is necessary to aggregate the functional size of
every layer of the software application. This calculation is represented in
formula (3).

∑
=

=

n

i

iSizeLayer
1

 v3.0)(CFPion odApplicatSizeOOMeth
(3)

We have defined the following rule to obtain the functional size of an
entire OO-Method application:

Measurement Rule 5: Aggregate the functional size of each layer of

the OO-Method application to obtain the
functional size of the application.

Finally, with the measurement rules, it is possible to measure the

functional size of the OO-Method applications that are generated from their
conceptual models in a MDD environment. Thus, the measurement result of
OOmCFP corresponds to the functional size of OO-Method applications.
The measurement rules add all the data movements that occur in the
application for its correct operation; so that, the measurement result includes
all the functionality from the developer’s viewpoint.

4. Design of a Functional Size Measurement Procedure

__

125

4.5 Conclusions

In this chapter, we have presented OOmCFP, which is a FSM procedure for
applications that are generated from object-oriented conceptual models in
MDD environments. This procedure was designed in accordance with the
COSMIC standard method, which is a FSM method that allows the
measurement of each layer of an application as well as the whole
application. This is in contrast to other FSM standard methods that only
allow the measurement of the whole application.

OOmCFP has been systematically designed applying a set of steps of a
software measurement process model. Since there is no consensus in the
concepts and terminology used in the software measurement field, the
concepts and terminology used in the design of OOmCFP have been
carefully selected from the standards ISO VIM [ISO 2004], ISO 14143
series [ISO 1998] [ISO 2003] and ISO 19761 [ISO/IEC 2003a].

In the design of OOmCFP, we have identified a set of counting rules that
allow the relevant constructs of the OO-Method conceptual model to be
selected according to the COSMIC concepts. Moreover, a set of
measurement rules has been defined to obtain the functional size of each
software layer of an application. Even though OOmCFP has been designed
to be used specifically in the OO-Method context, many conceptual
constructs of the OO-Method conceptual model can be found in other object-
oriented methods. Moreover, the main modelling constructs used by OO-
Method are basic constructs that have UML representation support. That is
why the OOmCFP procedure could be generalized to other object-oriented
development methods and the presented results can be applied to any UML-
based method where those constructs are present (for instance [Fink et al.
2006], [Kim et al. 2004], [Olivé and Raventós 2006]).

The OOmCFP procedure has been designed to obtain accurate measures
of the application that is generated from the conceptual models. This is
feasible because we have selected a conceptual model that has enough

4. Design of a Functional Size Measurement Procedure

126

semantic expressiveness to specify all the functionality of the final
application. Therefore, the measurement results obtained can be accurate
because all the data movements that occur in the final application could be
traceable to the conceptual model.

__

127

Chapter 5

Evaluation of the Design of

OOmCFP

Hundreds of measures have been proposed in the literature for different
software attributes, such as size, complexity, maintainability, usability, etc.
Many of them have been defined using intuitive approaches, resulting in that
there is no precise definition of the concepts involved in the measures.
Taking into account that a valid measure is that one that effectively measures
the concepts that it needs to measure, the majority of the measures found in
the literature have not been validated properly.

In order to validate software measures, many validation approaches have
been proposed (such as [Kitchenham et al. 1995], [Schneidewind 1992],
[Zuse 1998], etc.), but none of which has been widely used by designers or
users of the software measures [Sellami and Abran 2003]. In addition, the
lack of consensus in the concepts of the measurement field has caused that
different concepts are used to refer to the same things, or even the same
concept is used to refer to different things.

There exist some proposals defined to harmonize these concepts and
provide a consistent terminology, such as the software measurement

5. Evaluation of the Design of OOmCFP

128

ontology (SMO) [García et al. 2006] and a framework for the verification of
software measurement methods [Habra et al. 2008]. Both, the SMO and the
framework are mainly based in the ISO VIM concepts. The SMO is
comprised of four sub-ontologies: (1) software measurement characterization
and objectives, (2) software measures, (3) measurement, and (4)
measurement approaches. OOmCFP is aligned with the first three sub-
ontologies because it uses the concepts that they define. However, the
measurement approach sub-ontology classifies a measurement approach in
‘measurement method’, ‘measurement function’, and ‘analysis model’. We
do not agree with this classification because a measurement method can have
a measurement function defined, as the COSMIC measurement method. For
this reason, OOmCFP is not aligned with the measurement approach sub-
ontology of SMO.

The framework for the verification of measurement methods [Habra et

al. 2008] defines a set of concepts and terminology for the design and
verification of the measurement methods. These concepts are similar to the
concepts of the SMO, for instance the framework defines the concepts of
measure, measurement result, unit of measurement, entity, and attribute.
Thus, OOmCFP is aligned with the terms and concepts defined in the
framework. In contrast to the SMO, the framework defines a classification
for measurement methods and measurement procedures. OOmCFP is
characterized by this classification. The framework also defines the life cycle
of the measurement methods: design, application, and exploitation.

Even though there are approaches that attempt to harmonize the concepts
used by the measurement field, they neither are widely used and sometimes
they disagree with the standards (such as the SMO [García et al. 2006]).
Taking into account this context, this chapter presents the validation of the
design of the OOmCFP FSM procedure. This validation has been carried out
by using the following standards: the ISO/IEC 14143-2 standard of the
conformity evaluation of software size measurement methods [ISO 2002],
the International vocabulary of basic and general terms in metrology (VIM)

5. Evaluation of the Design of OOmCFP

__

129

[ISO 2004], and the ISO 5725-2 – Accuracy (trueness and precision) of
Measurements Methods and Results [ISO 1994].

5.1 Conformity Evaluation of OOmCFP

The conformity evaluation of OOmCFP refers to the evaluation of the
OOmCFP FSM procedure according to the last version of the COSMIC FSM
method [Abran et al. 2007]. This means that the design of OOmCFP is
analyzed to know if all the essential concepts of COSMIC are addressed by
OOmCFP. To perform the conformity evaluation of OOmCFP, the following
elements were necessary:

1. Candidate FSM procedure documentation. The documentation
shall include all the materials needed to the proper use of the
FSM procedure, for instance, manuals, guidelines, examples,
case studies, etc. For the conformity evaluation of OOmCFP,
this material corresponds to the measurement guide of OOmCFP
(see Appendix A).

2. Conformity evaluation checklist. This checklist consists in 29
questions that is used to evaluate the candidate FSM procedure
with the COSMIC FSM method [Abran et al. 2007]. The
checklist is structured in four parts: questions related to the
strategy phase of COSMIC, questions related to the mapping
phase of COSMIC, questions related to the measurement phase
of COSMIC, and question related to the presentation of the
measurement results. The checklist used to evaluate OOmCFP is
presented in Appendix B.

3. Evaluators. In order to increment the objectivity of the
conformity evaluation, an expert certified in COSMIC FSM v.
3.0 was responsible to verify the evaluation performed.

5. Evaluation of the Design of OOmCFP

130

The conformity evaluation of OOmCFP was performed using the process
presented in the ISO/IEC 14143-2 standard of the conformity evaluation of
software size measurement methods [ISO 2002] (see Figure 5.1). Thus, for
each question of the checklist, evaluators decide if it is applicable to the
conformity evaluation or not. For the questions that are applicable to the
evaluation, evaluators locate the information related to the question in the
documentation of OOmCFP. If there is enough information to satisfy the
requirements related to the question, evaluators register the question in the
checklist as satisfied. If the information does not satisfy the requirements,
evaluators mark it as unsatisfied and also justify their decision in the
checklist. Finally, if there is no enough information to solve the question,
evaluators mark it as unresolved and justify their decision.

Figure 5.1 Conformity evaluation process for OOmCFP.

For each evaluation

question

Question does not

contribute to evaluation

Consider all located

information for this

question

Question not passed Question passed Question could not be

resolved

no

yes

yes no

no

yes

no

yes

unresolved
Record locations of, or absence

of information that prevented

resolution, and justify

Are there

additional location

with relevant

information?

Does

information satifies

requirements of

question?

Can relevant

information be

located?

Is question

applicable?

Record location of

information prevented

passing, and justify

Record location

information

Record question

passed

Record “question

is not applicable”

5. Evaluation of the Design of OOmCFP

__

131

Results of the conformity evaluation of OOmCFP indicate that all the
questions (10) of the strategy phase were approved by OOmCFP, all the
questions (7) of the mapping phase were approved by OOmCFP, 8 of 10
questions of the measurement phase were approved by OOmCFP, and all the
questions (2) of the measurement report were approved by OOmCFP. In
summary, 27 questions of the conformity evaluation checklist were approved
by OOmCFP and 2 questions of the measurement part of the checklist could
not be resolved due to the absence of information.

One of these unresolved questions is related to the definition of an
aggregation function to obtain the functional size of data movements’
modifications. This definition was not necessary in OOmCFP since it obtains
the functional size of OO-Method applications from their conceptual models,
and when a change in the software is required, it is necessary to first change
the model, and then, re-generate completely the application. Thus, to obtain
the functional size of the modifications it is necessary to calculate the
functional size of the applications with the changes and subtract to it the
functional size of the original application.

The other unresolved question is related to the definition of extensions to
obtain the functional size. In OOmCFP, it was not necessary to define
extensions to the COSMIC measurement method to obtain the size of OO-
Method applications.

Therefore, we can state that the OOmCFP measurement procedure
version 1.0 conforms to the concepts and principles of the COSMIC
measurement method version 3.0 (2007).

5.2 Metrology Evaluation of the Design of

OOmCFP

Metrology is defined in the VIM [ISO 2004] as “field of knowledge

concerned with measurement”. Metrology includes theoretical and practical

5. Evaluation of the Design of OOmCFP

132

aspects of measurement. It has a long tradition of use in sciences such as
physics or chemistry, but it is rarely referred in software engineering [Abran
2010].

The International vocabulary of basic and general terms in metrology
(VIM) [ISO 2004] represents the official consensus in measurement
concepts. It has 122 terms grouped in five categories: Quantities and Units
(26 terms), Measurement (43 terms), Devices for Measurements (12 terms),
Characteristics of Measurement Systems (23 terms), and Measurement
Standards-Etalons (18 terms). In contrast to traditional dictionaries, this
vocabulary presents the terms in a textual format following a complexity
order: from the less complex term to the most complex term.

To facilitate the understanding of the terms specified in VIM and clarify
their relationships with the remainder terms, a high-level model of the terms
and categories was presented [Abran and Sellami 2002] (see Figure 5.2). In
this figure, the concepts are represented as follows: the input is Measurand,
the output is Measurement Result, the process itself is Measurement, the
control variables are Quantities and Units and Measurement Standards-

Etalons, the set of concepts is represented as Devices for Measurements, and
the operations of the measurement are influenced by the Characteristics of

Measurement Systems.

 Figure 5.2 High-level model of categories of metrology terms [Abran

and Sellami 2002].

5. Evaluation of the Design of OOmCFP

__

133

Taking into account these sets of metrology concepts, the quality criteria
that must accomplished for the design of a measurement method have been
specified in the book Software Metrics and Software Metrology [Abran
2010]. Thus, the design of a measurement method is considered ‘good’ when
it refers to these quality criteria. Table 9 presents these criteria for the design
step of the process model that was followed to define the OOmCFP
measurement procedure. It is important to consider that the measurement set
of concepts is comprised by both the measurement foundation and the
measurement procedure. And, to validate the design, only the measurement
foundation must be taken into account.

Table 9. Quality criteria for the design of a measurement method.

In addition, each category of VIM was analyzed in order to identify sub-

concepts within the terms of the category. In order to clarify these sub-
concepts, [Abran and Sellami 2002] also modeled the categories and
organize topologically the involved concepts. The analysis of the design of
OOmCFP following these topologies that groups metrology concepts is
presented below.

5.2.1 Measurement Foundation

The measurement foundation corresponds to a hierarchy of related
measurement concepts. This hierarchy is defined form the most general to
the specific (top-down). Figure 5.3 shows the levels of the measurement
foundation [Abran 2010].

Step in Process Model Quality Criteria

Design of the Measurement Method

Measurement Foundation

Quantities and Units

Measurement Standards-Etalons

5. Evaluation of the Design of OOmCFP

134

Figure 5.3 Levels of the Measurement Foundation.

Metrology includes all the theoretical and practical aspects on

measurement. The measurement principle represents the phenomenon that
serves as the basis of a measurement. The measurement method is a generic
description of a logical sequence of operations used in a measurement. The
measurement procedure is the instantiation of the measurement method; it
has a detailed description of the measurement and includes the calculations
needed to obtain a measurement result.

The hierarchy of the measurement foundation has been taken into
account in the design of OOmCFP (see Figure 5.4). The OOmCFP has been
designed according to the Standard ISO 19751 [ISO/IEC 2003a], therefore,
the measurement principle states that the functional size is directly
proportional to the number of data movements. The measurement method
corresponds to the COSMIC Functional Size Measurement Method version
3.0 [Abran et al. 2007], and the instantiation of this method to apply it in the
conceptual models of the OO-Method approach correspond to the OOmCFP
Functional Size Measurement Procedure.

5. Evaluation of the Design of OOmCFP

__

135

Figure 5.4 Measurement Foundations for OOmCFP.

5.2.2 Quantities and Units

A quantity is defined as a property to which a magnitude can be assigned

[ISO 2004]. Normally, a quantity is expressed as numbers. However, to
recognize a quantity as a measure, the following additional concepts are
necessary: system of quantities, dimension of a quantity, unit of
measurement, value of a quantity, kind of quantity, and the quantity calculus.
Figure 5.5 shows the model of this category (adapted from [Abran 2010]).

Figure 5.5 High-level model of Quantity category.

5. Evaluation of the Design of OOmCFP

136

The system of quantities set of concepts include the following terms:
base quantities, derived quantities, and international system of quantities
[Abran 2010]. A base quantity is a quantity chosen by convention that is
used to define other quantities. A derived quantity is a function of base
quantities. An international system of quantities (ISQ) is a system of
quantities that has a set of quantities and equations that relate those
quantities. Currently, the ISQ is published in the International Standard of
Quantities and Units [ISO 1992]. The OOmCFP FSM procedure is focused
only in the measurement of the functional size, which is considered a base
quantity. Some derived quantities related to the functional size are the
productivity and the budget, but they are not addressed by the OOmCFP
FSM procedure. The definition of an international system of quantities is not
applicable for OOmCFP.

The concept of a quantity can be divided in two levels: a general concept
and an individual concept when it is applied to the object under
consideration. The kind of a quantity corresponds to a common aspect in
comparable quantities. Thus, the kind of quantity refers to the general
concept of a quantity (for instance, length). For OOmCFP, all the quantities
correspond to the same kind: the functional size.

The quantity dimension is represented by the product of the powers of
factors, where the factors are base quantities. For OOmCFP, the quantity
dimension is one-dimensional since it only has one base quantity.

The quantity value is a magnitude of a quantity that is represented by a
number and a reference. It has related the concepts of true value,
conventional true value, numerical value, and conventional reference scale
[Abran and Sellami 2002]. The true value is the value that would be obtained
with perfect measuring instruments and without committing any error of any
type [OECD 2010]. In OOmCFP, this value is considered only as a
theoretical concept since several external factors can affect the
measurements. Nevertheless, OOmCFP considers the conventional true
value as the value obtained by experts applying the COSMIC Functional

5. Evaluation of the Design of OOmCFP

__

137

Size Measurement Method. The numerical value corresponds to the value
obtained by the application of the measurement function defined in the
COSMIC measurement manual version 3.0. [Abran et al. 2007]. The
conventional reference scale in OOmCFP corresponds to the set of discrete
numbers, which its minimum value is 1 data movement and its maximum
value is not determined. Since 1 data movement in OOmCFP is related to
one data group, the conventional reference scale is expressed in data group
movements.

The measurement unit is a scalar quantity, defined and adopted by
convention, with which other quantities of the same kind are compared in
order to express their magnitudes. Its definition also includes the definition
of the symbol. The measurement unit set of concepts has related the terms of
base unit, derived unit, coherent derived unit, system of units, coherent
system of units, off-system measurement unit, international system of units
(SI), multiple of a unit, and sub-multiple of a unit.

A base unit is a unit chosen by convention for a base quantity of a
system of quantities. In OOmCFP, the measurement unit is a base unit that
corresponds to a data movement, which uses the symbol “CFP”. A derived
unit is a unit for a derived quantity. Since OOmCFP do not consider derived
quantities, there are no derived units defined in OOmCFP. Thus, the system
of units for OOmCFP only has the base unit stated before.

A coherent derived unit is a unit obtained by the by the product of the
powers of base units with the proportionally factor. The coherent system of
units is a system comprised of coherent derived units. For OOmCFP is not
necessary to define neither coherent derived units nor the coherent system of
units nor the off-system measurement unit. The international system of units
(SI) is a coherent system of units based on the ISQ. The definition of an
international system of units is not applicable for OOmCFP.

The multiple of a unit is a unit formed from a unit by multiplying it by
an integer greater than one; and the sub-multiple of a unit is a unit formed
from a unit by dividing it by an integer greater than one. Since in OOmCFP

5. Evaluation of the Design of OOmCFP

138

the measurement unit correspond to a data movement that moves a single
data group, to define a multiple of a unit, it is necessary to find a conceptual
construct that be make up by data groups (for instance, packages). Also, to
define a sub-multiple of a unit, it is necessary to find a conceptual construct
that be contained in a data group (for instance, attributes). However, it is not
possible to define multiples and sub-multiples of the measurement unit of
OOmCFP since there are not a specific number of packages or attributes
related to a data group.

The quantity calculus corresponds to the set of algebraic rules applied to
quantities. This set of concepts has the following related terms: quantity
equation, unit equation, conversion factor between units, and numerical
value equation [Abran 2010]. A quantity equation refers to an equation
relating quantities. In OOmCFP there are three equations defined: (1) one
equation to obtain the functional size of each functional process that adds the
functional size obtained for each conceptual construct contained in a
functional process, (2) one equation to obtain the functional size of each
layer of the application that adds the functional size of the functional
processes contained in a layer, and (3) one equation to obtain the functional
size of the entire application generated from the conceptual model measured,
which adds the functional size of the layers that comprise the final
application.

The unit equation corresponds to an equation of the units of the
quantities that are used in a quantity equation. Since the equations defined in
OOmCFP are sums of data movements, it is not necessary to define a unit
equation. The conversion factor between units is a ratio of two units for
quantities of the same kind. In OOmCFP, there is only a quantity defined
(i.e., the functional size) that is related to a particular measurement unit, so
that conversion factors between units have not been defined.

The numerical value equation is an equation relating numerical quantity
values. Thus, when the OOmCFP equations are instantiated with

5. Evaluation of the Design of OOmCFP

__

139

corresponding numbers of data movements or functional size, they
correspond to numerical value equations.

5.2.3 Measurement Standards - Etalons

A measurement standard or etalon is defined as a material measure,
measuring instrument, reference material or measuring system intended to
define, realize, conserve or reproduce a unit or one or more values of a
quantity to serve as a reference. Figure 5.6 shows the model of this category.

Figure 5.6 High-level model of Measurement Standards - Etalons

category.

There are several concepts related to the different levels of measurement
standards, such as international/national measurement standard,
primary/secondary measurement standard, reference measurement standard,
working measurement standard, transfer measurement standard, travelling
measurement standard, and intrinsic measurement standard [Abran 2010].
The design of OOmCFP has been performed according to the last version of
the International Standard Functional Size Method ISO 19761 [ISO/IEC
2003a]. This standard is also a primary standard since its quantity value and
measurement uncertainly have been established without relation to another
measurement standard for quantities of the same kind. Since the ISO 19761
is a widely recognized basis for OOmCFP, it was not necessary to use other

5. Evaluation of the Design of OOmCFP

140

measurement standards in the design of OOmCFP (i.e., secondary, reference,
working, transfer, travelling, or intrinsic measurement standards were not
necessary).

There are also several concepts related to the conservation of a
measurement standard, such as calibrator, reference material, certified
reference material, commutability of a reference material, reference data,
standard reference data, and reference quantity value [Abran 2010]. Since
OOmCFP is not a standard but it is defined according to an international
primary standard, these concepts related to the conservation of the
measurement standard are not addressed by OOmCFP due to they should be
addressed by the ISO/IEC 19761. Consequently, in the literature it is
possible to find reference material for etalons for the ISO/IEC 19761
[Khelifi 2005] and methodology concepts to define a measurement standard
etalon for the COSMIC Functional Size method [Khelifi and Abran 2007].

Finally, from the analysis of OOmCFP according to the measurement

foundation, the quantities and units, and the measurement standards –
etalons sets of concepts, we can state that the design of the OOmCFP
measurement procedure is valid according to the metrology concepts.

5.3 Precision Evaluation of OOmCFP

Software measurement currently plays a crucial role in software engineering
given that the evaluation of software quality depends on the values of the
measurements carried out. Software measurements must therefore have
quality attributes that assure measurement reliability, such as accuracy and
precision.

Accuracy is related to the closeness to the ‘true value’ of the
measurements [ISO 2003]. Since the ‘true value’ is only a theoretical
concept, when a measurement is performed it is important to obtain the value

5. Evaluation of the Design of OOmCFP

__

141

for the measurement and the estimation of the degree of uncertainty.
However, the degree of uncertainty of a software measurement is very
difficult to obtain due to there are external factors that affect measurements.
Thus, it is essential to first obtain precise measures in order to obtain
accuracy measures.

The International Standard for Accuracy (trueness and precision) of
Measurements Methods and Results - ISO 5725 [ISO 1994]- defines
precision as a part of the accuracy of measures (see Figure 5.7). In this
standard, precision is defined as the closeness of agreement of test results.
To evaluate the precision of measures, the ISO 5725 presents the formulae
for calculating the repeatability and reproducibility of the measures.

Figure 5.7 Measurement of accuracy under ISO 5725.

Furthermore, the International Vocabulary of General Terms in

Metrology (VIM) [ISO 2004] defines the precision term as the closeness of
agreement between quantity values obtained by replicated measurements of
a quantity, under specified conditions.

In the software measurement area, the International Standard for
Functional Size Measurement ISO 14143 [ISO 2003] does not specifically
define the term precision. This standard only has a note that advises that the
term precision should not be used as a synonym for accuracy. However, ISO
14143 presents the definition of repeatability and reproducibility of the
results of measurements. This standard provides a brief example of the

5. Evaluation of the Design of OOmCFP

142

calculation of repeatability, but does not show the formulae applied to obtain
repeatability and the conditions of the measurement task that assures the
same conditions for each measure. For the measurement of reproducibility,
not even a brief example is provided.

Repeatability is defined as the closeness of the agreement between the
results of successive measurements of the same measurand carried out under
the same conditions, taking into account that the same conditions imply the
same measurement procedure, the same observer, the same measuring
instrument, the same conditions of use of the measuring instrument, the same
location, and repetitions over a short period of time [ISO 2003].

Reproducibility is defined as the closeness of the agreement between the
results of measurements of the same measurand carried out under changed
conditions of measurement. The changed conditions may include: the
measurement principle, the measurement method, the observer, the
measuring instrument, the reference standard, the location, the conditions of
use, and the time [ISO 2003].

In the software engineering community, the term precision is sometimes
incorrectly confused with the term accuracy. For instance, Kemerer in
[Kemerer 1993] uses indistinctly the terms accuracy and precision, and also
uses the term reliability instead of reproducibility of precision. These terms
should not be used indistinctly because they have a different meaning.

Some authors have taken into account the measurement of the
reproducibility of software measures, such as [Abrahao et al. 2004]
[Condori-Fernández and Pastor 2006]. These authors evaluate the
reproducibility of measurement results of functional size procedures based
on IFPUG-FPA and COSMIC, respectively. Both approaches use a statistical
equation similar to the one proposed by Kemerer [Kemerer 1993], which
calculates the difference in absolute value between the measure produced by
a subject and the average measure (for the same FSM method) produced by
the other subjects in the measurement task, divided by the average
measurement results. The main disadvantage of this formula is that it uses

5. Evaluation of the Design of OOmCFP

__

143

the average, which is not correct if the results of the measurements are not
homogeneous. Thus, the use of this formula does not allow the
generalization of the measurement procedure used in [Abrahao et al. 2004]
and [Condori-Fernández and Pastor 2006].

Other authors have taken into account the measurement of the
repeatability of software measures, such as [Diab et al. 2005]. They affirm
that repeatability is assured with the automation of the measurement
procedure. Although we agree with this affirmation, it is important to control
repeatability from the design phase of the measurement procedure in order to
detect weakness and improve the measurement procedure before its
automation.

We have not found any analyses of the precision of software measures in
terms of repeatability and reproducibility. By evaluating both attributes we
can detect the causes that produce variability of measurements, such as: the
knowledge of the subjects that perform the measurement task; the
concentration level of these subjects; their understanding of the
instrumentation material; the legibility of the instrumentation material; the
correctness of the explanation of the measurement procedure, etc.

The next section presents a method for evaluating the precision of
software measures taking into account repeatability and reproducibility of
measures.

5.3.1 A Method for the Evaluation of Precision

A method is a set of successive steps that leads to a goal. A method is
described by specification of each step that makes up the method and the
means used to achieve the goal. We design a method that allows
measurement of the precision of software measures according to the standard
ISO 5725 [ISO 1994], which is widely used in other sciences but
surprisingly is not used in software engineering.

5. Evaluation of the Design of OOmCFP

144

We adapted ISO 5725 by instantiating this standard with concepts used
in software measurement – see Table 10.

Table 10. Instantiation of ISO 5725 with software engineering concepts.

ISO 5725 Software Engineering

Measurement

yield

The measurement method must have a continuous scale and must

give a single value as the result of the test. The continuous scale

means that there is no limit on the number of possible values of

the measures.

Operator Subjects that will measure the software artifacts (managers,

analysts, designers, etc). These subjects must have knowledge of

software engineering and must also be familiar with the use of

software artifacts, such as conceptual models (case use diagrams,

class diagrams, activity diagrams, process diagrams, etc.).

Test site The place where the subject will measure the software products

(office, classroom, etc).

Equipment The software artifact to be measured and the instruments to

measure this artifact. The instruments to measure a software

artifact can be for manual, semi-automatic, or automatic use.

Laboratories A laboratory is the combination of the subjects with the artifacts

and the instruments to measure in the place where they will do

the measurement. In our field of study, a laboratory is the

combination of: subjects (i.e. manager, programmer, and

analyst.), artifacts (which are the software products obtained from

any phase of the development process, i.e. use cases, class

diagram, and source code), and instruments (i.e. the measurement

procedure).

Different levels

of the test

These levels can be the complexity or size levels of the

conceptual models that will be measured. Both criterions of

levels are representatives for the measurement of the precision.

For instance, for the measurement of the size of an artifact, the

levels small, medium and large are required.

5. Evaluation of the Design of OOmCFP

__

145

The method designed for the evaluation of the precision of software
measures is comprised of three phases: a definition phase, a measurement
phase, and an evaluation phase. Figure 5.8 schematizes the method for the
evaluation of precision using a UML activity diagram.

Figure 5.8 Method for evaluation of precision of software measures.

5. Evaluation of the Design of OOmCFP

146

The Definition Phase

This phase is comprised of four activities: characterization of subjects,
characterization of place, preparation of the instruments for the measurement
exercise, and validation of the instruments.

Characterization of subjects includes the identification of the level of
knowledge of the measurement procedure and the software artifacts of the
subjects.

Characterization of place includes the specification of the size of the
place, illumination, movables, and the computers (i.e. OS, RAM, and
software installed) used for the measurement.

Preparation of instruments corresponds to the preparation of the
materials that the subjects must use to perform the measurement exercise.
The preparation of the instruments will depend of the knowledge of the
subjects. If the selected subjects don’t have knowledge of the measurement
procedure or of the software artifacts to be measured, then it is necessary to
prepare the instruments for training the subjects and the instruments to
perform the measurement exercise. In contrast, if the selected subjects have a
good knowledge of the measurement procedure and the use of the artifacts to
be measured, then it is only needed the preparation of the instruments to
perform the measurement exercise.

When training is required, preparation of the instruments to measure will
require the specification of the techniques that will be used in the training
activity. A widely used training method is the demonstration / practice
method. To do this, the training material consists of the presentation of the
measurement procedure, the presentation of an example of the application of
the measurement procedure, a software artifact to provide a guided
application of the measurement procedure, and a results sheet to register the
measurement results of the software artifact.

The material for the measurement exercise consists of instructions to
perform the measurement, a set of software artifacts of different levels, and a

5. Evaluation of the Design of OOmCFP

__

147

results sheet for every software artifact to be measured. In the instructions
for the experiment, every measurement of the software artifacts must be
specified. Each measurement must be carried out at least twice to allow the
measurement of repeatability. The instructions of the measurement exercise
will be the same for all the subjects to allow the measurement of
reproducibility.

In the validation of instruments activity, the instruments must be
reviewed by a small group (for instance three people) of experts in the
software artifacts and in the measurement procedure. The number of people
that will review the instruments must be small in order to diminish the noise
in the validation of the instruments. If experts decide that instruments are not
correct, the instruments must be modified and the validation performed
again.

The Measurement Phase

This phase is comprised of five activities: selection of subjects, selection of
place, installation of instruments in the place, training of subjects if it is
required, and the measurement exercise.

In the selection of subjects activity, the people that will carry out the
measurement exercise must be selected according to the characterization of
the subjects. The subject must be selected randomly from a set of subjects
that have similar backgrounds in the software artifacts that will be measured.

It is important to note that the number of selected subjects will affect the
significance of the measures. A greater number of selected subjects allows a
greater significance of measures; at least 30 subjects would be required to
obtain measures with a 95% certainty.

In the selection of place activity, the place where the measurement
exercise will be carried out must be selected according to the
characterization of the place. The selected place must have one computer for

5. Evaluation of the Design of OOmCFP

148

each subject selected, and every computer must have the same conditions
(i.e. OS, RAM, software installed).

The activity of installation of the instruments in the place consists in
copying the prepared instruments in each computer that will be used by the
subjects. Also this activity includes the printing of the instruments that will
be given in paper to the subjects and the location of the instruments in the
place.

The training of subjects activity is performed if the selected subjects
don’t have a high knowledge of the software artifact and the measurement
procedure. In this activity, the subjects are trained using the training
instruments; the subjects can ask whether they have questions that may be
required for the correct understanding of the software artifact and the
measurement procedure.

In the measurement exercise activity, the subjects perform the
measurement following the instructions specified in the preparation of the

instruments. In this step, the subjects cannot ask questions.

The Evaluation Phase

This phase is comprised of three activities: collection of results, application
of measurement formulae, and analysis of the values calculated.

We select and adapt some tables and formulae presented in the standard
ISO 5725 to the collection of results and application of measurement
formulae activities. The standard ISO 5725 has 50 formulae that in
conjunction allow the calculation of repeatability and reproducibility of the
measures and the analysis of the values obtained. This standard also has six
tables to input data. We select and adapt six formulae and three tables.

The activity of the recollection results consists in the collection of
measures obtained by the subjects in each level of the software artifacts. In
this activity, the measures are recorded using Table 11, which shows the
subjects that perform the measurement in the first column, and the levels of

5. Evaluation of the Design of OOmCFP

__

149

the artifacts used to perform the measurement in the first row. Each measure
obtained by the subjects at each level is recorded in the intersection of
subjects and levels.

Table 11. Table to collect the results of the measures (adapted from ISO
5725).

Subject
Level

1 … j … m

1 Measure 111

Measure 112
 Measure 1m1

Measure 1n2

…

i

 …

Measure ijk

…

…

n Measure n11

Measure n12

 Measure nm1

Measure nm2

In this activity the data obtained must be also validated. Since the

subjects must follow the instructions to perform the measurement exercise,
redundant and missing data is avoided, because in the instructions there is no
indication on performing redundant measures and all the steps detailed in the
instructions must be strictly followed by the subjects.

The validation of the data obtained also includes identification and the
analysis of outliers and outlying subjects. The outliers here are measures that
deviate greatly from comparable entries in Table 11. The outlying subjects
are subjects that have several unexplained abnormal measures. The outliers
and the outlying subjects must be investigated and analyzed to ascertain the
reasons for their divergence. Once the investigation and the analysis have
been performed, the person that planned the measurement exercise must

5. Evaluation of the Design of OOmCFP

150

decide whether the outliers and the outlying subjects will be ignored or must
be corrected (and must document the reason).

When the measurement results registered in Table 11 have been
validated, the cell arithmetic means must be calculated. Each cell is the set of
measures recorded for each subject at each level. The cell means are
calculated using the following formula:

∑
=

=

ijn

k

ijk

ij

Measure
n 0

ij
1

Cell
(4)

where ijkMeasure corresponds to each measure obtained for a subject i

at level j, and ijn is the number of measurement results obtained for a
subject i at level j. The cell means calculated are recorded in a table with the
structure of Table 12. As Table 12 shows, the mean of the cell is recorded at
the intersection of subjects and levels.

Table 12. Table to collect the arithmetic means of cells (adapted from
ISO 5725).

Subject
 Level

1 … j … m

1 Cell 11 Cell 1m

…

i Cell ij

…

n Cell n1 Cell nm

Once the mean of each cell has been calculated, the spread of each cell

must be quantified by means of the application of Formula 5:

∑ −

− =

=

ijn

k

ijijk

ij

CellMeasure
n 0

2
ij)(

1

1
Spread

(5)

5. Evaluation of the Design of OOmCFP

__

151

where ijCell is the mean of the cell measure for a subject i at level j. The
spreads calculated are recorded in a table with the structure shown in Table
13; the spread is registered in the intersection of the subjects and the levels.

Table 13. Table for recording the spread of cells.

Subject
Level

1 … j … m

1 Spread 11 Spread 1m

…

i Spread ij

…

n Spread n1 Spread nm

In the application of measurement formulae activity the precision is

calculated for each level using the repeatability variance and the
reproducibility variance.

To calculate the repeatability variance, Formula 6 is used.

∑ −

∑ −

=

=

=
p

i

ij

p

i

ijij

n

Spreadn

1

1

2

rj
2

)1(

)1(
S

(6)

where ijSpread corresponds to the spread of cell measures for a subject
i at level j, and p is the number of subjects that perform the measurement
exercise.

To calculate the reproducibility variance, Formula 7 is used.

Ljrj SS
22

Rj
2S += (7)

where rjS 2
 corresponds to the repeatability variance, and LjS 2

 is the
between-subjects variance.

5. Evaluation of the Design of OOmCFP

152

To obtain the value of LjS
2

, the application of Formula 8 is required to

calculate the general mean of a level j represented by jm , and Formula 9 that
uses the values calculated previously to obtain the between-subjects
variance.

∑

∑

=

=

=
p

i

ij

p

i

ijij

j

n

Celln

m

1

1
(8)

=

=

=

=

=

∑
∑

∑
−

−

−∑ −

−

p

i
p

i

ij

p

i

ij

ij

rj

p

i

jijij

Lj

n

n

n
p

SmCelln
p

S

1

1

1

2

2

1

2

2

1

1

)(
1

1

(9)

Finally, in the analysis of results activity, the precision of the

measurement results is evaluated. If the repeatability and the reproducibility
variance are low, it indicates that the measurement results have high
precision. These values should be low because they represent the magnitudes
of the expected measurement error within and between the measurement
results, respectively.

If the repeatability variance is high, it indicates that the instruments
prepared for the empirical study must be reviewed and corrected or
redesigned. On the other hand, if the reproducibility variance is high, it
indicates the possibility that the knowledge of the selected subjects might be
dissimilar, the measurement procedure has not been correctly understood, or
better training of the subjects is required.

5. Evaluation of the Design of OOmCFP

__

153

5.3.2 A Pilot Study to Evaluate the Precision of

OOmCFP

The term pilot study (or feasibility study) is used to refer to mini versions of
a full-scale study, as well as specific pre-testing of a particular research
instrument. Pilot studies are a crucial element of a good study design, which
might give in advance warnings about where the main project could fail.
Conducting a pilot study does not guarantee success in the main study, but it
makes success more likely [Teijlingen and Hundley 2001]. Given that pilot
studies are very important in empirical research, in this section we present a
pilot study carried out to apply the precision evaluation method to OOmCFP.

In order to define the goal of the pilot study, we used the
Goal/Question/Metric (GQM) template [Basili and Rombach 1988], which
describes the goal as follows: “To analyze the OOmCFP measurement
procedure and the instruments used for the measurement exercise for the
purpose of evaluating its correctness from the viewpoint of the researcher in
the context of Computer Science students measuring OO-Method conceptual
models with OOmCFP”.

This pilot study has focused on detecting any warning for both
Definition and Measurement phases of the precision evaluating method,
since the evaluation phase is based on selected formulae from ISO 5725 that
allow quantifying the precision of software measures.

The Definition Phase

The subjects were characterized as people without any knowledge of
OOmCFP and with minimum knowledge of OO-Method. The place was
characterized as a room with enough computers for the subjects. The
computers must have Windows as Operative System, the Olivanova Modeler
tool [CARE-Technologies 2011] for the work with the OO-Method
conceptual models, and Microsoft Office installed.

5. Evaluation of the Design of OOmCFP

154

In this phase the instruments, consisting of training instruments and the
instruments for the measurement exercise, were also prepared. The training
instruments were the following: a set of slides to teach the main concepts of
the OO-Method conceptual model that are used by OOmCFP; a set of slides
to teach the OOmCFP procedure; an illustrative example of the application
of OOmCFP to the conceptual model of an invoice application; a
measurement guide; a results sheet; and the application of OOmCFP to a
conceptual model of a Rent-a-Car application to verify the training process
carried out.

The instruments for the measurement exercise were the following: three
conceptual models of OO-Method with different levels of functional size
(small, medium, and large – described next), the instructions, and the blank
results sheet. The conceptual model of a Publishing application was used as
the small model (five classes); the conceptual model of a Photography
Agency application was used as the medium model (seventeen classes); and
the conceptual model of an Expense Report application was used as a large
model (twenty-three classes).

The instructions have six steps: three for the specification of the purpose
of the measurement of each conceptual model, and three for the repetition of
the measurements. There were six results sheets, one for each measurement
task. The conceptual models were designed to use 70% of the counting rules
and 100% of the measurement rules of OOmCFP.

The instruments were validated by two experts in OO-Method and two
experts in OOmCFP. The measurement guide and the results sheet were not
well structured, and these instruments had to be changed until the experts
validated all the instruments.

The Measurement Phase

The subjects were selected from the students enrolled in the “Master’s
Degree in Software Engineering, Formal Methods, and Information

5. Evaluation of the Design of OOmCFP

__

155

Systems” at the Universidad Politécnica de Valencia from September 2006
to September 2008. The group of students was made up of 12 students with
at least some knowledge of the OO-Method conceptual model and without
knowledge of the OOmCFP procedure.

The place selected was Room 0S02 of the Department of Information
Systems and Computation of the Universidad Politécnica de Valencia. This
room has twenty identical computers with the same programs installed. Each
computer has the Windows OS, the Olivanova Modeler tool, and the
Microsoft Office software already installed.

The installation of the instruments in the classroom consisted in copying
the training and the measurement instruments into each computer of this
room. Also in this activity, the measurement guide and the instructions were
printed and located close to each computer of the room.

The training of subjects activity was carried out. Thus, students could
develop the expertise required to measure the functional size of the OO-
Method conceptual models using OOmCFP. The training method used was
the demonstration/practice method. For the demonstration part, we
envisaged the following tasks: (a) presentation of the OO-Method
Conceptual Model, (b) use of the Olivanova Modeler tool, (c) presentation of
the OOmCFP measurement procedure, and (d) illustration of the use of
OOmCFP with the conceptual model of an Invoice application. For the
practical part, we considered the following tasks: (e) guided application of
OOmCFP to the conceptual model of a Rent-a-Car application. During the
guided application of OOmCFP the students were able to clarify their
doubts.

The training of subjects activity was planned to take 2 hours: 20 minutes
for task (a), 10 minutes for task (b), 20 minutes for task (c), 20 minutes for
task (d), and 50 minutes for task (e). However, the demonstration part (i.e.,
tasks a, b, c, and d) took only 1 hour and the practice part (i.e., task e) took 3
hours.

5. Evaluation of the Design of OOmCFP

156

It is important to note that 4 students were experts using the tool, 5
students had some idea of the use of the tool, and 3 students had never used
the tool. The expert students obtained the measurement of the functional size
of the Rent-a-Car application. The students that had notions of the use of the
tool carried out the measurement of some functional processes, but they
didn’t obtain the functional size of the application. The students that didn’t
know the tool, did not achieve the measurement of any functional process,
but they correctly identified the functional processes.

The measurement exercise was not carried out because we identify that
the students had different levels of knowledge of the Olivanova tool in the
training activity. The different levels of knowledge of the tool affected the
measurement of the precision; for instance, the experts correctly applied the
mapping and measurement rules defined in OOmCFP, but the inexperienced
students confused the elements of the conceptual model when they try to
identify the data movements. The knowledge of the tool was not taken into
account in the characterization of the subjects and the pilot study indicated
that this is an important factor that affects the measurement of the precision.

Understanding the measurement procedure and the instruments is a
crucial factor in the evaluation of the precision of measures. While the
experts had validated the instruments in their expertise area, the pilot study
reflected that the measurement procedure and the instruments were not
correctly understood by the students. This implies that the procedure and the
instruments must be changed; thus the objective of the pilot study carried out
was achieved.

5.3.3 Lessons Learned from the Pilot Study

The pilot study was carried out in the design phase of OOmCFP. From the
results of the study, we have learned six lessons related to the OOmCFP
procedure, the measurement guide, the results sheet, and the training models.
These lessons are the following:

5. Evaluation of the Design of OOmCFP

__

157

With respect to the OOmCFP procedure:

• When the subjects carried out the measurement, many questions
arose about how to properly identify each functional process. As
follow up, we changed the design of the OOmCFP measurement
procedure, detailing the rules to identify the functional processes and
the elements that are contained in a functional process.

• When an inheritance of classes participates in a functional process,
some subjects considered one data group for the entire inheritance of
classes and other subjects considered one data group for each class
of the inheritance. As result, we included in OOmCFP a rule that
indicates that when an inherited class participates in a functional
process it must be counted as a single data group.

• When the subjects carried out the measurement of the practice
model, some rules defined in OOmCFP were never used. For
instance, some rules that only explain functional processes, but they
do not allow the identification of functional processes. We,
therefore, eliminated the rules that were never used because these
tended to confuse the subjects performing the measurement.

With respect to the measurement guide:

• When the subjects identified the data movements, they had
difficulties in finding the data movements that occur when a
conceptual element participates in a functional process because the
rules were organized according to the layers of the OO-Method
applications. Thus, the subjects took longer than expected to carry
out the practical part of the training exercise. In response, we
changed the measurement guide and reorganized the rules for the
identification of data movements in accordance with the conceptual
elements involved in the functional processes.

With respect to the results sheet:

5. Evaluation of the Design of OOmCFP

158

• When the subjects entered the functional processes and the elements
contained in each functional process, we noted that the subjects had
difficulties when the elements had different levels of abstraction in
the OO-Method conceptual model. We changed the results sheet in
order to differentiate the elements of each level of abstraction that
comprise the functional process.

With respect to the training conceptual model:

• The measurement of the conceptual model used in the practice part
of the training phase was intended to take 50 minutes. However,
some subjects took two hours to do the measurement. Therefore, we
simplified the model used for the practical part.

With all these lessons learned, this pilot study allowed the improvement

of the design of the OOmCFP measurement procedure with less cost than if
it will be carried out when the procedure will be already automated. Thus,
improvements performed to the design of the OOmCFP were the following:

1) streamlining the OOmCFP measurement procedure by eliminating
two rules relating to identification of functional process and adding two rules
for the identification of data groups;

 2) reorganizing the measurement guide by structuring the rules to
identify data movements according to conceptual elements;

 3) redesigning the results sheet by assigning a specific column to record
the conceptual elements of each level of abstraction;

4) simplifying the conceptual model used for the practical part of the
training by deleting those functionalities that do not affect the measurement
exercise.

Finally, we can state that the OOmCFP measurement procedure and the
instruments designed to apply the OOmCFP procedure can obtain precise
measurement results.

5. Evaluation of the Design of OOmCFP

__

159

5.4 Conclusions

In this chapter, the evaluation of the design of OOmCFP has been presented.
Since there is no consensus in the terminology used in the measurement field
and, consequently, there is no a wide used validation frameworks for
software measures, we decide to validate the design of the OOmCFP FSM
procedure using standards.

The conformity evaluation of the OOmCFP FSM procedure regarding to
the COSMIC FSM method has been performed by experts using the ISO
14143-2 [ISO 2002]. This evaluation indicates that OOmCFP is conformant
to the COSMIC FSM method.

A metrological analysis of the design of OOmCFP has been performed
using VIM [ISO 2004]. This analysis shows that the concepts that were used
in the design of OOmCFP are aligned with the metrology terms and it also
presents the corresponding justifications for the concepts that were not used
in the design of OOmCFP.

In order to evaluate the accuracy of the OOmCFP measurement
procedure, precise measures must first be obtained. We designed a method
based on the ISO 5725 standard [ISO 1994] for the evaluation of the
precision of measures based in the reproducibility and the repeatability of
measurement results. We conducted a pilot study to evaluate the precision of
OOmCFP, and results were used to improve the design of the OOmCFP
procedure.

In terms of theoretical validation, since the validation of COSMIC has
been carried out successfully from the perspective of measurement theory in
[Condori-Fernández 2007] using the DISTANCE framework [Poels and
Dedene 2000], and since the OOmCFP measurement procedure has been
designed on the basis of COSMIC, we can infer that the OOmCFP
measurement procedure has also been theoretically validated.

5. Evaluation of the Design of OOmCFP

160

__

161

Chapter 6

Application of OOmCFP

The OOmCFP measurement procedure has been designed to obtain accurate
measurement results of applications that have been generated from their
conceptual models in MDD environments. This chapter presents the
application of the OOmCFP measurement procedure to a rent-a-car system
and the evaluation of the results obtained by this FSM procedure. Depending
on how OOmCFP is applied (manual or automatic), interesting findings are
observed. Thus, in this chapter we first present the activities that must be
performed to complete the manual application of a measurement procedure
following the software measurement process model proposed by Jacquet and
Abran [Jacquet and Abran 1997]: software documentation gathering,
construction of the model, and application of numerical assignment rules

(see Figure 6.1).
The software documentation gathering activity consists in collecting the

documentation of the software that will be measured, which is required to
apply the OOmCFP measurement procedure. In the construction of the

model activity, the model of the software to be measured is built when this
model is not available. If the appropriate model is already available, this
activity can be bypassed. In this activity, the construction of the COSMIC
model is performed by the application of OOmCFP rules. The application of

6. Application of OOmCFP

162

numerical assignment rules is the last activity in the application of the
OOmCFP FSM procedure. In this activity, the OOmCFP rules to measure
the functional size are applied to the software model in order to obtain the
measurement result.

Figure 6.1 Application of OOmCFP Measurement Procedure.

After that, in this chapter we present the automated application of the

OOmCFP measurement procedure. Thus, this chapter also presents a tool
that automates the application of the OOmCFP measurement procedure in
order to obtain accurate functional size measurement results.

6.1 Manual Application of OOmCFP

To illustrate the application of the OOmCFP procedure, we have manually
measured the functional size of a rent-a-car system. The following sections
show the activities carried out to apply the OOmCFP functional size
measurement procedure.

6. Application of OOmCFP

__

163

6.1.1 Software Documentation Gathering

The documents that should be gathered to apply OOmCFP to an OO-Method
application correspond to the OO-Method conceptual model, which is
comprised of the object model, the dynamic model, the functional model,
and the presentation model. This conceptual model has all the details needed
for the generation of the fully working OO-Method application.

The mission statement for the rent-a-car system is: “To allow the

management of vehicle rentals”, taking into account the following:

• A client can have many vehicle rentals.

• For each client, it is important to know his/her DNI, name,
address, and phone. In addition, each client must have a unique
code assigned by the system.

• A rental is performed by only one client and it is related to only
one vehicle.

• For each vehicle rental, it is important to maintain the delivery
and the return dates of the rental, the price of the rental, and the
amount of litters of gasoline that are in the vehicle when it is
rented.

• The price of a rental is calculated using a value that is fixed by
the company, plus a rate that depends on the size of the vehicle.

• Each vehicle has a group, which corresponds to the size of each
vehicle.

• For each vehicle it is important to maintain the registration
number, the colour, the brand, and the corresponding model.

• The vehicles can be cars or minibuses. For each car it is
important to maintain the number of doors, and if it consumes
diesel or gasoline. All minibuses consume diesel, and for each
minibus it is important to maintain the number of passengers that
it can transports.

6. Application of OOmCFP

164

• Each vehicle rental is performed in a specific office of the
company.

Figure 6.2 shows the OO-Method object model for the rent-a-car system

that was developed following the mission statement of this system. In this
figure it is possible to observe the following classes: Client, Rental, Office,
VehicleGroup, and Vehicle (which can be specialized in Minibus or Car). In
this model, it has also been created the Administrator class, which is an
agent that can execute the services specified in the object model (dashed
lines shows the services that the Administrator class can execute).

Figure 6.2 Object model of a rent-a-car system.

6. Application of OOmCFP

__

165

The functional model of the OO-Method conceptual model for the rent-
a-car system captures the semantics associated to the changes of state due to
the events execution. For instance, the event edit_instance of the class
Vehicle assigns the value p_color to the attribute color.

Figure 6.3 Example functional model of the Vehicle class.

The dynamic model of the OO-Method conceptual model of the rent-a-

car system represents the valid lives of the objects of the classes shown in
Figure 6.2. This model is created automatically from the object model,
specifying the services that change the state of the objects and the possible
states that these objects could have.

For instance, the objects of the class Client are created using the service
create_instance. The execution of this service changes the initial state of the
objects to the state Client0. Figure 6.4 shows the dynamic model of the
Client class of the rent-a-car system.

Figure 6.4 Dynamic model of the Client class of the rent-a-car system.

The presentation model of the rent-a-car system defines a set of patterns

that allow the specification of user interfaces in an abstract way. The
information of the rent-a-car system is presented to the user of the
application by a menu of options that are modelled by means of a hierarchy

6. Application of OOmCFP

166

action tree (HAT) in the presentation model. For the rent-a-car system, the
options of the menu are three groups of registers called Population
Interaction Units (PIU), which group instances of the classes of the object
model. Figure 6.5 shows the HAT of the rent-a-car system.

Figure 6.5 Menu (HAT) specified for the rent-a-car system.

For each PIU defined in the menu of the rent-a-car system, the attributes,

the actions, the navigations, and the filters contained in the interaction units
are specified. For instance, Figure 6.6 shows the attributes that will be shown
in the PIU_Rental interaction unit.

Figure 6.6. Attributes for the PIU_RentsDetails of the rent-a-car system.

When all the models of the OO-Method conceptual model are specified,

it is possible to verify the conceptual model and generate the final
application from that model. Therefore, the conceptual model of the rent-a-

6. Application of OOmCFP

__

167

car system corresponds to the documentation needed to apply the OOmCFP
functional size measurement procedure.

6.1.2 Construction of the COSMIC Software Model

The construction of the COSMIC software model is performed by using the
OOmCFP measurement procedure. Thus, all the elements that will be
measured are identified in this activity.

The Strategy Phase

The purpose of applying OOmCFP is to measure the functional size of the
rent-a-car application that is specifically generated by the OlivaNova tool.
The scope of this purpose is the rent-a-car OO-Method conceptual model
that specifies the rent-a-car application in an abstract way. The granularity

level is low because all the details are available and needed for the
generation of the rent-a-car application.

The pieces of software of the rent-a-car application are the client
component, the server component, and the database component. Each
component of an OO-Method application is built for a particular software
environment (for instance, the client component will be built with C#, ASP
or JSP). Since the rent-a-car system uses ASP for the client component, EJB
for the server component, and SQL for the database component, every
component of the application is also one layer of the software application.

The functional users of the rent-a-car application have been identified
using Rule 1 to Rule 6 of the OOmCFP measurement procedure. Applying
Rule 1, the Administrator class of Figure 6.2 is identified as a functional
user. The instances of this class can execute all the services of the rent-a-car
application. Between every functional user of the rent-a-car application and
its components there exists a boundary. Thus, applying Rule 2, one boundary
between the administrator and the client piece of software is identified.

6. Application of OOmCFP

168

In addition, using Rule 3 of OOmCFP, the client component of the rent-
a-car system is identified as a functional user. It is a user of the server
component of the application, and using Rule 4 of OOmCFP, one boundary
between the client and the server component is identified.

Moreover, using Rule 5 of OOmCFP, the server component of the rent-
a-car system is identified as a functional user. It is a user of the client
component and the database component of the rent-a-car system. By the
application of Rule 6 of OOmCFP, one boundary between the server and the
database component is identified.

Figure 6.7 presents the functional users, pieces of software, layers, and
boundaries of the rent-a-car system, which has been obtained by the
instantiation of Figure 4.4.

Figure 6.7. Functional users, Pieces of software, layers, and boundaries

of the rent-a-car system.

The Mapping Phase

In the mapping phase of OOmCFP, the identification of the functional
processes, data groups, data attributes, and data movements must be
performed.

6. Application of OOmCFP

__

169

Identification of Functional Processes

The Administrator carries out triggering events that occur in the real world,
for instance the registration of the rents. To register a rent in the system, the
Administrator starts a set of functional processes, which are identified by
using Rule 9 and Rule 10 of the OOmCFP measurement procedure.

Rule 9 specifies that a direct child of the hierarchy action tree (HAT) of
the presentation model of the OO-Method conceptual model corresponds to
a functional process in the client layer. These children can be Population
Interaction Unit (PIU), Service Interaction Unit (SIU) or Master Detail
Interaction Unit (MDIU). Therefore, focusing on Figure 6.5 that shows the
HAT of the rent-a-car system, the functional processes that occur in the
client layer are: PIU_Rental, PIU_Vehicle, and PIU_Office.

Rule 10 specifies that the set of formulae that solve the Server layer in
response to the events that occur in the functional processes of the Client
layer corresponds to a functional process. These formulae can be derivations,
default values, filters, valuations, integrity constraints, triggers, transactions,
preconditions, dependency rules, control conditions, and conditional
navigation. Thus, the actions that the server layer carries out in response to
the petitions of the client functional user correspond to functional processes.
We use Rule 10.1 to name these functional processes. Thus, the functional
processes that occur in the server layer of the rent-a-car system are:
PIU_Rental, PIU_Vehicle, and PIU_Office.

Afterwards, the elements contained in the functional processes must be
identified. To do this, Rule 9.1 is applied to identify the elements contained
in each functional process that is a PIU. Applying Rule 9.1 for the functional
process PIU_Rental, the display pattern DS_Rental and the action pattern
A_Rental have been identified. The interaction units contained in the A-
Rental action pattern have also been identified using Rule 9.1. These
interaction units are the following Service Interaction Units (SIUs):
SIU_create_instance, SIU_edit_instance, and SIU_delete_instance.

6. Application of OOmCFP

170

Next, Rule 9.2 is applied in order to identify the elements contained in
each SIU. This rule allows the identification of the arguments that have
related a PIU, and the conditional navigations with their related interaction
units. Since SIU_create_instance, SIU_edit_instance, and
SIU_delete_instance do not have arguments with a PIU related or
conditional navigations to other interaction units defined, the identification
of elements contained in the SIUs ends. Consequently, the identification of
elements contained in the functional process PIU_Rental ends. Table 14
presents the elements contained in this functional process.

Table 14. Contained elements in PIU_Rental.

Subsequently, the functional process PIU_Vehicle is analyzed in order to

identify the elements that it has contained. Applying Rule 9.1, the display
pattern DS_Vehicle, the action pattern A_Vehicle, and the navigation pattern
N_Vehicle have been identified. Next, applying Rule 9.1 to the action
pattern A_Vehicle, three interaction units have been identified:
SIU_create_instance, SIU_delete_instance, and SIU_edit_instance. Since
there is no interaction units related to the arguments of the SIUs or
conditional navigations defined in these SIUs, the identification of elements
contained in the SIUs and the A_Vehicle action pattern ends.

By applying Rule 9.1 to the N_Vehicle navigation pattern, two
interaction units have been identified: PIU_Car and PIU_Minibus. After that,
Rule 9.1 is applied to identify the elements contained in PIU_Car. Thus, the
display pattern DS_Car and the action pattern A_Car have been identified.
The interaction unit SIU_create_car contained in the A_Car action pattern

Functional Process Contained Elements

PIU_Rental

DS_Rental

A_Rental

SIU_create_instance

SIU_edit_instance

SIU_delete_instance

6. Application of OOmCFP

__

171

has also been identified using Rule 9.1. Then, applying Rule 9.2 to
SIU_create_car, other related interaction units have no been found. Thus, the
identification of elements contained in PIU_Car ends.

By the application of Rule 9.1 to PIU_Minibus, the display pattern
DS_Minibus and the action pattern A_Minibus have been identified. The
interaction unit SIU_create_minibus contained in the A_Minibus action
pattern has also been identified using Rule 9.1. Then, applying Rule 9.2 to
SIU_create_minibus, other related interaction units have not been found.
Thus, the identification of elements contained in PIU_Minibus ends, and
consequently, the identification of elements contained in PIU_Vehicle ends.
Table 15 presents the elements contained in this functional process.

Table 15. Contained elements in PIU_Vehicle.

Afterwards, the functional process PIU_Office is analyzed. Applying

Rule 9.1, the DS_Office display pattern and the A_Office action pattern have
been identified. Then, by the application of Rule 9.1 to the action pattern,
SIU_create_instance, SIU_edit_instance, and SIU_delete_instance have been
identified. Since there is no other interaction units contained in these SIUs,
the identification of elements contained in the PIU_Office functional process
ends. Table 16 presents the elements contained in the PIU_Office functional
process.

Functional

Process
Contained Elements

PIU_Vehicle

DS_Vehicle

A_Vehicle

SIU_create_instance

SIU_edit_instance

SIU_delete_instance

N_Vehicle

PIU_Car
DS_Car

A_Car SIU_create_car

PIU_Minibus
DS_Minibus

A_Minibus SIU_create_minibus

6. Application of OOmCFP

172

Table 16. Contained elements in PIU_Office.

In order to avoid counting functional processes duplicated and to avoid

counting interaction units that are auto-contained, OOmCFP has defined
Rule 11 and Rule 12. Since neither duplicated functional processes nor
interaction units auto-contained were identified in the rent-a-car system,
these rules have not been used.

 Identification of Data Groups

Using Rule 13 of the OOmCFP measurement procedure, we identify some
data groups of the rent-a-car system. This rule specifies that the data groups
of each functional process are the classes that participate in this functional
process and that do not participate in an inheritance hierarchy. Thus, using
this rule, Rental, Client, Office, VehicleGroup, and Administrator were
identified as data groups.

Then, using Rule 14 of OOmCFP, the Vehicle class was identified as a
data group, since this rule specifies that the parent class of an inheritance
hierarchy that participate in a functional process corresponds to a data group.
After that, using Rule 15 of the OOmCFP measurement procedure, classes
Car and MiniBus were identified as data groups due to they are child classes
that have different attributes than their parent class.

Functional Process Contained Elements

PIU_Office

DS_Office

A_Office

SIU_create_instance

SIU_edit_instance

SIU_delete_instance

6. Application of OOmCFP

__

173

Identification of Data Attributes

By applying Rule 16 of OOmCFP, the data attributes of the data groups were
identified. For instance, desc_size, id_Group, and rate were identified using
this rule as attributes of the data group VehicleGroup (see Figure 6.2).

Table 17 shows the functional processes, the data groups that participate
in each functional process, and the attributes of every data group.

Table 17. Functional Processes, data groups, and data attributes of the
rent-a-car application.

Functional

process

Data groups Data attributes

PIU_Rental Rental Id_Rental, date_del, date_ret, litters,

fixed_rate, price

Client id_Client, DNI, nameC, address, phone

Vehicle Registration_number, color, model, brand

VehicleGroup id_Group, desc_size, rate

Office id_Office, pone, address, city, country

Administrator id_Administrator

PIU_Vehicle Vehicle Registration_number, color, model, brand

VehicleGroup id_Group, desc_size, rate

Car num_doors, is_Diesel, is_Gas

Minibus num_seats

Administrator id_Administrator

PIU_Office Office id_Office, pone, address, city, country

Administrator id_Administrator

Identification of Data Movements

Figure 6.8 presents the data movements that occur between the functional
users and the functional processes of the rent-a-car system, which has been
obtained by the instantiation of Figure 4.5.

6. Application of OOmCFP

174

Figure 6.8. Data movements that occur in the rent-a-car system.

To identify the data movements that occur in the rent-a-car system,

Counting Rules 1 to 74 of OOmCFP have been applied. For each functional
process these rules are applied to the elements that it contains.

Regarding to the PIU_Rental functional process, applying the Counting
Rule 1 to the DS_Rental display pattern, three read (R) data movements of
the Rental, Client, and Vehicle data groups have been identified to the server
layer. Then, applying the Counting Rule 3, three exit (X) data movements of
the Rental, Client, and Vehicle data groups have been also identified to the
server layer. By the application of the Counting Rule 4, three entry (E) data
movements of the Rental, Client, and Vehicle data groups have been
identified to the client layer. Next, applying the Counting Rule 5, one exit
(X) data movement has been identified to the client layer.

 Subsequently, the SIUs contained in the A_Rental action pattern are
analyzed. Applying the Counting Rule 31 to SIU_create_instance, one entry
(E) data movement of the Rental data group has been identified to the client
layer; and, applying the Counting Rule 32, three entry (E) data movements
of Office, Client, and Vehicle data groups have been identified to the client
layer. Then, by the application of the Counting Rule 33, one exit (X) data
moment of the Rental data group has been identified to the client layer. Also,
by the application of the Counting Rule 34, three exit (X) data movements of
the Office, Client, and Vehicle data groups have been identified to the client
layer. After that, applying the Counting Rule 35, one entry (E) data

6. Application of OOmCFP

__

175

movement for the Rental data group has been identified to the server layer.
Also, applying the counting Rule 36, three entry (E) data movements of the
Office, Client, and Vehicle data groups have been identified to the server
layer. Since the SIU_create_instance has related a creation event, one write
(W) data movement for the Rental data group has been identified to the
server layer by the application of the Counting Rule 44.

Applying the Counting Rule 31 to SIU_edit_instance, one entry (E) data
movement of the Rental data group has been identified to the client layer.
Then, by the application of the Counting Rule 33, one exit (X) data moment
of the Rental data group has been identified to the client layer. After that,
applying the Counting Rule 35, one entry (E) data movement for the Rental
data group has been identified to the server layer. Since the
SIU_edit_isntance has related an event with valuations specified, using the
Counting Rule 45, one write (W) data movement for the Rental data group
has been identified to the server layer.

Later, by the application of the Counting Rule 32 to
SIU_delete_instance, one entry (E) data movement of the Rental data group
has been identified to the client layer. Then, by the application of the
Counting Rule 34, one exit (X) data moment of the Rental data group has
been identified to the client layer. Applying the Counting Rule 36, one entry
(E) data movement for the Rental data group has been identified to the server
layer. Due to SIU_delete_instance has related a destroy event, applying the
Counting Rule 43, one write (W) data movement for the Rental data group
has been identified to the server layer. Table 18 summarizes the data
movements that occur in the PIU_Rental functional process.

Regarding to the PIU_Vehicle functional process, the OOmCFP rules
have been applied to the elements that has contained. By the application of
the Counting Rule 1 to DS_Vehicle, two read (R) data movements of the
Vehicle and VehicleGroup data groups have been identified to the server
layer, and applying the Counting Rule 3, two exit (X) data movements have
been identified for the same data groups to the server layer. Then, applying

6. Application of OOmCFP

176

the Counting Rule 4, two entry (E) data movement of the Vehicle and
VehicleGroup data groups have been identified for the client layer; and by
the application of the Counting Rule 5, one exit (X) data movement has been
identified to the client layer.

Table 18. Data movements that occur in PIU_Rental.

Then, the data movements that occur in the interaction units contained in

the A_Vehicle action pattern have been identified. Regarding to
SIU_create_instance, applying the Counting Rule 31, one entry (E) data
movement of the Vehicle data group has been identified to the client layer.
And, applying the Counting Rule 32, one entry (E) data movement of the
VehicleGroup data group has been identified to the client layer. Then, by the
application of the Counting Rule 33, one exit (X) data movement of the
Vehicle data group has been identified to the client layer. Also, by the
application of the Counting Rule 34, one exit (X) data movement of the
VehicleGroup data group has been identified to the client layer. Applying the
Counting Rule 35, one entry (E) data movement of the Vehicle data group
has been identified to the server layer; and, applying the Counting Rule 36,
one entry (E) data movement of the VehicleGroup data group has been
identified to the server layer. Due to SIU_create_instance has a creation
event related, then, applying the Counting Rule 44, one write (W) data
movement of the Vehicle data group has been identified to the server layer.

Applying the Counting Rule 31 to SIU_edit_instance, one entry (E) data
movement of the Vehicle data group has been identified to the client layer.

Functional

Process
Contained Elements

Client Server

E X E X R W

PIU_Rental

DS_Rental 3 1 0 3 3 0

A_Rental

SIU_create_instance 4 4 4 0 0 1

SIU_edit_instance 1 1 1 0 0 1

SIU_delete_instance 1 1 1 0 0 1

6. Application of OOmCFP

__

177

Then, by the application of the Counting Rule 33, one exit (X) data moment
of the Vehicle data group has been identified to the client layer. After that,
applying the Counting Rule 35, one entry (E) data movement for the Vehicle
data group has been identified to the server layer. Since the
SIU_edit_isntance has related an event with valuations specified, using the
Counting Rule 45, one write (W) data movement for the Vehicle data group
has been identified to the server layer.

After that, SIU_delete_instance has been analyzed. Applying the
Counting Rule 32 to SIU_delete_instance, one entry (E) data movement of
the Vehicle data group has been identified to the client layer. Then, by the
application of the Counting Rule 34, one exit (X) data moment of the
Vehicle data group has been identified to the client layer. By the application
of the Counting Rule 36, one entry (E) data movement for the Vehicle data
group has been identified to the server layer. Due to SIU_delete_instance has
related a destroy event, applying the Counting Rule 43, one write (W) data
movement for the Vehicle data group has been identified to the server layer.

Regarding to the PIU_Car interaction unit that is related to the
N_Vehicle navigation pattern, applying the Counting Rule 1 to DS_Car, two
read (R) data movements of the Vehicle and Car data groups have been
identified to the server layer. Applying the Counting Rule 3, two exit (X)
data movements to the Vehicle and Car data groups have been identified to
the server layer. Then, by the application of the Counting Rule 4, two entry
(E) data movements of the Vehicle and Car data groups have been identified
to the client layer. At last, applying the Counting Rule 5, one exit (X) data
movement has been identified to the client layer.

Next, applying the Counting Rule 31 to SIU_create_car that is related to
the A_Car action pattern, one entry (E) data movement of the Car data group
has been identified to the client layer; and, applying the Counting Rule 32,
one entry (E) data movement of the Vehicle data group has been identified to
the client layer. Then, applying the Counting Rule 33, one exit (X) data
movement of the Car data group has been identified to the client layer; and,

6. Application of OOmCFP

178

applying the Counting Rule 34, one exit (X) data movement of the Vehicle
data group has been identified to the client layer. After that, by the
application of the Counting Rule 35, one entry (E) data movement of the Car
data group has been identified to the server layer; and, by the application of
the Counting Rule 36, one entry (E) data movement of the Vehicle data
group has been identified to the server layer. Since SIU_create_car has
related a carrier event, one write (W) data movement of the Car data group
has been identified to the sever layer.

 Then, the data movements that occur in the PIU_Minibus interaction
unit are analyzed applying the OOmCFP rules. By the application of the
Counting Rule 1 to DS_Minibus, two read (R) data movements of the
Vehicle and Minibus data groups have been identified to the server layer. By
the application of the Counting Rule 3, two exit (X) data movements of the
Vehicle and Minibus data groups have been identified to the sever layer.
Later, applying the Counting Rule 4, two entry (E) data movements of the
Vehicle and Minibus data groups have been identified to the client layer.
Then, applying the Counting Rule 5, one exit (X) data movement to the
client layer has been identified.

After that, SIU_create_minibus that is related to the A_Minibus action
pattern has been analyzed. By the application of the Counting Rule 31, one
entry (E) data movement of the Minibus data group has been identified to the
client layer. Also, by the application of the Counting Rule 32, one entry (E)
data movement of the Vehicle data group has been identified to the client
layer. Then, applying the Counting Rule 33, one exit (X) data movement of
the Minibus data group has been identified to the client layer; and, applying
the Counting Rule 34, one exit (X) data movement of the Vehicle data group
has been identified to the client layer. Later, applying the Counting Rule 35,
one entry (E) data movement of the Minibus data group has been identified
to the server layer; and, applying the Counting Rule 36, one entry data
movement of the Vehicle data group has been identified to the server layer.
Due to the SIU_create_minibus interaction unit has related a carrier event,

6. Application of OOmCFP

__

179

applying the Counting Rule 44, one write (W) data movement of the Minibus
data group has been identified to the server layer. Therefore, the
identification of data movements in the PIU_Vehicle functional process
ends. Table 19 summarizes the data movements that occur in the
PIU_Vehicle functional process.

Table 19. Data movements that occur in PIU_Vehicle.

After that, the OOmCFP rules are applied to the PIU_Office functional

process. Applying the Counting Rule 1 to DS_Office, one read (R) data
movement of the Office data group has been identified to the server layer.
Then, applying the Counting Rule 3, one exit (X) data movement of the
Office data group has been identified to the server layer. By the application
of the Counting Rule 4, one entry (E) data movement of the Office data

Functional

Process
Contained Elements

Client Server

E X E X R W

PIU_Vehicle

DS_Vehicle 2 1 0 2 2 0

A_Vehicle

SIU_

create_
instance

 2 2 2 0 0 1

SIU_edit_
instance

 1 1 1 0 0 1

SIU_
delete_

instance

 1 1 1 0 0 1

N_Vehicle

PIU_Car

DS_Car 2 1 0 2 2 0

A_Car

SIU_

create
_car

2 2 2 0 0 1

PIU_Mini
bus

DS_Mini
bus

 2 1 0 2 2 0

A_Mini

bus

SIU_
create

_minibus

2 2 2 0 0 1

6. Application of OOmCFP

180

group has been identified to the client layer; and, applying the Counting Rule
5, one exit (X) data movement has been identified to the client layer.

Then, the SIUs contained in the A_Office action pattern are analyzed. By
the application of the Counting Rule 31 to SIU_create_instance, one entry
(E) data movement of the Office data group has been identified to the client
layer. By the application of the Counting Rule 33, one exit (X) data
movement of the Office data group has been identified to the client layer.
Next, applying the Counting Rule 35, one entry (E) data movement of the
Office data group has been identified to the server layer; and, since
SIU_create_instance has related a creation event, one write (W) data
movement of the Office data group has been identified using the Counting
Rule 44.

By the application of the Counting Rule 31 to the SIU_edit_instance
interaction unit, one entry (E) data movement of the Office data group has
been identified to the client layer. Then, by the application of the Counting
Rule 33, one exit (X) data movement of the Office data group has been
identified to the client layer. After that, using the Counting Rule 35, one
entry (E) data movement of the Office data group has been identified to the
server layer. Due to SIU_edit_instance is an event that has valuations
specified, one write (W) data movement of the Office data group has been
identified using the Counting Rule 45.

Subsequently, applying the Counting Rule 32 to SIU_delete_instance,
one entry (E) data movement of the Office data group has been identified to
the client layer; and, applying the Counting Rule 34, one exit (X) data
movement of the Office data group has been identified to the client layer.
Next, by the application of the Counting Rule 36, one entry (E) data
movement of the Office data group has been identified to the server layer. At
the end, one write (W) data movement of the Office data group has been
identified to the server layer because SIU_delete_instance has related a
destroy event. Table 20 summarizes the data movements that occur in the
PIU_Office functional process.

6. Application of OOmCFP

__

181

Table 20. Data movements that occur in PIU_Office.

Once the identification of data movements that occur between the

functional users and the functional process ends, the construction of the
software model ends.

6.1.3 The Measurement Phase: Assignment of

Numerical Rules

In the assignment of numerical rules, 1 CFP (Cosmic Function Point) is
assigned to each data movement identified above. Therefore, the aggregation
of the identified data movements will determine the functional size.

Applying the Measurement Rule 1, the data movements identified in the
client layer are aggregated by each functional process. Thus, the functional
size of the PIU_Rental functional process is 16 CFP, PIU_Vehicle functional
process is 25 CFP, and PIU_Office functional process is 8 CFP in the client
layer.

Then, applying the Measurement Rule 2, the data movements identified
in the server layer are also aggregated by each functional process. Thus, the
functional size of the PIU_Rental functional process is 15 CFP, PIU_Vehicle
functional process is 25 CFP, and PIU_Office functional process is 8 CFP in
the server layer.

Later, by the application of the Measurement Rule 3, 49 CFP has been
obtained for the client layer; and applying the Measurement Rule 4, 48 CFP

Functional Process Contained Elements
Client Server

E X E X R W

PIU_Office

DS_Office 1 1 0 1 1 0

A_Office

SIU_create_instance 1 1 1 0 0 1

SIU_edit_instance 1 1 1 0 0 1

SIU_delete_instance 1 1 1 0 0 1

6. Application of OOmCFP

182

has been obtained for the server layer. Finally, applying the Measurement
Rule 5 to the rent-a-car system, 97 CFP has been obtained for the whole
rent-a-car application.

6.2 Automatic Application of OOmCFP

For industrial MDD developments, it is essential to perform the
measurements quickly and in a precise way. Thus, a tool that allows the
automatic measurement of conceptual models used in MDD environments is
needed to avoid the excessive time and the precision errors involved in a
manual measurement process.

The tool that has been developed to automatically apply the rules defined
in OOmCFP to conceptual models is presented in this section. This tool has
been developed using Visual Studio .Net 2003 with the language C#. The
OOmCFP tool has a flexible multi-tier architecture that allows the easy
adaptation to the evolution of models, facilitating the incorporation of new
rules or changing existing ones. Also, the OOmCFP tool provides
mechanisms to speed up the measurement process.

6.2.1 Architecture of OOmCFP Tool

Since the analysis of the models has been separated in different layers of the
tool (see Figure 6.9), every layer analyses a small part of the information of
the model. Consequently, each layer of the tool is made up of no more than
100 lines of code, and has comments and regions for each conceptual
construct that is analyzed in this layer. Therefore, for programmers is easy to
find the rules related to a specific conceptual construct, and hence, it is easier
to aggregate new rules or change existing ones.

6. Application of OOmCFP

__

183

Figure 6.9. Analysis process in the OOmCFP tool.

To start (Step 1 of Figure 6.9), an XML file that represents the defined

OO-Method conceptual model is loaded into the OOmCFP tool. This XML
file is automatically created by the OO-Method modelling tool: the
Olivanova Suite [CARE-Technologies 2011]. In this step, the OOmCFP tool
identifies the functional users and the functional processes by applying Rules
1-10 of the OOmCFP measurement procedure.

In the next step (Step 2 of Figure 6.9), the tool identifies the elements
that contribute to the functionality of the final system. In OOmCFP, the
functional processes correspond to the interaction units defined in the
presentation model of the OO-Method approach. Thus, for each interaction
unit, the tool identifies the display sets, filters, and services that have
contained. Additionally, if the interaction units contain other interaction
units, these are recursively analyzed to identify the complete set of elements
contained in each functional process. To do this, Rules 9.1, 9.2, 9.3, and 9.4
are applied to identify the elements that are contained in the interaction units.
Also, Rules 11-16 of the OOmCFP measurement procedure are applied in

6. Application of OOmCFP

184

this step in order to eliminate the duplication in the functional processes
analyzed and to identify the data groups and attributes.

Later, the data movements that occur between the functional users and
the functional processes are identified (Step 3 of Figure 6.9). To do this, all
74 rules of OOmCFP are applied to the elements that participate in each
functional process. To reduce the coupling in the identification of data
movements, each rule has been implemented according to the conceptual
element involved in the data movements that can occur in the OO-Method
applications. Then, the result of the data movements identified of each
element is stored in the same element.

In the next step (Step 4 of Figure 6.9), the tool aggregates the data
movements identified according to the measurement rules 1-5 defined by the
OOmCFP procedure. Thus, the tool obtains the functional size of each
functional process, the functional size of each component of the application,
and the functional size of the complete application that will be generated
from the analyzed model.

When the step 4 finishes, the tool generates an XML file with the result
obtained (Step 5 of Figure 6.9). This file contains the COSMIC functional
size of the application that will be generated from the analyzed conceptual
model, which has been obtained by means of the use of the OOmCFP
measurement procedure. Finally, the tool transforms the generated XML file
in a friendly format for the user. To do this, the tool applies XSLT
transformations to obtain an HTML page or an Excel sheet from the
generated XML file.

6.2.2 Efficiency in the Measurement

Using the OOmCFP tool, we have learned that the second and third step of
the application of OOmCFP have the longest processing time. In these steps,
this is produced due to the same modeling element must be analyzed several
times. To improve this situation, we have implemented a cache mechanism

6. Application of OOmCFP

__

185

to reduce the time required to analyze elements that already have been
analyzed. Thus, when a new functional element is identified, the cache
mechanism verifies whether or not it already exists. If so, the value of the
measurement is recovered.

In addition, we have implemented a mechanism to avoid the overflow in
the execution of the tool, which may occur in the analysis of large models
due to the iterative nature of the functional size measurement process. In the
mechanism to avoid overflow, the related elements are stored in an auxiliary
array (see Figure 6.10). Once the analysis of the first element finishes, the
analysis of the elements stored in the auxiliary array continues sequentially.
If the related elements are also related to other elements, these elements are
added at the end of the auxiliary array, eliminating the loop of iterations and
consequently avoiding overflow.

Figure 6.10 Schema of the solution to avoid overflow problems.

Therefore, the architecture of the OOmCFP tool and the mechanisms

implemented provide an efficient measurement process. Thus, the
measurement of conceptual models that generate real applications is done in
few seconds, expediting the process of estimating the cost of the final
application.

6. Application of OOmCFP

186

6.2.3 Using the OOmCFP Tool

The OOmCFP tool has been designed to be easily used. Thus, this tool has
only three graphical user interfaces that allow the application of the
OOmCFP measurement procedure to a specific conceptual model.

The first graphical user interface of the OOmCFP tool is shown in Figure
6.11. In this interface, the user must specify where is located the XML file
with the representation of the conceptual model that will be measured
(Source File). Also, the user must specify the location where the results of
the measurement will be stored (Destination Directory). And finally, the user
must select the scope of the measurement, which can be only the client layer,
only the server layer, or the whole application.

Figure 6.11 First Interface of OOmCFP tool.

With the information received from the first interface, the OOmCFP tool

validates the following things:

6. Application of OOmCFP

__

187

1. The XML file loaded must correspond to an OO-Method
conceptual model. If the file loaded does not correspond to an
XML file, or it does not correspond to an OO-Method model,
the OOmCFP tool shows an error-message that indicates that
the user must select a file with the characteristics mentioned
above.

2. The destination directory must exist. If it does not exist, the
OOmCFP tool creates the directory. But, if the directory exists,
the OOmCFP tool validates that the directory has permissions to
write. In that case, the tool shows error-messages to the user.

The second graphical user interface of the OOmCFP tool is merely

informative (see Figure 6.12). In this interface, the tool displays to the user
the following information: the name of the model that will be measured, the
path where the model is located, the path where the report will be located,
and the scope of the measurement.

Then, the tool applies the OOmCFP measurement procedure to the XML
file that contains the representation of the conceptual model. Thus, in the
third graphical interface (see Figure 6.13), the OOmCFP tool shows the
number of functional processes that have been measured and the function
points for every layer of the application. In this step, the report with all the
results of the measurement is saved in the path indicated in the first step.

Figure 6.14 shows the home page of the report generated by the
OOmCFP tool to the rent-a-car system that was manually measured before.
In this page it is possible to observe that the functional size obtained by the
tool is the same than the functional size obtained by the manual application
of OOmCFP.

6. Application of OOmCFP

188

Figure 6.12 Second Interface of OOmCFP tool.

Figure 6.13 Third Interface of OOmCFP tool.

6. Application of OOmCFP

__

189

Figure 6.14 Main page of the measurement report for the rent-a-car
application.

From this page, it is possible to navigate to the elements contained in
each functional process (see Figure 6.15), and also, from each contained
element it is possible to navigate to the data groups related to the data
movements identified (see Figure 6.16).

6. Application of OOmCFP

190

Figure 6.15 Data movements in the elements contained in the functional
processes of the rent-a-car application.

Figure 6.16 Data groups related to the data movements identified in the

rent-a-car application.

6. Application of OOmCFP

__

191

6.2.4 Verification of the OOmCFP Tool

First of all, the OOmCFP tool was verified using unitary test cases to assure
the correct implementation of each rule defined by the OOmCFP
measurement procedure. The unitary test cases were defined by an expert in
OOmCFP. This expert knows each rule defined in the OOmCFP
measurement procedure and has applied the OOmCFP procedure to several
conceptual models. In summary, 96 unitary test cases were defined in
relation to the OOmCFP procedure, and 5 unitary test cases were defined in
relation to the measurement report generated by OOmCFP.

Once all the unitary test cases were passed by the OOmCFP tool, the
OOmCFP tool was verified using integrated testing. To do this, 28 test cases
were defined. These 28 test cases cover the totally of OOmCFP rules. Thus,
to measure these test cases, it is necessary to combine a set of rules defined
in the OOmCFP measurement procedure with some instructions related to
the generation of the measurement report.

Once all the integrated test cases were passed, a fully specified
conceptual model was measured by the OOmCFP tool and the results were
compared with the results obtained by the manual measurement. This
conceptual model corresponded to the rent-a-car system. Once the OOmCFP
tool obtains the same results than the manual measurement (97 CFP was
obtained for the whole rent-a-car application), we consider that the
OOmCFP tool has been verified.

To illustrate the application of the OOmCFP tool, 6 conceptual models
of real projects were also measured. In order to maintain the confidentiality
of the applications evaluated, we assigned the code Model1, Model2,
Model3, Model4, Model5, and Model6 to each model. Table 21 shows the
measurement results obtained by the OOmCFP tool. This table shows the
functional size of each layer of the application (i.e., client and server layer).
Some applications are modeled only to automatically generate the client
layer of an application, which is used to facilitate working with ERPs (server

6. Application of OOmCFP

192

layer). In this context, counting with the functional size of each layer of an
application allows the correct budget estimation of these applications.

Table 21. Results obtained by the OOmCFP tool for 6 conceptual

models of real projects.

In addition, we have tested the processing time of the OOmCFP tool

using the same 6 models related to real projects. The OOmCFP tool has been
implemented in several layers in order to diminish the processing time of the
measurement. Nevertheless, results of testing have demonstrated that the
mayor processing time is used to analyze elements that already have been
analyzed. Thus, we have implemented a cache mechanism in the OOmCFP
tool in order to reduce the time required to analyze the elements that are used
to measure the functional size.

 Table 22 shows the number of classes of each model, the size of the
XML representation of the models measured in KB, the initial response time
of OOmCFP, and the response time of OOmCFP after the improvements of
the OOmCFP tool. In the improved response time column of Table 22, it is
possible to observe that the maximum response time was 55 seconds, which
is understandable for very large models.

Model Number of

Functional

Processes

Functional

Size of the

Client

Layer

(CFP)

Functional

Size of the

Server

Layer

(CFP)

Total

Functional

Size (CFP)

Measurement

Time

(seconds)

Model1 30 201 174 375 3 seconds

Model2 2 25 21 46 3 seconds

Model3 38 435 400 835 4 seconds

Model4 18 489 481 970 6 seconds

Model5 192 1491 1395 2886 55 seconds

Model6 108 1838 1759 3597 45 seconds

6. Application of OOmCFP

__

193

Table 22. Models used to test the performance of the OOmCFP tool.

Finally, Table 21 shows that some real applications have high values of

functional size (such as Model7 and Model8). For these applications, manual
measurement of the functional size could need too much time and,
consequently, too many resources. Since the measurement has been
performed using the OOmCFP tool, these measurement results have been
obtained in few seconds and avoiding the introduction of errors due to the
big amount of functional processes and data movements that must be
identified.

6.3 Conclusions

This chapter has illustrated the manual and the automatic application of the
OOmCFP measurement procedure to a rent-a-car system.

The manual application of the OOmCFP procedure has obtained 97
COSMIC Function Points. However, we can identify some validation threats
for the results obtained; for instance, one threat is the natural variation in
human performance because a human may erroneously identify the data
movements that occur in an application (duplicates, omissions, etc.). To

Model Number of

Classes

Size

(KB)

Initial Response Time Improved

Response

Time

Model1 7 476 58 seconds 3 seconds

Model2 17 966 2 minutes 16 seconds 3 seconds

Model3 17 995 3 minutes 53 seconds 4 seconds

Model4 9 2446 4 minutes 41 seconds 6 seconds

Model5 87 9526 11 minutes 27 seconds 55 seconds

Model6 71 10689 9 minutes 49 seconds 45 seconds

6. Application of OOmCFP

194

avoid this validation threat for the results obtained, we have implemented a
tool that automates the measurement procedure.

The OOmCFP tool has been developed taking into account a set of
aspects related to the performance of the functional measurement process
and implementation aspects. The performance aspects are focused on the
reduction of the measurement time. The implementation aspects consider a
correct execution of the OOmCFP measurement procedure avoiding the
overflows that can be produced by the measurement of large OO-Method
conceptual models. We have verified how the OOmCFP tool works in
practice using some predefined OO-Method conceptual models. Finally, the
measurement of some real conceptual models by the OOmCFP tool has been
presented.

__

195

Chapter 7

Evaluation of the Application of

OOmCFP

The OOmCFP measurement procedure has been designed to obtain accurate
measurement results of MDD applications that have been generated from
their conceptual models. The design of OOmCFP has been validated
according to its conformity with the COSMIC measurement method, and its
concepts have also been validated according to metrology. Moreover, the
measurement instrument designed for the application of OOmCFP has been
validated regarding its precision. However, having a valid design of the
OOmCFP measurement procedure do not implies that the results obtained by
the application of OOmCFP be accurate. Thus, this chapter presents the
evaluation of the application of OOmCFP that analyzes in depth the results
obtained by this measurement procedure.

The validation of the application of OOmCFP has been carried out
according to metrology, and also, it has been carried out in terms of the
precision and the accuracy of the measurement results obtained by OOmCFP
by using the standard that evaluates the accuracy of measurement methods
ISO 5725-2 [ISO 1994].

7. Evaluation of the Application of OOmCFP

196

7.1 Metrology Evaluation of the Application of

OOmCFP

Metrology is defined in the VIM [ISO 2004] as “field of knowledge

concerned with measurement”. As has been stated before, metrology
includes theoretical and practical aspects of measurements. Theoretical
aspects have been used to validate the design of OOmCFP. Thus, to validate
the application of OOmCFP, practical aspects of the measurement must be
taken into account. To do this, we use a high-level model of the terms and
categories of VIM presented by [Abran and Sellami 2002] (see Figure 7.1).

 Figure 7.1 High-level model of categories of metrology terms [Abran

and Sellami 2002].

Taking into account these sets of metrology concepts, the quality criteria

that must be accomplished for the application and the results of a
measurement method have been specified in the book Software Metrics and
Software Metrology [Abran 2010]. Thus, the application and the results of a
measurement method are considered ‘good’ when they refer to these quality
criteria. Even though the set of measurement concepts is made up by the
measurement foundation and the measurement procedure, Table 23 shows
that to validate the application of OOmCFP, only the measurement
procedure must be taken into account. Following these set of concepts, the

7. Evaluation of the Application of OOmCFP

__

197

analysis of the application of OOmCFP according to metrology is presented
next.

Table 23. Quality criteria for the application of a measurement method
according to metrology concepts.

7.1.1 Measurement Procedure

A measurement procedure is a detailed description of a measurement
according to one or more measurement principles and to a given
measurement method [ISO 2004]. The application of a measurement
procedure involves the following concepts (see Figure 7.2): Measurand,
Operator, Measurement Procedure, Measurement Principle, Measurement
Method, Measurement Model, Measured Quantity Value, Influence
Quantity, and Measurement Result.

 Figure 7.2 Topology of measurement procedure.

Step in Process Model Quality Criteria

Application of the Measurement Method

Measurement Procedure

Devices for Measurement

Operations with Devices

Properties of Measuring Devices

7. Evaluation of the Application of OOmCFP

198

The measurand corresponds to the object to be measured. In OOmCFP
this object correspond to the OO-Method conceptual model that is used as
input in the measurement.

The operator is a subject that uses OOmCFP to carry out a specific
measurement. The operator can apply the OOmCFP FSM procedure in a
manual way by using the OOmCFP measurement guide (see Appendix A),
as well as an automated way using the OOmCFP tool. In both applications
manual and automated, the operators must know the constructs of the OO-
Method conceptual model.

The measurement principle specifies that the functional size is directly
proportional to the number of data movements that occur in the system
according to the ISO/IEC 19761 [ISO/IEC 2003a]. The measurement
method corresponds to the COSMIC FSM method version 3.0 [Abran et al.
2007].

The influence quantity corresponds to a quantity, whose change affects
the OOmCFP measurement process. Thus, since some quality attributes of
the OO-Method conceptual models used to perform the measurement affect
positively or negatively the measurement (such as traceability, functional
completeness, modifiability, etc.), the quality of the OO-Method conceptual
model specifications was considered as the influence quantity.

The instantiation of a measurement procedure handles a measurement
model that represents a mathematical relation among the quantities involved
in a measurement. Therefore, the measurement model for OOmCFP
corresponds to the model obtained from the application of the rules defined
by OOmCFP to the conceptual constructs of the OO-Method conceptual
model that contribute to the functionality of the final applications.

The measurement quantity value corresponds to the set of data
movements identified in the construction of the measurement model. Finally,
the measurement result is related to the attribute to be measured (i.e.; the
functional size), which is quantitatively expressed in CFP units.

7. Evaluation of the Application of OOmCFP

__

199

In summary, from the analysis of OOmCFP according to the
measurement procedure, we can state that the application of the OOmCFP
measurement procedure is valid according to the metrology concepts.

7.1.2 Devices for Measurement

A measuring instrument is a device or a combination of devices that are
designed for the measurement of quantities. The OOmCFP procedure has
been implemented in a tool, which corresponds to the measuring instrument
of OOmCFP. A measurement instrument can be related to the following
characteristics (see Figure 7.3): an indicating measuring instrument, a
displaying measuring instrument, a scale of a displaying measuring
instrument, and a material measure.

 Figure 7.3 Topology of measurement instrument.

An indicating measuring instrument corresponds to a measuring

instrument providing an output signal carrying information about the value
of the quantity to be measured [ISO 2004]. The OOmCFP tool provides the
COSMIC Functional Size of the functional processes of the client, the
functional processes of the server layer, or the functional processes of the
entire MDD application generated from the corresponding conceptual model.
The last user interface of the OOmCFP tool shows the value of the quantity
measured according to the elements selected for the measurement in the first
user interface of OOmCFP. Thus, the OOmCFP tool corresponds to an
indicating measurement instrument.

7. Evaluation of the Application of OOmCFP

200

A displaying measuring instrument corresponds to a measuring device
that shows the results of the measurements to observers. The OOmCFP tool
displays a summary of the measurement results and it also store detailed
information about the measurement results in an XML file. This XML file is
also used by the OOmCFP tool to generate a web page or an Excel sheet
with a friendly format to explore the measurement results. Therefore, the
OOmCFP tool also displays the detailed information of the measurement
results obtained.

A scale of a displaying measuring instrument corresponds to the
graduation of the information displayed by the tool. The OOmCFP tool
displays the measurement results in three levels: the first level displays the
COSMIC function points of the functional processes of each layer of an
application, the second level displays the data movements that occur in each
functional process, and the third level displays the data groups related to
each data movement.

A material measure corresponds to an instrument that reproduces or
supplies quantities of one or more kinds, each one with a value assigned. As
we stated in Chapter 5, for OOmCFP, all the quantities correspond to the
functional size kind. Moreover, the quantity value corresponds to a
numerical discrete value, which its minimum value is 1 data movement and
no fixed maximum values. The OOmCFP tool obtains the functional size
and its associated value for each functional process of the OO-Method
applications.

In summary, from the analysis of OOmCFP according to the devices for
measurement, we can state that the application of the OOmCFP
measurement device is valid according to the metrology concepts.

7.1.3 Operations with Devices

The use of a complex measuring system might require some operations, such
as adjustments of the measuring system [Abran 2010]. The adjustments on a

7. Evaluation of the Application of OOmCFP

__

201

measurement device are carried out in order to provide prescribed
indications corresponding to given values of the quantities to be measured
[ISO 2004].

The adjustments of the measuring system must not be confused with the
calibration of the measuring system. For instance, zero adjustment of a
measuring system provides a null indication corresponding to a null value of
the quantity to be measured. This kind of adjustments has been implemented
in the OOmCFP tool to verify the structure of the conceptual model to be
measured. Thus, if the input XML file doesn’t correspond to an OO-Method
conceptual model, the OOmCFP tool shows an alert message to the user.
The OOmCFP tool also has implemented zero adjustments for the directory
where the measurement results will be recorded. Thus, if the user doesn’t
have permissions to write the selected directory or even the directory doesn’t
exit, the OOmCFP tool shows an alert message to the user.

In the strategy phase, there is no selection of the functional users or the
triggering events in the OOmCFP tool. Both functional users and triggering
events are identified by the OOmCFP tool automatically from the conceptual
models. Thus, the OOmCFP tool doesn’t have zero adjustments for the
strategy phase of the measurement. Nevertheless, if it necessary that the user
select only some functional users or triggering events of the generated
application, it can be implemented for future versions of the OOmCFP tool.

Regarding to the mapping and the measurement phases, since we have
specified that the quantity values provided by OOmCFP correspond to
numerical discrete values have 1 as the minimal value assigned, applying the
OOmCFP rules there is no null values related to the quantities to be
measured. Thus, the OOmCFP tool does not require zero adjustments for
these phases.

In summary, from the analysis of OOmCFP according to the operations
with devices, we can state that the application of the OOmCFP measurement
device is valid according to the metrology concepts.

7. Evaluation of the Application of OOmCFP

202

7.1.4 Properties of Measuring Devices

The properties of a measurement instrument correspond to qualitative and
quantitative characteristics that affect the quality of the measures obtained
by the instrument, such as the stability.

The stability of a measuring system corresponds to its ability to maintain
its metrological characteristics constant in time [ISO 2004]. The design and
the application of OOmCFP have been carefully carried out and validated
according to metrology. Although the OOmCFP measurement procedure is
stable, the manual application of the procedure depends on human actions;
therefore, it might not be always stable. However, the automatic application
of OOmCFP ensures the stability. Thus, since the OOmCFP tool implements
the OOmCFP measurement procedure considering all the characteristics of
OOmCFP, we can infer that the OOmCFP tool is stable.

Finally, from the analysis of OOmCFP according to the measurement

procedure, devices for measurement, operations with devices, and properties
of measuring devices; we can state that the application of the OOmCFP
measurement procedure is valid according to metrology concepts.

7.2 Precision Evaluation of the Application of

OOmCFP

To evaluate the precision of the measures obtained by the OOmCFP
procedure, we carried out an experiment by applying the precision
evaluation method defined in Chapter 5.

The goal of the experiment was defined using the Goal/Question/Metric
(GQM) template [Basili and Rombach 1988] as: “To analyze the OOmCFP
measurement procedure and the instruments used for the measurement

7. Evaluation of the Application of OOmCFP

__

203

exercise for the purpose of evaluating its precision from the viewpoint of the
researcher in the context of Computer Science students measuring OO-
Method conceptual models with OOmCFP”.

The experiment correspond to a laboratory experiment [Wohlin et al.
2000]. The following research question was addressed by the experiment:

RQ1: Can OOmCFP obtain precise measurement results?

In order to answer this question, one independent variable and two

dependent variables have been considered. The independent variables are
those whose values are controlled or selected to determine their relationships
to an observed phenomenon. Thus, the independent variable of this
experiment corresponds to the OOmCFP measurement procedure. The

dependent variables are the events studied and expected to change when the
independent variable is changed. There are two dependent variables used to
evaluate the precision of OOmCFP:

REPE, which corresponds to the repeatability of the measurement results
obtained by applying OOmCFP.

REPRO, which corresponds to the reproducibility of the measurement
results obtained by OOmCFP.

Repeatability conditions means that the same measurement results are

obtained using the same measurement procedure, the same subject, the same
measuring system, the same operating conditions and the same location [ISO
2004]. Reproducibility conditions means that the same measurement results
are obtained changing some conditions mentioned before, for instance,
changing the subject [ISO 2004].

Taking into account these variables, the following hypotheses have been
formulated:

HREPE: OOmCFP obtains repeatable measurement results.
HREPRO: OOmCFP obtains reproducible measurement results.

7. Evaluation of the Application of OOmCFP

204

7.2.1 The Definition Phase of the Experiment

The subjects were characterized as people with some knowledge of
OOmCFP but with knowledge of the OO-Method approach and the
Olivanova Modeler tool [CARE-Technologies 2011]. The place was
characterized as a room with sufficient computers for the subjects. The
computers must have Windows as Operative System, the Olivanova Modeler
tool to work with OO-Method conceptual models, and Microsoft Office
installed.

Since the subjects have got some knowledge of the OOmCFP procedure
and the instruments to perform the measurement, training of subjects was not
necessary. Consequently, training instruments were not prepared.

The instruments for the measurement exercise were prepared in this
phase. To do this, all the lessons learned from the pilot study (see Chapter 5)
were taken into account to improve the OOmCFP measurement instruments.
Thus, the instruments for the measurement exercise were the following:
three OO-Method conceptual models with different levels of functional size
(small, medium, and large), the instructions for the measurement exercise,
the OOmCFP measurement guide, and the results recording sheet.

The conceptual models used for the measurement exercise were the
following: a Flight Reservation application (small – three classes); a
Publishing application (medium – 5 classes); and a Rent-a-Car application
(large – 8 classes).

The instructions were structured in two parts: (1) the first part contains
10 instructions for each model to open the model, the measurement
instruments, and to save the measurement results; (2) the second part
contains the same 10 instructions for each model for the repetition of the
measurement process.

There were six results sheets, one for each measurement task. All the
experimental instruments (conceptual models, OOmCFP measurement

7. Evaluation of the Application of OOmCFP

__

205

guide, instructions and results sheets) were validated by two experts in OO-
Method and one expert in OOmCFP.

7.2.2 The Measurement Phase of the Experiment

The subjects were selected from the students enrolled in the “Master’s
Degree in Software Engineering, Formal Methods, and Information
Systems” at the Technical University of Valencia from September 2006 to
September 2008. The group of students was made up of 6 students with
some knowledge of the OO-Method conceptual model, the Olivanova tool,
and the OOmCFP procedure.

The place selected was Room 0S02 of the Department of Information
Systems and Computation of the Technical University of Valencia. This
room has twenty identical computers with the same programs installed. Each
computer has the Windows OS, the Olivanova Modeler tool, and the
Microsoft Office software already installed. These computers have also the
same versions of the software installed.

The installation of the instruments in the classroom consisted in copying
the measurement instruments in six computers of this room. Also in this
activity the measurement guide and the instructions were printed and located
close to these computers.

The measurement exercise activity was planned in 3 hours each part
(measurement itself and repetition of the measurement): 20 minutes for the
measurement of the small model, 60 minutes for the medium model, and 100
minutes for the large model.

The entire measurement exercise was carried out two days of the same
week: in the first day, the measurement process was carried out, and in the
second day, the repetition of the measurement process was carried out.

7. Evaluation of the Application of OOmCFP

206

7.2.3 The Evaluation Phase of the Experiment

The results obtained from the measurement exercise in each results sheet
of each subject was recorded in Table 24. The small, medium, and large
level corresponds to the small (Flight Reservation application), medium
(Publishing application), and large (Rent-a-Car application) models,
respectively. The measurement results presented in Table 24 are expressed in
COSMIC Function Points (CFP).

Table 24. Results of the measurement exercise.

 Level

Subject Small Medium Large

1
25

26

95

94

98

98

2
27

27

94

95

97

96

3
26

25

95

96

95

96

4
24

25

93

93

99

97

5
27

27

96

95

99

98

6
25

26

95

95

96

96

Since there are no outliers or outlying subjects, all the measurement

results registered in Table 24 are considered valid. Table 25 shows the mean
of the cells of Table 24, which has been calculated using Formula 4 (i.e.,

∑
=

=

ijn

k

ijk

ij

Measure
n 0

ij
1

Cell).

7. Evaluation of the Application of OOmCFP

__

207

Table 25. Arithmetic means of cells.

 Level

Subject Small Medium Large

1 25.5 94.5 98

2 27 94.5 96.5

3 25.5 95.5 95.5

4 24.5 93 98

5 27 95.5 98.5

6 25.5 95 96

Table 26 shows the spread of cells, which is calculated by applying

Formula 5 of the precision evaluation method (i.e.,

∑ −

− =

=

ijn

k

ijijk

ij

CellMeasure
n 0

2
ij)(

1

1
Spread).

Table 26. Spread of cells.

 Level

Subject Small Medium Large

1 0.7 0.7 0

2 0 0.7 0.7

3 0.7 0.7 0.7

4 0.7 0 1.4

5 0 0.7 0.7

6 0.7 0 0

After that, the precision is calculated for each level (small, medium, and

large) using Formula 6 (i.e.,

∑ −

∑ −

=

=

=
p

i

ij

p

i

ijij

n

Spreadn

1

1

2

rj
2

)1(

)1(
S) for the repeatability

variance and Formula 7 (i.e., Ljrj SS
22

Rj
2S +=) for the reproducibility

7. Evaluation of the Application of OOmCFP

208

variance. Table 27 shows the repeatability variance and the reproducibility
variance calculated for each level.

Table 27. Repeatability variance and reproducibility variance of each
level.

Variance
Level

Small Medium Large

Repeatability Variance (rj
2S) 0.3 0.3 0.5

Reproducibility Variance (Rj
2S) 1.1 1 1.8

Using the formulae defined in the ISO 5725 standard for accuracy

measures [ISO 1994], we have obtained the values for the repeatability
variance and the reproducibility variance in models of three different size
(small, medium, and large). These values represent the magnitudes of the
expected measurement error within measurement results or between
measurement results, respectively.

The repeatability variance of each model is minor than one CFP2 (see
Table 27): 0.3 CFP2 for small and medium models; and 0.5 CFP2 for large
models. We use the standard deviation to interpret these results. The
standard deviation of measures is obtained by applying square root to the
variance. Thus, we obtained the following deviations: 0.5 CFP for small and
medium models, and 0.7 CFP for large models. Taking into account that
each data movement identified by OOmCFP correspond to 1 CFP, the
expected measurement error within measurement results obtained in the
same conditions (same subject, same measurement procedure, same
instruments, and same instructions) is minimal. Thus, we considered that the
data obtained satisfy the hypothesis HREPE: OOmCFP obtains repeatable
measurement results. These results also indicate that the measurement
instruments used in the laboratory experiment are well-defined since it is
possible to obtain repeatable measurement results.

7. Evaluation of the Application of OOmCFP

__

209

The reproducibility variance of each model is around one CFP2 (see
Table 27): 1.1 CFP2 for small models, 1 CFP2 for medium models, and 1.8
CFP2 for large models. To interpret these results, we calculate the standard
deviation. Thus, we obtained the following standard deviations: 1 CFP for
small models; 1 CFP for medium models; and 1.3 CFP for large models.
This means that changing the subjects, the expected measurement error
between the measurement results is close to 1 CFP. Thus, we considered that
the data obtained satisfy the hypothesis HREPRO: OOmCFP obtains
reproducible measurement results. These results also indicate that the
measurement procedure has been understood by the subjects since it is
possible to reproduce the measurement results.

Taking into account that high precision is obtained by low repeatability
variance and low reproducibility variance values (see Table 27), we can state
that the OOmCFP obtains precise measurement results.

7.2.4 Validity of Experimental Results

Although the experiment results are valid for the target population, there are
some threats to the validity of the results that we identified. There are three
main aspects to describe the validity of a study: construct validity, internal
validity, and external validity.

The construct validity reflects to what extent the variables that are
studied really represent what the researchers have in mind and what is
investigated according to the research questions. The following threats to the
construct validity were identified in the laboratory experiment:

• Precision have different meanings. In the literature we can find
different meanings for precision, and some authors even confuse
precision with accuracy. To mitigate this threat, we have adopted
the definition of precision of the ISO 5725 standard for the
evaluation of the accuracy of measures [ISO 1994], which is
widely used in other sciences.

7. Evaluation of the Application of OOmCFP

210

• There no formulae to calculate precision of measures. The ISO
5725 standard [ISO 1994] defines precision according to the
repeatability and the reproducibility of measures. Thus, to
mitigate this threat, we have defined a method to evaluate the
precision of measurement results taking into account the
formulae for repeatability and reproducibility defined in the ISO
5725 standard.

The internal validity expresses the extent to which the design and
analysis may have been compromised by the existence of confounding
variables and other unexpected sources of bias. The following threats to the
internal validity were identified in the laboratory experiment:

• Subjects cannot be suitable for the experiment. The experience
of people with the OO-Method approach and its modeling tool
affects the application of the OOmCFP measurement procedure.
Thus, to mitigate this risk, we selected people with some
knowledge of OO-Method and of its modeling tool.

• The OOmCFP measurement guide, the instructions, and the
results sheet can be difficult to understand. To mitigate this
threat, we conducted a pilot study to improve the
instrumentation of the experiment, and also, we verified these
instruments with experts of OO-Method and OOmCFP.

• The OOmCFP measurement procedure cannot be applied to real
models. To mitigate this risk, we selected models of different
size (small, medium, and large), the large model being similar to
models of a real project.

The external validity is concerned with to what extent it is possible to
generalize the findings, and to what extent the findings are of interest to
other people outside the study. Taking into account these aspects of the

7. Evaluation of the Application of OOmCFP

__

211

validity, the following threats to the external validity were identified in the
laboratory experiment:

• The OOmCFP procedure cannot be applied to other MDD
approaches. Even though the OOmCFP measurement procedure
has been designed to measure OO-Method models, many
conceptual constructs of the OO-Method MDD approach can be
found in other MDD approaches based in UML diagrams.
However, repeating this laboratory experiment with other MDD
approach can give more information about the generalizations of
the results.

7.3 Accuracy Evaluation of the Application of

OOmCFP

In order to evaluate the accuracy of the OOmCFP measurement procedure
(related to the closeness to the ‘true value’), precise measurement results
must first be obtained.

Although we have evaluated the precision of the OOmCFP measurement
procedure in a laboratory experiment, in general, it is not possible to ensure
precision in manual measurements of real projects since people can make
mistakes. For instance, people can make mistakes in the identification of the
functional process, in the application of the measurement rules, or even in
the application of the formulae.

In contrast, when a tool performs the measurement, it can ensure the
precision of the results because it is an automated measurement where a
precise procedure will always produce the same result in any measurement
task. Consequently, the OOmCFP tool avoids the errors of the manual
measurements and assures the precision of the measurements.

7. Evaluation of the Application of OOmCFP

212

Taking into account that OOmCFP can obtain precise measurement
results, we evaluate the accuracy of the results obtained by the OOmCFP
tool. To do this, we considered the measurement results obtained by experts
as the ‘true value’ of the measurement results.

Given that the OO-Method conceptual model allows the complete
specification of the final applications in an abstract way, to evaluate the
accuracy of OOmCFP we compare the measurement of six conceptual
models using the OOmCFP tool with the measurement results of the
respective generated applications that were obtained directly applying the
COSMIC measurement method by three experts.

The OO-Method conceptual models represent the functionality of the
following systems: airport, invoice, rent-a-car, publishing, photography
agency, and expense report. The first four conceptual models were fully
measured by experts. However, since the remaining two models correspond
to real projects, they were only partially measured by experts. Table 28
shows the results obtained.

Table 28. Results obtained by the OOmCFP tool.

Model Number

of Classes

Functional

Processes

Experts

Functional

Size (CFP)

OOmCFP

Functional Size

(CFP)

Airport 3 All 26 26

Invoice 4 All 108 108

Rent-a-Car 8 All 97 97

Publishing 5 All 95 95

Photography

agency

17 Creation of a

report

43 43

Expense

Report

17 Expense

management

46 46

7. Evaluation of the Application of OOmCFP

__

213

Taking into account that the results obtained by the OOmCFP tool are
the same than the results obtained by experts, which represent the ‘true
value’ of the functional size of OO-Method applications, we can state that
the OOmCFP tool obtain accurate measurement results for these applications
from the corresponding conceptual models.

7.4 Conclusions

In this chapter, the evaluation of the application of OOmCFP has been
presented.

A metrological analysis of the application of OOmCFP has been
performed using VIM [ISO 2004]. This analysis shows that the concepts that
were used in the application of OOmCFP are aligned with metrology terms.

In order to evaluate the precision of the OOmCFP measurement
procedure, we applied a method defined according to ISO 5725 standard
[ISO 1994] by means of a laboratory experiment. The results of the
laboratory experiment confirmed the reproducibility and the repeatability of
the OOmCFP measurement results, which means that OOmCFP can obtain
precise measurement results.

In order to evaluate the accuracy of the OOmCFP measurement
procedure (related to the closeness to the ‘true value’), results obtained by
the OOmCFP tool were compared with results obtained by COSMIC
experts. Results show that the OOmCFP tool obtains the same measurement
results as experts, which means that OOmCFP can obtain accurate
measurement results.

Thus, assuming that the conceptual model is of high quality (that is, the
conceptual model is correct and complete), the OOmCFP procedure can
obtain accurate measurement results of final applications from the
corresponding conceptual models in a completely automated way, providing
the measurement results in few minutes and using minimal resources. Thus,

7. Evaluation of the Application of OOmCFP

214

it is essential that the models used to perform the measurement do not
present defects.

__

215

Chapter 8

Defect Detection in MDD

Conceptual Models

Software development methods are being continuously improved by
researchers aiming at producing software at lower costs, in a faster way, and
with a higher level of quality by reusing resources. Model-Driven

Development (MDD) methods are targeting the same objectives [Hailpern
and Tarr 2006]. MDD methods separate the business logic from the platform
technologies in order to allow automatic generation of software through
well-defined model transformations [Selic 2003]. To do this, MDD methods
combine Domain-Specific Modeling Languages (DSMLs) [Selic 2007] and
tools for model transformations and code generation to express domain
concepts effectively and to alleviate the complexity of implementation
platforms [Schmidt 2006].

In order to produce high quality software by using MDD methods,
quality assurance techniques must be developed [Mohagheghi and Aagedal
2007] for the three main components of a MDD method: the models, the
transformation engines, and the code generators. To guarantee the quality of
final applications, quality assurance of transformation engines and

8. Defect Detection in MDD Conceptual Models

216

generators is very important. But, even more important is the quality
assurance of models, since it directly affects in the model transformations
and code generation.

Nevertheless, in the literature there is no consensus for the definition of
quality of conceptual models. There are several proposals that use different
terminologies to refer to the same concepts. There are also many proposals
that do not even define what they mean by quality of conceptual models. In
this thesis, we have adopted the definition of quality of conceptual models
proposed by Moody [Moody 2005]. This definition is based on the definition
of quality of a product or a service in the ISO 9000 standard [ISO 2000].
Thus, in this thesis, we understand the quality of a conceptual model to be
“The total of features and characteristics of a conceptual model that bear on

its ability to satisfy stated or implied needs”.
To evaluate the quality of conceptual models, many proposals have been

developed from different perspectives [Moody 2005]: there are proposals
that are based on theory [Lindland et al. 1994], experience [Davenport and
Prusak 1998], the observation of defects in the conceptual models in order to
induce quality characteristics [Neuman 2000], the evaluation of the quality
characteristics defined in the ISO 9126 standard [ISO/IEC 2001] in
conceptual models by means of measures [Genero et al. 2005] [Marín et al.
2007], a synthesis approach [Cherfi et al. 2002], etc.

Taking into account the advantages and disadvantages of each
development perspective for quality frameworks [Moody 2005], defect
detection is considered as a suitable approach because it provides a high
level of empirical validity provided by the variety of conceptual models that
are observed. However, it is interesting to note that this approach is not
broadly used in the software engineering discipline, even though defect
detection is the most common quality evaluation approach used by other
disciplines such as health care [Wilson et al. 1995].

It has been asserted by Boehm [Boehm 1981] that the cost of fault
correction increases exponentially over the development life cycle. Thus, it

8. Defect Detection in MDD Conceptual Models

__

217

is of paramount importance to discover faults as early as possible: this means
detecting defects in the models of MDD approaches.

To develop an effective quality assurance technique, it is necessary to
know what defects types may occur in conceptual models related to MDD
approaches. Currently, there are some approaches that detect defects in
conceptual models (such as [Lange and Chaudron 2007] and [Bellur and
Vallieswaran 2006]), which are mostly focused on the detection of defects
that come from either the data perspective (data models) or the process
perspective (process models). However, defect detection has not been clearly
accomplished from the interaction perspective (interaction models) even
though all of these perspectives (data, process, and interaction modeling) are
essential to specify a correct conceptual schema used in a MDD context
[Vanderdonckt 2008].

Defect detection approaches are usually applied using reading techniques
or rules (heuristics) defined from the experience of the researchers.
However, the use of a single approach to find defects does not guarantee that
all the defects will be found [Trudel and Abran 2008]. Thus, the use of
several approaches is recommended in order to find as many defects as
possible.

A Functional Size Measurement (FSM) method defines a set of rules to
measure the size of software by quantifying the Functional User
Requirements [ISO 1998]. To apply an FSM method to models, FSM
procedures must be defined to provide a detailed description of the
application of the FSM method [ISO 2004]. We advocate that a FSM
procedure can be used to identify defects in the conceptual models of a
MDD approach because it systematically analyzes all the conceptual
constructs that participate in the system functionality. Thus, a FSM
procedure corresponds to a new approach to detect defects in conceptual
models, which can be combined with other defect detection approaches in
order to improve the quality of models.

8. Defect Detection in MDD Conceptual Models

218

To formalize the defect detection in MDD conceptual models, the next
sections present an approach that allows the automated verification of the
conceptual models used in MDD environments with respect to defect types
from the data, process, and interaction perspectives. To do that, a metamodel
that formalizes the elements involved in the identification of the different
defect types is defined using current metamodeling standards. Also, the use
of the OOmCFP functional size measurement procedure to detect defects is
presented.

8.1 A Metamodel for Defect Detection

In general terms, a metamodel is the artifact used to specify the abstract
syntax of a modeling language and includes: the structural definition of the
involved conceptual constructs with their properties, the definition of
relationships among the different constructs, and the definition of a set of
rules to control the interaction among the different constructs specified
[Selic 2007].

In EMOF, a metamodel is represented by means of a class diagram, where
each class of the diagram corresponds to a construct of the modeling
language involved. We use the OCL specification [OMG 2006b] for the
definition of the controlling rules of the metamodel since it is part of the
OMG standards and it works with EMOF metamodels. Also, OCL rules
provide a computable language for rule specification, which allows the
defined rules to be automatically evaluated by existent tools such as Eclipse
OCL tools [Eclipse 2011a].

Since MDD proposals select a set of conceptual constructs and aggregate
others to specify the conceptual models, it is important to note that a great
number of conceptual constructs increases the complexity of the
specification of the models and may cause the introduction of more defects
into the conceptual models. For this reason, the conceptual constructs of an

8. Defect Detection in MDD Conceptual Models

__

219

MDD proposal must be carefully selected so that the number of constructs
that allow the complete specification of software applications at the
conceptual abstraction level is as low as possible.

A metamodel can specify the constructs involved in the different types of
defects as well as the properties that must be present in the different
conceptual constructs for the detection of defects. In addition, the OCL
language used for the metamodeling rules can be used to define specific
rules to automate defect detection. Thus, we define a quality model that is
comprised of two main elements: 1) a metamodel for the description of the
conceptual constructs that are used in MDD environments (which includes
all the properties involved in defect detection) and 2) a set of OCL rules that
allows the automated detection of defects according to the list of defects
detected using OOmCFP.

Figure 8.1 presents the metamodel for defect detection in MDD
conceptual models. As this figure shows, a generic ConceptualModel of an
MDD approach consists of a structural model (class StructuralModel), a
behaviour model (class BehaviourModel), and an interaction model (class
PresentationModel).

The structural model has a set of classes (class Class). Each class has
several features (class ClassFeature), which can be services (class Service)
or properties (class Property). In turn, the properties can be typed properties
(class TypedProperty) or association ends (class AssociationEnd). The typed
properties correspond to the attributes of a class, which must have a data
type (class DataType) specified (attribute Kind). The typed properties can be
derived (class DerivedAttribute) or not derived (class Attribute).

The services can be events (class Event), transactions (class
Transaction), or operations (class Operation). The events have valuations
(class Valuation) to change the value of the attributes of a class. Each service
has a set of arguments (class Argument) with their corresponding types (class
Type), and it can also have a set of preconditions (association precondition).

8. Defect Detection in MDD Conceptual Models

220

There are relationships between the classes of the model (represented by
the class RelationShip), which can be associations (class Association),
generalizations (class Generalization), and agents (class Agent). The agent
definition is oriented to state the visibility and execution permissions over
the classes of the defined model (association agent). The associations can be
aggregations, compositions, or normal associations (attribute aggregation of
the class AssociationEnd). Each class has a set of integrity constraints
(association integrityConstraint). The classes, class features, arguments, and
relationships must have a name (class NamedElement).

The derived attributes, services, preconditions, and integrity constraints
require the specification of the functionality that they perform. This
functionality is specified by means of the behaviour model. The behaviour
model has elements (class BehaviourElement) that can be conditional
elements (ConditionalBehaviourElement) or constraint elements
(Constraint). The conditional elements correspond to formulae (class
Formula) with a condition (association condition) and an effect (association
effect). The constraint elements correspond to formulae (class Formula) with
an error message (attribute errorMsg).

The formulae are defined (attribute value) by means of a particular
language called OASIS, which is similar to the OCL language. Thus, the
valuations and the specification of the derived attributes (class
ValueSpecification) correspond to conditional behaviour elements, and the
transactions and operations correspond to behaviour elements. The
preconditions and the integrity constraints correspond to constraint
behaviour elements.

The interaction model has a set of interaction units (class
InteractionUnit) and a set of auxiliary patterns (class AuxPattern) that allow
the specification of the graphical user interface at an abstract level. The
interaction units can be instances (InstanceIU), set of instances
(PopulationIU), services (ServiceIU), and composite units (MasterDetailIU).

8. Defect Detection in MDD Conceptual Models

__

221

The master-detail interaction units correspond to composite interaction
units (class DependentIU), which are comprised of a master part (class
IndependentIU) and a set of detail interaction units (class DependentIU). In
the master part, only instances or populations can be used. In the detail part,
instances, populations and other master detail interaction units can be used.
Since, the instance interaction units and the population interaction units can
be used independently of other interaction units, we classify them in the
class IndependentIU. However, these interaction units can also be used
inside the detail part of master detail interaction units, so we classify them in
the class DependentIU.

The independent interaction units have display sets (class DiaplaySet) to
present the data. Each display pattern has a set of attributes (association
relatedattribute) that are specified in the structural model, from which the
data will be recovered to show the users of the application.

The independent interaction units can have actions (class ActionSet) to
present the set of services (throw a ServiceIU) that can be executed by the
users over the instances shown in the interaction units. In addition, the
independent interaction units can have navigations (class NavigationSet) to
present the interaction units that can be accessed.

The population interaction units can also have filters (class Filter) to
search for information in a set of instances, which must be specified with the
corresponding formula (class Formula). The service interaction units have
entry (class EntryPattern) and selection patterns (class SelectionPattern),
which have associated formulae composed of a condition (association
condition) and an effect (association effect).

Since the metamodel has been specified using the standards of
metamodeling, this metamodel eliminates redundancy of the elements
defined and can be implemented using open-source modeling tools.

8. Defect Detection in MDD Conceptual Models

222

Figure 8.1 A metamodel for defects detection in conceptual models

8. Defect Detection in MDD Conceptual Models

__

223

8.2 Using OOmCFP to Detect Defects

Since the measurement of the functional size using the OOmCFP approach
has defined rules to perform the mapping between the concepts of COSMIC
and OO-Method, and rules to identify the data movements of the final
application in the conceptual model; it is possible to identify some defects
that impede the compilation of the conceptual model or that cause faults in
the generated application.

In order to determine the defect types of MDD conceptual models, the
proposed metamodel and the OOmCFP procedure were applied to three
conceptual models of different functional sizes: a Publishing application (a
small model); a Photography Agency application (a medium model); and an
Expense Report application (a large model). In summary, we identified 39
different defects in these models, and we grouped them into 24 defect types.
Table 29 presents a set of rules of the OOmCFP measurement procedure that
are related to the mapping between COSMIC and OO-Method, and the
defect types which can be found using these rules.

Based on the Conradi el al. proposal [Conradi et al. 2003], we classify
the defect types into:

• Omission: missing item,

• Extraneous information: information that should not be in the
model,

• Incorrect fact: misrepresentation of a fact,

• Ambiguity: unclear concept,

• Inconsistency: disagreement between representations of a
concept.

Thus, Defects 1, 2, 3, 4, and 7 correspond to omissions; Defect 5

corresponds to an incorrect fact; and Defects 6 and 8 correspond to
ambiguities.

8. Defect Detection in MDD Conceptual Models

224

Table 29. Defects related to mapping rules of OOmCFP.

COSMIC OOmCFP Defects

Functional

User

Rule 1: Identify 1 functional user for

each agent in the OO-Method object

model.

Defect 1: An object model

without a specification of an

agent class.

Functional

Process

Rule 5: Identify 1 functional process

for each interaction unit that can be

directly accessed in the menu of the

OO-Method presentation model.

Defect 2: An OO-Method

Conceptual Model without a

definition of the presentation

model.

Defect 3: A presentation

model without the

specification of one or more

interaction units.

Data

Group

Rule 6: Identify 1 data group for each

class defined in the OO-Method

object model, which does not

participate in an inheritance hierarchy.

Defect 4: An object model

without the specifications of

one or more classes.

Defect 5: A class without a

name.

Defect 6: Classes with a

repeated name.

Attributes

Rule 9: Identify the set attributes of

the classes defined in the OO-Method

object model.

Defect 7: A class without the

definition of one or more

attributes.

Defect 8: A class with

attributes with repeated

names.

Table 30 presents a set of rules of the OOmCFP measurement procedure

that are related to the identification of data movements in display patterns
and filter patterns. This table also presents the defect types which can be
found using the OOmCFP rules.

8. Defect Detection in MDD Conceptual Models

__

225

Table 30. Defects related to display and filter patterns OOmCFP rules.

OO-Method

Conceptual

Element

OOmCFP Rules Defects

Display

Pattern

Rule 10: Identify 1X data movement

for the client piece of software for

each display pattern in the

interaction units that participate in a

functional process.

Defect 9: An instance

interaction unit without

display pattern.

Defect 10: A population

interaction unit without
display pattern.

Rule 11: Identify 1E data movement

for the client piece of software, and

1X and 1R data movements for the

server piece of software for each

different class that contributes with

attributes to the display pattern.

Defect 11: A display

pattern without attributes.

Rule 13: Identify 1R data movement

for the server piece of software for

each different class that is used in the

effect of the derivation formula of

derivate attributes that appear in the

display pattern.

Defect 12: Derived

attributes without a

derivation formula.

Filter Pattern Rule 16: Identify 1R data movement

for the server piece of software for

each different class that is used in the

filter formula of the filter patterns of

the interaction units that participate in

a functional process.

Defect 13: A filer without

a filter formula.

Table 31 presents a set of rules of the OOmCFP measurement procedure

that are related to the identification of data movements in services. This table
also presents the defect types that can be found using these OOmCFP rules.

8. Defect Detection in MDD Conceptual Models

226

Table 31. Rules to identify the data movements of OOmCFP.

OO-Method

Conceptual

Element

OOmCFP Rules Defects

Service Rule 20: Identify 1R data

movement for the server piece of

software for each different class

that is used in the effect of the

valuation formula of events that
participate in the interaction units

contained in a functional process.

Defect 14: An event of a class

of the object diagram without

valuations.

Rule 21: Identify 1W data

movement for the server piece of

software for each create event,

destroy event, or event that has

valuations (represented by the

class that contains the service)
that participate in the interaction

units contained in a functional

process.

Defect 15: A class without a

creation event.

Rule 22: Identify 1R data

movement for the server piece of

software for each different class

that is used in the service

formula of transactions,

operations, or global services that
participate in the interaction units

contained in a functional process.

Defect 16: Transactions

without a specification of a

sequence of services (service

formula).

Defect 17: Operations without

a specification of a sequence
of services (service formula).

Defect 18: Global services

without a specification of a

sequence of services (service

formula).

8. Defect Detection in MDD Conceptual Models

__

227

Table 32 presents a set of rules of OOmCFP that are related to the
identification of data movements in the arguments of a service and the
defect types that can be found using these rules.

Table 32. Rules to identify the data movements of OOmCFP.

OO-Method

Conceptual

Element

OOmCFP Rules Defects

Service Rule 23: Identify 1E data movement

and 1X data movement for the client

piece of software, and 1E data

movement for the server piece of

software for the set of data-valued

arguments of the services

(represented by the class that contains

the service) that participate in the

interaction units contained in a

functional process.

Rule 24: Identify 1E data movement

and 1X data movement for the client

piece of software, and 1E data

movement for the server piece of

software for each different object-

valued argument of the services that

participate in the interaction units

contained in a functional process.

Defect 19: A service

without arguments.

Defect 20: A service with

arguments with repeated

names.

Table 33 presents a set of rules of OOmCFP that are related to the

identification of data movements in the preconditions defined for a service
and the integrity constraints defined in the class that contain the service.
This table also presents the defect types that can be found using these
OOmCFP rules.

8. Defect Detection in MDD Conceptual Models

228

Table 33. Rules to identify the data movements of OOmCFP.

OO-Method

Conceptual

Element

OOmCFP Rules Defects

Service Rule 31: Identify 1R data movement

for the server piece of software for

each different class that is used in the

precondition formulae of the

services that participate in the
interaction units contained in a

functional process.

Defect 21: A precondition

without the specification

of the precondition

formula.

Rule 32: Identify 1X data movement

for the client piece of software for all

error messages of the precondition

formulae of the services that

participate in the interaction units

contained in a functional process.

Defect 22: A precondition

without an error message.

Rule 34: Identify 1R data movement

for the server piece of software for

each different class that is used in the

integrity constraint formulae of the

class that contains each service that

participates in the interaction units

contained in a functional process.

Defect 23: An integrity

constraint without the

specification of the

integrity formula.

Rule 35: Identify 1X data movement

for the client piece of software for all

error messages of the integrity

constraint formula of the class that

contains each service that participates

in the interaction units contained in a

functional process.

Defect 24: An integrity

constraint without an error

message.

8. Defect Detection in MDD Conceptual Models

__

229

The list of defect types presented in Tables 30, 31, 32, and 33 have also
been classified using the Conradi et al. [Conradi et al. 2003] classification.
Thus, Defects 9, 10, 15, 19, 22, and 24 correspond to omissions; Defects 11,
12, 13, 14, 16, 17, 18, 21, and 23 correspond to an incorrect fact; and Defect
20 corresponds to an ambiguity. Therefore, we can state that the OOmCFP
measurement procedure helps in the identification of defects types that are
related to omissions, incorrect facts, and ambiguities of conceptual models.

It is important to note that Defects 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16,
17, 18, 19, 21, and 23 allow the definition of measures that contribute to the
evaluation of the sub-characteristic of compliance of the conceptual models
(in accordance with the ISO 9126 standard), because it is possible to
determine if the conceptual model adhered to the rules and conventions of
the model compiler. In the same way, Defects 3, 11, 15, 20, 22, and 24 allow
the definition of measures that contribute to the evaluation of the sub-
characteristic of analyzability of software products (in accordance with the
ISO 9126 standard), because it is possible to diagnostic the possible faults of
the final application in the conceptual models.

The presented defect types are related to structural models and
interaction models. This is one interesting contribution of using the
OOmCFP measurement procedure to detect defects since, to the best of our
knowledge, there are no reported findings of defect types related to
interaction models in the published literature.

8.3 Formalization of Defect Detection Rules

In order to formalize the defect detection rules in the metamodel presented in
Figure 8.1, we defined OCL rules to prevent the occurrence of the identified
defects in the conceptual models. Table 34 shows the defect types presented
in Table 29, and the corresponding OCL rules of our approach.

8. Defect Detection in MDD Conceptual Models

230

Table 34. 8 Defect Types of Conceptual Models found using OOmCFP
and OCL Rules.

Defect Types found using OOmCFP OCL Rules

Defect: An object model without a

specification of an agent class.

context Agent inv:

body self.allInstances->size()>0

Defect: An OO-Method Conceptual

Model without a definition of the

presentation model.

context ConceptualModel inv:

body self.presentation->size()>0

Defect: A presentation model without

the specification of one or more

interaction units.

context PresentationModel inv:

body self.interactionUnit->size()>0

Defect: An object model without the

specifications of one or more classes.

context StructuralModel inv:

body self.ownedClass->size()>0

Defect: A class without a name. context Class inv:

body Class.allInstances()->select(c |
c.name.isEmpty())->isEmpty()

Defect: Classes with a repeated name. context Class inv:

body self.allInstances()->forAll(c1, c2 |
c1 <> c2 implies c1.name <> c2.name)

Defect: A class without the definition of

one or more attributes.

context Class inv:

body self.features->select(t |

t.oclIsKindOf(TypedProperty))-

>collect(t | t.oclAsType

(TypedProperty))->size()>0

Defect: A class with attributes with

repeated names.

context Class inv:

body self.features->select(t |
t.oclIsKindOf(TypedProperty))-
>collect(t | t.oclAsType
(TypedProperty))->forAll(a1, a2 | a1 <>
a2 implies a1.name <> a2.name)

Table 35 shows the defect types presented in Tables 30, and 31; and the

corresponding OCL rules of our approach.

8. Defect Detection in MDD Conceptual Models

__

231

Table 35. 9 Defect Types of Conceptual Models found using OOmCFP
and OCL Rules.

Defect Types found using OOmCFP OCL Rules

Defect: An instance interaction unit

without a display pattern.

context InstanceIU inv:

body self.displaySet->size()>0

Defect: A population interaction unit

without a display pattern.

context PopulationIU inv:

body self.displaySet->size()>0

Defect: A display pattern without

attributes.

context DisplaySet inv:

body self.relatedAttribute->size()>0

Defect: Derived attributes without a

derivation formula.

context DerivedAttribute inv:

body self.derValue.effect->select(f |

f.value.isEmpty())->isEmpty()

Defect: A filter without a filter formula. context Filter inv:

body self.filterFormula->select(f |

f.value.isEmpty())->isEmpty()

Defect: An event of a class of the object

diagram without valuations (excluding

creation or destruction events).

context Event inv:

body self.allInstances->select(e | (e.kind

<> ServiceKind::creation and e.kind <>

ServiceKind::destruction) implies

e.valuation.size() > 0)

Defect: A class without a creation event. context Class inv:

body self.features->select(s |
s.oclIsKindOf(Service))->collect(s |
s.oclAsType (Service))->
select(s | s.kind =
ServiceKind::creation)->notEmpty()

Defect: Transactions without a

specification of a sequence of services

(service formula).

context Transaction inv:

body self.effect->select(f |

f.value.isEmpty())->isEmpty()

Defect: Operations without a

specification of a sequence of services

(service formula).

context Operarion inv:

body self.effect->select(f |

f.value.isEmpty())->isEmpty()

8. Defect Detection in MDD Conceptual Models

232

Table 36 shows the defect types presented in Tables 32, and 33; and the
corresponding OCL rules of our approach.

Table 36. 6 Defect Types of Conceptual Models found using OOmCFP
and OCL Rules.

Defect Types found using OOmCFP OCL Rules

Defect: A service without arguments. context Service inv:

body self.argument->size()>0

Defect: A service with arguments with

repeated names.

context Service inv:

body self.argument->forAll(a1, a2 | a1

<> a2 implies a1.name <> a2.name)

Defect: A precondition without the

specification of the precondition

formula.

context Service inv:

body self.precondition.effect->select(f |

f.value.isEmpty())->isEmpty()

Defect: A precondition without an error

message.

context Service inv:

body self.precondition->select (c|

c.errorMsg.isEmpty())->isEmpty()

Defect: An integrity constraint without

the specification of the integrity

formula.

context Constraint inv:

body self.effect->select(f |

f.value.isEmpty())->isEmpty()

Defect: An integrity constraint without

an error message.

context Constraint inv:

body self.allInstances->select (c|

c.errorMsg.isEmpty())->isEmpty()

In order to identify the maximum number of defects using the proposed

quality model, we aggregated the defect types already found in the literature
(see Chapter 3) with the corresponding OCL rules (see Table 37). We
selected the defect types related to the class model, which is a diagram
commonly used by several MDD proposals. We ruled out the defect types of
the literature that were also identified using the OOmCFP measurement
procedure.

8. Defect Detection in MDD Conceptual Models

__

233

Table 37. 5 Defect Types of Conceptual Models found in the literature
and OCL Rules.

Defects Types found

in the literature

OCL Rules

Defect: An attribute of

a class without the

specification of the

type.

context Class inv:

body self.features->select(t |

t.oclIsKindOf(TypedProperty))->collect(t | t.oclAsType

(TypedProperty))->select(a | a.type.isEmpty())-

>isEmpty()

Defect: An argument of

a service without the

specification of the

type.

context Service inv:

body self.features->select(s | s.oclIsKindOf(Service))-

>collect(s | s.oclAsType (Service)).argument.type-

>size<1->isEmpty()

Defect: Associations

replicated at sub-

classes.

Classifier::parents(): Set(Classifier);

parents = generalization.general

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()-

>collect(p | p.allParents())

context AssociationEnd inv:

body self.allInstances->forAll(r1, r2 | r1.name = r2.name

and r1.owningClass.allParents()->select(c | c.name =

r2.name)->isEmpty()

Defect: Associations

with a repeated name.

context Relationship inv:

body self.allInstances()->forAll(r1, r2 | r1 <> r2 implies

r1.name <> r2.name)

Defect: An association

without a source and

target class.

context Association inv:

body self.role->select(e1,e2 | e1.role.kind =

EndKind::source and e2.role.kind = EndKind::target)

In the three empirical studies performed using the proposed quality

model, the conceptual models did not achieve the characteristics of

8. Defect Detection in MDD Conceptual Models

234

consistency and correctness due to the defect types presented in our
approach. Thus, the OCL rules presented in Tables 34, 35, 36, and 37 can be
implemented for the model compilers of MDD proposals in order to
automatically verify the conceptual models with regard to these
characteristics.

8.4 A Defect Detection Tool

Defect detection in conceptual models is often manually performed by an
inspection team using reading techniques [Conradi et al. 2003] [Laitenberger
et al. 2000] [Travassos et al. 1999]. However, the manual inspection of
models takes a lot of time, which increases the costs and the delivery date of
software products.

Since the cost of removing defects and enhancing designs increases with
the stages of the life-cycle [Boehm 1981], for industrial MDD developments
is essential to find defects in a quick and precise way. Thus, a tool that
automates the defect detection in the models is needed to avoid the excessive
time and the precision errors involved in a manual detection process.

There are three main quality characteristics that a model must satisfy:
completeness1[Lindland et al. 1994], correctness2 [IEEE 1990], and
consistency3 [IEEE 1990]. Since the completeness is related to the semantics
of the model, it needs to be evaluated by an inspection team taking into
account the requirements of the system. However, the correctness and the

1

 Completeness is defined by Lindland et al. as the degree to which a model contains all the

statements about the domain that are correct and relevant.
2

 Correctness is defined in the IEEE 610 standard as the degree to which a system or component is

free from faults in its specification, design, and implementation.
3
 Consistency is defined in the IEEE 610 standard as the degree of uniformity, standardization, and

freedom from contradiction among the documents or parts of a system or component.

8. Defect Detection in MDD Conceptual Models

__

235

consistency of models can be automatically evaluated by a tool, reducing the
number of defects that must be found manually by the inspection team.

The defect types that a tool can detect depend on the DSML used to
define the involved models and the process applied to perform the defect
detection. The procedure that we have chosen for the identification of
defects in OO-Method models is the Functional Size Measurement (FSM)
procedure called OOmCFP.

8.4.1 The OOmCFP Tool

The OOmCFP tool has been updated to detect defects in OO-Method
Models. Thus, the process of the OOmCFP tool is presented in Figure 8.2.

To start (Step 1 of Figure 8.2), an XML file that represents the defined
OO-Method model is loaded into the defect detection tool. Then, the defect
detection tool identifies the functional users and the functional processes by
applying rules 1-10 of the OOmCFP measurement procedure. If one or more
problems arise during the application of these rules, then, one defect is
stored for each detected problem. The defects that may arise in this stage
correspond to defect types 1-3 of Table 29.

Figure 8.2 Process of the defect detection tool

8. Defect Detection in MDD Conceptual Models

236

In the next step (Step 2 of Figure 8.2), the tool identifies the elements that
contribute to the functionality of the final system. As the same as the first
step, one defect is stored for each problem produced during the application
of the OOmCFP rules 11-16. The defects that can be found in this stage
correspond to defect types 4-8 of Table 29.

Later, the data movements are identified (Step 3 of Figure 8.2). To do
this, all 74 rules of OOmCFP are applied. To reduce the coupling in the
identification of data movements, each rule has been implemented according
to the conceptual element involved in the data movements. If these rules
cannot be applied, the tool stores the defects related to the involved
modeling elements in order to present detailed information in the final
report. These defects correspond to defect types 9-24 in Table 30.

In the next step (Step 4 of Figure 8.2), the tool aggregates the results
obtained by analyzing the stored defects. However, if the model does not
present any defect (there are not stored defects), the tool applies the
measurement rules to calculate the functional size of the application that will
be generated from this model.

When the step 4 finishes, the tool generates an XML file with the result
obtained (Step 5 of Figure 8.2). This file contains (1) the list of defects
identified, which has information of the involved modeling elements and the
corresponding defects; or (2) the COSMIC functional size obtained by the
application of the OOmCFP measurement procedure.

Finally, the tool transforms the generated XML file in a friendly format
for the user. To do this, the tool applies XSLT transformations to obtain an
HTML page or and Excel sheet from the generated XML file. Figure 8.3
shows a screenshot of the tool and the HTML report generated for a model
with defects.

8. Defect Detection in MDD Conceptual Models

__

237

Figure 8.3 Screenshot of the tool and HTML defects report

8.5 Conclusions

For many years, software industry has applied different techniques for the
requirement modeling and definition of conceptual models in order to
identify and correct software defects. Otherwise, these defects could
propagate to later development phases, which imply an extra cost to fix
them. This situation is also present in the new software production processes,
such as MDD methods. Therefore, it is very important to use different
techniques in order to found defects in the conceptual models, avoiding their
propagation to the final application.

Since in MDD approaches the quality of conceptual models has a direct
impact in the quality of generated applications, the use of the OOmCFP
measurement procedure for defects detection provides a new technique to
improve the quality of conceptual models, and hence, the quality of final
applications.

The defect types presented in this chapter where identified by applying
the OOmCFP FSM procedure to different case studies of the OO-Method
approach, which have been selected because they (all together) cover all the
modeling possibilities of the OO-Method approach.

8. Defect Detection in MDD Conceptual Models

238

We take advantage of modeling, metamodeling, and transformation
techniques to avoid having to manually identify defects in the conceptual
models, which is an error-prone activity. Thus, a quality model (metamodel
+ OCL rules) has been designed for its easy application to other MDD
proposals. This is feasible because the EMOF standard is used to define the
metamodel, which is supported by existent open-source tools [Eclipse
2011a] [Eclipse 2011b] and is also used by other MDD proposals for the
specification of their modeling languages. Therefore, we can state that the
quality model proposed here contributes substantially to improving the MDD
processes and the quality of software products generated in this context.

239

Chapter 9

Defect Detection Case Study

In the literature, there is no consensus about the definition of case study
[Runeson and Host 2009]. There are several proposals that use the term case
study to refer to well-organized studies in the field or even to refer to small
toy examples. There are also many software engineering proposals that use
the case study methodology following the guidelines of social sciences
[Robson 2002] [Yin 2003] or the guidelines of information systems
[Benbasat et al. 1987].

In this work, we use the definition provided for software engineering
case studies by [Runeson and Host 2009], which states that a case study is an
empirical method aimed at investigating contemporary phenomena in their
context. Thus, in this case, the phenomena correspond to the defects of
conceptual models used to generate final applications, and the context
corresponds to the industrial MDD approach with the corresponding
industrial modeling tool that allows the generation of final applications from
the conceptual models.

In this chapter, we present a case study that aims to evaluate the use of
an FSM procedure to detect defects in models of an MDD approach. To do
this, the study compares the defects detected by an inspection team and the
defects detected by an FSM procedure. Moreover, we determine the types of

9. Defect Detection Case Study

240

the defects found and the implications that these defects have on the quality
of the involved models.

We plan, conduct and report the case study following the guidelines
presented by Runeson et al. [Runeson and Host 2009]. These guidelines
indicate that to planning a case study it is necessary to define the objective
(what to achieve?), the case (what is studied?), the theory (or frame of
reference), the research questions (what to know?), the methods (how to
collect data?), and the selection strategy (where to seek data?). These
guidelines also indicate that to conducting a case study it is necessary to
have the design of the case study, prepare the data collection procedures,
collect evidence by executing the studied case, analyze the collected data,
and report the study. Finally, these guidelines indicate that to reporting a
case study it is necessary to report the related work (context and early
studies), the design of the case study (which includes the research questions,
case and subjects selection, data collection procedures, analysis procedures,
and validity procedures), the results of the case study (which includes case
and subjects description, covering execution, analysis and interpretation
issues), and the conclusions and limitations of the study. We have rigorously
followed these guidelines, presenting the design and the results of the case
study in this chapter.

9.1 Design of the Case Study

This section presents the design of a case study, which includes the objective
of the study, the research questions, the case and subject selection, the data
collection procedures, the analysis procedures, and the validity procedures.

The case study corresponds to an exploratory study about the defects and
the defect types that are found in the models of the OO-Method MDD
approach by a reviewer’s team and by the OOmCFP FSM procedure.

9. Defect Detection Case Study

__

241

The objective of this study aims to evaluate the usefulness of the
OOmCFP FSM procedure to detect defects by comparing these defects and
defect types with the defects and defect types found by the reviewers, and by
determining the quality characteristics that the models do not achieve due to
these defects. Thus, we have formulated the following research questions:

RQ1: Are the defect types found by the inspection team the same as the

defect types found by the OOmCFP FSM Procedure?

RQ2: Are the quality characteristics related to the defects found by the

inspection team the same as the quality characteristics related to the defects

found by the OOmCFP tool?

RQ3: Is the OOmCFP FSM procedure efficient at finding defects related

to a defect type?

RQ4: Is the OOmCFP FSM procedure useful at finding defects in models

of an MDD environment?

9.1.1 Case and Subjects Selection

The case of the study is a software development project of a Management
Information System that has been developed in an MDD environment. To
ensure that the case study is performed in a real-world context, we selected a
software project from an industrial partner that is using a tool that
implements the OO-Method approach.

We are aware that it is possible to define different model versions for the
intended software system depending on the vision of different analysts.
Consequently, in order to find defects that represent real-world defects
introduced by analysts in their daily work, we selected a software project

9. Defect Detection Case Study

242

that has several model versions that have been developed by different
analysts. Therefore, the defects that the models may have are not biased by
the researchers. In other words, we select a software project that has several
versions of design models, which do not correspond to consecutive models
nor even correspond to models of evolving software.

Considering these selection criteria, we selected the Photography
Agency project. This project was modeled by several groups of analysts in
order to find the best way to represent a solution to the problem. Then, final
applications were automatically generated from the models in the OO-
Method MDD environment. Therefore, the Photography Agency can choose
the system that best fits its organization. From this project, we selected five
versions of the conceptual model, each of which was developed by groups of
three different novice analysts. Therefore, the defects in these models were
not introduced on purpose. Nevertheless, since these five versions of the
conceptual model correspond to the same project, they are similar among
them. For ethical considerations, the names of the analysts are kept
confidential to avoid repercussions within the enterprise. Also, as a consent
agreement, the versions of the conceptual model that were selected for the
case study do not correspond to the final versions of the model used to
generate the Photography Agency application. In order to understand the
defects found, a brief description of the operation of the Photography
Agency is presented next:

The photography agency is dedicated to the management of photo

reports and their distribution to publishing houses. This agency operates

with freelance photographers, who must present a request to the production

department of the photography agency. This request contains: the

photographer’s personal information, a description about the equipment

owned, a brief curriculum vitae, and a book showing the photographic

projects performed by the photographer. An accepted photographer is

9. Defect Detection Case Study

__

243

classified in one of three possible levels for which minimum photography

equipment is required. For this, the technical department creates a new

record for the photographer and saves it in the photographer’s file. A new

record with a sequential code is created for each photo project presented by

a photographer. This record has the price that the publishing houses must

pay to the agency, which is established according to the number of photos

and the level of the photographer. This record also contains a descriptive

annotation about the content of the project. Depending on the level of

photographer, the sales department establishes the price that will be paid to

the photographer and the price that will be charged to the publishing house

for each photo.

The subjects of the study correspond to people with knowledge of the

OO-Method MDD approach and the OO-Method modeling tool having
different levels of expertise: expert, intermediate, and novice. Expert
analysts can correctly model and generate the final software system using the
OO-Method approach; Intermediate analysts can produce a complete model,
but the model is not correct; and Novice analysts cannot produce a complete
model of a system, and, hence, they cannot generate the final application.
The subjects were selected from the PROS Research Center. This group of
subjects was made up of 16 researchers with different levels of expertise on
the OO-Method approach and its modeling tool: 5 were considered as
experts, 5 as intermediates, and 6 as novices. In order to maintain the
confidentiality of the subjects who participated in the study, we assigned the
code E1, E2, E3, E4, and E5 to the experts; I1, I2, I3, I4, and I5 to the
intermediates; and N1, N2, N3, N4, N5, and N6 to the novices. This group of
subjects does not have expertise using the OOmCFP measurement
procedure. This is not necessary due to the OOmCFP procedure is applied by
the researchers using the OOmCFP tool. Regarding the inspection technique,

9. Defect Detection Case Study

244

subjects have some knowledge reading design models and requirements
specifications.

9.1.2 Data Collection Procedure

The data collection procedure was defined taking into account the
triangulation that will be used to analyze the results obtained in the study.
Triangulation means taking different angles towards the studied object in
order to provide a broader picture [Runeson and Host 2009]. In this study,
two types of triangulation were considered: data triangulation and theory
triangulation.

Data triangulation refers to using more than one data source or collecting
the same data on different occasions. In this study, data triangulation is taken
into account since there are five versions of the Photography Agency
conceptual model that are reviewed.

Theory triangulation refers to using alternative theories in the study. This
type of triangulation is taken into account since the models will be reviewed
using two different techniques: analysis of the models performed by the
selected subjects and analysis of the models performed by the tool that
automates the application of the OOmCFP FSM procedure.

In summary, the following common steps were defined to collect data in
the study for the five models:

• Each model was reviewed by an 8-person inspection team of
analysts with different levels of expertise (three experts, three
intermediates, and two novices) for 30 minutes. Work diaries with
the defect founds were completed by each subject for each model
reviewed.

• Each model was loaded into the OOmCFP tool by means of its XML
representation generated by the tool that implements the OO-Method

9. Defect Detection Case Study

__

245

approach. The OOmCFP tool delivered an Excel sheet with the
defects found for each model, the corresponding defect types, and
the time used in its analysis.

9.1.3 Analysis Procedure

Since the Photography Agency models versions have been developed by
different analysts, the defects in the models are not known in advance. Thus,
it is necessary to define a procedure to analyze the defects reported and
distinguish between valid defects and invalid defects. Therefore, in the
Photography Agency case study, a qualitative analysis procedure [Seaman
1999] was conducted in several steps. In the first step, the defects found
were investigated in order to find the valid defects. Then, valid defects were
classified into defect types. The defect types were coded using an editing
approach (i.e., including a set of a priori codes that were extended and
modified during the analysis). Each code was composed of the conceptual
model where the defect was found and the conceptual construct involved in
the defect. If a defect involves several views, the code is composed of all the
views related to such defect. Afterwards, defects (valid or not) and defect
types with the corresponding codes constituted a body of knowledge that
was used to answer the research questions formulated in this study.

 In addition, two independent variables and seven quantitative dependent
variables were considered to investigate the research questions.

Independent Variables

1. Industrial models with their intrinsic complexity.
2. The techniques used to review the models:

a. A horizontal reading technique and a vertical reading
technique [Travassos et al. 1999] that was used by the

9. Defect Detection Case Study

246

reviewers in the models selected for the study. The
horizontal reading technique refers to reading software
artifacts that are built in the same software lifecycle
phase. The vertical reading technique refers to reading
software artifacts that are built in different software
lifecycle phase. In our case, the software artifacts
correspond to design models. Thus, the horizontal
review correspond to the following: class models with
respect to state transitions diagrams, class models with
respect to functional models, and class models with
respect to presentation models. The vertical review
corresponds to class models with respect to textual
requirements specification.

b. An automated measuring system called OOmCFP that
implements an ISO standard for Functional Size
Measurement (i.e., COSMIC) as well as a FSM
procedure defined to apply the standard to the
conceptual model of an MDD approach. This automated
measuring system also has a feature to find and to
display defects to the users.

Dependent Variables

1. Number of defects found by the inspection teams in each model,
which corresponds to the total amount of issues detected and
classified as defects by the inspection teams.

2. Number of invalid defects found by the inspection teams in each
model.

9. Defect Detection Case Study

__

247

3. Number of defect types found by the inspection teams in each
model, which corresponds to the classifiers that group similar
defects according to the conceptual constructs.

4. Number of defects found by the OOmCFP tool in each model,
which corresponds to the total amount of defects detected by the
OOmCFP tool.

5. Number of defect types found by the OOmCFP tool in each
model, which corresponds to the classifiers of the defects found.

6. Time used to find defects by the inspection teams in each model,
with time measured in minutes.

7. Time used to find defects by the OOmCFP tool in each model,
with time measured in minutes.

9.1.4 Validity Procedure

The validity of a study denotes the trustworthiness of the results, i.e., to what
extent the results are true and not biased by the researchers’ point of view
[Runeson and Host 2009]. Even though the results obtained are valid for our
study, we have identified some threats that might affect these results. There
are three main aspects to describe the validity of a study: construct validity,
internal validity, and external validity.

The following threats to the construct validity were identified in the case
study:

• The defects found by people depend on the experience of each
person involved with the MDD approach and the OO-Method
modeling tool. Expert people look for defects in complex
conceptual constructs in contrast to novice people who look for
defects in the most frequently used and basic conceptual
constructs. To mitigate this threat, we selected people with
different levels of experience (expert, intermediate, and novice).

9. Defect Detection Case Study

248

• The defects found may not correspond to a real defect in the
model. To mitigate this risk, we investigated the defects found
and the amount of invalid defects detected in the dependent
variables a and b.

The following threats to the internal validity were identified in the case

study:

• The experience of people with the OO-Method approach and its
modeling tool affects the results of the study. People with
experience can find real defects in the models quicker than
people with lack of experience. These are two things that are
measured and can be influenced by the experience of people, and
not only by changing the independent variables. To mitigate this
risk, we selected people with at least a basic knowledge of OO-
Method and its modeling tool.

• The experience of people with the reading techniques. People
with experience performing horizontal and vertical readings of
OO-Method models can focus in common valid defect types.
Thus, experience of people regarding reading techniques can
influence the number of invalid defect types identified. Training
the subjects regarding the reading techniques can help to
diminish this threat.

• The models selected for the case study do not represent all the
conceptual constructs of the OO-Method MDD approach since
they do not have a presentation view. Thus, other conceptual
constructs may have different defect types related.

• The model of a system represents only one way to model the
system. To mitigate this risk, we selected alternative models of

9. Defect Detection Case Study

__

249

the system performed by different groups of analysts in order to
take into account different modeling possibilities.

• The learning effect of selected subjects during the inspections of
models. Several persons work on several versions of design
models of the same system. Thus, the first time that they analyze
the models, they need to understand the selected case, the
concepts involved, and how the model satisfy the requirements
of the system. Thus, the time that they took to find defects is
supposed to be longer in the first model analyzed. To mitigate
this threat, we selected models that were developed by different
groups of analysts. Thus, since different analysts take different
decisions to better represent the system, persons need to
understand how the model satisfy the system’s requirements for
each model.

Finally, the following threats to the external validity were identified in
the case study:

• The representativeness of the selected case study models since
all the models correspond to a specific MDD approach. This can
cause the findings to be valid only in this industrial context.
Repeating the case study with other MDD approaches can give
more information about the generalizations of the results.

• The representativeness of the selected subject population since
wrong people can be involved in the case study. To mitigate this
threat, we have recruiting with different expertise levels with the
MDD approach. Therefore, results can be generalizable to other
people.

• The representativeness of the inspection technique. We choose
the inspection techniques that better fit with the goal of the case

9. Defect Detection Case Study

250

study. Repeating the case study with other inspection techniques
would obtain different results.

9.2 Results

This section presents the execution of the case study, and the analysis and
interpretation of the collected data.

At this point, it is important to mention that the MDD modeling tool
already has detected some defects according to the OO-Method metamodel.
These defects are related to the structural relationships among the conceptual
constructs of the OO-Method metamodel, for instance, it is not possible to
specify a precondition of an attribute due to the preconditions can only be
related to services in the OO-Method metamodel.

Since the OO-Method approach has a well-defined metamodel, the tool
that implements OO-Method prevents analysts from performing some
actions that infringe the structural properties of the metamodel when they are
designing a model. Therefore, the modeling tool alleviates the difficult task
of detecting defects in the models. However, defects related to the semantics
that represent the conceptual constructs used in the models, or defects related
to the values that are assigned or not to the conceptual constructs used in the
models are not addressed by the MDD tool. Precisely, these defects are
found by the inspectors and the OOmCFP tool, which correspond to defects
that are not detected by the OO-Method modeling tool.

Therefore, if the conceptual models have some defects related to
structural relationships, the MDD tool will detect them before the generation
of the final application. Nevertheless, if the conceptual models have defects
related to semantics or syntactical correctness, the MDD tool will generate a

9. Defect Detection Case Study

__

251

final application that has faults. To prevent these faults, inspections and
OOmCFP are used to detect other kind of defects.

9.2.1 Execution Description

The five selected models were inspected by both the inspection team using
reading techniques and the tool that implements the OOmCFP FSM
procedure.

For the reading technique, each model was inspected by a group of eight
subjects (three experts, three intermediates, and two novices). Table 38
shows how the 16 subjects were distributed across the 8-person inspection
teams for each of the five models.

 Table 38. Distribution of subjects in the inspection teams for the five
models.

Models Subjects

Model1 E1, E3, E4, I1, I3, I4, N1, N3

Model2 E2, E3, E4, I1, I4, I5, N2, N3

Model3 E2, E3, E4, I1, I2, I3, N2, N5

Model4 E2, E3, E4, I1, I2, I3, N2, N6

Model5 E2, E4, E5, I2, I3, I4, N3, N4

To perform the inspections, the team was located in a room that had one

computer for each inspector. Each inspection team received the models they
were assigned to find defects for. Also, each person received a set of
instructions to perform inspections and a template that had to be completed
during the inspection with the defects found for each inspected model and
the time that had passed.

For the tool that implements the OOmCFP measurement procedure, each
model was loaded in the tool, which delivers an excel sheet with the defects

9. Defect Detection Case Study

252

that have been detected in each model, the related defect types, and the time
used to find these defects.

9.2.2 Analysis and Interpretation Issues

In the first step, the defects detected by the inspection team in the five
models were analyzed. To do this, we put all the defects found by the
inspection team for each model in an Excel sheet.

If a defect was detected by more than one person on the inspection team
in each model, it was considered only once for the analysis since we are
interested in the defects found and not in the skills of the inspectors. For
instance, in Model2, the defect ‘service edit_instance of class Photographer
does not have a valuation4’ was found by E3, E4, I4, N2, N3. Figure 9.1
presents the number of defects detected by each person on the inspection
team in Model2 (for instance, inspector E2 found 5 defects), which in total
corresponds to 50 defects. In Figure 9.1, it is clear that some defects were
detected by more than one inspector. For instance, inspectors M4 and M5
found the same identical defect, so we counted it only once for our
dependent variable a: number of defects found by the inspection teams in

each model. Therefore, there are only 36 distinct defects found by the
inspection team in Model2.

Figure 9.1 shows that novice inspectors found more defects than expert
inspectors; i.e., novice inspectors (N2 and N3) detected a total of 24 defects,
and expert inspectors (E2, E3, and E4) detected a total of 17 defects. This
occurs because novice inspectors identified several invalid defects (i.e., 10
defects) in contrast to expert inspectors. The reason for this is that novice
inspectors do not have enough knowledge of the modeling approach, which

4 Valuations are formulae that are used to assign values to the attributes of class using a formal

language called OASIS.

9. Defect Detection Case Study

__

253

may impede them to properly identify when a modeling specification is
incorrect or missing. Once the defects were reorganized to consider them
only once for each model, it can be observed that N3 detected 13 different
defects compared to the other inspectors. However, 10 of these defects were
misinterpretations of the novice inspector N3.

Figure 9.1 Defects found by each inspector in Model2

For this reason, we analyzed the different defects found in each model in

order to leave out the issues identified by the inspection team that are invalid
defects that arose due to misinterpretations by the inspection team. For
instance, in Model4, the identified issue: ‘the derivation formula of the
attribute total of class DeliveryNoteEx is missing’ is not a defect since this
formula is actually specified for this attribute. Figure 9.2 presents the defects

E2

Total = 5

3

1

E3

Total = 2

E4

Total = 10

N3

Total = 19

1

1

1

N2

Total = 5

2

5

I4

Total = 5

3

I5

Total = 1

1
I1

Total = 3

2

13

3

Total = 36 Distinct Defects

9. Defect Detection Case Study

254

found by the inspection team in Model4, which is up to 52 defects. However,
there are 13 defects that do not really correspond to a defect. Thus, Table 34
presents the real defects of Model4 (39 defects) and the issues that do not
correspond to a defect (13 invalid defects). In order to illustrate the defects
that were found by the inspectors in Model4, we listed the defects found
with D1, D2, D3, etc.

Figure 9.2 Distinct defects found in Model4

Many times novice and intermediate inspectors identified invalid

defects; however, Table 39 shows that even the expert inspectors identified
invalid defects (for instance E3). In this case, the expert inspector E3
interpreted that to fulfill the requirements it was necessary to use complex

E2

1

E4

I2

N6

I3

1

3

1

I1

2

E3

2

12

12

N2

4

4

4

5

1

Total = 52 Distinct Defects

9. Defect Detection Case Study

__

255

derivation formulae for the price that the publishing houses must pay to the
photography agency. Since this inspector did not find this specification in
Model4, E3 detected defects D8 and D9. Nevertheless, these issues were not
considered as defects by us since the specifications to fulfill the requirements
were done with simple derivation formulae in Model4.

Table 39. Analysis of Defects found in Model4.

Subjects Number of Defects Valid Defects Invalid Defects

E2, N6, I3 1 D1

E2 2 D2, D7 D3

E2, E4, I2 1 D4

E2, I2 1 D5

E2, I1 1 D6 D42

E3 0 D8, D9

E4, E2

12

D10, D11, D12, D13,

D14, D15, D16, D17,

D18, D19, D20, D21

E4
12

D22, D23, D24, D25,
D26, D27, D28, D29,

D30, D31, D32, D33

E4, N2 4 D34, D35, D36, D37

I1 0 D38, D39, D40, D41

I2 4 D43, D44, D45, D46 D43, D44, D45, D46

I3 1 D47 D48, D49, D50, D51

N2 0 D52

 Total 39 Valid Defects 13 Invalid Defects

Next, we analyzed each defect and assigned a code to classify the defect
types found by the inspection team for later analysis. For instance, in
Model1 the following defects corresponded to the same defect type:

9. Defect Detection Case Study

256

DM_SReach: A state of the STD of a class that is not reachable: the state
signed of the DeliveryNote class in its STD is not reachable (found by E4,
I3, N1, N3); the state charged of the DeliveryNote class in its STD is not
reachable (found by E4, I3); the state charged of the Exclusive class in its
STD is not reachable (found by I3). Figure 9.3 shows the codes assigned to
the defect types related to the defects found in Model1.

Figure 9.3 Defect Types found by the inspection team in Model1

Once the defect types were assigned, we noticed that expert inspectors

were mainly focused on the specifications of the relationships in the models
(such as agent relationships, dynamic relationships, inheritance relationships,
etc). These are more complex constructs than the ones that novice inspectors
were mainly focused on (such as attributes, valuations, etc). This situation
occurred in the five models of our study, i.e., experts focused on the complex
constructs leaving out the analysis of the basic constructs. Thus, we conclude
that is not enough to have an inspection team made up of only expert
inspectors, because, in a limited period of time, they only focused on the

9. Defect Detection Case Study

__

257

complex constructs. For that reason, it is very important to have an
inspection team made up of inspectors with different expertise in the MDD
approach and its modeling tool.

In summary, 24 defect type codes were assigned to the defects found by
the inspection teams in the five models of the study: 19 for the structural
view, 1 for the functional view, 2 for the dynamic view, and 2 for the
presentation view. These defects were related to the consistency among the
views of the models (see Table 40), the syntactical correctness of each view
of the models (see Table 40), and the completeness of the models regarding
the requirements (see Table 41).

Table 40. Description of Defect types related to the correctness and
consistency found by the inspection teams.

Defect Type Description Quality Characteristic

CM_RServ Missing specification of dynamic

services in a dynamic relationship.

Correctness

CM_SAgent A service without a defined agent. Correctness

CM_AAgent An attribute without a defined agent. Correctness

CM_RAgent A role without a defined agent. Correctness

FM_NV A service without the specification of a

valuation.

Consistency

DM_SReach A state of the STD of a class that is not

reachable

Correctness

DM_SWC A state of the STD is reachable without

the creation of an object.

Correctness

PM_NM A model without the specification of a

presentation view.

Consistency

PM_IP Empty introduction pattern. Correctness

9. Defect Detection Case Study

258

Table 41. Description of Defect types related to the completeness found
by the inspection teams.

Defect Type Description Quality Characteristic

CM_Id A class with more than one identifier. Completeness

CM_AS Attribute of string data type with small

size for the requirements.

Completeness

CM_AN Attribute that allows a null value with a

default value specified.

Completeness

CM_FDer Wrong derivation formula for the

requirements.

Completeness

CM_WArg Wrong argument in a service. Completeness

CM_MArg Missing argument in a service. Completeness

CM_DCServ Duplicated creation event in a class. Completeness

CM_SEditC An edit service in a class that only has

constant and derived attributes.

Completeness

CM_InhLib Inheritance hierarchy between two

classes without a liberator event.

Completeness

CM_InhId An identifier defined in a child of an

inheritance hierarchy.

Completeness

CM_WInh Wrong definition of an inheritance

hierarchy between two classes for the

requirements.

Completeness

CM_InhServ Duplicated service in the children of an

inheritance hierarchy.

Completeness

CM_MR Missing relationship in the class model. Completeness

CM_WCard Wrong cardinality in a relationship. Completeness

CM_FIC Wrong integrity constraint formula. Completeness

Figure 9.4 shows the defect types found by the inspection teams in the

five models of the study. This figure shows that Model5 had 7 defects
related to the CM_SEditC defect type, Model2 had only 1 defect related to

9. Defect Detection Case Study

__

259

the same defect type, and the remainder models did not have defects related
to this defect type.

Figure 9.4 Defect Types found by the inspection teams

In contrast, the defects found by the OOmCFP tool were detected only

once, that is, the tool does not have misinterpretations in the identification of
defects since it applies specific rules that analyze the entire functionality of a
system that is represented in the model in a systematic way. Also, for each
defect, the OOmCFP tool presents the corresponding defect type.

It is important to mention that the OO-Method model compiler detects
some defects when it transforms the conceptual model to an execution model
and then generates the corresponding final application. These defects are
related to the structure of the XML representation of the conceptual model.
Nevertheless, the OO-Method model compiler does not analyze the
functionality specified with the conceptual constructs. OOmCFP analyzes
the specification of the functionality of final applications in the conceptual
constructs instead of its XML representation. Hence, the defects found by
the OOmCFP are not found by the model compiler. Therefore, it is very
important to rely on a technique that can find defects that the model compiler
does not detect.

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

D
e

fe
ct

s

Defect Types

Model1

Model2

Model3

Model4

Model5

9. Defect Detection Case Study

260

Even though the OOmCFP tool can detect defects related to 24 defect
types in the OO-Method conceptual models, the defects found in the five
models of the study were related to only three defect types (1 for the
structural view, 1 for the functional view, and 1 for the presentation view).
This occurs because several defect types detected by the OOmCFP tool are
related to the presentation view of a model, and the selected models do not
have this view specified. Table 42 shows the description of the 3 defect
types found and the related quality characteristics.

Table 42. Description of Defect types found by the OOmCFP tool.

Defect

Type

Description Quality Characteristic

CM_NA A class without the definition of one or more

attributes.

Correctness

FM_NV A service without the specification of a

valuation.

Consistency

PM_NM A model without the specification of a

presentation view.

Consistency

The difference between the defect types found by the inspection teams

and the OOmCFP tool is not surprising due to the following:

• Some defect types found by the inspection teams are related to
the semantics of the model, i.e., CM_Id, CM_AS, CM_AN,
CM_FDer, CM_WArg, CM_MArg, CM_DCServ, CM_SEditC,
CM_InhLib, CM_InhId, CM_WInh, CM_InhServ, CM_MR,
CM_WCard, and CM_FIC. These 15 defect types are detected
by the inspection teams since they have the requirements
specification of the Photography Agency system. Since the
OOmCFP tool applies the OOmCFP FSM procedure to analyze
the functionality of design models by a systematic analysis of

9. Defect Detection Case Study

__

261

the models, there is no knowledge process that the tool can
perform in order to analyze the semantics of a model for the
requirements.

• Another defect type found by the inspection teams is related to
the correctness of conceptual constructs that do not contribute to
the functionality of the applications, i.e., PM_IP. This is not
surprising since the OOmCFP FSM procedure takes into account
the conceptual constructs that contribute to the functionality of
the applications leaving out aesthetic aspects that do not
represent data movements.

• Other defect types found by the inspection teams are related to
the relationships between classes in the structural view of the
model (i.e., CM_RServ, CM_SAgent, CM_AAgent, and
CM_RAgent) and the transitions among states in the dynamic
view of the model (i.e., DM_SReach, and DM_SWC). One
limitation of the OOmCFP FSM procedure is that it does not
analyze the relationships and the cardinalities of the conceptual
constructs because they do not represent data movements.

• The remaining defects (FM_NV, PM_NM) correspond to the
defect types found by the tool. In addition, the OOmCFP tool
identified a defect type (i.e., CM_NA) that was not identified by
the inspection teams.

Figure 9.5 shows the defect types found by the OOmCFP tool in the

models. This figure shows that the five models had one defect related to the
defect type PM_NM, Model4 had four defects related to defect type
CM_NA, Model2 had eight defects related to defect type FM_NM, etc.

9. Defect Detection Case Study

262

Figure 9.5 Defect Types found by the OOmCFP tool.

Table 43 presents the number of defects, defect types, and times

collected for the dependent variables from the inspections performed by the
inspection teams and the OOmCFP tool. Based on the dependent variables,
we try to provide an answer to the underlying research questions.

Table 43. Defects found by the inspection teams (IT) and OOmCFP.

Models

Number

of defects

by IT

Number

of

invalid

defects

by IT

Number

of valid

defects

by IT

Number

of defect

types by

IT

Number

of defects

by

OOmCFP

Number

of defect

types by

OOmCFP

Time

IT

Time

OOmCFP

Model1 36 18 18 10 7 3 229 0,31

Model2 36 16 20 10 9 2 233 0,43

Model3 39 17 22 7 4 2 198 0,95

Model4 52 13 39 9 12 3 214 0,76

Model5 38 21 17 7 8 2 249 0,38

RQ1: Are the defect types found by the inspection team the same as the

defect types found by the OOmCFP FSM Procedure?

0

1

2

3

4

5

6

7

8

9

CM_NA FM_NV PM_NM

Model1

Model2

Model3

Model4

Model5

9. Defect Detection Case Study

__

263

The inspection team found defects related to 24 defect types in the five
models of the study (see Table 35). These defect types are related to the four
views (structural view, functional view, dynamic view, and presentation
view) of the OO-Method conceptual model. In contrast, the OOmCFP tool
found defects related to only 3 defect types in the five models (see Table 36),
which are related to the structural view, the functional view, and the
presentation view of the OO-Method conceptual model. This does not mean
that the tool cannot find defects related to the dynamic view of a model;
however, the tool does not identify defects related to the transitions between
the states of the state-transition diagram. Two of the defect types found by
OOmCFP were also found by the inspection team (i.e., FM_NV and
PM_NM). However, it is important to note that defect type CM_NA was not
detected by the inspection team.

Thus, it can be observed that some of the defect types found by the
inspection team are the same as the defect types found by the OOmCFP tool;
also, there are defect types found by the inspection team that were not found
by the tool, and vice versa.

RQ2: Are the quality characteristics related to the defects found by the

inspection team the same as the quality characteristics related to the defects

found by the OOmCFP tool?

Focusing on the defect types found by the inspection teams in the five
models, the great majority of defect types are related to the semantics of a
model. Since the inspectors had the requirement specifications, they were
able to inspect the models according to the requirements; thus, they detected
defects related to the completeness of the models. The remaining defect
types found by the inspectors were related to the consistency among the
views of a model (e.g. FM_NV) and the syntactical correctness of a model
(e.g. CM_SAgent).

9. Defect Detection Case Study

264

In the same models, the defect types found by the OOmCFP tool were
related to the consistency among the views of a model (e.g. FM_NV) and the
syntactical correctness of the model (e.g. CM_NA). Understanding the
completeness of a model as being a model that contains all the statements
according to the requirements, this quality characteristic cannot be achieved
by the OOmCFP tool since the tool does not have the requirements
specification of the system.

In summary, the quality characteristics related to the defects found by
the inspection team are completeness, consistency, and correctness; and the
quality characteristics related to the defects found by the OOmCFP tool are
consistency and correctness.

RQ3: Is the OOmCFP FSM procedure efficient at finding defects related

to a defect type?

Focusing on the defect types found in Model5, the inspection team found
38 defects. However, 21 were misinterpretations of the team and did not
correspond to real defects. Therefore, there were only 17 defects found in
Model5 by the inspection team. These defects were related to 7 defect types.
In the same model, 8 defects were found by the OOmCFP tool, which were
related to 2 defect types (FM_NV and PM_NM). However, it is important to
note that for defect type FM_NM, the inspection team found 1 defect and the
OOmCFP tool found 7 defects. This occurs because the OOmCFP tool
analyzes the model completely in a systematic way by applying the
OOmCFP rules, while the people of the inspection team often forget to
inspect some parts of the model. Also, the OOmCFP tool took 23 seconds
(0.38 minutes) to completely analyze Model5, in contrast to the inspection
team which took 4 1/4 hours (249 minutes) to partially analyze the same
model.

In the remaining models evaluated (i.e., Model1, Model2, Model3, and
Model4), the situation was very similar to Model5. Taking these results into

9. Defect Detection Case Study

__

265

account, it is clear that OOmCFP is more efficient than an inspection team in
finding defects related to a defect type.

RQ4: Is the OOmCFP FSM procedure useful at finding defects in models

of an MDD environment?

Taking into account all the results obtained for the dependent variables,
it is clear that the OOmCFP FSM procedure detected fewer defects than
traditional inspections, although there are also advantages: it found the total
number of defects related to a defect type; it found different defect types
than the inspection team did (i.e., CM_NA); and it found defects using less
resources (time, effort, etc). Thus, we consider that the OOmCFP FSM
procedure is useful at finding defects in models of the OO-Method MDD
approach.

9.3 Conclusions

In this chapter, we have reported a case study that was conducted to find out
the usefulness of a FSM procedure to detect defects in the conceptual models
of an MDD environment. The results indicate that the FSM is useful since it
found all the defects related to a specific defect type and also found different
defect types than an inspection team. However, the inspection team is also
necessary to find defects that the FSM cannot find. Thus, the combination of
these two techniques can be an interesting approach to evaluate the quality
of conceptual models.

There are successful studies of the combination of FSM methods and
inspections to find defects manually in textual representations of
requirements [Trudel and Abran 2008; Trudel and Abran 2010]. However, to
the best of our knowledge, this study corresponds to the first study of the
usefulness of an FSM procedure to detect defects in conceptual models of

9. Defect Detection Case Study

266

MDD environments. Thus, further empirical research is necessary to
establish greater external validity for these results. Other researchers are
invited to replicate our study in other MDD contexts.

One limitation of this study is that none of the analyzed models had a
presentation view specified; still the OOmCFP finds defect types that are
related to conceptual constructs of the presentation view.

267

Chapter 10

Conclusions

In this thesis, we have investigated the use of a standard Functional Size
Measurement (FSM) method in the measurement of conceptual models of a
Model-Driven Development (MDD) approach in order to achieve accurate
functional size measurement results. To reach this goal, we have designed a
FSM procedure based in the COSMIC FSM method that allows the accurate
measurement of applications generated by the conceptual models of the OO-
Method MDD approach. Furthermore, in this thesis, we have also
investigated defect detection at early stages of the software development
process, which in MDD approaches corresponds to the design of conceptual
models. Thus, we have demonstrated the usefulness of the FSM procedure
designed to detect defects in OO-Method conceptual models.

This last chapter introduces the conclusions of the work presented in this
thesis. First, we list the main contributions of this thesis. Next, we present
the publications that have been produced throughout the development of this
work. Finally, we explain the work that is currently being performed as well
as future work that has emerged from this thesis.

10. Conclusions

268

10.1 Contributions

The main contribution of this work is a functional size measurement
procedure that allows the application of COSMIC to OO-Method conceptual
models in order to obtain the accurate functional size of the applications
generated in the OO-Method MDD environment. The development of this
procedure comprises its design, its application, its automation, and also the
verification of OO-Method conceptual models in order to be defect-free.
Thus, this work provides the following contributions:

1 An accurate FSM procedure has been systematically designed to
measure the functional size of applications generated in MDD
environments from their conceptual models. We have designed this
FSM procedure according to the last version (v. 3.0) of the standard
COSMIC FSM method since it allows the measurement of multi-layer
applications in contrast to other standard FSM methods. The design of
the FSM procedure includes the following: a set of rules that allows
the identification of the COSMIC concepts related to the measurement
of the conceptual constructs of the OO-Method conceptual models; a
set of rules that avoids the duplicated measurement of the conceptual
constructs used in the conceptual models; and a set of rules that allows
the measurement of the functional size of the generated applications
taking into account different granularities: each functional process,
each piece of software, or the entire application.

2 A method to evaluate the precision of functional size measurement

results has been defined. This method is based on the ISO 5725
standard, which evaluates precision according to the repeatability and
the reproducibility of the measurement results.

10. Conclusions

__

269

3 A tool that automates the application of the FSM procedure to MDD

applications has been developed. This tool measures the functional
size of applications generated in the OO-Method MDD environment
using the XML specification of the conceptual models involved. Thus,
this tool can totally automatically obtain the functional size of these
applications, and it can be easily generalized to other MDD
applications.

4 A metamodel with the minimal set conceptual constructs that an MDD

approach must have in order to allow the generation of fully working
applications has been defined. This metamodel has been designed
based on the conceptual constructs of the OO-Method approach using
the MOF metamodelling standard [OMG 2006a] and the Eclipse
open-source tools.

5 A novel approach to detect defects in object-oriented conceptual

models has been defined. Since a FSM procedure analyzes all the
conceptual constructs of a conceptual model and their relationships,
we apply the FSM procedure to conceptual models that have defects
in order to find these defects. Therefore, the FSM procedure does not
allow the measurement of the functional size, but it obtains the defects
of the model that are related to 24 defect types that impede the correct
compilation of the conceptual models in order to generate final
applications in MDD environments.

6 A tool that automates the defect detection in conceptual models of
MDD applications has been developed. This tool detects defects in the
OO-Method conceptual models using their XML specification as a
starting point and returns a report with the conceptual constructs
related to each defect found in the conceptual model.

10. Conclusions

270

10.2 Publications

Research in different areas of software engineering has been carried out to
perform the work presented in this thesis, such as conceptual modeling
methods, quality measures for conceptual models, standard measurement
methods, standard validation methods, software quality, software testing,
functional size methods, and functional size measurement tools. Thus, the
research activity related to this work has resulted in 25 publications, which
correspond to 4 international journals, 2 national journals, 13 international
conferences, 4 international workshops, and 2 national conferences.

International Journals:

• Giovanni Giachetti, Beatriz Marín, Oscar Pastor. Integration of

Domain-Specific Modeling Languages and UML through UML

Profile Extension Mechanism. International Journal of Computer
Science & Applications (IJCSA 2009) - vol. 6, nº 5, pp. 145-174,
2009.

• Beatriz Marín, Oscar Pastor, Alain Abran. Towards an accurate

functional size measurement procedure for conceptual models in

an MDA environment. Data & Knowledge Engineering (DKE

2010) –. vol. 69, nº 5, pp. 472-490. 2010. (DKE is included in the
top quartile of JCR: 1.745 impact factor 2010, position 23/116 in
the “Computer Science, Information System" category).

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor, Alain Abran. A

Quality Model for Conceptual Models of MDD Environments.
Advances in Software Engineering - Special Issue: New
Generation of Software Metrics (ASE 2010). Article ID 307391,
17 pages, 2010.

10. Conclusions

__

271

• Giovanni Giachetti, Manoli Albert, Beatriz Marín, Oscar Pastor.
Linking UML and MDD Through UML Profiles: A Practical

Approach based on the UML Association. Journal of Universal
Computer Science (JUCS 2010) - vol. 16, no. 17, PP. 2353-2373,
2010. (JUCS is included in the third quartile of JCR: 0.669
impact factor 2010, position 68/93 in the “Computer Science,
Software Engineering" category).

National Journals:

• Beatriz Marín, Nelly Condori-Fernández, Oscar Pastor. Calidad

en Modelos Conceptuales: Un Análisis Multidimensional de

Modelos Cuantitativos basados en la ISO 9126. Revista de
Procesos y Métricas de las Tecnologías de la Información
(RPM), vol. 4, pp. 153-167, 2007.

• Antonio de Rojas, Tanja Vos, Beatriz Marín. Experiencias de

una PYME en la mejora de procesos de prueba. Revista
Española de Innovación, Calidad e Ingeniería del Software
(REICIS), vol. 5 nº 2, pp. 63-69, 2009.

International Conferences:

• Giovanni Giachetti, Beatriz Marín, Nelly Condori-Fernández,
Juan Carlos Molina. Updating OO-Method Function Points. 6th
IEEE International Conference on the Quality of Information and
Communications Technology (QUATIC 2007). Lisbon,
Portugal, September12-14, 2007. IEEE Computer Society Press,
pp. 55-64.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor. Una

Herramienta Industrial para la Medición del Tamaño Funcional

de Aplicaciones Desarrolladas en Entornos MDA. XI
Conferencia Iberoamericana de Software Engineering (CIbSE
2008). Recife, Brazil, February 13-17, 2008. pp. 357-362.

10. Conclusions

272

• Beatriz Marín, Oscar Pastor, Giovanni Giachetti. Automating

the Measurement of Functional Size of Conceptual Models in a

MDA Environment. 9th International Conference on Product
Focused Software Process Improvement (PROFES 2008). Rome,
Italy, June 23-25, 2008. Springer, LNCS 5089, pp. 215-229.

• Beatriz Marín, Nelly Condori-Fernández, Oscar Pastor. Towards

a Method for Evaluating the Precision of Software Measures. 8th
International Conference on Quality Software (QSIC 2008).
Oxford, UK, August 12-13, 2008. IEEE Computer Society Press,
pp. 305-310.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor. Measurement

of Functional Size in Conceptual Models: A Survey of

Measurement Procedures based on COSMIC. 3rd International
Conference on Software Process and Product Measurement
(MENSURA 2008). Munich, Germany, November 17-19, 2008.
Springer, LNCS 5338, pp. 170-183.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor, Alain Abran.
Identificación de Defectos en Modelos Conceptuales utilizados en

Entornos MDA. XII Conferencia Iberoamericana de Software
Engineering (CIbSE 2009), Medellín, Colombia, 2009. pp. 109-
114.

• Giovanni Giachetti, Beatriz Marín, Oscar Pastor. Integración de

UML y DSMLs en Entornos de Desarrollo Dirigido por Modelos.
XII Conferencia Iberoamericana de Software Engineering
(CIbSE 2009). Medellín, Colombia, 2009. pp. 103-108.

• Giovanni Giachetti, Beatriz Marín, Oscar Pastor. Using UML
Profiles to Interchange DSML and UML Models. 3rd
International Conference on Research Challenges in Information
Science (RCIS 2009). Fès, Morocco, 22-24 April 2009. IEEE
Computer Society, pp. 385-394.

10. Conclusions

__

273

• Giovanni Giachetti, Beatriz Marín, Oscar Pastor. Using UML as
a Domain-Specific Modeling Language: A Proposal for
Automatic Generation of UML Profiles. 21st International
Conference of Advanced Information Systems Engineering
(CAiSE 2009). Amsterdam, The Netherlands, June 8-12, 2009.
Springer, LNCS 5565, pp. 110-124.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor. Applying a

Functional Size Measurement Procedure for Defect Detection in

MDD Environments. 16th European Conference on Software
Process Improvement and Innovation (EUROSPI 2009), Alcalá
(Madrid), Spain, 2009. Springer-Verlag, CCIS 42, pp. 57-68.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor, Tanja Vos,
Alain Abran. Evaluating the Usefulness of a Functional Size

Measurement Procedure to Detect Defects in MDD Models. 4th
International Symposium on Empirical Software Engineering and
Measurement (ESEM 2010), Bolzano-Bozen, Italy, 2010. ACM.

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor, Tanja Vos. A

Tool for Automatic Defect Detection in Models used in Model-

Driven Engineering. 7th International Conference on the Quality
of Information and Communications Technology (QUATIC
2010), Oporto, Portugal, 2010. IEEE, pp. 242-247.

• Beatriz Marín, Tanja Vos, Giovanni Giachetti, Arthur Baars,
Paolo Tonella. Towards Testing Future Web Applications. 5th
International Conference on Research Challenges in Information
Science (RCIS 2011). Guadeloupe, France, 19-21 May 2011.
IEEE Computer Society, pp. 226-237.

International Workshops:

• Beatriz Marín, Giovanni Giachetti, Oscar Pastor. Intercambio de

Modelos UML y OO-Method. X Workshop Iberoamericano de

10. Conclusions

274

Ingeniería de Requisitos y Ambientes Software (IDEAS 2007).
Isla Margarita, Venezuela, Mayo 07-11, 2007. pp. 283–296.

• Beatriz Marín, Nelly Condori-Fernández, Oscar Pastor, Alain
Abran. Measuring the Functional Size of Conceptual Models in

an MDA Environment. 20th International Conference on
Advanced Information Systems Engineering Forum (CAiSE

Forum 2008). Montpellier, France, June 18-20, 2008. pp. 33-36.

• Beatriz Marín, Nelly Condori-Fernández, Oscar Pastor. Design

of a Functional Size Measurement Procedure for a Model-Driven

Software Development Method. Accepted in the 3rd Workshop on
Quality in Modeling (MODELS Workshops 2008). Toulouse,
France, September 28-30, 2008.

• Fernanda Alencar, Beatriz Marín, Giovanni Giachetti, Oscar
Pastor, Jaelson Castro, Xavier Franch, Joao Pimentel. From i* to

OO-Method: Problems and Solutions. 4th International i*
Workshop (iStar 2010) - CAiSE Workshops, vol. 586. CEUR
Workshop Proceedings. 2010.

National Conferences:

• Giovanni Giachetti, Beatriz Marín, Oscar Pastor. Perfiles UML

y Desarrollo Dirigido por Modelos: Desafíos y Soluciones para

Utilizar UML como Lenguaje de Modelado Específico de

Dominio. V Taller sobre Desarrollo de Software Dirigido por
Modelos (DSDM 2008) – Taller JISDB. 2008.

• Tanja Vos, Arthur Baars, Beatriz Marín. Pruebas Evolutivas en

la Industria. V Taller sobre Pruebas en Ingeniería del Software
(PRIS 2010) – Taller de las Jornadas de Ingeniería del Software
y Bases de Datos (JISBD), Vol. 4, nº 5, 2010. pp. 59-66.

10. Conclusions

__

275

Table 44 summarizes and classifies these publications according to the
place of publication.

Table 44. Summary of publications related to this thesis.

Category Number Acronyms

International Journal

indexed by JCR

2 DKE, JUCS

International Journal 2 IJCSA, ASE

National Journal 2 RPM, REICIS

International

Conferences

13 QUATIC (2), CIbSE(3),

QSIC, PROFES,

MENSURA, RCIS (2),

CAiSE, EUROSPI,

ESEM

International

Workshops

4 IDEAS, CAiSE Forum,

MODELS Workshops,

ISTAR

National Conferences 2 DSDM, PRIS

Total 25 publications

10.3 Future Work

The research presented here is not a closed work, and there are several
interesting directions that can still be pursued in the field of functional size
measurement and defect detection of MDD applications. The following list
summarizes the research activities that are planned in order to continue this
work:

10. Conclusions

276

• Application of the OOmCFP procedure to new approaches of
requirements models, such as [España et al. 2009] [de la Vara et al.
2008], which has enough conceptual constructs to completely define
conceptual models. By applying OOmCFP to these requirements
approaches, accurate measurement results of the functional size of
final applications can be provided in very early stages of a MDD
software development process.

• Incorporation of more rules to detect defects in conceptual models of
MDD approaches. In particular, we plan to incorporate rules that are
related to the interaction models of MDD approaches focusing on
new characteristics defined for models of this kind, such as [Aquino et

al. 2010] [Panach et al. 2008]. Taking into account that there are
several MDD approaches that do not have a defined interaction model
defined, our quality model for defect detection can be used as a
reference to improve these approaches.

• Definition of a generic model for functional size measurement, which
can be used for other application domains of MDD approaches, such
as pervasive models, automotive models, etc. To do this, we plan to
define the model using lightweight extension mechanisms, and also to
develop an open-source tool that allows the application of the model
to different MDD approaches independently of the implementation
platforms of these approaches.

• Definition of a model to predict the cost of MDD applications. Since
MDD applications are generated automatically from conceptual
models by means of a model compiler, the effort used to produce
these applications is different than the effort used to produce
applications by means of human programmers. Thus, current models
to predict the cost of software applications (e.g. COCOMO) should

10. Conclusions

__

277

not be used to predict the cost of MDD applications because they
assign a high value to the human effort that is used to produce the
software. To define a cost prediction model, we plan to develop a
repository with the measures obtained in several MDD projects and
then calculate the cost by taking into account the effort required to
produce the model compiler and also the effort required to develop the
conceptual models.

• Definition of techniques to perform Model-Driven Testing. We are
currently working on testing the Future Internet using search-based
software testing. We expect that Future Internet applications will be
developed using Model-Driven methods. Thus, with the knowledge
obtained in this work about Model-Driven Methods and our
knowledge related to software testing, we plan to develop a
methodology that allows conceptual models to be tested using search-
based testing techniques. Then, test cases can be automatically
generated.

10. Conclusions

278

__

279

References

Abrahão, S., Mendes, E., Gomez, J. AND Insfrán, E. 2007. A Model-Driven

Measurement Procedure for Sizing Web Applications: Design, Automation

and Validation. In Proceedings of the ACM/IEEE 10th International
Conference On Model Driven Engineering Languages and Systems
(MoDELS), Nashville, USA2007, 467-481.

Abrahao, S., Poels, G. AND Pastor, O. 2004. Assessing the Reproducibility

and Accuracy of Functional Size Measurement Methods through

Experimentation. In Proceedings of the International Symposium on
Empirical Software Engineering (ISESE)2004 IEEE Computer Society, 189-
198.

Abrahão, S., Poels, G. AND Pastor, O. 2006. A Functional Size

Measurement Method for Object-Oriented Conceptual Schemas: Design and

Evaluation Issues. Journal of Software and System Modeling 5(1), 48-71.

Abran, A. 2010. Software Metrics & Software Metrology. Wiley-IEEE
Computer Society Press.

Abran, A., Desharnais, J., Lesterhuis, A., Londeix, B., Meli, R., Morris, P.,
Oligny, S., O’Neil, M., Rollo, T., Rule, G., Santillo, L., Symons, C. AND
Toivonen, H. 2007. The COSMIC Functional Size Measurement Method -

Version 3.0. GELOG web site www.gelog.etsmtl.ca.

280

Abran, A., Desharnais, J., Oligny, S., St-Pierre, D. AND Symons, C. 1999.
COSMIC-FFP Measurement Manual - Version 2.0.

Abran, A., Desharnais, J., Oligny, S., St-Pierre, D. AND Symons, C. 2001.
COSMIC-FFP Measurement Manual - Version 2.1.
http://www.cosmicon.com/.

Abran, A., Desharnais, J.M., Oligny, S., St-Pierre, D. AND Symons, C.
2003. COSMIC-FFP Measurement Manual - Version 2.2, The COSMIC

Implementation Guide for ISO/IEC 19761. http://www.cosmicon.com/.

Abran, A. AND Sellami, A. 2002. Initial Modeling of the Measurement

Concepts in the ISO Vocabulary of Terms in Metrology. In Proceedings of
the 12th International Workshop on Software Measurement - IWSM,
Magdeburg (Germany), Oct. 7-9 2002 Shaker-Verlag.

Albrecht, A. 1979. Measuring Application Development Productivity. In
Proceedings of the IBM Applications Development Symposium1979, 83-92

Aquino, N., Vanderdonckt, J. AND Pastor, O. 2010. Transformation

Templates: Adding Flexibility to Model-Driven Engineering of User

Interfaces. In Proceedings of the 25th ACM Symposium on Applied
Computing, SAC 2010 Sierre, Switzerland2010, S.Y. Shin, S. Ossowski, M.
Schumacher, M.J. Palakal AND C.-C. Hung Eds. ACM Press, 1195–1202.

Azzouz, S. AND Abran, A. 2004. A proposed measurement role in the

Rational Unified Process (RUP) and its implementation with ISO 19761:

COSMIC FFP. In Proceedings of the Software Measurement European
Forum (SMEF), Rome, Italy, January 28-30 2004, 1-12.

Basili, V.R. AND Rombach, H.D. 1988. The TAME Project: Towards

Improvement Oriented Software Environments. IEEE Transactions on
Software Engineering 14(6), 758-773.

281

Basili, V.R., S., G., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S.
AND Zelkowitz, M.V. 1996. The Empirical Investigation of Perspective-

Based Reading. Empirical Software Engineering Journal I, 133-164.

Bellur, U. AND Vallieswaran, V. 2006. On OO Design Consistency in

Iterative Development. In Proceedings of the 3rd Int. Conf. on Information
Technology: New Generations (ITNG), April 10-12 2006 IEEE, 46-51.

Benbasat, I., Goldstein, D. AND Mead, M. 1987. The case research strategy

in studies of information systems. MIS Q 11(3), 369–386.

Berenbach, B. 2004. The Evaluation of Large, Complex UML Analysis and

Design Models. In Proceedings of the 26th ICSE, May 23-28 2004 IEEE
Computer Society, 232-241.

Berkenkötter, K. 2008. Reliable UML Models and Profiles. Electronic Notes
in Theoretical Computer Science 217, 203-220.

Bevo, V. 2005. Analyse et Formalisation Ontologique des Procédures de

Mesure Associées aux Méthodes de Mesure de la Taille Fonctionnelle des

Logiciels: de Nouvelles Perspectives Pour la Mesure Université du Québec à
Montréal - UQAM, Montréal.

Bévo, V., Lévesque, G. AND Abran, A. 1999. Application de la méthode

FFP à partir d'une spécification selon la notation UML: compte rendu des

premiers essais d'application et questions. In Proceedings of the 9th
International Workshop on Software Measurement (IWSM), Canada1999,
230-242.

Boehm, B. 1981. Software Engineering Economics. Prentice Hall.

CARE-Technologies 2011. Web site. http://www.care-t.com/. (Last accessed
May 2011).

Condori-Fernández, N. 2007. Un procedimiento de medición de tamaño

funcional a partir de especificaciones de requisitos.Doctoral thesis. In

282

Departamento de Sistemas Informáticos y Computación Universidad
Politécnica de Valencia, Valencia.

Condori-Fernández, N., Abrahão, S. AND Pastor, O. 2007. On the

Estimation of Software Functional Size from Requirements Specifications.
Journal of Computer Science and Technology 22(3), 358-370.

Condori-Fernández, N. AND Pastor, O. 2006. Evaluating the Productivity

and Reproducibility of a Measurement Procedure. In Proceedings of the ER
Workshops 2006, 352-361.

Condori-Fernández, N.A., S.; Pastor, O. 2004. Towards a Functional Size

Measure for Object-Oriented Systems from Requirements Specifications. In
Proceedings of the 4th IEEE International Conference on Quality Software
(QSIC), Germany2004, 94-101.

Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C., Bunde, G.A. AND
Pedersen, A. 2003. Object-Oriented Reading Techniques for Inspection of

UML Models – An Industrial Experiment. In Proceedings of the 17th
ECOOP, July 2003 2003 Springer, 483-501.

COSMIC_Group 2003. Rice Cooker – Cosmic Group Case Study.

Cherfi, S.S.-S., Akoka, J. AND Comyn-Wattiau, I. 2002. Conceptual

modeling quality—from EER to UML schemas evaluation. In Proceedings of
the 21st International Conference on Conceptual Modeling (ER 2002),
Tampere, Finland2002, S.T.M. S. Spaccapietra, Y. Kambayashi Ed.

Davenport, T.H. AND Prusak, L. 1998. Working Knowledge: How

Organisations Manage What They Know. Business School Press, Boston,
Massachusetts.

de la Vara, J.L., Sánchez, J. AND Pastor, O. 2008. Business Process

Modelling and Purpose Analysis for Requirements Analysis of Information

Systems. In Proceedings of the CAiSE2008, Z. Bellahsène AND M. Léonard
Eds. Springer, 213-227.

283

Dedene, G. AND Snoeck, M. 1994. M.E.R.O.DE.: A Model-driven Entity-

Relationship Object-oriented Development Method. ACM SIGSOFT
Software Engineering Notes 19(3), 51-61

DeMarco, T. 1982. Controlling Software Projects. Prentice Hall.

Diab, H., Frappier, M. AND St-Denis, R. 2001. Formalizing COSMIC-FFP

Using ROOM. In Proceedings of the ACS/IEEE Int. Conf. on Computer
Systems and Applications (AICCSA)2001, 312-318.

Diab, H., Koukane, F., Frappier, M. AND St-Denis, R. 2005. µcROSE:

Automated measurement of COSMIC-FFP for Rational Rose Real Time.
Information and Software Technology 47(3), 151-166.

Diaz, I., Sanchez, J. AND Pastor, O. 2005. Metamorfosis: Un marco para el

análisis de requisitos funcionales. In Proceedings of the Workshop on
Requirements Engineering (WER), Porto, Portugal2005, 233-244.

Eclipse 2011a. Model Development Tools.
http://www.eclipse.org/modeling/mdt/. (Last accessed May 2011).

Eclipse 2011b. Modeling Project. http://www.eclipse.org/modeling/. (Last
accessed May 2011).

Egyed, A. 2006. Instant Consistency Checking for the UML. In Proceedings
of the 28th ICSE, Shangai, China, May 20-28 2006 ACM, 381-390.

España, S., González, A. AND Pastor, O. 2009. Communication Analysis: A

Requirements Engineering Method for Information Systems. In Proceedings
of the 21st International Conference on Advanced Information Systems
Engineering (CAiSE 2009), Amsterdam, The Netherlands2009, P. Van Eck,
J. Gordijn AND R. Wieringa Eds. Springer, 530-545.

Fenton, N. AND Pfleeger, S. 1996. Software Metrics: A Rigorous and

Practical Approach (2nd edition). International Thomson Computer Press.

284

Fenton, N.E. AND Neil, M. 1999. A Critique of Software Defect Prediction

Models. IEEE Transactions on Software Engineering 25(5), 675-689.

Fink, T., Koch, M. AND Pauls, K. 2006. An MDA approach to Access

Control Specifications Using MOF and UML Profiles. Electronic Notes in
Theoretical Computer Science 142, 161-179.

France, R.B., Ghosh, S., Dinh-Trong, T. AND Solberg, A. 2006. Model-

driven development using uml 2.0: Promises and pitfalls. IEEE Computer
39(2), 59–66.

García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M.
AND Genero, M. 2006. Towards a consistent terminology for software

measurement. Information and Software Technology 48(8), 631-644.

Gartner 2011. Gartner Says Worldwide IT Spending to Grow 5.1 Percent in

2011. http://www.gartner.com/it/page.jsp?id=1513614. (Last accessed May
2011).

Genero, M., Piattini, M. AND Calero, C. 2005. A Survey of Metrics for UML

Class Diagrams. Journal of Object Technology 4(9), 59-92.

Giachetti, G., Marín, B., Condori-Fernández, N. AND Molina, J.C. 2007.
Updating OO-Method Function Points. In Proceedings of the 6th IEEE
International Conference on the Quality of Information and Communications
Technology (QUATIC 2007), Lisboa, Portugal2007, 55–64.

Gomaa, H. 2000. Designing Concurrent, Distributed, and Real-Time

Applications with UML. Addison-Wesley.

Gomaa, H. AND Wijesekera, D. 2003. Consistency in Multiple-View UML

Models: A Case Study. In Proceedings of the Workshop on Consistency
Problems in UML-based Software Development II, San Francisco, USA,
October 20 2003 IEEE, 1-8.

285

Gómez, J., Insfrán, E., Pelechano, V. AND Pastor, O. 1998. The Execution

Model: a component-based architecture to generate software components

from conceptual models. In Proceedings of the Workshop on Component-
based Information Systems Engineering1998.

Grau, G. AND Franch, X. 2007a. ReeF: Defining a Customizable

Reengineering Framework. In Proceedings of the CAiSE Trondheim2007a
Springer, 485-500.

Grau, G. AND Franch, X. 2007b. Using the PRiM method to Evaluate

Requirements Model with COSMIC-FFP. In Proceedings of the International
Conference on Software Process and Product Measurement (IWSM-
MENSURA), Mallorca, Spain, November 2007b, 110-120.

Habela, P., Glowacki, E., Serafinski, T. AND Subieta, K. 2005. Adapting

Use Case Model for COSMIC-FFP Based Measurement. In Proceedings of
the 15th International Workshop on Software Measurement (IWSM),
Montréal2005, 195-207.

Habra, N., Abran, A., Lopez, M. AND Sellami, A. 2008. A framework for

the design and verification of software measurement methods. Journal of
Systems and Software 81(5), 633-648.

Hailpern, B. AND Tarr, P. 2006. Model-driven develpment: The good, the

bad, and the ugly. IBM Systems Journal 45(3), 451–461.

IEEE 1990. IEEE 610 Standard Computer Dictionary. A Compilation of

IEEE Standard Computer Glossaries.

IEEE 2004. IEEE 1012 Standard for Software Verification and Validation.

IEEE 2009. IEEE 1044 Standard Classification for Software Anomalies.

Insfrán, E., Pastor, O. AND Wieringa, R. 2002. Requirements Engineering-

Based Conceptual Modelling. Journal Requirements Engineering (RE) 61–
72.

286

ISO 1992. ISO 31 - Quantities and units.

ISO 1994. ISO 5725-2 – Accuracy (trueness and precision) of Measurements

Methods and Results – Part 2: Basic Method for the Determination of the

Repeatability and Reproducibility of a Standard Measurement Method.

ISO 1998. ISO/IEC 14143-1 – Information Technology – Software

Measurement – Functional Size Measurement – Part 1: Definition of

Concepts

ISO 2000. ISO Standard 9000-2000: Quality Management Systems:

Fundamentals and Vocabulary.

ISO 2002. ISO/IEC 14143-2 – Information Technology – Software

Measurement – Functional Size Measurement – Part 2: Conformity

Evaluation of Software Size Measurement Methods to ISO/IEC 14143-

1:1998

ISO 2003. ISO/IEC 14143-3 – Information Technology –Software

measurement – Functional size measurement –Verification of functional size

measurement methods.

ISO 2004. International vocabulary of basic and general terms in metrology

(VIM).

ISO/IEC 2001. ISO/IEC 9126-1, Software Eng. – Product Quality – Part 1:

Quality model.

ISO/IEC 2002. ISO/IEC 20968, Software Engineering – Mk II Function

Point Analysis – Counting Practices Manual

ISO/IEC 2003a. ISO/IEC 19761, Software Engineering – COSMIC-FFP – A

Functional Size Measurement Method.

287

ISO/IEC 2003b. ISO/IEC 20926, Software Engineering – IFPUG 4.1

Unadjusted Functional Size Measurement Method – Counting Practices

Manual.

ISO/IEC 2005. ISO/IEC 24570, Software Engineering – NESMA Functional

Size Measurement Method version 2.1 – Definitions and Counting

Guidelines for the application of Function Point Analysis.

ISO/IEC 2008. ISO/IEC 29881, Software Engineering – FiSMA Functional

Size Measurement Method version 1.1.

ISO/IEC 2011. ISO/IEC 19761, Software Engineering – COSMIC – A

Functional Size Measurement Method.

Jacquet, J.P. AND Abran, A. 1997. From Software Metrics to Software

Measurement Methods: A Process Model. In Proceedings of the 3rd
International Standard Symposium and Forum on Software Engineering
Standards (ISESS), Walnut Creek, USA1997, 1-12.

Jenner, M.S. 2001. COSMIC-FFP and UML: Estimation of the Size of a

System Specified in UML – Problems of Granularity. In Proceedings of the
4th European Conf. Soft. Measurement and ICT Control2001, 173-184

Jenner, M.S. 2002. Automation of Counting of Functional Size Using

COSMIC-FFP in UML. In Proceedings of the 12th International Workshop
Software Measurement2002, 43-51.

Kemerer, C.F. 1993. Reliability of Function Points Measurement.
Communications of the ACM 36(2), 85-97.

Khelifi, A. 2005. A Set of References for Software Measurement with ISO

19761 (COSMIC-FFP): an Exploratory Study.Phd Thesis. In Département
du génie logiciel École de Technologie Supérieure, Montréal, Canada, 495.

288

Khelifi, A. AND Abran, A. 2007. Software Measurement Standard Etalons:

A Design Process. INTERNATIONAL JOURNAL OF COMPUTERS 1(3),
41-48.

Khelifi, A., Abran, A., Symons, C., Desharnais, J.M., Machado, F.,
Jayakumar, J. AND Leterthuis, A. 2003. The C-Registration System Case

Study with ISO 19761. http://www.gelog.etsmtl.ca/cosmic-
ffp/casestudies_with_ISO_19761_2003.html.

Kim, D.-K., France, R. AND Ghosh, S. 2004. A UML-based language for

specifying domain-specific patterns. Journal of Visual Languages &
Computing 15(3-4), 265-289.

Kitchenham, B. 1997. Counterpoint: The Problem with Function Points.
IEEE Software Status Report 14(2), 29-31.

Kitchenham, B., Pfleeger, S.L. AND Fenton, N. 1995. Towards a

Framework for Software Measurement Validation. IEEE Transactions on
Software Engineering 21(12), 929 -944.

Kruchten, P. 2000. The Rational Unified Process: An Introduction. Addison
Wesley.

Kuzniarz, L. 2003. Inconsistencies in Student Designs. In Proceedings of the
Workshop on Consistency Problems in UML-based Software Development
II, San Francisco, USA, October 20 2003 IEEE, 9-17.

Laitenberger, O., Atkinson, C., Schlich, M. AND Emam, K.E. 2000. An

experimental comparison of reading techniques for defect detection in UML

design documents. Journal of Systems & Software 53(2), 183-204.

Lange, C. AND Chaudron, M. 2004. An Empirical Assessment of

Completeness in UML Designs. In Proceedings of the 8th Conf. on Empirical
Assessment in Software Eng. (EASE), May 2004 2004 IEEE, 111-121.

289

Lange, C. AND Chaudron, M. 2006. Effects of Defects in UML Models – An

Experimental Investigation. In Proceedings of the 28th Int. Conf. on
Software Eng. (ICSE), Shanghai, China, May 20–28 2006 ACM, 401-410.

Lange, C. AND Chaudron, M. 2007. Defects in Industrial UML Models – A

Multiple Case Study. In Proceedings of the 2nd Workshop on Quality in
Modeling (QiM) of MODELS, Nashville, TN, USA2007, 50-79.

Lange, C., Wijins, M. AND Chaudron, M. 2007. Metric View Evolution:

UML-based Views for Monitoring Model Evolution and Quality. In
Proceedings of the 11th European Conference on Software maintenance and
Reengineering (CSMR’07), Amsterdam, The Netherlands, March 2007 2007
IEEE, 327-328.

Lehne, A. 1997. Experience Report: Function Points Counting of Object-

Oriented Analysis and Design based on the OOram method. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), Atlanta, Georgia1997.

Leung, F. AND Bolloju, N. 2005. Analyzing the Quality of Domain Models

Developed by Novice Systems Analysts. In Proceedings of the 38th Hawaii
International Conference on System Sciences2005 IEEE, 1-7.

Levesque, G., Bevo, V. AND Cao, D.T. 2008. Estimating software size with

UML models. In Proceedings of the C3S2E Conference, Montreal2008, 81-
87.

Lindland, O.I., Sindre, G. AND Solvberg, A. 1994. Understanding Quality

in Conceptual Modeling. IEEE Software 11(2), 42-49.

Lother, M. AND Dumke, R. 2001. Point Metrics-Comparison and Analysis.
In Proceedings of the Current Trends in Software Measurement, Aachen,
Germany2001 Shaker Publ, 228-267.

March, S.T. AND Smith, G.F. 1995. Design and Natural Science Research

on Information Technology. Decision Support Systems 15, 251-266.

290

Marín, B., Condori-Fernández, N. AND Pastor, O. 2007. Calidad en

Modelos Conceptuales: Un Análisis Multidimensional de Modelos

Cuantitativos basados en la ISO 9126. Revista de Procesos y Métricas de
las Tecnologías de la Información 4, 153-167.

Marín, B., Giachetti, G. AND Pastor, O. 2008. Measurement of Functional

Size in Conceptual Models: A Survey of Measurement Procedures Based on

COSMIC. In Proceedings of the IWSM/Metrikon/Mensura, Munich,
Germany2008, R.D.E. Al. Ed. Springer, 170-183.

Meli, R., Abran, A., Ho Vinh, T. AND Oligny, S. 2000. On the Applicability

of COSMIC-FFP for Measuring Software Throughout its Life Cycle. In
Proceedings of the 11th European Software Control and Metrics Conference
Munich April 18-20 2000, 1-10.

Mellor, S. AND Balcer, J. 2002. Executable UML: A Foundation for Model-

Driven Architecture. Addison Wesley

Mellor, S.J., Clark, A.N. AND Futagami, T. 2003. Guest Editors’

Introduction: Model-Driven Development. IEEE Software 20, 14-18.

Mohagheghi, P. AND Aagedal, J. 2007. Evaluating Quality in Model-Driven

Engineering. In Proceedings of the International Workshop on Modeling in
Software Engineering (MISE'07)2007 IEEE Computer Society.

Molina, P. 2003. Especificación de interfaz de usuario: De los requisitos a

la generación automática.Doctoral thesis Universidad Politécnica de
Valencia, Valencia, España.

Moody, D.L. 2005. Theoretical and practical issues in evaluating the quality

of conceptual models: current state and future directions. Data &
Knowledge Engineering 55(3), 243-276.

Nagano, S. AND Ajisaka, T. 2003. Functional metrics using COSMIC-FFP

for object-oriented real-time systems. In Proceedings of the 13th

291

International Workshop on Software Measurement (IWSM), Montreal,
Canada, September 23-25 2003, 1-7.

Neuman, W.L. 2000. Social Research Methods—Qualitative and

Quantitative Approaches. Needham Heights, MA, USA.

OECD 2010. Glossary of Statistical Terms.
http://stats.oecd.org/glossary/index.htm. (Last accesed November 2010).

Olivé, A. AND Raventós, R. 2006. Modeling events as entities in object-

oriented conceptual modeling languages. Data and Knowledge Engineering

58(3), 243-262.

OMG 2006a. MOF 2.0 Core Specification.

OMG 2006b. Object Constraint Language 2.0 Specification.

OMG 2010. UML 2.3 Superstructure Specification.
www.omg.org/spec/UML/2.1.2/.

Opdahl, A.L. AND Henderson-Sellers, B. 2005. A Unified Modelling

Language without referential redundancy. Data & Knowledge Engineering

55(3), 277-300.

Panach, J.I., España, S., Moreno, A. AND Pastor, O. 2008. Dealing with

Usability in Model Transformation Technologies. In Proceedings of the ER
2008, Barcelona2008 Springer 498-511.

Pastor, O., Gómez, J., Insfrán, E. AND Pelechano, V. 2001. The OO-Method

Approach for Information Systems Modelling: From Object-Oriented

Conceptual Modeling to Automated Programming. Information Systems

26(7), 507–534.

Pastor, O., Hayes, F. AND Bear, S. 1992. OASIS: An Object-Oriented

Specification Language. In Proceedings of the Int. Conference on Advanced
Information Systems Engineering (CAiSE), Manchester, UK1992, 348–363.

292

Pastor, O. AND Molina, J.C. 2007. Model-Driven Architecture in Practice:

A Software Production Environment Based on Conceptual Modeling.
Springer, New York.

Poels, G. 2002. A Functional Size Measurement Method for Event-Based

Object-oriented Enterprise Models. In Proceedings of the Int. Conf. on
Enterprise Inf. Systems (ICEIS)2002, 667-675

Poels, G. 2003a. Definition and Validation of a COSMIC-FFP Functional

Size Measure for Object-Oriented Systems. In Proceedings of the 7th
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE), Darmstadt, Germany, July 2003a, 1-6.

Poels, G. 2003b. Functional Size Measurement of Multi-Layer Object-

Oriented Conceptual Models. In Lecture Notes in Computer Science 2817
Springer Berlin / Heidelberg, 334-345.

Poels, G. AND Dedene, G. 2000. Distance-based software measurement:

necessary and sufficient properties for software measures. Information and
Software Technology 42, 35–46.

Robson, C. 2002. Real World Research: A resource for social scientists and

practitioner-researchers. Blackwell (2nd Edition).

Runeson, P. AND Host, M. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical Software
Engineering Journal 14(2), 131–164.

Schmidt, D. 2006. Model Driven Engineering. IEEE Computer 39(2), 25-31.

Schneidewind, N.E. 1992. Methodology for Validating Software Metrics.
IEEE Transactions on Software Engineering 18(5), 410-422.

Seaman, C. 1999. Qualitative methods in empirical studies of software

engineering. IEEE Transactions on Software Engineering 25(4), 557-572.

293

Selic, B. 2003. The Pragmatics of Model-Driven Development. IEEE
Software 20(5), 19–25.

Selic, B. 2007. A Systematic Approach to Domain-Specific Language Design

Using UML. In Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing
(ISORC)2007, 2–9.

Selic, B., Gullekson, G. AND Ward, P.T. 1994. Real-time Object Oriented

Modelling. Wiley.

Sellami, A. AND Abran, A. 2003. The Contribution of Metrology Concepts

to Understanding and Clarifying a Proposed Framework for Software

Measurement Validation. In Proceedings of the 13th International Workshop
on Software Measurement – IWSM, Montreal (Canada), September 23–25
2003 Shaker Verlag ISBN: 3-8322-1880-7, 18-40.

Shlaer, S. AND Mellor, S. 1992. Object Lifecycles: Modelling the World in

States. Yourdon Press, Prentice-Hall.

St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. AND Bourque, P.
1997. Full Function Points: Counting Practices Manual.

Standish_Group 2010. CHAOS Summary 2010.

Tavares, H., Carvalho, A. AND Castro, J. 2002. Medicao de Pontos por

Funcao a partir da Especificacao de Requisitos. In Proceedings of the
Workshop on Requirements Engieneering (WER), Valencia, Spain2002,
278-298.

Teijlingen, E.v. AND Hundley, V. 2001. The importance of pilot studies.
Social Research Update 35.

Tran-Cao, D., Levesque, G. AND Abran, A. 2002. Measuring Software

Functional Size: Towards an Effective Measurement of Complexity. In

294

Proceedings of the International Conference on Software Maintenance2002
IEEE Computer Society, 370-376.

Travassos, G., Shull, F., Fredericks, M. AND Basili, V. 1999. Detecting

Defects in Object-Oriented Designs: Using Reading Techniques to Increase

Software Quality. In Proceedings of the OOPSLA' 99, Denver, CO,
USA1999, 47-56.

Trudel, S. AND Abran, A. 2008. Improving Quality of Functional

Requirements by Measuring Their Functional Size. In Proceedings of the
IWSM/Metrikon/Mensura, Munich, Germany2008, R.D.E. Al. Ed. Springer,
287-231.

Trudel, S. AND Abran, A. 2010. Functional Requirements Improvements

through Size Measurement: A Case Study with Inexperienced Measurers. In
Proceedings of the 8th ACIS International Conference on Software
Engineering Research, Management and Applications - SERA 2010,
Montreal, May 24-26 2010 IEEE-CS Press, 181-189.

Uemura, T., Kusumoto, S. AND Inoue, K. 1999. Function Point

Measurement Tool for UML Design Specification. In Proceedings of the 5th
IEEE International Software Metrics Symposium (METRICS), Florida,
USA1999, 62-71.

Vaishnavi, V. AND Kuechler, W. 2007. Design Research in Information

Systems. http://www.isworld.org/Researchdesign/drisISworld.htm. (Last
accesed May 2009).

Vanderdonckt, J. 2008. Model-Driven Engineering of User Interfaces:

Promises, Successes, and Failures. In Proceedings of the 5th Annual
Romanian Conf. on Human-Computer Interaction ROCHI’2008, Iasi, 18-19
September 2008, S. Buraga AND I. Juvina Eds. Matrix ROM, 1–10.

Wilson, R.M., Runciman, W.B., Gibberd, R.W., Harrison, B.T., Newby, L.
AND Hamilton, J.D. 1995. The quality in Australian health care study. The
Medical Journal of Australia.

295

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B. AND Wesslén,
A. 2000. Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers.

Yin, R. 2003. Case study research. Design and methods. Sage (3rd Edition),
London.

Zuse, H. 1998. A Framework for Software Measurement. Walter de Gruyter,
Germany, Berlin.

296

__

297

Appendix A

OOmCFP Measurement Guide

The OOmCFP (OO-Method COSMIC Function Points) procedure has been
developed to measure the functional size of the applications generated in the
OO-Method MDD environment from their conceptual models. The
OOmCFP measurement procedure was defined in accordance with the
COSMIC measurement manual version 3.0.

The application of the OOmCFP measurement procedure is composed by
the following steps:

1. Determinate the purpose of the measurement.
2. Determinate the scope of the measurement.
3. Identify the functional users and the boundaries between the

layers.
4. Determinate the granularity level.
5. Identify the functional process.
6. Eliminate the duplicity of the functional process.
7. Identify the data groups.
8. Identify the data attributes (optional).
9. Identify the data movements.
10. Apply the measurement function.
11. Calculate the functional size.

298

12. Report the measurement results.

Step 1: Determinate the purpose of the measurement.

• Purpose: Measuring the accurate functional size of the OO-Method
applications generated in an MDD environment from the involved
conceptual models to estimate the cost of these applications
specifically generated by the OlivaNova tool from the developer’s
viewpoint.

Step 2: Determinate the scope of the measurement.

The OOmCFP measurement procedure uses the OO-Method conceptual
model as the input artefact for the measurement of the functional size of
applications generated in MDD environments. This conceptual model
formally and unambiguously specifies the functional requirements of the
applications independently of the technological characteristics that the
generated applications will have.

• Scope: OO-Method conceptual model, which is comprised of four
models (Object, Dynamic, Functional, and Presentation).

The OO-Method software applications are generated according to a

three-tier software architecture: presentation, logical, and database. These
tiers correspond with the layer definition of the COSMIC Measurement
Manual [Abran et al. 2007]. Thus, we distinguish three layers in an OO-
Method application: a client layer, which contains the graphical user
interface; a server layer, which contains the business logic of the application;
and a database layer, which contains the persistence of the applications.

In each layer of an OO-Method application, there is a piece of software
that can interchange data with the pieces of software of the other layers.
Thus, we distinguish, respectively, three pieces of software in an OO-

299

Method application: the client piece of software, the server piece of
software, and the database piece of software. Finally, there are no peer
components in each piece of software of the OO-Method applications.

Step 3: Identify the functional users and the boundaries between the

pieces of software.

Rule 1: Identify a human functional user for each agent class in the

OO-Method object model.

Rule 2: Identify one boundary between the human functional user
and the client layer.

Rule 3: Identify a client functional user for the client component of
an OO-Method application.

Rule 4: Identify one boundary between the client functional user and
the server layer.

Rule 5: Identify a server functional user for the server component of
an OO-Method application.

Rule 6: Identify one boundary between the server functional user and
the database layer.

Rule 7: Identify a legacy functional user for each legacy view in the
OO-Method object model.

Rule 8: If exists a legacy functional user, identify one boundary
between the legacy functional user and the server layer.

300

Step 4: Determinate the granularity level.

• Granularity level: Low

Step 5: Identify the functional process.

A functional process starts with an entry data movement carried out by a
functional user given that an event (triggering event) has happened. A
functional process ends when all the data movements needed to generate the
answer to this event have been executed. Thus, a functional process has at
least two data movements (1 entry/read data movement + 1 exit/write data
movement). In OOmCFP, the ‘human functional user’, the ‘client functional
user’, the ‘server functional user’, and the ‘legacy functional user’ start
functional processes.

Rule 9: Identify a functional process in the client layer for each
Population Interaction Unit (PIU), Service Interaction Unit
(SIU) or Master Detail Interaction Unit (MDIU) that is a
direct child of the hierarchy action tree (HAT) of the
presentation model of the OO-Method conceptual model.

Rule 9.1: For each PIU, identify the Display Set, Action Set,

Navigation Set, Filter, Order Criteria, and the
interaction units that are contained in these patterns.

Rule 9.2: For each SIU, identify the arguments, the Conditional

Navigations, and the interaction units that are contained in
these patterns.

301

Rule 9.3: For each MDIU, identify the master part and the detail part,
and the interaction units that are contained in these patterns.

Rule 9.4: For each IIU, identify the Display Set, Action Set,
Navigation Set, and the interaction units that are contained
in these patterns.

Rule 10: A functional process corresponds to the set of formulae

(derivations, default values, filters, valuations, integrity
constraints, triggers, transactions, preconditions, dependency
rules, control conditions, and conditional navigation) that
solve the Server layer in response to the events that occur in
the functional processes of the Client layer.

Rule 10.1: For each functional process in the server layer, name it

using the name of the client functional process that
started it.

Step 6: Eliminate the duplicity of the functional process.

Rule 11: Do not consider in the functional size of a functional process

FP_B the functional size of a functional process FP_A that is
contained in the functional process FP_B.

Rule 12: Only consider one time the functional size of an IIU, PIU,
MDIU or SIU that is auto contained.

302

Step 7: Identify the data groups.

Rule 13: Identify a data group for each class that is not part of an
inheritance hierarchy in the object model that participates in a
functional process.

Rule 14: Identify a data group for the parent class of an inheritance
hierarchy in the object model of a class that participates in a
functional process belongs to.

Rule 15: Identify a data group for each child class that has different
attributes than his parent of an inheritance hierarchy in the
object model of a class that participates in a functional
process belongs to.

Step 8: Identify the data attributes (optional).

Rule 16: Identify a data attribute for each attribute of the classes in the
object model that are identified as data groups.

Step 9: Identify the data movements.

To identify the data movements of every functional process identified in

the step 5, the following counting rules must be applied. Since all the data
movements of the generated applications can be identified focusing in three
main conceptual constructs (display sets, filters, and services), the counting
rules are grouped by these constructs:

303

Display Sets:

Counting Rule 1: 1 read data movement for each different class that

contributes with attributes to the display set of a PIU
or IIU that participates in a functional process of the
server layer.

Counting Rule 2: 1 entry data movement for each different legacy view
that contributes with attributes to the display set of a
PIU or IIU that participates in a functional process in
the server layer.

Counting Rule 3: 1 exit data movement for each different class or
legacy view that contributes with attributes to the
display set of a PIU or IIU that participates in a
functional process in the server layer.

Counting Rule 4: 1 entry data movement for each different class or
legacy view that contributes with attributes to the
display set of a PIU or IIU that participates in a
functional process of the client layer.

Counting Rule 5: 1 exit data movement for all the attributes that are
shown in a display set of a PIU or IIU that
participates in a functional process of the client

layer.

Counting Rule 6: 1 read data movement for each different class that is
used in the derivation formula of the derived
attributes of the display set of a PIU or IIU that

304

participates in a functional process in the server

layer.

Counting Rule 7: 1 read data movement for each different class that is
used in the condition of the derivation formula of the
derived attributes of the display set of a PIU or IIU
that participates in a functional process in the server

layer.

Counting Rule 8: 1 entry data movement for each different legacy view
that is used in the derivation formula of an attribute
of a display set of a PIU or IIU that participates in a
functional process in the server layer.

Counting Rule 9: 1 entry data movement for each different legacy view

that is used in the condition of a derivation formula
of an attribute of a display set of a PIU or IIU that
participates in a functional process in the server

layer.

Filters:

Counting Rule 10: 1 entry data movement (represented by the class that

contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process of the client

layer.

Counting Rule 11: 1 entry data movement for each different object-

valued variables that is associated to a filter of a PIU

305

that participates in a functional process in the client

layer.

Counting Rule 12: 1 exit data movement (represented by the class that
contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process in the client

layer.

Counting Rule 13: 1 exit data movement for each different object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the client

layer.

Counting Rule 14: 1 entry data movement (represented by the class that
contains the filter) for the set of data-valued

variables that are associated to a filter of a PIU that
participates in a functional process in the server

layer.

Counting Rule 15: 1 entry data movement for each different object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the server

layer.

Counting Rule 16: 1 read data movement for each different class that is
used in the filter formula of a filter of a PIU that
participates in a functional process in the server

layer.

306

Counting Rule 17: 1 entry data movement for each different legacy view
that is used in the filter formula of a filter of a PIU
that participates in a functional process in the server

layer.

Counting Rule 18: 1 exit data movement for each different class that is
used in the formula of the default value of an object-

valued variable that is associated to a filter of a PIU
that participates in a functional process in the server

layer.

Counting Rule 19: 1 exit data movement (represented by the class that
contains the filter) for the set of data-valued

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the server layer.

Counting Rule 20: 1 entry data movement for the default value of an
object-valued variable that is associated to a filter of
a PIU that participates in a functional process in the
client layer.

Counting Rule 21: 1 entry data movement (represented by the class that
contains the filter) for the set of data-valued

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the client layer.

Counting Rule 22: 1 exit data movement (represented by the class that
contains the filter) for the set of data-valued

307

variables that has a default value, and that are
associated to a filter of a PIU that participates in a
functional process in the client layer.

Counting Rule 23: 1 exit data movement for the default value of an
object-valued variable that is associated to a filter of
a PIU that participates in a functional process in the
client layer.

Services:

Counting Rule 24: 1 read data movement for each different class that is

used in the formula of the preconditions of a service
related to a SIU that participates in a functional
process in the server layer.

Counting Rule 25: 1 entry data movement for each different legacy view
that is used in the formula of the preconditions of a
SIU that participates in a functional process in the
server layer.

Counting Rule 26: 1 read data movement for each different class that is
used in the formula of the error messages associated
to the preconditions of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 27: 1 entry data movement for each different legacy view
that is used in the formula of the error messages
associated to the preconditions of a SIU that

308

participates in a functional process in the server

layer.

Counting Rule 28: 1 exit data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the preconditions of a service
related to a SIU that participates in a functional
process in the server layer.

Counting Rule 29: 1 entry data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the preconditions of a service
related to a SIU that participates in a functional
process in the client layer.

Counting Rule 30: 1 exit data movement for all the error messages
associated to the preconditions of a service related to
a SIU that participates in a functional process in the
client layer.

Counting Rule 31: 1 entry data movement (represented by the class that
contains the SIU) for the set of data-valued

arguments of a SIU that participates in a functional
process in the client layer.

Counting Rule 32: 1 entry data movement for each different class that
corresponds to an object-valued argument of a SIU
that participates in a functional process in the client

layer.

309

Counting Rule 33: 1 exit data movement (represented by the class that
contains the SIU) for the set of data-valued

arguments of a SIU that participates in a functional
process in the client layer.

Counting Rule 34: 1 exit data movement for each different class that
corresponds to an object-valued argument of a SIU
that participates in a functional process in the client

layer.

Counting Rule 35: 1 entry data movement (represented by the class that
contains the SIU) for the set of data-valued

arguments of a SIU that participate in a functional
process in the server layer.

Counting Rule 36: 1 entry data movement for each different class that
corresponds to an object-valued argument of a SIU
that participates in a functional process in the server

layer.

Counting Rule 37: 1 read data movement for each different class that is
used in the condition of the valuation formula of the
event related to a SIU that participates in a functional
process in the server layer.

Counting Rule 38: 1 read data movement for each different class that is
used in the valuation formula of the event related to a
SIU that participates in a functional process in the
server layer.

310

Counting Rule 39: 1 read data movement for each different class that is
used in the formula of the transaction, operation or

global service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 40: 1 entry data movement for each different legacy view

that is used in the condition of the valuation formula
of a SIU that participates in a functional process in
the server layer.

Counting Rule 41: 1 entry data movement for each different legacy view
that is used in the valuation formula of a SIU that
participates in a functional process in the server

layer.

Counting Rule 42: 1 entry data movement for each different legacy view
that is used in the formula of the transaction,

operation or global service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 43: 1 write data movement for the class that contains a
destroy event related to a SIU that participates in a
functional process in the server layer.

Counting Rule 44: 1 write data movement for the class that contains a
creation event related to a SIU that participates in a
functional process in the server layer.

311

Counting Rule 45: 1 write data movement for the class that contains an
event that has valuations and that is related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 46: 1 exit data movement for each different class that is
used in the formula of the default value of an object-

valued argument that is associated to a service related
to a SIU that participates in a functional process in
the server layer.

Counting Rule 47: 1 exit data movement (represented by the class that
contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 48: 1 entry data movement for each different class that is
used in the formula of the default value of an object-

valued argument that is associated to a service related
to a SIU that participates in a functional process in
the client layer.

Counting Rule 49: 1 entry data movement (represented by the class that
contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a
service related to a SIU that participates in a
functional process in the client layer.

312

Counting Rule 50: 1 exit data movement (represented by the class that
contains the SIU) for the set of data-valued argument
that has a default value and that are associated to a
service related to a SIU that participates in a
functional process in the client layer.

Counting Rule 51: 1 exit data movement for the default value of an

object-valued argument that is associated to a service
related to a SIU that participates in a functional
process in the client layer.

Counting Rule 52: 1 read data movement for each different class that is
used in the formula of the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 53: 1 entry data movement for each different legacy view
that is used in the formula of the integrity constraints
of a class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 54: 1 read data movement for each different class that is
used in the formula of the error messages associated
to the integrity constraints of a class that contains a
service related to a SIU that participates in a
functional process in the server layer.

313

Counting Rule 55: 1 entry data movement for each different legacy view
that is used in the formula of the error messages
associated to the integrity constraints of a class that
contains a service related to a SIU that participates in
a functional process in the server layer.

Counting Rule 56: 1 exit data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 57: 1 entry data movement for each different class or
legacy view that is used in the formula of the error

messages associated to the integrity constraints of a
class that contains a service related to a SIU that
participates in a functional process in the client

layer.

Counting Rule 58: 1 exit data movement for all the error messages
associated to the integrity constraints of a class that
contains a service related to a SIU that participates in
a functional process in the client layer.

Counting Rule 59: 1 read data movement for each different class that is
used in the formula of the control condition of a

service related to a SIU that participates in a
functional process in the server layer.

314

Counting Rule 60: 1 entry data movement for each different legacy view
that is used in the formula of the control condition of
a service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 61: 1 read data movement for each different class that is
used in the condition formula of the triggers of the
class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 62: 1 entry data movement for each different legacy view
that is used in the condition formula of the triggers of
the class that contains a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 63: 1 entry data movement for each different legacy view
that is used in the action formulae of the dependency

rules of the arguments of a service related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 64: 1 entry data movement for each different legacy view
that is used in the condition formulae of the

dependency rules of the arguments of a service
related to a SIU that participates in a functional
process in the server layer.

315

Counting Rule 65: 1 read data movement for each different class that is
used in the formulae of the dependency rules of the

arguments of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 66: 1 read data movement for each different class that is
used in the condition formulae of the dependency

rules of the arguments of a service related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 67: 1 read data movement for each different class that is
used in the conditional navigation formula of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 68: 1 entry data movement for each different legacy view

that is used in the conditional navigation formula of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 69: 1 read data movement for each different class that is
used in the condition of the formula of the arguments

initialization of a SIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

316

Counting Rule 70: 1 entry data movement for each different legacy view
that is used in the condition of the formula of the

arguments initialization of a SIU associated to the
conditional navigation of a service related to a SIU
that participates in a functional process in the server

layer.

Counting Rule 71: 1 read data movement for each different class that is
used in the formula of the arguments initialization of
a SIU associated to the conditional navigation of a
service related to a SIU that participates in a
functional process in the server layer.

Counting Rule 72: 1 entry data movement for each different legacy view
that is used in the formula of the arguments

initialization of a SIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 73: 1 read data movement for each different class that is
used in the formula of the navigational filtering of an
IIU, PIU, or MDIU associated to the conditional
navigation of a service related to a SIU that
participates in a functional process in the server

layer.

Counting Rule 74: 1 entry data movement for each different legacy view

that is used in the formula of the navigational

filtering of an IIU, PIU, or MDIU associated to the

317

conditional navigation of a service related to a SIU
that participates in a functional process in the server

layer.

Step 10: Apply the measurement function.

• Measurement Function: OOmCFP assigns 1 CFP to each data
movement.

Step 11: Calculate the functional size.

Measurement Rule 1: Aggregate the data movements of a functional
process that occur in the client layer to obtain
the functional size of the functional process.
Formula (1) shows how to calculate the
functional size of a functional process.

Measurement Rule 2: Aggregate the data movements of a functional
process that occur in the server layer to obtain
the functional size of the functional process.
Formula (1) shows how to calculate the
functional size of a functional process.

∑
=

=

n

i

intDataMoveme
1

 v3.0)(CFP sonalProcesSizeFuncti (2)

Measurement Rule 3: Aggregate the functional size of each

functional process of the client layer to obtain
the functional size of the client layer. Formula

318

(2) shows how to calculate the functional size
of a layer.

Measurement Rule 4: Aggregate the functional size of each
functional process of the server layer to obtain
the functional size of the server layer. Formula
(2) shows how to calculate the functional size
of a layer.

∑
=

=

n

i

iocessPronalSizeFuncti
1

 v3.0)(CFPSizeLayer
(2)

Measurement Rule 5: Aggregate the functional size of each layer of

the OO-Method application to obtain the
functional size of the application. Formula (3)
shows how to calculate the functional size of
the generated application.

∑
=

=

n

i

iSizeLayer
1

 v3.0)(CFPion odApplicatSizeOOMeth
(3)

319

Step 12: Report the measurement results.

Functional Process Contained Elements

Client Server Total

Functional

Size (CFP

v3.0)

E X E X R W

Total Functional Size Layer (CFP v3.0)

Total Functional Size Application (CFP v3.0)

320

__

321

Appendix B

Conformity Evaluation

Checklist

The conformity evaluation of OOmCFP FSM procedure regarding to the
COSMIC FSM Method version 3.0 has been performed using the checklist
presented in this appendix.

The evaluation checklist is comprised of four parts. The first part has
questions related to the strategy phase of COSMIC. The second part has
questions related to the mapping phase of COSMIC. The third part has
questions related to the measurement phase of COSMIC. And, the fourth
part has questions related to the presentation of the measurement results.

The evaluation checklist has a table structure in each part. The first
column of the checklist presents the evaluation questions. The second
column must be filled by the evaluators with the location of the relevant
information of OOmCFP that is used to respond the question. The third
column must be filled by the evaluators depending on the answer of the
question satisfied or not the requirement of COSMIC. If a requirement is
marked as not satisfied or there is no information to solve the question, the
evaluators must justify their decision. The last column presents the location

322

of the requirements of COSMIC in its measurement manual version 3.0
[Abran et al. 2007].

Strategy Phase

Evaluation Question Location Satisfies? Corresponding

requirements

Is the purpose of the measurement
defined in the OOmCFP measurement
procedure?

 2.1

Is the scope of the measurement defined
in the OOmCFP measurement
procedure?

 2.2.1

Can be the FUR derived from the
software to be measured by OOmCFP?

 1.2

Are the levels of decomposition of the
software to be measured identified by
the OOmCFP measurement procedure?

 2.2.2

Are the layers of the software to be
measured identified by the OOmCFP
measurement procedure?

 2.2.3

Are the pieces of the software to be
measured identified by the OOmCFP
measurement procedure

 2.2.1

Are the peer-components of the
software to be measured identified by
the OOmCFP measurement procedure?

 2.2.4

It is possible to identify the functional
users using the OOmCFP measurement
procedure?

 2.3.2

It is possible to identify the boundaries
using the measurement procedure?

 2.3.2

Is the granularity level of the functional
processes defined in the measurement
procedure?

 2.4

323

Justifications ……………………………………………………………..…
……………………………………………………………..……………….
……………………………………………………………..……………….
……………………………………………………………..……………….

Mapping Phase

Justifications ……………………………………………………………..…
……………………………………………………………..……………….
……………………………………………………………..……………….
……………………………………………………………..……………….

Evaluation Question Location Satisfies? Corresponding

requirements

It is possible to identify the functional
processes using the OOmCFP
measurement procedure?

 3.2

Are the functional processes identified
using OOmCFP triggered by an event?

 3.2.1

Is each functional process belonged to
only one layer of the software to be
evaluated by OOmCFP?

 3.2.2

Is each functional process identified
using OOmCFP comprised by at least
two or more data movements?

 3.2.2

It is possible to identify the data groups
used by the functional processes using
the OOmCFP measurement procedure?

 3.3

Are the data groups a unique and
distinguishable set of attributes?

 3.3.1

It is possible to identify the data
attributes used by the functional
processes using the OOmCFP
measurement procedure?

 3.4

324

Measurement Phase

Evaluation Question

Location Satisfies? Corresponding

requirements

It is possible to identify entry (E) data
movements using the OOmCFP
measurement procedure?

 4.1.2

It is possible to identify exit (X) data
movements using the OOmCFP
measurement procedure?

 4.1.3

It is possible to identify read (R) data
movements using the OOmCFP
measurement procedure?

 4.1.4

It is possible to identify write (W) data
movements using the OOmCFP
measurement procedure?

 4.1.5

It is possible to identify data
manipulations not associated with the
data movements using OOmCFP?

 4.1.6

Is 1 CFP assigned to each data
movement by the OOmCFP
measurement procedure?

 4.2

Is an aggregation function defined to
obtain the functional size of each
functional process in the OOmCFP
measurement procedure?

 4.3.1

Is an aggregation function defined to
obtain the functional size of each layer
in the OOmCFP measurement
procedure?

 4.3.1

Is an aggregation function defined to
obtain the functional size of the data
movements’ modifications in the
OOmCFP measurement procedure?

 4.4.1

Is an extension considered by OOmCFP
measurement procedure to measure the
software size?

 4.5

325

Justifications ……………………………………………………………..…
……………………………………………………………..……………….
……………………………………………………………..……………….
……………………………………………………………..……………….

Measurement Report

Justifications ……………………………………………………………..…
……………………………………………………………..……………….
……………………………………………………………..……………….
……………………………………………………………..……………….

Evaluation Question

Location Satisfies? Corresponding

requirements

Is the measurement result labeled as the
numerical value of the functional size
and the symbol CFP (v3.0)?

 5.1

There is a template with the needed
information to be archived to document
the result of a measurement?

 5.2

326

327

Appendix C

Number of Defects in the Case

Study

This appendix shows the number of defects related to each defect type

found in the models of the case study, whether they were detected by the
inspection team or the OOmCFP tool.

Defects detected by the OOmCFP tool in the five models of the case
study are the following:

Defect Type Model1 Model2 Model3 Model4 Model5

CM_NA 1 0 0 4 0

FM_NV 5 8 3 7 7

PM_NM 1 1 1 1 1

Defects detected by the inspection teams in the five models of the case

study are the following:

328

Defect Type Model1 Model2 Model3 Model4 Model5

CM_Id 0 0 1 0 0

CM_AS 3 0 0 0 0

CM_AN 2 0 0 0 0

CM_FDer 1 0 0 0 0

CM_WArg 0 1 0 0 1

CM_MArg 0 1 0 0 0

CM_DCServ 0 0 0 1 0

CM_SEditC 0 1 0 0 7

CM_InhLib 0 1 0 2 0

CM_InhId 0 1 0 0 1

CM_WInh 1 0 0 0 0

CM_InhServ 0 0 0 1 0

CM_MR 1 0 0 0 0

CM_WCard 0 0 1 0 0

CM_RServ 0 0 0 0 1

CM_FIC 0 1 0 0 0

CM_SAgent 3 4 5 4 5

CM_AAgent 0 0 11 13 0

CM_RAgent 0 2 3 11 0

FM_NV 2 7 0 5 1

DM_SReach 3 0 0 0 0

DM_SWC 1 0 0 0 0

PM_NM 1 1 1 1 1

PM_IP 0 0 0 1 0

