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Abstract 

Excessive alcohol consumption is positioned among the top five risk 

factors for disease and disability worldwide. Alcohol intake alters brain 

balance, affecting its structure and function, and causes important health 

problems, overall known as Alcohol Use Disorders (AUDs), and social 

concerns. Magnetic resonance imaging (MRI) has become the gold standard 

technique for characterizing the pathological stages of AUDs, favoring their 

diagnosis and treatment. Furthermore, neuroimaging aided by well-

established preclinical models that avoid common confounding 

comorbidities, is starting to unveil the biological underpinnings of alcohol 

dependence (AD). We aimed to study the effects of chronic, excessive alcohol 

consumption on the brain from a functional and structural point of view, via 

analysis of multimodal MR images. 

Pursuing our main aim we conducted three studies with specific aims: 

i) To understand how the neuroadaptations triggered by alcohol 

intake are reflected in between-network resting-state functional 

connectivity (rs-FC) and brain activity in the onset of AD, we performed 

longitudinal and cross-sectional studies in groups of 18 Marchigian 

Sardinian alcohol-preferring (msP) rats. Control and alcohol conditions 

were compared. Group probabilistic independent component analysis 

(group-PICA) and spatial regression were applied to resting-state functional 

magnetic resonance imaging (rs-fMRI) images to obtain subject-specific 

time courses of seven resting-state networks (RSNs). Then, we estimated rs-

FC via L2-regularized partial correlation. In order to eliminate confounding 

factors associated to anesthesia, necessarily used in the fMRI study, we 

performed a manganese-enhanced (MEMRI) experiment. This technique 

uses manganese uptake as a readout of neuronal activity, in awake and freely 



 

xii 
 

moving animals. In alcohol condition, we found hypoconnectivities between 

the visual network (VN), and striatal (StrN) and sensory-cortex (SCN) 

networks, all containing regions with increased brain activity. On the 

contrary, hyperconnectivities were found between three pairs of RSNs: 1) 

medial prefrontal-cingulate (mPRN) and StrN, 2) SCN and parietal 

association (PAN) and 3) motor-retrosplenial (MRN) and SCN networks, 

being PAN the only network without brain activity rise. Interestingly, the 

hypoconnectivities could be explained as control to alcohol transitions from 

direct to indirect connectivity, whereas the hyperconnectivities reflected an 

indirect to an even more indirect connection. These findings indicate that 

RSNs are early altered by prolonged and moderate alcohol exposure, 

diminishing the executive control and behavioral flexibility. Collectively, 

these brain rs-FC and activity results complement and further extend a 

previous hypothesis (Müller-Oehring et al., 2015), which might help in 

designing treatments focused on network remodeling.  

ii) To compare cortical gray matter (GM) volume between 34 healthy 

controls and 35 alcohol-dependent patients who were detoxified and 

remained abstinent for 1-5 weeks before MRI acquisition, we performed a 

voxel-based morphometry analysis. The main structures whose GM volume 

decreased in abstinent subjects compared to controls were precentral gyrus 

(PreCG), postcentral gyrus (PostCG), supplementary motor cortex (SMC), 

middle frontal gyrus (MFG), precuneus (PCUN) and superior parietal lobule 

(SPL). Decreases in GM volume in these areas may lead to changes in 

control of movement (PreCG and SMC), in processing tactile and 

proprioceptive information (PostCG), personality, insight, prevision (MFG), 

sensory appreciation, language understanding, orientation (PCUN) and the 

recognition of objects by touch and shapes (SPL). Notably, most of the GM 

changes between control and abstinence stage were explained by negative 



 

xiii 
 

partial correlations, adjusted by age, between GM volume and three alcohol-

consumption variables: 1) grams of alcohol per drinking day during the 90 

days prior to MRI acquisition (Form 90); 2) total grams of alcohol, Form 90; 

and mainly 3) alcohol-dependence scale (ADS) score. PreCG, PostCG, SMC 

and MFG were also crucial in these associations. Days in abstinence during 

the 90 days before MRI acquisition did not show a significant relationship 

with GM volume, which may indicate that the alcohol-related damage was 

not reverted in early abstinence. 

iii) To characterize dynamic brain states in functional MRI (fMRI) 

signals by means of an approach based on the Hidden Markov model 

(HMM). Several parameter configurations of HMM-Gaussian in a block-

design paradigm were considered, together with different time series: 

independent components (ICs) and probabilistic functional modes (PFMs) 

on 14 healthy subjects. The block-design fMRI paradigm consisted of four 

experimental conditions: rest, visual, motor and visual-motor. 

Characterizing brain states’ dynamics in fMRI data was possible applying 

the HMM-Gaussian approach to PFMs, with mean activity driving the 

states. The correct rate value was 48.68%. The four spatial maps obtained 

were named HMM-rest, HMM-visual, HMM-motor and HMM-DMN 

(default mode network). HMM-motor and HMM-visual states contained 

brain regions responsible for the corresponding task; HMM-rest had the 

inverse sign of HMM-visual and HMM-motor; and HMM-DMN contained 

the DMN. HMM-rest and HMM-motor were mainly prevalent in the 

corresponding experimental condition, while HMM-visual was present in 

both the visual and visual-motor conditions. The final state, HMM-DMN, 

appeared once a task state had stabilized. This is sensible, due to the required 

minimal attention in these tasks. The ultimate goal will be to obtain brain 



 

xiv 
 

states in our rs-fMRI rat data, to dynamically compare the behavior of brain 

RSNs as a biomarker of AUD. 

In conclusion, neuroimaging techniques to estimate rs-FC, brain 

activity and GM volume can be successfully applied to multimodal MRI in 

the advance of the understanding of brain homeostasis in AUDs. These 

functional and structural alterations are a biomarker of chronic alcoholism 

to explain impairments in executive control, reward evaluation and 

visuospatial processing. 
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Resumen 

El consumo excesivo de alcohol se posiciona entre los primeros cinco 

factores de riesgo de enfermedad y discapacidad a nivel mundial.  El balance 

del cerebro se altera a nivel estructural y funcional y puede causar serios 

problemas de salud y sociales, como trastornos por consumo de alcohol 

(TCA). La imagen por resonancia magnética (RM) es la técnica más 

adecuada para caracterizar las diferencias en los diferentes estadios de los 

TCA, favoreciendo su diagnóstico y tratamiento. Además, los estudios de 

neuroimagen en modelos preclínicos bien establecidos que evitan las 

comorbilidades asociadas están empezando a revelar los fundamentos 

biológicos de la dependencia al alcohol. El objetivo de esta Tesis Doctoral 

fue investigar los efectos del consumo crónico y excesivo de alcohol en el 

cerebro desde una perspectiva funcional y estructural, mediante análisis de 

imágenes multimodales de RM.  

Para conseguir este objetivo principal realizamos tres estudios con 

objetivos específicos:  

i) Para entender cómo las neuroadaptaciones desencadenadas por el 

consumo de alcohol se ven reflejadas en la conectividad cerebral funcional en 

estado de reposo entre redes cerebrales, así como en la actividad cerebral, 

realizamos estudios longitudinales y transversales en grupos de 18 ratas 

Marchigian Sardinian alcohol-preferring (msP). Nuestro principal interés fue 

el paso de abuso de alcohol al de dependencia del alcohol, para lo que 

comparamos las imágenes en las condiciones de control y tras un mes con 

acceso a etanol. Para obtener las señales específicas de las redes cerebrales 

de cada sujeto, a las imágenes funcionales de RM en estado de reposo (RMf-

er) les aplicamos análisis probabilístico de componentes independientes a 

nivel grupal, y posteriormente regresión espacial. Después, estimamos la 



 

xvi 
 

conectividad cerebral en estado de reposo mediante correlación parcial 

regularizada. Para eliminar los factores de confusión asociados a la anestesia, 

necesariamente utilizados para RMf-er, realizamos un experimento con 

imágenes de RM realzadas con manganeso. Esta técnica utiliza la captación 

de manganeso como una lectura de la actividad neuronal, en animales 

despiertos y en movimiento libre. En la condición de alcohol encontramos 

hipoconectividades entre la red visual y las redes estriatal y sensorial; todas 

contuvieron regiones con incrementos en actividad. Por el contrario, hubo 

hiperconectividades entre tres pares de redes cerebrales en estado de reposo: 

1) red prefrontal cingulada media y red estriatal, 2) red sensorial y red 

parietal de asociación y 3) red motora-retroesplenial y red sensorial, siendo 

la red parietal de asociación la única red sin incremento de actividad. 

Interesantemente, las hipoconectividades pudieron explicarse como 

transiciones de la condición control a la condición de alcohol en las que la 

conectividad pasó de ser directa a indirecta entre el par de redes estudiado. 

Además, las hiperconectividades reflejaron el cambio de una conexión 

indirecta a otra conexión aún más indirecta. Estos resultados indican que las 

redes cerebrales ya se alteran desde una fase temprana de consumo continuo 

y prolongado de alcohol, disminuyendo el control ejecutivo y la flexibilidad 

comportamental.  De manera global, nuestros resultados en términos de 

conectividad cerebral funcional y actividad cerebral complementan una 

hipótesis previa (Müller-Oehring y otros, 2015) que podría ayudar a diseñar 

tratamientos que se centren en el remodelado de redes cerebrales.  

ii) Para comparar el volumen de materia gris (MG) cortical entre 34 

controles sanos y 35 pacientes con dependencia al alcohol, desintoxicados y 

en abstinencia de 1 a 5 semanas, realizamos un análisis de morfometría 

basado en vóxel. Las principales estructuras cuyo volumen de MG 

disminuyó en los sujetos en abstinencia fueron el giro precentral (GPreC), el 
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giro postcentral (GPostC), la corteza motora suplementaria (CMS), el giro 

frontal medio (GFM), el precúneo (PCUN) y el lóbulo parietal superior 

(LPS). Disminuciones de MG en el volumen de esas áreas pueden dar lugar 

a cambios en el control de los movimientos (GPreC y CMS), en el 

procesamiento de información táctil y propioceptiva (GPostC), personalidad, 

previsión (GFM), reconocimiento sensorial, entendimiento del lenguaje, 

orientación (PCUN) y reconocimiento de objetos a través de su forma (LPS). 

Es importante recalcar que la mayoría de las diferencias en MG entre el 

estado control y el de abstinencia fueron explicadas por correlaciones 

parciales negativas, ajustadas por edad, entre el volumen de MG y tres 

variables de consumo de alcohol: 1) gramos de alcohol por día de consumo 

en los 90 días previos a la adquisición de imágenes (Form 90); 2) gramos 

totales de alcohol (Form 90); y principalmente 3) la puntuación según la 

escala de dependencia al alcohol. GPreC, GPostC, CMS y GFM fueron las 

regiones claves en estas correlaciones. No hubo una relación significativa 

entre el volumen de MG y los días en abstinencia durante los 90 días previos 

a la adquisición de imágenes. Esto puede indicar que el daño iniciado por el 

consumo de alcohol no se revirtió en la abstinencia temprana. 

iii) Caracterizar estados cerebrales dinámicos en señales de RMf 

mediante una metodología basada en un modelo oculto de Markov (HMM 

en inglés)-Gaussiano en un paradigma con diseño de bloques, junto con 

distintas señales temporales de múltiples redes: componentes independientes 

y modos funcionales probabilísticos (PFMs en inglés) en 14 sujetos sanos. 

Cuatro condiciones experimentales formaron el paradigma de bloques: 

reposo, visual, motora y visual-motora. Mediante la aplicación de HMM-

Gaussiano a los PFMs pudimos caracterizar cuatro estados cerebrales a 

partir de la actividad media de cada PFM, obteniendo una tasa de éxito del 

48.68 %. Los cuatro mapas espaciales obtenidos fueron llamados HMM-
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reposo, HMM-visual, HMM-motor y HMM-RND (red neuronal por 

defecto). HMM-motor y HMM-visual contuvieron regiones cerebrales 

responsables de las tareas correspondientes, mientras que HMM-reposo 

tuvo el signo opuesto a ambos, y HMM-RND estuvo formado por la RND. 

HMM-reposo y HMM-motor prevalecieron en su condición experimental, 

mientras que HMM-visual estuvo presente tanto en la condición visual como 

en la condición visual-motora. El cuarto estado, HMM-RND, apareció una 

vez el estado de tarea se había estabilizado. En un futuro cercano se espera 

obtener estados cerebrales en nuestros datos de RMf-er en ratas, para 

comparar dinámicamente el comportamiento de las redes cerebrales como 

un biomarcador de TCA.   

En conclusión, las técnicas de neuroimagen aplicadas en imagen de 

RM multimodal para estimar la conectividad cerebral en estado de reposo, 

la actividad cerebral y el volumen de materia gris han permitido avanzar en 

el entendimiento de los mecanismos homeostáticos del cerebro para hacer 

frente a los TCA. Estas alteraciones funcionales y estructurales son un 

biomarcador del consumo crónico de alcohol, que explican deficiencias en el 

control ejecutivo, la evaluación de recompensa y el procesamiento 

visoespacial. 
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Resum 

El consum excessiu d'alcohol es posiciona entre els primers cinc 

factors de risc de malaltia i discapacitat a nivell mundial. La ingesta d'alcohol 

altera el balanç del cervell a nivell estructural i funcional i causa seriosos 

problemes de salut i socials, incloent trastorns per consum d’ alcohol (TCA). 

La imatge per ressonància magnètica (RM) és la tècnica més adequada per a 

caracteritzar les diferències en els estadis dels TCA, afavorint el seu 

diagnòstic i tractament. A més, la investigació per neuroimatge en models 

preclínics que eviten les comorbilitats associades al consum d'alcohol, està 

ajudant a entendre els fonaments biològics de la dependència a l'alcohol. 

L'objectiu d'aquesta Tesi Doctoral fou estudiar els efectes en el cervell del 

consum crònic i excessiu d’alcohol, des d’un punt de vista funcional i 

estructural i per mitjà d'anàlisi d’imatges de RM. Per a aconseguir aquest 

objectiu principal vam realitzar tres anàlisis amb objectius específics: 

i) Per a entendre com les neuroadaptacions desencadenades pel 

consum d'alcohol es veuen reflectides en la connectivitat cerebral funcional 

en estat de repòs entre xarxes cerebrals, així com en l'activitat cerebral, vam 

realitzar estudis longitudinals i transversals en grups de 18 rates Marchigian 

Sardinian alcohol-preferring (msP). El nostre principal interès era el pas 

d'abús d'alcohol al de dependència de l'alcohol; per tant compararem les 

imatges en les condicions de control i després d'un mes amb accés a etanol. 

Per a obtindre els senyals cerebrals específics de les xarxes cerebrals en cada 

subjecte, aplicàrem a les imatges funcionals de RM en estat de repòs una 

anàlisi probabilística de components independents a nivell grupal, seguida 

de regressió espacial. Després, estimàrem la connectivitat cerebral en estat 

de repòs per mitjà de correlació parcial regularitzada. A més, per a eliminar 

els factors de confusió típics de l’anestesia necessària als estudis de RMf, vam 
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adquirir imatges de RM realçades amb manganés. Aquesta tècnica empra la 

captació de manganés como una lectura de l’activitat cerebral en animals 

desperts i amb moviment lliure. En la condició d'alcohol vam trobar 

hipoconnectivitats entre la xarxa visual i les xarxes estriatal i sensorial, totes 

contenint regions amb increments en activitat. Al contrari, va haver-hi 

hiperconnectivitats entre tres parells de xarxes cerebrals en estat de repòs: 

1) xarxa prefrontal cingulada mitja i xarxa estriatal, 2) xarxa sensorial i 

xarxa parietal d'associació i 3) xarxa motora-retroesplenial i xarxa sensorial, 

sent la xarxa parietal d'associació l'única xarxa sense increment d'activitat. 

Interessantment, les hipoconnectivitats van correspondre a una transició des 

de la condició control fins a la condició d'alcohol en la què la connectivitat 

va passar de ser directa a indirecta entre el parell de xarxes estudiat. A més, 

les hiperconnectivitats van reflectir el canvi d'una connexió indirecta a una 

altra connexió encara més indirecta. Aquests resultats indiquen que les 

xarxes cerebrals ja s'alteren des d'una fase primerenca caracteritzada per 

consum continu i prolongat d'alcohol, disminuint el control executiu i la 

flexibilitat comportamental. De manera global els nostres resultats en 

termes de connectivitat cerebral funcional i activitat cerebral complementen 

una hipòtesi prèvia (Müller-Oehring i altres, 2015) que podria ajudar a 

dissenyar tractaments centrats en el remodelat de xarxes cerebrals. 

ii) Per a comparar el volum de MG cortical entre 34 controls sans i 

35 pacients amb dependència a l'alcohol, desintoxicats i en abstinència de 1 

a 5 setmanes vam emprar anàlisi de morfometria basada en vòxel. Les 

principals estructures on el volum de MG va disminuir en els subjectes en 

abstinència van ser el gir precentral (GPreC), el gir postcentral (GPostC), la 

corteça motora suplementària (CMS), el gir frontal mig (GFM), el precuni 

(PCUN) i el lòbul parietal superior (LPS). Les disminucions de MG en eixes 

àrees poden donar lloc a canvis en el control dels moviments (GPreC i CMS), 
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en el processament d'informació tàctil i propioceptiva (GPostC), 

personalitat, previsió (GFM), reconeixement sensorial, enteniment del 

llenguatge, orientació (PCUN) i reconeixement d'objectes a través de la seua 

forma (LPS). És important recalcar que la majoria dels vòxels cerebrals amb 

diferències significatives entre l'estat control i el d'abstinència també van 

presentar correlacions parcials negatives, ajustades per edat, entre el volum 

de MG i tres variables de consum d'alcohol: 1) grams d'alcohol per dia de 

consum en els 90 dies previs a l’adquisició d’imatges (Form 90); 2) grams 

totals d'alcohol, Form 90; i principalment 3) la puntuació segons l'escala de 

dependència a l'alcohol. GPreC, GPostC, CMS i GFM van ser les regions 

claus en estes correlacions. No va haver-hi una relació significativa entre el 

volum de MG i els dies en abstinència durant els 90 dies previs a l’adquisició 

d’imatges. Açò pot indicar que el dany iniciat pel consum d'alcohol no es va 

revertir en l'abstinència primerenca. 

iii) Caracterització de les dinàmiques temporals del cervell com a 

diferents estats cerebrals, en senyals de RMf mitjançant una metodologia 

basada en un model ocult de Markov (HMM en anglès)-Gaussià en imatges 

de RMf, junt amb dos tipus de senyals temporals de múltiples xarxes 

cerebrals: components independents i modes funcionals probabilístics 

(PFMs en anglès) en 14 subjectes sans. Quatre condicions experimentals van 

formar el paradigma de blocs: repòs, visual, motora i visual-motora. HMM-

Gaussià aplicat als PFMs (senyals de RM funcional de xarxes cerebrals) va 

permetre la millor caracterització dels quatre estats cerebrals a partir de 

l'activitat mitjana de cada PFM, obtenint una taxa d'èxit del 48.68 %. Els 

quatre mapes espacials obtinguts van ser anomenats HMM-repòs, HMM-

visual, HMM-motor i HMM-XND (xarxa neuronal per defecte). HMM-

motor i HMM-visual van contenir regions cerebrals responsables de les 

tasques corresponents; mentre que HMM-repòs va tindre el signe oposat a 
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ambdós; i HMM-RND va estar format per la XND. HMM-repòs i HMM-

motor van prevaldre en la seua condició experimental. En canvi, HMM-

visual va estar present tant en la condició visual com en la condició visual-

motora; i HMM-XND va aparèixer una vegada una tasca estava 

estabilitzada, ja que el subjecte requeria una mínima atenció. En un futur 

pròxim s'espera obtindre estats cerebrals en les nostres dades de RMf-er en 

rates, per a comparar dinàmicament el comportament de les xarxes cerebrals 

com a biomarcador de TCA. 

En conclusió, s’han aplicat tècniques de neuroimatge per a estimar la 

connectivitat cerebral en estat de repòs, l'activitat cerebral i el volum de MG, 

aplicades a imatges multimodals de RM i s’han obtés resultats que han 

permés avançar en l'enteniment dels mecanismes homeostàtics del cervell 

front als TCA. Aquestes alteracions funcionals i estructurals són un 

biomarcador del consum crònic d’alcohol que explica deficiències en el 

control executiu, l’avaluació de la recompensa i el processament 

visuoespacial.   
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Chapter 1 

1.  Introduction 

1.1. Motivation 

The harmful use of alcohol is among the top five risk factors for 

disease and disability worldwide. Individuals above 15 years old drink on 

average 6.2 liters of alcohol per year, which is equivalent to 13.5 grams per 

day, being Europe at the top of the ranking. Alarmingly, 139 million 

disability-adjusted life years (DALYs) were associated with alcohol 

consumption in 2012, corresponding to 5.1% of the global burden of disease 

and injury. Alcohol use disorders (AUDs) are among the most common and 

undertreated neuropsychiatric disorders, with a prevalence of 4.1% in 

population from 15 years old. AUDs damage most body organs, especially 

liver, pancreas and brain, and cause important social, economic and health 

problems, including liver cirrhosis and cancers [1].  

Despite the efforts for ascertaining alcohol-related brain responses at 

molecular, structural and functional levels, currently there are no objective 

biomarkers of alcohol dependence severity or any to reliably assess or 

predict treatment efficacy. The ultimate aim in Neuroscience is to provide 

personalized treatments that promote long-term recovery, but it is not 

possible to achieve this goal without reliable neurophysiological and 
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neurocognitive biomarkers that unveil the biological underpinnings of 

alcohol dependence [2]. 

We are motivated by the fact that magnetic resonance imaging 

(MRI) biomarkers are noninvasive and could be able to characterize the 

brain network mechanisms for initiation and maintenance of AUDs, as well 

as the consequent functional compensations or adaptations. Importantly, the 

sooner the AUDs are diagnosed and treated, the sooner the people will be 

able to quit drinking and improve their quality of life. It has already been 

evidenced that modafinil — a neurostimulant treatment —  can shift altered 

functional connectivity in brain networks [2]. Therefore, network analysis 

allows us to define brain biomarkers: “disease-network” states that quantify 

the required network activity for the networks to progress into a healthy 

state. Local study of gray matter (GM) volume has also proved very useful 

[3–5].   

The spatial and functional characteristics of intrinsic brain networks 

are conserved across species, and controlled experiments on animal models 

have the advantage of avoiding associated alcohol-related comorbidities [6]. 

Thus, we bet on controlled experiments in alcohol-preferring rats to provide 

translatable, predictive biomarkers in the functional level, together with 

cortical gray matter biomarkers in humans. This thesis is part of the 

international project TRANSALC (Translational Neuroimaging in 

Alcoholism), which started in 2011 to develop translational in vivo brain 

imaging tools for improving the predictive value of animal experiments for 

the development of clinically effective pharmacotherapy for AUDs [7].  

1.2. Objectives 

The aim of this dissertation was to investigate and use/develop 

optimal methods, with high translational value, for characterizing functional 



1. Introduction 

 

25 
 

and structural brain alterations caused by excessive, chronic alcohol 

consumption, via analysis of multimodal magnetic resonance (MR) images. 

The main hypothesis is that brain homeostatic processes driven by alcohol 

consumption can be characterized with brain connectivity, brain activity, 

brain dynamics and local gray matter volume, computationally estimated 

from MR images. 

The specific objectives of this doctoral thesis were: 

1) To study brain connectivity and activity in order to identify 

putative homeostatic responses in neural networks at the onset of alcohol 

dependence.    

2) To assess if there are local GM volume differences between a 

control condition and an alcohol abstinence condition, and if there is an 

association between GM volume and alcohol-consumption variables.  

3) To identify brain states in functional MRI (fMRI) signals 

according to their dynamics by means of an approach based on Hidden 

Markov models. 

1.3. Contributions to knowledge 

This dissertation offers two novel contributions: functional and 

structural brain biomarkers from MR images that help to understand the 

biological underpinnings of alcohol dependence/moderate or severe AUDs. 

Furthermore, the foundation for a third contribution in this area is explored: 

biomarkers based on dynamic connectivity to study the effects of AUDs on 

the brain.  

The first contribution is that brain connectivity from resting-state 

fMRI (rs-fMRI) images combined with brain activity results obtained from 

manganese-enhanced MRI (MEMRI) images in an alcohol-preferring rat 

model is an excellent approach to unveil brain homeostatic processes in 
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terms of network dedifferentiation, deficiencies or compensations.  MEMRI 

is not sensitive to vascularity and in smaller concentrations is nontoxic for 

rodents, unlike for humans, making this study notorious to validate and 

complement fMRI brain activity studies in humans.   

The second contribution is that voxel-based morphometry analysis 

(VBM) is an adequate methodology to compare GM volume in alcohol 

abstinent patients with respect to age-matched healthy controls. Further, 

the partial correlation of GM volume with clinical variables related to 

alcohol consumption, adjusted by age, enables to identify possible causes of 

these specific alterations.  

The third contribution is the evaluation of an approach to 

characterize brain states in a block-design fMRI paradigm with four 

conditions: rest, visual, motor and visual-motor. This approach combined a 

method to extract probabilistic functional modes (PFMs) — the brain 

networks’ time courses — and a Hidden Markov model with multivariate 

Gaussian distributions. This contribution opens a promising area of research 

aiming to compare the brain states in healthy controls with respect to 

patients with AUD and obtain biomarkers based on dynamic connectivity.  

The existing FSL tool (FMRIB's Software Library, Oxford, United 

Kingdom) for neuroimaging analysis, PROFUMO (PRObabilistic 

FUnctional MOdes) and HMM-Gaussian were crucial to perform the 

analyses of this thesis. These approaches were combined with in-house 

scripts coded in Matlab, Python and Unix Bash scripting. 

1.4. Thesis structure 

This thesis is structured in seven self-contained chapters that can be 

read independently. Chapter 2 describes AUDs and Chapter 3 gives a brief 

introduction to the physical basis of MRI. Chapters 4 to 6 contain the main 
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research contributions. Chapter 4 explores functional brain alterations in 

alcoholism, Chapter 5 focuses on brain alterations from a structural point of 

view, and Chapter 6 is about identification of dynamic brain states. Finally, 

Chapter 7 shows a general conclusion. 

A summary of the following chapters is written next: 

Chapter 2: Effects of alcohol use disorders on the brain 

This chapter gives a background on brain regions altered by alcohol 

consumption, the cycle of alcohol addiction and the symptoms needed to 

diagnose alcohol use disorders from a biological and behavioral point of 

view.  

Chapter 3: Insights into magnetic resonance imaging 

This chapter explains MRI physics and ends with a short explanation 

of MEMRI and fMRI.   

Chapter 4: Functional brain alterations in the onset of alcohol 

dependence 

In this chapter, resting-state functional connectivity (rs-FC) and 

brain activity are explored in alcohol-preferring rats, to study brain changes 

in early alcohol dependence. First, the brain networks’ time series were 

extracted by probabilistic independent component analysis (PICA) and 

spatial regression. Then, the statistical dependency between networks (rs-

FC) was measured by L2-regularized partial correlation and characterized 

as additive signal changes. The connectivity results provided by rs-fMRI 

were combined with MEMRI activity results aiming to find brain 

mechanisms involved in alcohol dependence.   

Chapter 5: Cortical gray matter alterations in alcohol use 

disorders 

This chapter presents voxel-based morphometry methodology for 

studying local GM volume in healthy controls and alcohol dependent 
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inpatients that were detoxified and remained in abstinence, and possible 

associations between GM volume and alcohol-related variables. 

Chapter 6: Characterizing dynamic brain states in fMRI signals 

The study in this chapter has the ultimate goal of obtaining brain 

states in our rs-fMRI rat data to study early alcohol dependence. The goal 

of the study was identifying brain states from a block-design fMRI paradigm 

(ground truth) with rest, visual, motor and visual-motor conditions. Two 

methods to obtain resting-state networks (RSNs) were compared: PICA and 

PRObabilistic FUnctional MOdes (PROFUMO), together with several 

configurations of a model based on a Hidden Markov model, the HMM-

Gaussian approach. 

Chapter 7 presents the overall conclusions of this dissertation. 
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Chapter 2 

2.  Effects of alcohol use disorders on 

the brain 

Alcohol is a psychoactive substance that affects the central nervous 

system (CNS). Alcoholism is also known as alcohol dependence, alcohol 

dependence syndrome, alcohol addiction or moderate/severe alcohol use 

disorder (AUD). All these terms refer to a complex and chronically relapsing 

disorder that develops gradually from chronic and excessive alcohol 

consumption over years, causing executive control deterioration, memory 

loss and neuropsychiatric conditions [8]. Alcohol-related diseases are 

responses to alcohol exposure and gene by environment interactions. 

Alcoholism affects some brain networks but leaves others practically intact, 

becoming alternative neural pathways for that function. Fortunately, neural 

repair is possible with prolonged abstinence [9].  

2.1. Brain structures affected by alcohol intake  

Behavior patterns after chronic alcohol drinking shift from 

regulation of behavior by brain’s executive control, towards processing 



2. Effects of alcohol use disorders on the brain 

30 
 

reward (appetitive drive). The balance between executive control and 

appetitive drive favors addiction or recovery [10].  

 

2.1.1. Brain regions involved in executive control and appetitive drive 

Figure 2.1 shows brain regions responsible for executive control, 

appetitive drive or both functions.  

 

 

Figure 2.1. Brain structures implicated in executive control, appetitive drive or 

both, after chronic alcohol consumption. a) Frontal coronal view. b) External 

sagittal view. c) Mid-sagittal view.  Adapted from [11].  



2. Effects of alcohol use disorders on the brain 
 

31 
 

This section covers a brief description of the functions that perform 

the regions in Figure 2.1, grouped into executive control, appetitive drive or 

both.   

Executive control 

Middle cingulate gyrus (MCG) and middle frontal gyrus (MFG) 

are involved in learning and attention, concretely in perceiving detailed 

information of the surrounding environment. Subgenual anterior 

cingulate cortex (sACC) participates in emotion processing, learning and 

memory tasks. Basal ganglia (BG) are subcortical nuclei that regulate 

motor and cognitive functions, including the caudate nucleus, putamen, 

globus pallidus, subthalamic nucleus and substantia nigra [11]. 

Appetitive drive 

Caudate (C) influences goal-directed actions and behaviors. Nucleus 

accumbens (Acb) has roles in fear, impulsivity and addiction, as well as 

reward and reinforcement via plasticity changes in excitatory synaptic 

transmission’s efficacy. Orbitofrontal cortex (OC) is involved in 

motivational, emotion and social behavior, and communicates with the 

primary sensory cortex. It is fundamental in preventing inappropriate 

behavior. Posterior cingulate cortex (PCC) is part of the default mode 

network (brain regions that are activated at rest but deactivated during 

tasks) and is involved in awareness, pain and episodic memory retrieval. 

Putamen (Pu) is responsible for movement regulation, establishment of 

habits, mediating appetitive drive and learning from stimulus. Ventral 

tegmental area (VTA) regulates the response to rewarding stimuli. Insula 

(Ins) is crucial in consciousness and emotion regulation [11].   
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Both executive control and appetitive drive 

Amygdala (Amyg) is a key area in the control of strong emotions 

such as love, fear, rage and anxiety, and crucial to identify dangerous 

situations. Amyg is part of the reward circuitry, which produces feelings of 

pleasure [12–14]. Hippocampus (Hc) plays a central role in motivation, 

emotion and formation of memories [14]. Lateral prefrontal cortex 

(lPFC) is involved in goal-directed behavior and in executive functions such 

as working memory, cognitive flexibility, planning, inhibition, and abstract 

reasoning [11]. Prefrontal cortex (PFC) is crucial in planning cognitive 

behavior and regulation of emotions. Inhibition in the thalamus (Thal) 

plays an important role in sleep regulation and rhythmicity, and might be 

involved in the sedative effects of acute alcohol. This sleep disturbance can 

also contribute to the development of alcoholism and future relapses [15]. 

 

2.1.2. Gray matter cortical structures 

Gray matter (GM) refers to regions of the central nervous system 

that are rich in neuronal cell bodies and neuropil — a dense set of axonal 

and dendritic branches, and the synapses between them. The gyri are the 

ridges of the unfolded cerebral cortex [16]. Figure 2.2 illustrates the main 

four brain hemispheres and the two separatory sulci. The frontal lobe 

occupies around the 40% of the cortical surface area and contributes to 

voluntary movement, behavior, memory, personality and spoken language. 

The parietal lobe is involved in somatosensory and visuospatial processing. 

Visual processing is also associated to the occipital pole. The temporal 

lobe contains areas responsible for auditory processing and mediates 

emotions, visceral responses, learning and memory [17]. 
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Figure 2.2. Sagittal view of the main four lobes of the brain hemispheres and two 

main sulci to divide the lobes [18]. A = anterior; I = inferior; L = left; P = posterior; 

R = right; S = superior. 

 

To quantify the volume of GM, the structures in Figure 2.3 are taken 

into account in this thesis, from the Harvard-Oxford cortical atlas [19]. 
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Figure 2.3. Gray matter gyri and cortices. a) Lateral sagittal view of a brain 

hemisphere. b) Medial sagittal view of the hemisphere. The names in green indicate 

that the structure is covered by other structures and is not visible in this view. Modified 

from [19]. 

 

In the following paragraphs, the gyri and cortices from Figure 2.3 

are grouped into brain lobes and a brief explanation of their function is given. 
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Frontal lobe 

Orbitofrontal cortex (OC) is involved in motivational, emotion and 

social behavior, highlighting the detection and processing of the 

consequences of behavior [17]. Frontal pole (FPO) monitors action 

outcomes, for example keeping in mind the main goal while trying to achieve 

subgoals [20]. The inferior frontal gyrus (IFG) is divided into three parts: 

1) pars orbitalis (IFGorb, anterior), 2) pars triangularis (IFGtriang, 

middle) and 3) pars opercularis (IFGoperc, posterior). Pars opercularis and 

pars triangularis form the Broca’s area, which is crucial to produce spoken 

language. Middle frontal gyrus (MFG) participates in the control and 

initiation of voluntary movements and cognitive functions related to 

personality, insight and prevision. Superior frontal gyrus (SFG) 

participates together with the primary motor cortex in the control and 

initiation of voluntary movements. It is also part of the prefrontal cortex and 

intervenes in cognitive functions involved in personality, awareness and 

judgment. Precentral gyrus (PreCG) is located in the primary motor 

cortex (M1) and influences motor activity. It has a somatotopic map of the 

opposite part of the body, proportional to the precision of movement control. 

The frontal lobe contains the supplementary motor cortex (SMC), 

anterior to the PreCG, for an additional control of movement [17].   

Parietal lobe 

Postcentral gyrus (PostCG) is part of the primary somatosensory 

cortex (S1) and is involved in processing tactile and proprioceptive 

information. This gyrus has a somatotopic organization with sizes 

proportional to the degree of tactile sensitivity. Superior parietal lobule 

(SPL) is involved in the recognition of objects by touch and the recognition 

of shapes written on the skin. Inferior parietal lobule (IPL) contains the 
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angular gyrus (ANG) and the supramarginal gyrus (SMG). IPL is 

involved in the integration of visual, auditory and somatosensory functions, 

mainly related to written language. Precuneus (PCUN) participates in 

complex sensory appreciation, language comprehension, and orientation to 

time and space [17]. 

Occipital lobe 

Lateral occipital gyrus (LOG) analyzes the shapes of objects 

irrespective of their colors, motions or textures [21]. There is evidence that 

the superior part of the lateral occipital cortex (SLOC) is affected by 

alcohol. Occipital pole (OPO) is involved in visual processing. Cuneus 

(CUN), calcarine cortex (CALC), supracalcarine cortex (SCLC) and 

lingual gyrus (LING) are structures involved in basic visual processing 

[17]. 

Temporal lobe 

The lateral surface of the superior temporal gyrus (STG) is part of 

Wernicke’s area, hence it is involved in receptive language functions. 

Middle temporal gyrus (MTG) is believed to contribute to perceptual and 

mnemonic integration. Inferior temporal gyrus (ITG) participates in the 

analysis of the shape and color of visual stimuli. Fusiform gyrus (FFG) is 

involved in functions of visual association and mediation of spatial vision and 

visual mnemonic and attentional processes [17]. Temporal pole (TPO) is 

crucial for word retrieval for proper names [22]. 
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Limbic lobe 

Anterior cingulate cortex (ACC) participates in emotion 

processing, learning and memory tasks. It contains the anterior division of 

the cingulate gyrus (ACG). Posterior cingulate cortex (PCC) contributes 

to awareness, pain and episodic memory retrieval. PCC contains the 

posterior division of the cingulate gyrus (PCG). Parahippocampal gyrus 

(PHG) is part of the limbic system and is involved in olfactory and memory 

perceptions [17]. 

Insular cortex 

Insula (Ins) plays a role in consciousness and emotions regulation. 

This structure is shown in Figure 2.1. 

2.2. Burden of disease  

Alcohol excessive consumption is associated with 60 different 

diseases, being the most life-threatening Wernicke-Korsakoff syndrome 

[23], alcoholic liver disease, heart disease, stroke, cancers, injuries and 

gastrointestinal disease [24]. Alcohol use contributes to around 5.1% of the 

global burden of disease and injury [1], similar to tobacco smoking, about 

4%. The harms caused by alcohol are related to the average volume of 

alcohol consumed and the pattern of drinking. The risk of harm is much 

incremented when more than 10–20 g of alcohol per day are consumed. 

However, episodic alcohol intoxications already propitiate injuries, violence, 

accidents and heart disease [25]. Alcohol has historically been considered 

harmless when consumed in moderation (72-144 g per week) [1][23] but 

evidences confirm that even light drinking (< 12.5g daily) associates with 

an increased risk of oropharyngeal, esophageal and breast cancers [26].  
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2.3. Drug addiction cycle  

Drug addictions or substance-use disorders are characterized by 

compulsion to seek and consume the drug, loss of control in limiting its 

intake, and the occurrence of a negative emotional state when it is not 

possible to consume the drug. The progress goes through 

binge/intoxication, withdrawal/negative affect and preoccupation/ 

anticipation stages in the addiction cycle illustrated in Figure 2.4. Each stage 

increases in intensity after each cycle. These stages correspond to 

neuroadaptations that reflect allostatic changes in three neurocircuits that 

mediate compulsive drug seeking: basal ganglia (Figure 2.4a), extended 

amygdala (Figure 2.4b), and prefrontal cortex (Figure 2.4c) [27]. Allostasis 

is the process by which the body responds with brain reward and stress 

mechanisms to challenges to maintain homeostasis (balance). The allostatic 

state is characterized by a chronic deviation of the regulatory system from 

its homeostatic operating level. 
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Figure 2.4. Neural circuits implicated in the three stages of alcohol addiction.      

a) Binge intoxication stage, with crucial regions in blue. b) Withdrawal/negative affect 

stage. Key regions are displayed in red. c) Preoccupation/anticipation stage with 

important areas shown in green. This cycle affects synaptic-neurocircuitry and 

molecular-genetic systems. Figure modified from [28]. Acb = nucleus accumbens; ACC 

= anterior cingulate cortex; BNST = bed nucleus of the stria terminalis; CeA = central 

nucleus of the amygdala; dlPFC = dorsolateral prefrontal cortex; DS = dorsal striatum; 

GP = globus pallidus; Hc = hippocampus; I = insula; OFC = orbitofrontal cortex; Thal 

= thalamus; vlPFC = ventrolateral prefrontal cortex; vmPFC = ventromedial 

prefrontal cortex. 
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2.3.1. Binge/intoxication stage 

Three main contributors to the binge/intoxication stage in the 

beginning of drug addiction are: 1) the positive hedonic (pleasurable) effects 

of drugs, 2) sensitization of incentive salience — a previously neutral 

stimulus now promotes consuming a drug — and 3) poor cognitive insight. 

First, dopamine and opioid peptides, which are reward neurotransmitters, 

contribute to the reinforcing effects of alcohol in the nucleus accumbens 

(Acb). Afterwards, the dorsal striatum (DS) contributes to engage stimulus 

response habits. Then, to mediate the rewarding effects, the CRF 

(corticotropin-releasing factor) and dynorphin systems — two 

neurotransmitters releasers — are activated in the ventral tegmental area 

and Acb/frontal cortex, respectively.  

The later stages of drug addiction also exhibit a binge intoxication 

stage that includes tolerance and is driven by the negative emotional states 

that maintain a chronic and excessive drug consumption. Concretely, there 

is a transition from goal-directed behavior that is mediated by the ventral 

striatum (VS, containing the Acb) to habit behavior that is under the control 

of the DS. The γ-aminobutyric acid (GABA) system has an important role 

in the mediation of the intoxicating and reinforcing effects of alcohol [27]. 

 

2.3.2. Withdrawal/negative affect stage 

 This stage includes several sources of motivation to take drugs, 

including emotional pain, dysphoria and stress, and the loss of motivation 

for natural rewards.  

During abstinence, stress and anxiety-like responses are sources of 

motivation. Within-system neuroadaptations in the ventral tegmental area, 

VS and central amygdala (CeA) make the primary target of the drug to 

neutralize its effect, decreasing brain reward function. Between-system 
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neuroadaptations may also occur, i.e. systems that are not involved in the 

positive rewarding effects are recruited or dysregulated to lower brain 

reward function and increase brain stress system function. Negative 

reinforcement is caused by the presence of neurotransmitters CRF, 

norepinephrine and dynorphin in the extended amygdala, which contains 

CeA, bed nucleus of the stria terminalis (BNST), and part of the Acb [27]. 

 

2.3.3. Preoccupation/anticipation (craving) stage  

Intoxicating doses of drugs are associated with cognitive 

impairments, including poor working memory, inattention and impulsivity, 

which make the individuals prone to relapse. Function alterations occur in 

the PFC and orbitofrontal cortex (OC). Craving is a crucial part in this stage, 

activating the dorsolateral prefrontal cortex (PFC), ACC and medial OC.  

Conditioned reinforcement is processed by the basolateral Amyg and 

contextual information, by the hippocampus. Executive control depends on 

the PFC and includes representation of cravings and feelings associated with 

alcohol intake. On one hand, the subjective effects activate OC, ACC and 

Amyg. On the other hand, Ins evokes a greater perception of these negative 

states and leads to higher craving and risk of relapse. Glutamate, the main 

neurotransmitter associated with craving, is released from frontal regions 

and the basolateral Amyg to the VS. CRF and dynorphin are also released 

in the PFC [27]. 

 

2.3.4. Positive and negative reinforcement 

Besides the three stages, drug addiction includes a transition from 

impulsive to compulsive behaviors and from positive to negative 

reinforcement (Figure 2.5). Impulsivity — predisposition toward rapid and 

unplanned reactions to stimuli, without regard for the negative 
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consequences — often dominates at the early stages of drug addiction. These 

early stages are characterized by repeated binge/intoxication and positive 

reinforcement — a stimulus highly encourages a response. In other words, 

individuals take the drug for pleasure without considering the potential 

negative consequences. At later stages, compulsivity — perseverative and 

repetitive actions that are excessive and inappropriate — highlights and 

favors a perseverative and major drug use. Concretely, in the 

withdrawal/negative affect stage through the emergence of negative 

emotional states, and in the preoccupation/anticipation stage through 

anticipation of obtaining the drug. Negative reinforcement involves an 

increase in the probability of a response if an aversive state is removed.  

The transition from positive to negative reinforcement is mediated 

by the brain reward system and the brain stress system and reflects a change 

in motivation — tendency to produce organized activity. Any motivational 

stimulus activates two opposing motivational processes: 1) the a-process, a 

positive mood state and 2) the b-process, a negative mood state that appears 

after the a-process, in opposite direction. With repeated exposure to drugs, 

the b-process appears earlier after the stimulus and lasts longer, therefore 

moving further from the homeostatic point, generating tolerance and an 

allostatic state in the brain reward system, which generates a transition to 

addiction.   
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Figure 2.5. Progression of drug addiction/substance-use disorder over time, 

dominated by positive or negative reinforcement.  Initially, the pleasurable drug 

effects are part of the positive reinforcement, but later the addiction is consolidated as 

a negative-reinforcing relief from a negative emotional state [27]. 

 

2.4. Diagnosis and treatment 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) 

initially developed to collect statistical information about mental disorders 

in the United States of America. The fourth edition, DSM–IV [29], from 

1994, differentiated two distinct disorders: alcohol abuse and alcohol 

dependence (AD), but since 2013 DSM–5 [30] integrates both disorders 

into a single disorder called alcohol use disorder (AUD) with three severity 

grades. Figure 2.6 compares the criteria considered in DSM-IV versus 

DSM-5.  
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Under DSM–IV, within 12 months, anyone meeting one or more of 

the criteria 1 to 4 was diagnosed as alcohol abuser, while someone fulfilling 

three or more of the criteria 5 to 11 was diagnosed with AD. Alcohol abuse 

is diagnosed if at least one of these situations occurred: interference with 

taking care of the home or the family, increasing the chances of getting hurt, 

legal problems or continue drinking despite the problems caused. More 

severe criteria are considered for AD: alcohol tolerance, withdrawal 

symptoms, strong desire to consume alcohol, difficulties in controlling its 

use despite harmful consequences or giving a higher priority to alcohol use 

than to other activities and obligations. 

According to DSM-5, at least two of eleven symptoms within 12 

months must be present for diagnosing an AUD. The number of symptoms 

assess the severity of the AUD, grading mild (2-3 symptoms), moderate (4-

5 symptoms), or severe (6-11 symptoms) [30]. DSM–5 adds craving as a 

criterion for an AUD diagnosis, which was not considered in DSM–IV. 

Three drugs have been approved by the US Food and Drug 

Administration (and the equivalent institution in other countries) to treat 

AUDs by maintenance of abstinence: naltrexone, acamprosate, and 

disulfiram [23]. Acamprosate has shown to be more effective in maintenance 

of abstinence, whereas naltrexone is ideal for prevention of heavy drinking 

and disulfiram is effective only if dosing is supervised. The recovery could 

be observed not only with strict abstinence but also in cases of moderate 

alcohol consumption [31].   

 



2. Effects of alcohol use disorders on the brain 
 

45 
 

 

Figure 2.6. Problems with alcohol consumption classified with DSM-IV and 

DSM-5.  Modified from [32].  
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2.5. Rat models in alcoholism 

Rat models of AD have been extremely useful in alcohol 

neuroimaging research because they overcome the limitations present in 

humans without a strict follow-up in a clinic or hospital: consumption of 

other drugs and comorbid conditions such as depression or anxiety disorders 

[33]. In addition, their genome is very similar to that of humans, and 

present high reproductive rates and a relative low cost of use and 

maintenance with respect to other mammals. Choosing the appropriate rat 

model is crucial to study the neurobiology of alcoholism and developing new 

pharmacological treatments [34,35] because they present different 

neurochemical and behavioral traits co-segregated with alcohol preference. 

Figure 2.7 shows a tri-dimensional (3D) representation of the brain 

and cerebellum in the rat, and the location of the anatomical structure from 

which the coordinates are given in the anterio-posterior (coronal) view, 

bregma. The stereotactic templates are usually registered to a brain atlas. In 

our case we use the Schwarz et al. [36] template that is registered to the 

Paxinos and Watson atlas [37]. The main structures contemplated in this 

atlas are shown in Figure 2.8. 

 

Figure 2.7. Three-dimensional representation of a rat brain and cerebellum, 

together with the location of bregma.  A = anterior; I = inferior; L = left;                                

P = posterior; R = right; S = superior. 
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Figure 2.8. Coronal slices with coordinates from the bregma in the Paxinos and 

Watson stereotactic space [37]. Acb, nucleus accumbens; Amyg, amygdala; Au, 

auditory cortex; BNST, bed nucleus of stria terminalis; Cg1, cingulate cortex, area 1; 

Cg2, cingulate cortex, area 2; CPu, caudate putamen; DLT, dorsolateral thalamus; DP, 

dorsal peduncular cortex; GP, globus pallidus; Hb, habenula; HcAD, hippocampus, 

anterodorsal; HcPD, hippocampus, posterodorsal; HcV, hippocampus, ventral; Hyp, 

hypothalamus; IC, inferior colliculus; IL, infralimbic cortex; Ins, insular cortex; M1, 

primary motor cortex; M2, secondary motor cortex; MDT, midline dorsal thalamus; 

OF, orbitofrontal cortex; PAG, periaqueductal gray; Pir, piriform cortex; PL, prelimbic 

cortex; PtA, parietal association cortex; RS, retrosplenial cortex; S1, primary 

somatosensory cortex; S2, secondary somatosensory cortex; SC, superior colliculus; 

Sept, septum; SN, substantia nigra; TeA, temporal association cortex; Tu, olfactory 

tubercle; V, visual cortex; VMT, ventromedial thalamus; VP, ventral pallidum; VTA, 

ventral tegmental area; ZI, zona incerta. 
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The Marchigian Sardinian alcohol-preferring (msP) rat line is a 

genetically selected model, closely mimicking human alcohol-related 

characteristics, such as binge-like ethanol drinking, psychological 

withdrawal symptoms, alcohol intake increases upon abstinence and high 

vulnerability to stress-mediated relapse [38,39]. The current msP line 

descends from the 13th generation of Sardinian alcohol-preferring (sP) rats 

and it is the 20th generation of msP rats. In an early stage of AD, msP rats 

already present microstructure neuroadaptations [7], rs-fMRI texture 

features of the striatal network characterize their chronic alcohol intake 

[40] and naltrexone reduces the amount of alcohol that drink [41]. 
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Chapter 3 

3.  Insights into magnetic resonance 

imaging 

3.1. MRI physics 

Magnetic resonance imaging (MRI) is a noninvasive medical 

imaging technique that does not require exposure to ionizing radiation, 

especially adequate to visualize soft tissue anatomy and functions.  

Hydrogen is the most common element in tissue, so detecting and 

displaying its protons (nucleus) with an adequate spatial resolution allows 

us to extract information from the soft tissues. Protons are detected thanks 

to a physical property called spin, like a compass needle. The magnetization 

of the spins enables them to align in an external magnetic field and produce 

a small magnetic field themselves. The hydrogen protons spin around their 

own axis. If an object does not undergo an external magnetic field (B), the 

spins are randomly orientated in different directions, cancelling each other 

magnetization, so there is no net magnetization (M). But, on the contrary, if 

an object is placed into an external magnetic field B (e.g. into the bore of an 

MR scanner), the spins will align parallelly (low-energy state) or anti-

parallelly (high-energy state) to B, along the z axis (longitudinal axis), as 
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shown in Figure 3.1. This energy difference is the basis for generating an 

MR signal. Since slightly more spins align in the parallel direction there is 

a macroscopic net magnetization M which is parallel to B. The Larmor 

frequency is an angular frequency, key in RM, and calculated with Equation 

3.1.  

𝑓 =  𝛾𝐵                                                    (3.1) 

where 𝛾 is the gyromagnetic ratio, with a value of 42.58 MHz/T for 

hydrogen [42]. 

A spin can jump from the low-energy state to the high-energy state 

if it receives an external radiofrequency (RF) pulse with its Larmor frequency 

and has an energy equal or greater than the difference of both energy levels. 

This process is called excitation and will bend the magnetization. The 

magnetization vector M is already not parallel to B but they form a certain 

angle, then the spins start to precess in the transverse plane, xy, that is, the 

magnetization vector rotates around the direction of B [43]. Afterwards, 

the spins will return to the low-energy level, emitting the absorbed energy 

— an RF signal with the same frequency f — in a process called relaxation. 

This energy will be detected and used to computationally reconstruct 

images. These processes are illustrated in Figure 3.1.  

There are two types of relaxation: longitudinal relaxation and 

transversal relaxation. Longitudinal relaxation denotes the restoration of 

the net magnetization along the longitudinal direction (direction of the main 

field strength) as spins return to the parallel state. T1 governs the rate at 

which longitudinal magnetization recovers, time for M to recover to 63% of 

its equilibrium value. Transverse relaxation reflects the loss of net 

magnetization within the transverse plane xy due to the loss of phase 

coherence of the spins. T2 is the time for the transverse magnetization 𝑀𝑥𝑦 

to decrease to 37% of its initial value after an RF pulse. T2*, used for 
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functional MRI (fMRI) is similar to T2, except that it accounts for local field 

inhomogeneities, besides spin-spin interactions [43]. 

 

 

Figure 3.1. Spin behavior in the presence of an external magnetic field.                                

a) Without presence of an external magnetic field, the spins of a material are randomly 

orientated in different directions, cancelling each other magnetization. b) When a 

material is placed into an external magnetic field B the spins align parallelly (lower 

energy state) or anti-parallelly (higher energy state) to B, along the z axis. c) A spin 

can jump from the lower energy level to the upper energy level absorbing the energy 

difference, in a process called excitation, or on the contrary, relax and go from the upper 

energy level to the lower energy level emitting the energy difference. Modified from 

[43]. 
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If a gradient field is switched on, the external magnetic field B is no 

longer constant across the subject but increases linearly in a certain spatial 

direction (from the left-hand to the right-hand side, for example). This 

enables to spatially localize the MR signals, because since the Larmor 

frequency depends on the magnetic field strength B, the magnetization 

vectors precesses with different frequencies, 𝑓1…𝑓𝑛. Next, the signal is 

decomposed into its frequency spectrum via Fourier transform. Since it is 

known how the magnetic field B was modified by the gradient field, it is 

possible to obtain the exact positions of the hydrogen molecules. From the 

amplitude of the frequency component 𝑓1…𝑓𝑛. it is possible to get 

information about the number of spins. One gradient field is produced in 

each axis (x, y, z), i.e. electrical currents in a controlled pulse sequence [43].  

Three components form the MRI system: 1) a magnet to produce a 

strong, constant magnetic field; 2) radiofrequency transmit and receive coils, 

to excite and detect, respectively, the MR signal; and 3) magnetic field 

gradients to obtain the spatial localization of the MR signals [43].  

The pulse sequence timing — i.e. timing and amplitude of the RF 

and/or gradient pulses — can be adjusted to give different type of image 

contrast e.g. T1-weighted and T2-weighted anatomical images, or T2* 

functional images. T1-weighted pulse sequences have a very good ability to 

distinguish between gray and white matter (high contrast-to-noise ratio 

CNR), but only a limited ability to discriminate cerebrospinal fluid and air 

(low CNR). T2-weighted pulse sequences are more adequate for 

distinguishing fluids [43]. 
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3.2. MRI modalities 

Besides T1- and T2-weighted images without contrast agent, we 

have made use of manganese-enhanced MRI (MEMRI) and T2*-weighted 

functional images. 

3.2.1. Manganese-enhanced MRI 

Manganese-enhanced MRI (MEMRI) offers a feasible approach to 

obtain a readout of neural activity. Manganese is administered with 

manganese chloride (MnCl2) infusion via minipumps implanted in the brain 

of the rats (more technical details in section 4.2.1). Paramagnetic — 

attracted to a magnetic field — manganese (Mn2+) ions enter excitable cells 

during depolarization through voltage-gated calcium channels. Thus, the 

activity-dependent accumulation of Mn2+ in neurons reports activated brain 

areas as increased signal intensity in T1-weighted MR images. Because 

Mn2+ does not leave the brain areas for several hours, the pattern of 

activation is retained; thus behavioral activity in freely moving animals can 

be measured later when they undergo MEMRI under anesthesia [44]. 

 
3.2.2. Functional MRI 

Neuronal activity is associated to elevated energy consumption, to 

repolarize neurons’ membrane potential after firing of action potentials. 

Energy consumed is mostly replenished oxidizing glucose in the 

mitochondria, a process that generates an oxygen demand in the tissue that 

is compensated by oxygen diffusion from the capillaries. Oxygen detaches 

from the hemoglobin (Hb) molecule — the oxygen transporter in the blood. 

In addition, neuronal activation drives a compensatory vascular response, 

i.e. a vasodilation that increases locally the cerebral blood flow and volume. 

This is the hemodynamic response function (HRF), which has a peak 4 to 6 
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seconds after and presents a much slower scale compared to the neuronal 

signal (scale of milliseconds) [45]. FMRI gives an indirect measure of 

neuronal activity, through a reflection of the blood oxygen level and 

indirectly energy consumption [46]. 

Hb has magnetic properties that differ depending on its oxygen 

content. On one hand, oxygenated hemoglobin (Hb) is diamagnetic — it has 

no unpaired electrons and zero magnetic moment, therefore experimenting 

a weak effect on the surrounding magnetic field. On the other hand, 

deoxygenated hemoglobin (dHb), without attached oxygen, is paramagnetic, 

that is, having unpaired electrons and a significant magnetic moment. Fully 

deoxygenated blood has a magnetic susceptibility around 20% greater than 

completely oxygenated blood [45].  

Because paramagnetic molecules distort the surrounding magnetic 

field, protons diffusing near dHb will experience different field strengths and 

they will precess at different frequencies, resulting a more rapid decay of 

transverse magnetization (shorter T2*) and hence signal loss [45]. It is 

worth noting that the increased BOLD signal due to neuronal activity does 

not occur because the Hb increases the T2* signal, but because it displaces 

the dHb that had been suppressing the signal intensity. This BOLD (blood 

oxygen level dependent) signal contrast, developed by Ogawa et al. [47], 

can identify increased brain activity. BOLD contrast depends on the total 

amount of dHB contained in a brain region, which depends on the balance 

between oxygen consumption — dependent on local increases of dHb — and 

oxygen supply — dependent on blood flow [45]. Figure 3.2 summarizes this 

process.  

For rs-fMRI acquisition, the participants are instructed to relax 

without falling asleep, while their brain activation is measured over time 

(about 5-15 minutes). Spontaneous slow oscillations show correlated signal 
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in functionally coupled networks. On the contrary, in task-based fMRI the 

participants are engaged in a particular task, depending on a paradigm [48]. 

 

Figure 3.2. Physiological basis of the BOLD response. Activity in a brain area 

involves an increase in blood flow to this area, which provides the oxygen and glucose 

necessary. As a result, there is an increase in oxygenated hemoglobin relative to 

deoxygenated Hb. The reduction in deoxygenated hemoglobin leads to a reduced 

magnetic susceptibility and an increased MR signal, which is known as the BOLD 

response. BOLD = blood-oxygen-level dependent. 
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Chapter 4 

4.  Functional brain alterations in the 

onset of alcohol dependence  

Part of this chapter has been previously published in a 4-page 

conference paper: 

“Pérez-Ramírez U, Díaz-Parra A, Ciccocioppo R, Canals S, Moratal 

D. Brain functional connectivity alterations in a rat model of excessive 

alcohol drinking: a resting-state network analysis. 39th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society. July 

11–15, 2017, Jeju Island, Korea. Oral communication. Conf Proc IEEE Eng 

Med Biol Soc. 2017:3016-19.” 

4.1. Introduction 

This century, neuroimaging techniques applied to fMRI, especially 

to rs-fMRI, have made a breakthrough in revealing functional brain 

alterations driven by excessive alcohol consumption [9,49]. Rs-fMRI is a 

powerful tool to measure spontaneous low-frequency fluctuations in BOLD 

signals and find spatially distributed networks with synchronous 

fluctuations at rest, i.e. resting-state networks (RSNs), even when the 

subject is under anesthesia [48,50]. Moreover, functionally related brain 
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networks can be mapped by estimating their resting-state functional 

connectivity (rs-FC), i.e. the statistical dependency among the networks’ 

BOLD time series, employing statistical measures such as correlation [51] 

[52]. Rs-FC alterations occur within brain networks including the default 

mode, executive control, salience, attention, somatosensory and reward 

networks [53–57], within the left executive control, basal ganglia, and 

primary visual networks [58] or between striatum (Str), Ins and ACC [59]. 

In addition, task-based fMRI experiments have unveiled reorganizations in 

frontal networks, highlighting the frontocerebellar, frontolimbic, and 

frontostriatal networks, according to the task undertaken [60–62], and 

salience network in risky decisions [57].  

It is widely evidenced that many body systems work together to 

maintain a homeostatic brain state, i.e. the optimal brain environment for 

neuronal functions, being crucial the release of neurotransmitters, molecular 

neuromodulation, inflammatory immune responses, endocrine functions, 

energy balance and neurotrophic factors. Since synaptic plasticity mediates 

the formation of adaptive brain connectivity patterns, the alterations in the 

functional weight of one brain structure will have consequences on the 

homeostatic remodeling of the corresponding network [63]. However, 

although functional alterations have been identified with fMRI, our 

knowledge about the homeostatic connectivity and activity mechanisms that 

brain networks adopt to confront alcohol’s effect is limited and only focused 

on humans [53][64]. 

Remarkably, Müller-Oehring et al. [53] reasoned in 2015 that rs-FC 

changes in alcohol abstinent patients compared to healthy controls represent 

three neurobiological mechanisms: 1) network deficiency, 2) compensatory 

neural mechanism or 3) network dedifferentiation, depending on the 

positive/negative correlation between within-network strength or spatial 
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extension and cognitive/emotional outcomes. Attention and visual 

networks were found to expand as a mechanism for functional compensation 

of depressive symptoms and visuospatial working memory, respectively. On 

the contrary, brain regions of the default mode, salience, reward and 

executive control networks yielded worse cognitive and emotional results 

with weaker within-network connectivity (network deficiency) and 

expanded outside-network connectivity (network dedifferentiation). Later, 

Shokri-Kojori et al. [64] employed an rs-FC measure called functional 

connectivity density (FCD) to study local and global connections to a voxel, 

aiming to associate neural and behavioral changes between acute and heavy 

drinkers. This study concluded that high FCD and better cognitive 

improvement reflect a compensatory mechanism, being PCUN and 

cerebellum crucial brain areas in heavy drinkers.  

We aimed to understand the network homeostatic changes in the 

transition from alcohol abuse to alcohol dependence in an alcohol-preferring 

rat model. Our hypothesis was that alcohol consumption triggers a process 

of brain network homeostasis causing adaptations between brain networks, 

which are reflected in changes in between-network rs-FC and activity. This 

approach could complement the neuroadaptive mechanisms proposed by 

Müller-Oehring et al. [53] in humans, which has the following drawbacks: 

comorbilities and different genetic basis across subjects. It is widely known 

that an enhancement in MEMRI signals explains a greater entrance of 

calcium in the neurons and therefore an increase in brain activity, but little 

is known about the neurophysiological processes underlying increases or 

decreases in rs-FC between BOLD signals. Thus, a combination of both MRI 

modalities, along with an alcohol-preferring rat model in a longitudinal 

study of control, alcohol and abstinence states (not possible in humans) 

allows us to get essential data to understand the transition between states. 
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4.2. Material and methods 

4.2.1. Animal experiment 

In the rs-fMRI longitudinal studies we analyzed a total of 36 male 

Marchigian Sardinian alcohol-preferring (msP) rats: 18 rats in the alcohol-

exposed group (first longitudinal study) and 18 rats in the normal 

neuromaturation group (second longitudinal study). Concerning the 

MEMRI cross-sectional study, another 36 male msP rats were analyzed: 18 

in the alcohol-exposed group and 18 in the water-drinking control group. 

The four groups of rats had the same age (4 months) and weight range (370–

480 g) at the first time point of acquisition. This msP rat line was genetically 

selected at the School of Pharmacy from the University of Camerino in Italy 

[38,39], controlled for alcohol exposure and environmental factors. Before 

the experiment, as a habituation to the Instituto de Neurociencias de 

Alicante, in Spain, the rats were individually housed in transparent 

polycarbonate cages with bedding facilities and a wooden stick and nesting 

material, under regulated temperature (21 ± 1 °C) and relative humidity (55 

± 10 percent) on a 12-hour light/dark cycle. The rats had ad libitum access 

to food and water.  

Figure 4.1 illustrates the experimental design for the rs-fMRI 

longitudinal studies. On one hand, the alcohol-exposed group (n = 18) 

underwent rs-fMRI in three time points: 1) before alcohol drinking (control 

condition), 2) after 30 days of free-choice access to two 250-ml drinking 

bottles: one filled with water and the other containing 10% ethanol in water 

(alcohol condition) and 3) after a week in abstinent condition, in which half 

of the rats (n = 9) were daily medicated with 2.5mg/kg/day of naltrexone 

[41] and a saline solution  was administered to the other half (n = 9). On 

the other hand, the normal neuromaturation group (n = 18) was acquired in 
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water-drinking control condition with a 30-day difference to account for 

age-related differences in brain rs-FC. The bottles were refilled twice per 

week.  

 

Figure 4.1. Longitudinal rs-fMRI study with msP rats, indicating MRI 

acquisition and alcohol drinking options between conditions. On one hand, the 18 

msP rats from the alcohol-exposed group had free-choice access during 30 days to two 

drinking bottles: one filled with water and the other with 10% ethanol in water, and 

then remained one week in abstinence treated with saline solution (9 rats) or naltrexone 

(9 rats). On the other hand, the 18 rats belonging to the normal neuromaturation group 

were only allowed to drink water for 30 days to account for age-related functional brain 

alterations.  

Figure 4.2 clarifies the MEMRI experiment. The alcohol-exposed 

group (n = 18) had 30 days of free-choice access to two drinking bottles with 

the same content as the rs-fMRI alcohol-exposed group. On the contrary, 

the water-drinking control group (n = 18) only had access to water during 

these 30 days. Twice per week the bottles were filled with fresh solutions. 
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To infuse manganese chloride (MnCl2) in the brain of the rats, pumps 

previously primed overnight in a 37°C saline solution were implanted 

subcutaneously on the dorsum, slightly caudal to the scapulae. The rats 

received post-surgical analgesia immediately after implantation and 

returned to their home cages. Osmotic MnCl2 minipumps (ALZET® model 

2001) delivering 200 μl of MnCl2 (1 μl/h) from day 24th to day 30th (a 7-day 

infusion period) were administered as an isotonic solution dissolved in Tris-

buffered saline (pH 7.4), for a total dose of infused MnCl2 of 80 mg/kg. All 

animals were imaged after the last MnCl2 infusion.  

 

Figure 4.2. Cross-sectional MEMRI experiment in which osmotic MnCl2 

minipumps were administered the last seven days. The 18 msP rats part of the 

MEMRI alcohol-exposed group chose during 30 days between two drinking bottles: 

containing water or 10% ethanol in water. The water-drinking control group was only 

allowed to drink water for 30 days. 
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These experiments were approved by our institution’s Animal Care 

and Use Committee and complies with the Spanish (law 32/2007) and 

European regulations (EU directive 86/609, EU decree 2001-486 and EU 

recommendation 2007/526/EC).  

 
4.2.2. MRI image acquisition 

The experiments were conducted in a horizontal 7 Tesla MRI 

scanner containing a 30 cm diameter bore (Biospec 70/30v, Bruker Medical, 

Ettlingen, Germany) and a 675 mT/m actively shielded gradient coil 

(Bruker, BGA 12-S) of 11.4 cm inner diameter. To achieve the highest 

possible signal-to-noise ratio (SNR), a 1H rat brain receive-only phase array 

coil with integrated combiner and preamplifier, no tune/no match was used 

together with the actively detuned transmit-only resonator (BrukerBioSpin 

MRI GmbH, Germany). MRI images were acquired and minimally 

preprocessed with a Hewlett-Packard console running Paravision 5.1 

software (Bruker Medical GmbH, Ettlingen, Germany) on a Linux platform. 

The msP rats were placed in an MRI-compatible stereotaxic device with 

adjustable ear- and bite-bars on the magnet bed. To maintain the vascular 

reactivity triggered by neuronal activation, the temperature of the rats was 

preserved (37 ± 0.5 °C) using a water blanket connected to a temperature-

regulated water bath (Thermo Scientific SAHARA Heated Bath Circulators 

S5P). In addition, vital constants were monitored (MouseOx, Starr Life 

Sciences, Oakmont, US) to make sure that the optimal values were fulfilled: 

heart rate (300 ± 50 beats per minute), oxygen saturation (> 95%) and 

breathing rate (90 ± 10 breaths/min). 
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rs-fMRI data acquisition 

The msP rats were anesthetized with 1% isoflurane in oxygen (0.8-1 

L/min). Rs-fMRI acquisition was performed using a GE-EPI sequence with 

the following parameters: field of view (FOV) = 25 × 25 mm, slice thickness 

= 1 mm, 15 coronal slices, five 3-min runs, matrix size = 96 × 96 voxels, flip 

angle = 60°, echo time (TE) = 15 ms and repetition time (TR) = 2,000 ms. 

To facilitate the registration of these functional images to a standard space, 

anatomical T2-weighted MRI images were also acquired, using rapid 

acquisition relaxation enhanced sequence (RARE) and applying the 

following acquisition parameters: FOV = 25 × 25 mm, slice thickness = 1 

mm, 15 coronal slices, matrix size = 192 × 192 voxels, RARE factor = 8, 

effective TE (TEeff) = 56 ms and TR = 2,000 ms. 

MEMRI data acquisition 

T1-weighted images were acquired on the anesthetized rats (1% 

isoflurane in oxygen, 0.8-1 L/min) using a multi-slice multi-echo (MSME) 

pulse sequence (TR = 300 ms, TE = 14 ms, averages = 8, field of view FOV 

= 32 × 32 and 9 axial slices of 0.5 mm thickness with matrix size = 256 × 

256, resulting in 0.125 × 0.125 × 0.5 mm3 voxel resolution). 

 
4.2.3. MRI image preprocessing 

In this section, some preprocessing steps are explained in more detail 

first and then a general overview of the preprocessing in rs-fMRI and 

MEMRI images is given. 
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Concepts for linear registration 

Registration consists of getting the best geometric alignment of two 

images: the reference (Y) and source (X) images. To achieve that aim, the 

transformation that makes X most similar to Y needs to be applied to X. A 

cost function quantifies the dissimilarity between both images and then 

searches for the transformation (T*) that gives the minimum cost, as 

indicated in Equation 4.1: 

𝑇∗ = arg 𝑚𝑖𝑛𝑇 ∈ 𝑆𝑇 𝐶(𝑌, 𝑇(𝑋))                                 (4.1) 

where 𝑆𝑇 is the space for transformations, 𝐶 is the cost function, 𝑌 is 

the reference image and 𝑇(𝑋) represents the image 𝑋 after been transformed 

by the transformation 𝑇.  

Interpolation is a method of calculating the intensity at 

corresponding points in the source image after the geometric transformation 

has been applied. Trilinear interpolation involves taking a weighted average 

of the values of the immediately adjacent points in the original image [65]. 

In matrix form, a resulting image y is the multiplication of the 

original image x by a transformation matrix M, following Equation 4.2 that 

in more detail corresponds to Equation 4.3 [66]: 

𝑦 = 𝑀𝑥                                                 (4.2)                                                            

 

 [

𝑦1

𝑦2

𝑦3

1

]  =  [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

0 0 0 1

] +  [

𝑥1

𝑥2

𝑥3

1

]                       (4.3) 

 
M can be the multiplication of several matrices: translation matrix 

(𝑀𝑇), rotation matrices in the three orthogonal axes (𝑀𝑅𝑥, 𝑀𝑅𝑦 and 𝑀𝑅𝑧), 

scaling matrix (𝑀𝑆𝑐) and shear matrix (𝑀𝑆ℎ), shown in Equations 4.4 to 4.9, 

with parameters q denoting units or radians about an axis (rotation). 
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  𝑀𝑇 = [

1 0 0 𝑞1

0 1 0 𝑞2

0 0 1 𝑞3

0 0 0 1

]                                        (4.4) 

 

  𝑀𝑅𝑥 = [

1 0 0 0
0 𝑐𝑜𝑠(𝑞1) 𝑠𝑖𝑛(𝑞1) 0
0 −𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞1) 0
0 0 0 1

]                        (4.5) 

 

  𝑀𝑅𝑦 = [

𝑐𝑜𝑠(𝑞2) 0 𝑠𝑖𝑛(𝑞2) 0
0 1 0 0

−𝑠𝑖𝑛(𝑞2) 0 𝑐𝑜𝑠(𝑞2) 0
0 0 0 1

]                        (4.6)  

 

  𝑀𝑅𝑧 = [

𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞3) 0 0
−𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠(𝑞3) 0 0

0 0 1 0
0 0 0 1

]                        (4.7) 

 

 

  𝑀𝑆𝑐 = [

𝑞1 0 0 0
0 𝑞2 0 0
0 0 𝑞3 0
0 0 0 1

]                                     (4.8) 

 

𝑀𝑆ℎ = [

1 𝑞1 𝑞2 0
0 1 𝑞3 0
0 0 1 0
0 0 0 1

]                                      (4.9) 

 

A rigid-body transformation has six degrees of freedom, which in a 

3D space corresponds to 3 rotations and 3 translations, and it is used in 

within-subject registration, for example functional to anatomical images.  

Twelve degrees of freedom (affine transformation) consists of 3 

rotations, 3 translations, 3 scalings and 3 shears and it is performed between 

subjects, when the template was obtained from subjects linearly registered 

or as a previous step for nonlinear registration [66].   
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Motion correction 

To acquire rodent images, adjustable ear- and bite-bars together with 

anesthesia help to minimize head motion during scanning. But despite these 

efforts there are movements causing mixes of time series from other regions. 

Therefore, a preprocessing step is needed to correct for the effects of motion 

before the statistical analysis. Basically, this consists of realigning the 3D 

brain image acquired at each time point to one of the 3D images with a rigid-

body transformation. The cost function is normalized correlation (CNC), 

which is based on intensity, has values from -1 to 1 and is mainly used to 

register X and Y images from the same subject and modality. CNC is 

calculated with Equation 4.10: 

𝐶𝑁𝐶 =  
𝛴(𝑋 · 𝑌)

√𝛴𝑋2 √𝛴𝑌2 
                                           (4.10) 

MCFLIRT, part of FSL (FMRIB’s Software Library, Oxford Centre 

for Functional MRI of the Brain, Oxford, United Kingdom) uses a 

multiresolution optimization and a hybrid global–local optimization 

technique. The middle brain volume is selected as the reference image. First, 

an initial coarse 8 mm search for the six motion parameters is carried out 

using the CNC cost function. Only gross image features remain at that large 

scale so there is a small probability to get stuck in local minima. An identity 

transformation is assumed between the middle volume and the adjacent 

volume. Then, the transformation found is used as the estimate for the 

transformation between the middle volume and the volume beyond the 

adjacent one, and so on. Afterwards there are two subsequent searches at 4 

mm. Trilinear interpolation is applied for all these optimizations [67].  

Importantly, even after realigning the brain to its original position, 

movement-induced signal artifacts can remain because the movement of the 

brain within the magnetic field gradients already altered the signal. To 
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alleviate this, in the statistical analysis the six movement parameters are 

often included as nuisance covariates, to account for changes in the fMRI 

signal that are correlated with the head movement [68]. 

Brain extraction  

The main steps for brain extraction are illustrated in Figure 4.3. The 

intensity histogram of the MR image is used to find the intensity effective 

range. Then a threshold t is searched to distinguish between brain and non-

brain tissue and get an estimation of the center of gravity (COG) and the 

radius of the head. Afterwards, a triangular tessellation of a sphere’s surface 

is initialized inside the brain, centered in the COG and with half the head’s 

radius. This tessellated surface deforms one vertex at a time until it reaches 

the brain’s surface [69]. Four main parameters can be specified to control 

the segmentation: 1) fractional intensity threshold f ∈ [0..1], 2) the vertical 

gradient in f , g ∈ [-1..1], 3) the COG and 4) the radius. The smaller the f 

value, the bigger the expansion of the tessellated surface. Positive g values 

give larger brain outline at the inferior slices of the brain, whereas negative 

g values give smaller brain outlines at the superior slices.   

To segment the images, the head radius was considered 70 mm (the 

image header is multiplied by 10, 10 and 5 in x, y and z axis respectively to 

mimic human dimensions). For the anatomical images the following 

parameters were set: f = 0.2 and g = 0.3, whereas for the functional images 

the best brain extraction was achieved with f = 0.4 and g = 0. 
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Figure 4.3. Steps for brain extraction with Brain Extraction tool (BET), part of 

FSL.  First, the intensity below the 2% (𝑡2) and 98% (𝑡98) of the cumulative histogram 

are found to distinguish between brain matter and background. The threshold t is 10% 

between 𝑡2 and 𝑡98 and it is used to estimate the approximate position of the center of 

gravity (COG) and the mean radius of the brain/head in the magnetic resonance image. 

The brain surface is modeled by a surface triangular tessellation, being a tessellated 

sphere centered on the COG the initial model, with its radius set to half of the estimated 

brain/head radius. Each vertex in the surface is updated by estimating where best that 

vertex should move to reach a brain’s edge. This process is performed with a higher 

smoothness constraint until the brain’s edges are touched. Modified from [69]. 

Linear registration 

Registration is performed to overlap the same brain areas across 

subjects in order to test functional connectivity (FC) hypotheses. This is 

frequently done by warping the anatomical structures of the brain of each 

subject to match a template brain within a standard defined space [68].  
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Functional images were registered to a 3D anatomical image using a 

rigid-body transformation. To register the anatomical images to the 

standard template an affine transformation was used, since we were aligning 

to an affine standard template. The cost function employed was correlation 

ratio (CCR), as shown in Equation 4.11, with values from 0 to 1: 

𝐶𝐶𝑅 =  
1

𝑉𝑎𝑟(𝑌) 
  𝛴𝑘

𝑛𝑘

𝑁
𝑉𝑎𝑟(𝑌𝑘)                       (4.11) 

where 𝑌 is the template image, 𝑉𝑎𝑟(𝑌) is the variance of the 

intensities in 𝑌, 𝑌𝑘 is the 𝑘𝑡ℎ iso-set defined as the set of intensities in image 

𝑌 at positions where the intensity in the source image 𝑋 is in the 𝑘𝑡ℎ  

intensity bin and 𝑛𝑘 is the number of elements in the set 𝑌𝑘 such that 𝑁 =

 𝛴𝑘𝑛𝑘. 

Smoothing 

Spatially smoothing the data reduces the number of independent 

statistical tests (in the voxels), thus allowing less-stringent control over 

what t-value is considered significant. Moreover, spatial smoothing helps to 

overcome differences in anatomy between subjects that might otherwise 

render areas of activation, and increases the signal-to-noise ratio (SNR). It 

is reasonable to smooth data with a filter that has a width similar to the size 

of predicted areas of activity. A Gaussian filter blurs the image and 

minimizes the noise [68]. 
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4.2.3.1. rs-fMRI image preprocessing 

Rs-fMRI data was preprocessed within runs using FSL 5.07 tools 

[70,71] and Matlab 2014a (The MathWorks, Inc., Natick, MA, United 

States). First, the Bruker images were converted to NIfTI (Neuroimaging 

Informatics Technology Initiative) data format and the voxel resolution was 

scaled up by 10 to mimic human brain size and apply correct spatial 

transformations [72,73]. Afterwards, motion correction was applied with 

respect to the middle volume [67] and the brain was segmented [69]. Next, 

the transformation matrix to register the functional images to a rat brain 

T2-weighted MRI template [36] was calculated as the concatenation of two 

matrices: 1) rigid-body matrix to co-register the functional images onto the 

3D anatomical image and 2) affine matrix to register the anatomical image 

to the standard template. The next step was noise reduction including a 4 

mm FWHM (full width at half maximum) Gaussian smoothing [74]. 

Subsequently, global four-dimensional (4D) mean-based intensity 

normalization was applied and the variance tied to six motion parameters 

(rotations and translations along the three principal axes) was regressed out. 

This step was followed by a band-pass temporal filtering (nonlinear high-

pass filter of σ = 50 s, and a Gaussian linear low-pass filter of σ = 2 s) to 

retain frequencies in the 0.01–0.1 Hz range, the frequency band with 

biological relevance for rodents under isoflurane anesthesia [75]. Finally, 

the transformation matrix was applied to the functional images, which 

became normalized to a standard space [36].  

 

4.2.3.2. MEMRI image preprocessing 

All images were preprocessed with custom-developed MATLAB 

functions (version R2011a, the MathWorks, Inc., Natick, MA, United 

States) and FSL 5.07 tools [70,71]. First, the MEMRI images were 
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converted to NIfTI format, scaled up by a factor of 10 and brain-extracted 

[69]. Then, these T1-weighted images were registered to a stereotaxic rat 

brain MRI template [36] by a 12-parameter affine transformation [67]. 

This template is co-registered to a digitized atlas [76], which enables atlas-

based generation of region of interest (ROI) masks for detailed anatomical 

analysis. The resulting images were smoothed to improve SNR using a 

Gaussian kernel with 4 × 4 × 4 mm3 FWHM. The activation volume in each 

ROI was calculated in cubic millimeters multiplying the activated voxels by 

the voxel resolution. Afterwards, the percentage of voxels reached by 

manganese in each ROI was calculated as the number of activated voxels 

divided by the total number of voxels of that ROI and multiplied by 100.  

 
4.2.4. Functional connectivity analysis 

This section refers to rs-fMRI images. Probabilistic independent 

component analysis (PICA) [50] was applied to the data in control and 

alcohol conditions in the alcohol-exposed group (individual runs), using 

MELODIC (Multivariate Exploratory Linear Decomposition into 

Independent Components) version 3.14, part of FSL [70,71]. The aim of 

this data-driven approach is to find group linear-mixed, independent and 

non-Gaussian sources, leading to spatial maps with minimal spatial 

redundancy, each of them having voxels that share a unique time course 

[77]. Prior to this analysis, each brain-extracted image was voxelwise 

preprocessed, including demeaning and variance normalization. Then, these 

data were temporally concatenated across control and alcohol conditions, 

whitened and projected into a 17-dimensional subspace using principal 

component analysis (PCA). The whitened observations were decomposed 

into sets of vectors which describe signal variation across the temporal 

domain (time courses), the run domain and across the spatial domain (maps) 
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by optimizing for non-Gaussian spatial source distributions using a fixed-

point iteration technique [78]. Then, the estimated component maps were 

divided by the standard deviation of the residual noise and thresholded to 

place equal loss on false positives and false negatives, by fitting a mixture 

model to the histogram of intensity values [79]. Group-PICA parceled the 

functional data into 17 independent components (ICs) — spatial maps and 

time courses — some reflecting artifactual spatial structures, blood vessels 

or cerebrospinal fluid, and others corresponding to well-characterized RSNs 

(Figure 4.4 panel 1) [80]. An experienced neurobiologist visually selected 

the ICs that were RSNs. An extended explanation for PICA, starting from 

classical ICA (section 4.2.4.1), is given in section 4.2.4.2. To obtain run-

specific time courses for the ICs identified by group-PICA, we employed the 

first step of dual-regression, i.e. spatial regression (section 4.2.4.3). The 

whole set of group-PICA spatial maps were spatially regressed onto the rs-

fMRI data, obtaining run-specific beta coefficients that characterize the 

temporal dynamics for each spatial map — time courses for each group-

PICA map — and condition,  as shown in Figure 4.4 panel 2 [77,81]. Next, 

run-specific L2-regularized partial correlation (L2-reg pcorr) matrices were 

estimated between the RSNs’ run-specific time courses, and for each subject 

the whole set of run matrices were averaged to get a L2-regularized partial 

correlation matrix (Figure 4.4 panel 3). Finally, the general linear model 

(GLM; [82]) was applied using permutation-based non-parametric testing, 

correcting for multiple comparisons. Three comparisons were performed to 

evaluate rs-FC changes: 1) control versus alcohol conditions, 2) alcohol with 

respect to abstinence with saline solution and 3) abstinence, saline solution 

versus naltrexone treatment (Figure 4.4 panel 4). This between-network 

comparison analysis is explained in section 4.2.4.4. 
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Figure 4.4. Methodology to investigate alcohol-related changes in between-

network rs-FC with rs-fMRI data. 1) The preprocessed rs-fMRI runs (5 runs per 

subject) from the control and alcohol conditions in the alcohol-exposed group were 

temporally concatenated and group-PICA was applied, obtaining ICs of biological 

interest (RSNs) and irrelevant ICs such as blood vessels or movement artifacts. 2) 

Afterwards, spatial regression was applied to the whole IC set to obtain run-specific 

time courses for each IC. Next, the time courses of the irrelevant ICs were regressed 

out of the RSNs’ time courses. 3) Run-specific L2-regularized partial correlation 

matrices were estimated between the RSNs’ run-specific time courses and averaged for 

each subject to get a L2-regularized partial correlation matrix. 4) Finally, a t-test with 

permutations was performed to evaluate rs-FC changes comparing the subject-

averaged L2-regularized partial correlation matrices in two conditions (A and B). a. u. 

= arbitrary unit. 
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4.2.4.1. Classical ICA 

Independent component analysis (ICA) is a data-driven approach 

that was first introduced for fMRI images in 1998 by McKeown et al. [83]. 

Data are decomposed into spatially ICs, related to tasks, movements or 

artifacts. This technique decomposes a two-dimensional (2D) matrix (time × 

voxels) into the ICs that were combined to create the mixture, described as 

a set of time courses (describing how the signal evolved over time) and 

spatial maps (brain locations where a certain signal portion is detected). ICA 

is a multivariate approach, that analyzes all voxels at once, assuming that 

brain areas responsible for a particular task are independently distributed 

from brain areas responding to other sources of variability. These brain 

networks can partially overlap and since they are independent, knowledge 

about the spatial distribution of one IC does not provide any information on 

the distribution of the others [84]. Since ICA is a linear model, the original 

data can be obtained by summing the ICs. The main equation for ICA is 

Equation 4.12:  

𝑋 = 𝐴𝑆                                                  (4.12) 

where X is an n × p fMRI data matrix with n voxels with intensities 

at p time points. S is a k × p source matrix, being k the number of ICs, which 

is optimized to contain statistically independent spatial maps in its rows 

(spatial brain areas, each with a consistent temporal dynamic). The mixing 

matrix A contains in its columns the time courses associated to the spatial 

maps. The sources S are estimated by iteratively optimizing the unmixing 

matrix 𝑊 =  𝐴−1, so that 𝑆 =  𝑊𝑋 and its rows are mutually independent. 

Information-maximization (Infomax) algorithm is used for this unmixing 

process [50]. The classical ICA approach is summarized in Figure 4.5. 
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For unmixing, spatial ICA searches components that are maximally 

spatially independent from one another, trying to optimize the cost function 

called the principle of non-Gaussianity. When signals are combined to form 

a mixture, there is an averaging that causes the distribution of the mixture 

to be more Gaussian than the distribution of the original signals. This is in 

accordance with the central limit theorem of statistics. By finding the set of 

components that are maximally non-Gaussian (as measured by negative 

entropy or negentropy) it is possible to identify the set of time courses and 

independent spatial maps that explain the data. For spatial ICA, non-

Gaussianity is optimized across space (the distributions are the histograms 

of values over space) [85]. 

 

 

Figure 4.5. Classical ICA approach.  The fMRI data (X) is displayed in a 2D matrix 

where each row represents lined up data from a 3D volume (all the voxels) at one time 

point and each column contains data from all time points at one voxel. After applying 

ICA, the fMRI data is unmixed into a set of independent components (ICs) described 

by their own time course (matrix A, with the same number of time points as the input 

data) and the corresponding spatial map (in the matrix S, with same number of voxels 

as the input data, and same number of columns as rows in matrix A). ICA = independent 

component analysis. Modified from [86]. 
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4.2.4.2. Probabilistic ICA 

In classical ICA there is no variable that accounts for noise. This can 

lead to overfitting, when too many components are used to describe noisy 

parts of the data. To avoid overfitting, an extension of ICA called 

probabilistic ICA (PICA) was implemented in 2004 by Beckmann and Smith 

[79] for fMRI data analysis, and was optimized one year later for 

investigating RSNs by Beckmann et al. [50].  

PICA assumes that the p-dimensional vectors of observations (fMRI 

time series) are generated from a set of q < p (fewer sources than 

observations in time) statistically independent non-Gaussian sources 

(spatial maps) via a linear and instantaneous mixing process corrupted by 

additive Gaussian noise η(t), as written in Equation 4.13. 

𝑥𝑖 = 𝐴𝑠𝑖 +  𝜇 + 𝜂𝑖                                         (4.13) 

where 𝑥𝑖  corresponds to the individual measurements at voxel i, 

𝑠𝑖 denotes the non-Gaussian source signals and 𝜂𝑖  ∼  𝒩 (0, 𝜎2 Σi) is the 

Gaussian noise. The covariance of the noise is voxel dependent to allow for 

the different noise covariances observed in different tissue types. The vector 

𝜇 defines the mean of the observations 𝑥𝑖 and the matrix A with size p × q 

and rank q. The source signals 𝑠𝑖 are recovered with the linear 

transformation matrix W such that 𝑠 = 𝑊𝑥  [79]. 

On one hand, PICA can be applied to a single subject with the aim of 

identifying and removing noise components. On the other hand, PICA can 

also be run at the group level (by temporally concatenated all the data from 

the subjects after they have been registered to a standard space) to identify 

large-scale RSNs [87]. 

PICA is implemented in the tool MELODIC (Multivariate 

Exploratory Linear Decomposition into Independent Components) version 
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3.14, part of FSL [70,71]. A schematic workflow of the steps is illustrated 

in Figure 4.6.  First, the demeaned original data are voxelwise normalized 

to unit variance. Then, a covariance matrix 𝑅𝑥 is estimated. Probabilistic 

PCA (PPCA) estimates the noise and a set of orthogonal (uncorrelated) 

spatially whitened observations and allows to infer the dimensionality of the 

ICs (although sometimes set by the user). The noise covariance structure, 

Σ𝑖, can be estimated from the residuals in order to temporally pre-whiten 

and re-normalize the data [50]. From the spatially whitened observations 

obtained with PPCA, the individual component maps are obtained using a 

modified fixed-point iteration scheme called FastICA [78] to optimize for 

non-Gaussian sources via maximizing the negative entropy. These maps are 

afterwards transformed to Z-scores, so that they depend on the amount of 

variability explained by the entire decomposition at each voxel, relative to 

the residual noise, i.e. the degree to which the signal explained within this 

model fits to the data.  Finally, Gaussian or Gamma mixture models are 

fitted to the individual Z-maps to infer spatial locations that are significantly 

modulated by the associated time course  [50]. 
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Figure 4.6. Schematic workflow of the PICA approach to obtain independent 

components (task-related networks or resting-state networks) [50]. PCA = 

probabilistic component analysis; PICA = probabilistic independent component 

analysis; PPCA = probabilistic principal component analysis. 

 
4.2.4.3. Spatial regression 

With spatial regression the group-level spatial maps were regressed 

onto each subject’s data to identify the patterns of signal changes over time 
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that were best matched to the group-level networks (one time course per 

network). 

 

4.2.4.4. Between-network comparisons 

Partial regularized correlation aims to estimate direct connection 

strengths with higher accuracy than full correlations. Full correlations 

measure the extent of temporal association between two ICs’ time series, 

while partial correlations remove the variances from all other time series 

before calculating the statistical dependency between the two ICs under 

study [88,89]. Full correlation is calculated with Equation 4.14:  

𝑐𝑜𝑟𝑟(𝑋, 𝑌) =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 · 𝜎𝑌
                              (4.14) 

where corr is the correlation matrix, cov is the covariance matrix and 

σ reflects the standard deviations of the signals X and Y. Partial correlation 

is calculated the same way as full correlation but with the inverse covariance 

matrix. We employed ridge regression through the Tikhonov method, in 

which Tikhonov regularization is applied to get an stable approximation to 

the exact solution in case there was a bad approach to the equations due to 

noise in the fMRI data [90]. 

To assess subject differences in rs-FC between pairs of RSNs, we 

used FSLNets toolbox version 0.6, part of FSL [70,71]. After demeaning 

each time course, the time courses from the discarded ICs were regressed 

out of the RSNs’ time courses [91] and the rest of the analysis was focused 

only on these cleaned RSNs’ time courses. The next step was to compute 

L2-regularized partial correlation (ridge regression with rho = 0.01) 

[92,93] between each pair of RSN’s time courses, for each run, with the goal 

of solely focusing on direct network connections. Then, the partial 

correlation values were converted into Fisher’s z transformed values 
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considering the temporal smoothness of the data, and the network matrices 

were averaged across five runs to obtain one network matrix per subject 

(Figure 4.4 panel 3). The p-values for these tests were FWER (family-wise 

error rate)-corrected for multiple comparisons and contrasts [94,95], 

subjected to 5000 permutations.   

A paired t-test in the rs-fMRI alcohol-exposed group, comparing 

control and alcohol conditions, was conducted for the L2-regularized partial 

correlation values of each pair of networks to investigate rs-FC changes 

driven by alcohol condition (Figure 4.4 panel 4). Then, to assess if the rs-FC 

changes were certainly driven by alcohol or had an age-related contribution, 

the normal neuromaturation group was subjected to three statistical tests. 

First, we performed an unpaired t-test comparing time point 1 in the alcohol-

exposed and normal neuromaturation groups, to find out if there were 

significant differences in the baseline levels. The second test was a two-way 

mixed effect ANOVA in the two groups with age and group as factors, to 

evaluate if there was an interaction between age and alcohol consumption. 

Finally, we applied a paired t-test between both time points in the normal 

neuromaturation group (two control conditions).  

In addition, to know if there was neural repair after one week of 

abstinence we compared with a paired t-test the between-network rs-FC of 

the 9 msP rats in alcohol condition versus the rs-FC of the same rats in 

abstinence condition with access to a saline solution. The effect of naltrexone 

was also studied with an unpaired t-test considering the 9 msP rats that had 

access to the saline solution versus the other 9 msP rats treated with 

naltrexone (Figure 4.4 panel 4).  
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4.2.4.5. Explaining correlation changes as additive signal changes 

Correlation is sensitive to several changes in signal dynamics, such 

as differences in noise levels and changes in the amplitude (variance) of the 

signal components. Therefore, if only correlation measures are considered, 

irrespective of the changes in variance and covariance, there is an important 

loss of information [52]. Changes in network connectivity will produce 

changes in variance (that suggest the extent of changes) along with changes 

in correlation in the networks. ASC (additive signal change) [51] is a 

covariance-based approach for the analysis of changes in FC connectivity, 

that allows to determine if an observed change in covariance between 

networks and across conditions can be explained by additions of signal 

components that are unshared and/or shared across networks, or changes 

in synchronization. ASC uses a generative model of stochastic signals and 

their change across two conditions: A and B, examining their changes in 

covariance. The second condition, B, is modelled by adding new signals to 

A, Xn and Yn, that can alter correlation and (co)variances across conditions. 

After generating the distribution of the covariance for conditions A and B, 

and the distributions of the different classes of correlation changes, the 

hypothesis that the changes in B were produced without any change in 

underlying covariance is tested. The four classes for changes in correlation 

are described below and summarized in Figure 4.7. 

Class 1. Change in levels of uncorrelated signal components 

This class explains changes in levels of uncorrelated noise and 

changes in the variance of signal components that are not shared across a 

pair of networks, for example a higher activation in one network that is not 

related to the activity in the second network. An increase in uncorrelated 
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signal increases variance and reduces correlation. The opposite effect occurs 

when there is a decrease in uncorrelated signal [51]. 

Class 2. Change in variance of a single shared signal component 

The second class covers cases as strengthening of a direct 

connectivity between networks, or the signal of a third node that enters the 

two networks under assessment. It considers an addition of a single signal 

component shared across networks. The specific change in correlation in 

condition B depends on the correlation of the shared signal with the signals 

in condition A. Thus, two distributions are considering, one for the 

minimum change in correlation and one for the maximum change. Usually, 

when the variance increases the correlation increases as well  [51]. 

Class 3. Changes in variance of a mix of signal components 

Changes in variance of a mixture of unshared and shared signals 

produce a change in variance in the assessed signals. Shared signals may 

increase in variance and increase the correlation, whereas noise signals 

correlated across nodes will produce a decrease in correlation. Two 

distributions form this class [51]. 

Class 4. Changes in synchronization (not an additive signal) 

This class includes changes in correlation that are not followed by 

changes in variance, and changes in the sign of correlation. These changes 

could be caused by signals becoming phase locked, or networks switching to 

a different input  [51]. 
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Figure 4.7. Illustration of the four classes allowed in the Additive Signal Change 

(ASC) method, depending on the effect of additive signals in correlation and 

variance.  The addition (blue arrows) of signals into a certain brain region/network (X 

or Y) in a condition (A or B) can lead to three classes (1 to 3). In class 1 (uncorrelated 

signal class) an uncorrelated signal with region Y is added to X in condition B, reducing 

correlation and increasing variance in X. Concerning class 2 (shared signal class), a 

common signal is added to both regions in condition B, increasing correlation and 

variance in both nodes. In class 3 (mixed signal class), a signal already present in region 

Y enters region X. Simultaneously, some signal unshared by region X is removed from 

region Y in condition B, increasing correlation. The forth class does not present 

additions of signals, but synchronization (increasing correlation, maintaining variance) 

and flips from positive to negative correlation (decreasing correlation, without 

changing variance). Modified from [51]. 
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ASC method was applied to the L2-regularized partial correlation 

matrices obtained with FSLNets (averaging all the subjects of each group), 

making inferences only on the pairs of RSNs with significant changes across 

alcohol and control condition in the rs-fMRI alcohol-exposed group.  

Monte Carlo (MC)-based null hypothesis approach was performed to 

evaluate if the changes in correlation were significant and fell into one of the 

considered four classes. First, a distribution of possible underlying 

covariances was obtained for conditions A and B, using an inverse Wishart 

distribution, starting from the observed covariance in A and B with the 

degrees of freedom estimated by an autoregressive (AR) model on the 

timeseries, with 2,000 samples. Then, 2,000 samples (signals) were taken 

from both distributions to generate an MC distribution of expected 

correlation changes for the unshared class, two distributions for the shared 

class and other two distributions for the combined classes. An example of 

distributions is shown in Figure 4.8. For generating these distributions, the 

MC covariance in A and the MC changes in variance were accounted for, 

and different equations were employed for each class. If the observed 

correlation value in B was between the 2.5th percentile and the 97.5th 

percentile of the considered class distribution, and the change in correlation 

between MC A and MC B was significant, it could be affirmed that the 

changes were explained by that class [51]. 

Only the significant changes in correlation between the two 

conditions (after False Discovery Rate (FDR) correction, α = 0.01) were 

considered. The four classes are exclusive, so the tests were done in the 

following order: changes explained by unshared, shared and combined 

signals. The significant changes that were not considered above, fell into the 

synchronization class. That is to say, those changes that were unlikely to be 

explained by one class (p < 0.025) were tested for the next class [51]. 
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Figure 4.8. Effects on correlation of additive signals producing a 20% variance 

change.  Here, both regions (X and Y) increase in variance by 20%, with an initial 

correlation of 0.58. The white histogram corresponds to the distribution of the 

observed correlations in condition A. The red histogram reflects the expected 

distribution of correlation in condition B if the observed change in variance was 

associated with the addition of uncorrelated signal/s. The purple histograms 

correspond to the distributions of minimum and maximum changes in correlation if 

there was a common additive signal. Finally, the green histograms correspond to the 

distributions of minimum and maximum changes in correlation when variance changes 

are due to mixed signals (uncorrelated and common components). Adapted from [51]. 

 
4.2.5. Brain activity analysis 

Figure 4.9 summarizes the MEMRI data analysis. For identifying 

the brain regions in which activation in the alcohol-exposed group differed 

from the water-drinking control group, voxelwise independent t-tests were 

performed in SPM8 (Wellcome Trust Centre for Neuroimaging, Institute of 

Neurology, University College London, London, United Kingdom) [66]. 

For minipump infusion experiments, the arbitrary significance threshold 
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was set to p < 0.01 (uncorrected) for individual voxels, and then a cluster 

size threshold was applied to correct for multiple comparisons at p < 0.05. 

The cluster size threshold value was determined using MC simulation (13 

voxels). Finally, the voxels with significant differences in activity across 

control and alcohol conditions were grouped into atlas-based brain regions, 

and the percentage of activated voxels within each brain region was 

calculated. 

 

 

Figure 4.9. Methodology to investigate alcohol-related changes in brain activity 

via MEMRI analysis. First, the MEMRI images in standard space were subjected to 

a voxelwise t-test to assess if brain activity was higher in control condition than in 

alcohol condition or if the contrary was occurring. Then, the results were grouped into 

atlas-based brain regions, and the percentage of voxels reached by manganese 

(activated brain areas) were obtained in each region. 
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4.3. Results 

4.3.1. Group resting-state networks 

Figure 4.10 contains the seven RSNs identified after group-PICA in 

the alcohol-exposed group (18 rats in control condition and afterwards in 

alcohol condition): striatal network (StrN), sensory-cortex network (SCN), 

motor-retrosplenial network (MRN), medial prefrontal-retrosplenial 

network (mPRN), parietal-association network (PAN), visual network (VN) 

and temporal-cortex network (TCN). StrN key brain areas comprise caudate 

putamen (CPu), dorsal hippocampus (dHC), nucleus accumbens (Acb) and 

ventral pallidum (VP). SCN includes insular cortices (Ins), primary (S1) and 

secondary (S2) somatosensory cortices and primary motor cortex (M1), 

being S1 the region with higher IC values. MRN is formed by primary and 

secondary (M2) motor cortices and retrosplenial cortices, spreading in a 

small part of S1 and S2. In the mPRN the brain regions most contributing 

to the network are the anterior cingulate cortex (ACC) and the prelimbic 

cortex (PrL), being other crucial areas the posterior cingulate cortex (PCC), 

infralimbic cortex (IL), lateral orbital cortex (lOC) and agranular insular 

cortex (aIns). PAN is centered in the parietal cortex (Pa) and comprises 

other brain regions such as S1 and S2. VN is primarily focused on the 

primary (V1) and secondary (V2) visual cortices, spreading in parts of the 

dHC, S1 and laterodorsal thalamic nucleus (lThal). TCN includes the 

temporal association cortex (TA), primary (A1) and secondary (A2) auditory 

cortices, and V1.  
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Figure 4.10. RSNs obtained with group-PICA, thresholded to balance false 

positives and false negatives, and considering control and alcohol conditions in 

the rs-fMRI alcohol-exposed group of msP rats.  From bottom left, clockwise: axial, 

coronal, sagittal and 3D views.  a) Striatal network (StrN). b) Sensory-cortex network 

(SCN). c) Motor-retrosplenial network (MRN). d) Medial prefrontal-retrosplenial 

network (mPRN). e) Parietal-association network (PAN). f) Visual network (VN). g) 

Temporal-cortex network (TCN).  

 

4.3.2. Between-network resting-state functional connectivity 

Rs-FC differences between RSNs comparing control and alcohol 

conditions in the alcohol-exposed group of rats, which consumed 

approximately 5-6 g/kg/day of alcohol, are illustrated in Figure 4.11. On 

one hand, two pairs of networks showed a hypoconnectivity, i.e. decrement 

of rs-FC in alcohol condition (Figure 4.11a): StrN and VN (FWER-
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corrected p-value = 0.0036, average Fisher-z values = 1.05 in control and 

0.02 in alcohol) in Figure 4.11a.1, and VN and SCN (FWER-corrected p-

value = 0.0160, average Fisher-z values = 0.68 in control and 0.05 in 

alcohol), depicted in Figure 4.11a.2. On the other hand, there were 

significant hyperconnectivities, i.e. increases in rs-FC in alcohol condition 

(Figure 4.11b), in three pairs of RSNs: StrN and mPRN (FWER-corrected 

p-value = 0.0002, average Fisher-z values = -0.11 in control and 1.97 in 

alcohol), in Figure 4.11b.1; PAN and SCN (FWER-corrected p-value = 

0.0012, average Fisher-z values = 0.78 in control and 1.66 in alcohol), shown 

in Figure 4.11b.2, and MRN and SCN (FWER-corrected p-value = 0.0246, 

average Fisher-z values = 0.44 in control and 1.05 in alcohol), in Figure 

4.11b.3. Overall, out of the 7 networks identified as relevant, 6 presented 

connectivity dysfunctions, with increases and decreases in functional 

coupling. These results provide evidence for a brain-wide readjustment of 

rs-FC after just one month of alcohol consumption, suggestive of an altered 

homeostatic state. Importantly, none of the three complementary tests 

performed in the normal neuromaturation group of rats (control condition 

with a 30 day-difference) yielded significant rs-FC differences, wherein it 

was confirmed that these rs-FC changes were alcohol-related. During early 

abstinence no rs-FC significant differences were found with respect to 

alcohol condition, neither when comparing the effect of saline solution and 

naltrexone. Figure 4.12 shows the average L2-regularized partial 

correlation and full correlation matrices of the three comparisons conducted 

in the rs-fMRI alcohol-exposed group: 1) control versus alcohol (Figure 

4.12a), 2) alcohol with respect to abstinence with saline solution (Figure 

4.12b) and 3) abstinence with saline solution compared to abstinence with 

naltrexone treatment (Figure 4.12c). 
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Figure 4.11. Changes in rs-FC between RSNs when comparing control versus 

alcohol conditions in the rs-fMRI alcohol-exposed group (18 msP rats). The 

boxplots show the L2-regularized partial correlation Fisher’s z values, with family-wise 

error rate (FWER)-corrected p-values. a) Hypoconnectivity in alcohol condition with 

respect to control condition. a.1) Decrease in rs-FC in alcohol condition between 

striatal network (StrN) and visual network (VN). a.2) Rs-FC reduction in alcohol 

condition between visual (VN) and sensory-cortex (SCN) networks. b) 

Hyperconnectivities in alcohol condition versus control condition. b.1) Rs-FC rise 

driven by alcohol consumption, between striatal network (StrN) and medial prefrontal-

retrosplenial network (mPRN). b.2) Alcohol-related rs-FC increase between parietal-

association network (PAN) and sensory-cortex network (SCN). b.3) Rs-FC rise in 

alcohol condition between motor-retrosplenial network (MRN) and sensory-cortex 

network (SCN). 
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Figure 4.12. Average L2-regularized partial and full correlation matrices for the 

three rs-FC comparisons performed in the rs-fMRI alcohol-exposed group (18 

msP rats). a) Control condition (n = 18) versus alcohol condition (n = 18), with a 30-

day difference. a.1) L2-reg. pcorr: control and alcohol conditions. Numbers indicate 

significant differences across both conditions. a.2) Full correlation matrix: control and 

alcohol. Black squares point notable higher full values than partial values (differences 

≥ 0.7 in Fisher’s z values), indicating that these RSNs are communicating via another 

network/s. b) Alcohol condition (n = 9) versus abstinence with saline condition (n = 9) 

with a seven-day difference. b.1) L2-reg. pcorr matrix: abstinence with saline solution 

and alcohol. b.2) Full correlation matrix: abstinence treated with saline solution and 

alcohol. c) Cross-sectional comparison of abstinence with saline condition (n = 9) versus 

abstinence medicated with naltrexone (n = 9). c.1) L2-reg. pcorr matrix: abstinence 

with saline solution and abstinence treated with naltrexone. c.2) Full correlation 

matrix: abstinence treated with saline solution and abstinence medicated with 

naltrexone. abst = abstinence; reg. pcorr = regularized partial correlation. 
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4.3.3. Additive signal changes 

Figure 4.13 shows the results obtained with ASC method, which 

would have been meaningful if there had been a significant change of 

variance in the original signals between control and alcohol conditions, 

something that didn’t happened (p > 0.1). 

 

Figure 4.13. Changes in L2-regularized partial correlation explained as additive 

signal changes. a) Addition of a common signal to both resting-state networks.                     

b) Addition of a mix of uncorrelated and common signal to both resting-state networks. 

The circular plots joint pairs of networks with significant changes in correlations (red: 

increases in alcohol condition, blue: decreases in alcohol condition). The plot below 

indicates the values of correlation, together with a representation of the Gaussian 

distributions for the four classes accounted for in ASC method: uncorrelated (green), 

common (purple), mixed (gray) and other (white) additive signals. ASC = additive 

signal changes; StrN = striatal network; SCN = sensory-cortex network; MRN = 

motor-retrosplenial network; mPRN = medial prefrontal-retrosplenial network; PAN 

= parietal-association network; VN = visual network; TCN = temporal-cortex 

network. 
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4.3.4. Brain activity changes across control and alcohol conditions 

Statistical parametric maps presented in Figure 4.14 show significant 

(cluster-size corrected-p < 0.05) increases of T1 signal intensity in MEMRI 

images in the alcohol-exposed rats compared to the water-drinking control 

group, over a single alcohol drinking session. The whole list of regions is 

shown in Table 4.1. Activity increments revealed by osmotic minipump 

infusion of MnCl2 were largely confined to prefrontal cortical regions 

covering the cingulate (Cg), prelimbic (PrL), infralimbic (IL), peduncular 

and OC, as well as the Ins. Many olfactory areas including the olfactory bulb 

(OB), accessory olfactory bulb, anterior olfactory nucleus (AON), tenia tecta, 

and piriform cortex were identified. Activity increases in subcortical regions 

were mainly restricted to the Acb. 

 

 

Figure 4.14. MEMRI maps illustrating brain regions with higher brain activity 

in the alcohol-exposed msP rats compared to the water-drinking control msP 

rats, in a 30-day cross-sectional study. These MEMRI maps in coronal view were 

obtained using osmotic minipumps for manganese infusion (cluster-size corrected p < 

0.05) comparing two groups of 18 msP rats. Color code represents t-values and 

numbers in the right-bottom corner of each image indicate the positions of the sections 

from bregma in millimeters. Acb = nucleus accumbens; AON = anterior olfactory 

nucleus; Cg = cingulate cortex; CPu = caudate putamen; IL = infralimbic cortex; Ins = 

insular cortex (mainly agranular); PrL = prelimbic cortex. 
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Table 4.1. Brain regions with higher brain activity in the alcohol-exposed msP 

rats (n = 18) than in the water-drinking control msP rats (n = 18), revealed by 

MEMRI with osmotic minipump infusion. 

ROI name Abbreviation Volume (mm3) % of ROI 

olfactory bulb OB 1.12 11.30 

anterior olfactory nucleus AON 2.32 27.10 

piriform cortex PirC 0.14 1.82 

endopiriform cortex EndP 0.27 3.23 

orbital cortex OC 4.50 19.50 

frontal association cortex FrA 2.44 27.80 

prelimbic cortex PrL 1.00 10.80 

infralimbic cortex IL 0.36 12.30 

insular cortex Ins 0.25 1.50 

claustrum Cl 0.12 2.80 

primary motor cortex  M1 2.93 6.10 

secondary motor cortex  M2 2.52 8.00 

primary visual cortex V1 0.27 1.70 

primary somatosensory cortex S1 0.51 0.40 

accumbens Acb 0.48 3.50 

caudate putamen CPu 0.41 0.60 

 

4.4. Discussion 

We have made use of rs-FC assessed by the correlation between 

spontaneous BOLD signals in different RSNs as a measure of brain’s 

functional link-level organization at rest [96], to find long-range networks’ 

alterations due to alcohol intake in alcohol-preferring rats. This rs-fMRI 

connectivity analysis has been combined with a MEMRI activity analysis 

seeking to address the question of how brain network homeostatic 
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mechanisms arise in the onset of alcohol dependency. Identification of rs-FC 

alterations between RSNs proves that disruption of any brain region can 

disturb functions in distantly related brain areas [9] and MEMRI findings 

reveal behavioral aspects. 

 
4.4.1. Brain activity driven by alcohol  

MEMRI has allowed us to assess the effects of chronic moderate 

alcohol consumption on whole brain activity. So far, only a few studies have 

exploited MEMRI in rodents for identifying neural circuits associated with 

specific behaviors [44,97–100]. Acb activation revealed by MEMRI is also 

in line with previous attempts to map global brain activation by alcohol 

using either deoxyglucose metabolic mapping [101] or c-Fos or ΔFosB 

immunohistochemistry [102–104]. Furthermore, repeated ethanol 

consumption increased extracellular accumbal dopamine release in the sP 

rats, the parental strain of msPs [105]. The Acb increased activation has 

been consistently associated with heavy alcohol drinking in humans [106]. 

Other brain regions comprising the basic motivational circuit emerging 

from human imaging include the orbitofrontal/medial aspects of the PFC 

[107] and Ins [108,109], both found to be activated also in msP rats in the 

present study. Interestingly, VS and Ins activation to alcohol cues was more 

amplified in high drinking than low drinking humans [110]. The pattern 

found was highly restricted to the rostral and ventral parts of the Str and 

medial PFC. Both the IL and PrL have been implicated in fear and drug-

seeking, with a dorsal-ventral distinction. Thus, the PrL drives the 

expression of fear and drug seeking, whereas the IL promotes the extinction 

of conditioned fear and drug seeking [111–114]. Therefore, it could be 

hypothesized that activation of the IL by alcohol drinking in msP rats 

related to inhibition of the innate anxiety-like behavior in this line [39], 
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whereas the PrL activation mediates alcohol-seeking behavior, being both 

regions of the mPRN.  

 

4.4.2. Explaining neuroadaptive mechanisms with resting-state 

functional connectivity and activity 

Most of the RSNs, including the default-mode network (DMN) [6], 

are common in humans [115], rats [80,116] and monkeys [117,118], thus 

allowing translational knowledge. The RSNs obtained in this study are in 

agreement with the robust networks obtained in rats [80,116], being mPRN 

similar to the DMN in humans [6]. 

Comparing full and L2-regularized partial correlation values in all 

RSN pairs with significant correlations across control and alcohol conditions 

(Figure 4.12a, marked with numbers from 1 to 5), in alcohol condition all 

these pairs had substantially higher full values (Figure 4.12b) than partial 

values (Figure 4.12a), implying an indirect connection between the two 

RSNs under study via another network(s). Black squares show an average 

Fisher’s z full correlation higher than the L2-regularized partial correlation 

values, at least with a difference of 0.7, and represent an indirect connection.  

Interestingly, the two pairs of RSNs showing a hypoconnectivity 

(Figure 4.11a) from control to alcohol condition had a predominantly direct 

connection (between the two RSNs under study) in control condition (partial 

and full correlation values are very similar in Figure 4.11a.1 and a.2) that 

became indirect after alcohol consumption (high full correlation values and 

L2-regularized partial correlation values around zero). Further, both 

networks of the significant pairs contained at least an activated region, as 

observed with MEMRI (Table 4.1): StrN (CPu 0.41 mm3 and Acb 0.48 mm3), 

VN (V1 0.27 mm3) and SCN (Ins 0.25 mm3 and S1 0.51 mm3).  
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Regarding the hyperconnectivities (Figure 4.11b), the links MRN-

SCN and PAN-SCN were indirectly connected in control condition and the 

pair StrN-mPRN was not connected for most of the subjects, gaining 

prominence an indirect connection in alcohol condition (comparing Figure 

4.12a.1 and a.2). The pairs of RSNs with hyperconnectivity in which both 

RSNs showed increase in activity (Table 4.1) were StrN-mPRN and MRN-

SCN: StrN (CPu 0.41 mm3 and Acb 0.48 mm3), mPRN (PrL 1 mm3 and IL 

0.36 mm3), SCN (Ins 0.25 mm3 and S1 0.51 mm3) and MRN (M2 2.52 mm3). 

On the contrary, PAN-SCN only had an increase in brain activity in SCN.  

There is a trend in these results strongly pointing out that 

hypoconnectivity is caused by a transition from a direct connection between 

a pair of networks to an indirect connection, whereas hyperconnectivity 

could be attributed to an almost inexistent or indirect connection going 

towards an even more indirect connection. It is worth noting that StrN and 

SCN are involved in both, hypo- and hyperconnectivities.  

Müller-Oehring et al. [53] affirmed that neural deficiency happens 

when restricted or weaker connectivity in alcoholics relative to controls is 

related to worse behavioral outcome. These authors also reasoned that 

additional or stronger connectivity means neural compensation if there is 

normal task performance, or network dedifferentiation if it is correlated with 

poorer behavioral outcome. In our study, the hypoconnectivities in alcohol 

condition (StrN-VN and VN-SCN) were accompanied with increases of brain 

activity in both pairs of RSNs, marking a progression from a predominant 

global information preprocessing (higher connectivity in control condition) 

to mostly local information processing (activity in core regions of both 

RSNs), which could reflect worse performance and therefore a network 

deficiency, as Müller-Oehring et al. indicated [53]. Concerning the 

hyperconnectivities, two of them happened together with an increase of 
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brain activity in both networks (StrN-mPRN and MRN-SCN), which could 

be interpreted as a global processing coexisting with a high local brain 

activity. In the case of mPRN, IL and PrL activations lead to reducing 

anxiety and mediating in alcohol seeking [111], thus improving a better 

emotional state and reflecting neural compensation. Besides, a sensorimotor 

increase in activity causing better sensorimotor coordination and therefore 

a neural compensation also appears feasible since SCN contains the motor 

area M1. A possible explanation for hyperconnectivity and brain activity in 

a single RSN, like in the pair SCN-PAN, is a network dedifferentiation, or a 

difficulty confining neural coherence within PAN and the need of using an 

activated core brain region in SCN, leading to a worse performance. This is 

sensible, since PAN is crucial for spatial navigation and the rats receive 

idiothetic cues from somatosensory cortices (SCN) [119]. The meaning of 

local MEMRI depends on hypo- or hyperconnectivities, and activations in 

one or both or RSNs. 

The ACC (contained in the mPRN) and the VS (part of the StrN) are 

crucial brain regions involved in reward [120]. On one hand, Str contains 

the CPu, formed by the caudate — a region that influences goal-directed 

actions — and the putamen — a brain area responsible for the establishment 

of habits, mediating appetitive drive and learning from stimulus. On the 

other hand, ACC is involved in emotion processing, learning, and memory, 

encodes nociceptive input and plays a primordial role in rats in behavioral 

motivation by homeostatic distress [121]. Therefore, the prefrontal-limbic-

striatal circuit is critical for emotion, learning, motivation, decision making, 

and goal-directed behaviors [11]. Acb is widely proved to be implicated in 

the reinforcing effects of drugs of abuse, including alcohol 

[30,63,107,122,123], via plasticity changes in excitatory synaptic 

transmission’s efficacy [124]. PFC and Acb pathways strengthen after 
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chronic exposure to cocaine, which persists into abstinence [124], findings 

consistent with the alcohol-related increase in rs-FC we found between StrN 

and mPRN. It has been reported that the orbitofrontal cortex (OC), ventral-

medial prefrontal cortex (vmPFC), ACC, dorsolateral prefrontal cortex 

(dlPFC) and Ins work together in generating the experience of urge to drug 

consumption, which is consistent with the anatomical regions found in the 

SCN and mPRN [109].  

 

4.4.3. Resting-state functional connectivity in other research studies 

Several studies have tried to explain the biological meaning of hypo- 

and hyperconnectivity in several brain diseases and disorders. In 

schizophrenia, hypoconnectivity has been hypothesized as an elimination of 

too many synapses, whereas hyperconnectivity has been associated with the 

establishment of new synapses or failure to remove some [125]. Further, 

pathological hyperconnectivities have been produced by an N-methyl D-

aspartate (NMDA) receptor antagonist [126]. Genetic alterations have been 

associated with DMN hypoconnectivity in mice with autism [127]. 

Globally, the resting brain of drug dependents is hyperconnected, but with 

lower communication efficiency [128].  

Regarding the rs-FC decrement in alcohol condition that we found 

between VN and SCN (containing motor brain regions), this visuomotor 

hypoconnectivity has been found by Luchtmann et al. [129] in social 

drinkers after alcohol acute consumption and with effective connectivity. 

This finding probably indicates that the visuomotor pathway was already a 

deficiency in acute drinking that remained in a dependent state. The rs-FC 

increase in alcohol condition between mPRN and StrN confirms the 

evidence alluded in humans by Müller-Oehring et al. [53]: increment in rs-

FC between ACC and CPu in alcoholics relative to controls (peak-and-
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extend threshold FWER-corrected p-value < 0.05, t-score = 4.55), after a 

seed-based analysis applied to 27 abstinent alcoholics (time without alcohol 

dependency: 16 ± 12.8 weeks) and 26 age-matched controls. Two of our rs-

FC results are further supported in a work performed by Kohno et al. [59] 

with 43 volunteers diagnosed with AUD and 26 healthy controls taking the 

Str as a seed: rs-FC between Str and ACC increased in the AUD group (z-

statistic = 4.09) and rs-FC declined between StrN and VN: striatum and 

lateral occipital cortex (z-statistic = 6.04). The three pairs of RSNs with 

significant increase in rs-FC in alcohol condition have a further 

characteristic in common; all contain brain regions relevant in impulse 

control [130]: 1) StrN-mPRN: StrN contains the CPu and mPRN the ACC 

and the PCC, 2) PAN-SCN: PAN contains the Pa and SCN the Ins, and 3) 

MRN-SCN: MRN contains the retrosplenial cortex (corresponding to PCC 

in humans) and SCN the Ins.  

Cerebellum is an area with functional alterations at rest due to 

alcohol intake. Less synchrony between the PCC and cerebellar regions  

(both regions part of the DMN) was found in a seed-based analysis study in 

15 alcohol-dependent subjects with respect to 15 healthy controls (family-

discovery rate (FDR)-corrected p-value < 0.05) [54]. Moreover, a seed-

based analysis on 12 alcoholics and 12 age-matched controls showed a lower 

cerebello-hippocampal synchronization (FDR-corrected p-value = 0.007) at 

rest in alcoholics [55]. Shokri-Kojori et al. [64] studied two groups of 

people: heavy drinkers (n = 16, last alcohol consumption within 3 days of 

the fMRI acquisitions) and social drinkers (n = 24, maximum one drink per 

day), in two conditions: placebo or acute alcohol consumption. The authors 

did not find significant effect of group or interaction between alcohol and 

group factors on the pairwise partial correlation values between 10 ROIs 

belonging to the calcarine, cerebellum, PFC, PCC, precuneus and thalamus. 
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We did not acquire the cerebellum in our rs-fMRI images and we are not 

considering most of the ROIs in [64], hence we cannot fairly compare our 

results with these works. 

 

4.4.4. Abstinence 

Figure 4.12 shows that long-range independent RSN connections are 

largely intact after one week in alcohol abstinence with respect to alcohol 

condition. Naltrexone was not effective in that short time. Quantitatively, 

the statistical tests demonstrated that the between-network connectivity 

alterations following 30-day access to alcohol failed to return within the 

normal homeostatic range in only seven days of abstinence. During this 

early abstinence, the msP rats had a robust alcohol deprivation effect (ADE), 

and we hypothesize that they would have relapsed if they had had access to 

alcohol again [38]. The data from abstinence condition was not used for 

deriving the RSNs with group-PICA, since half the subjects were treated 

with saline solution and naltrexone treatment was administered to the other 

half. We thought that RSNs from control and alcohol conditions were more 

representative to study the effects of alcohol. 

 

4.4.5. Technical considerations for resting-state functional 

connectivity  

4.4.5.1. Anticorrelations between RSNs 

The boxplots in Figure 4.11 show that some subjects have negative 

correlation values (anticorrelations) between RSNs, although the majority 

shows positive values. In fMRI studies, negative correlations have been 

accepted between regions whose activity increases during attention 

demanding tasks (task-positive regions), and regions with the opposite 
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behavior (activity decreases), in particular regions belonging to the DMN 

(task-negative regions) [131]. But beyond this positive-negative task 

explanation it has been widely discussed the fact that anticorrelations can be 

artificially introduced by preprocessing steps such as global signal 

regression [89,132]. When using PICA, and despite not having regressed 

the global signal before, it has been hypothesized that the global signal must 

be assigned to one or several ICs. Since the time course for each IC 

determines the behavior of the IC beyond all other ICs (some of them 

possibly including the global signal), it is feasible that some RSNs could be 

artificially anticorrelated [132]. Nevertheless, a biological basis for 

anticorrelated networks has been proved even in the presence of global 

signal regression depending on their spatial distribution, cross-subject 

consistency and existence before global regression [89]. More research is 

necessary to clarify this issue. In all cases, most of the observed correlations 

in the present study were positive. 

 

4.4.5.2. Data cleanup 

It is a good practice to clean individual ICs (for each subject/run), 

before applying group-PICA but we did not obtain accurate ICs at the run 

level; due to the small number of volumes acquired per run, the ICs did not 

form well-defined clusters. Therefore, we did a cleanup at the individual time 

series obtained with spatial regression.  

 

4.4.5.3. Dimensionality of PICA 

Regarding the dimensionality of PICA, we were seeking for an 

accurate StrN, since it is a crucial network in alcohol addiction, and for that 

we manually set different number of ICs and visually checked the StrN. We 

decided to get the ICs from a low dimensionality, 17, where the brain was 
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decomposed into an anatomical-matched StrN and another six well-defined 

RSNs, with the best balance between fusion and separation of brain regions 

of the same RSN. 

 
4.4.5.4. Lack of relevant changes in variance across control and alcohol 

conditions 

Regarding the analysis with the ASC method, the Gaussian 

distributions of the four classes of additive sources were constructed without 

testing if the original time courses did present a significant change in 

variance.  In our case the original time courses did not present a significant 

change in variance, therefore there is no strong evidence that variance 

changes are driving the changes in partial correlation in our analysis.  

 

4.4.5.5. Effects of anesthesia on resting-state functional connectivity 

Before choosing an anesthetic, its physiological and neurological 

effects on the subject must be considered. In rodents, inhalation anesthetics 

such as isoflurane are convenient for longitudinal fMRI experiments due to 

their fast effect, rapid recovery and excellent tolerance (no convulsions, 

muscles relaxation and low mortality rates). Since isoflurane depresses 

excitatory synaptic transmissions, acting on γ-amino butyric acid type A 

(GABA-A) receptors, if used in high doses it may present the disadvantage 

of evoking vasodilation, hypotension and change in baseline cerebral blood, 

thus altering the BOLD signal and thereby changing the experimental 

results. Given the above facts, rs-fMRI experiments must be carried out 

under lower doses (1–1.5%) to minimize adverse effects, as in the present 

experiments [72,133–136]. 
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4.4.6. Limitations of this study 

This study has some potential limitations. First, the BOLD signal is 

an indirect measure of neural activity, which might reflect a regional change 

in deoxyhemoglobin concentration. The drawback is that the neural 

mechanisms occur at faster time-scales and cannot be accurately assessed 

using fMRI. Furthermore, the BOLD signal is sensitive to blood flow 

changes and physiological noise, including heart beating and respiration, 

and despite the best effort to remove these signals there is a drop in the SNR 

of BOLD signals [137–139]. Second, the fact that the MEMRI study is 

cross-sectional and not a robust longitudinal study, but a MEMRI study 

cannot be longitudinal, since the MnCl2 in control condition would modify 

the results in alcohol condition.  

 

4.4.7. Strengths of this study 

The power of our experimental approach relies on four aspects. First, 

the rs-fMRI study is a longitudinal design comparing pre versus post 

chronic, moderate alcohol exposition, which is not feasible to perform in 

humans. Second, we used a controlled rat model that successfully mimics the 

characteristics of human alcoholics, while avoiding comorbidities and 

genetical differences. Moreover, the control group was only allowed to drink 

water, in contrast with most human studies in which the controls are social 

drinkers. Third, we are provided with two convergent state-of-the-art 

imaging modalities that mutually compensate their individual drawbacks 

and allow us to investigate rs-FC alterations in resting-state networks (rs-

fMRI) and monitor brain activations in non-anesthetized rats (MEMRI), 

providing an invaluable knowledge with respect to studies focused only on 

anesthetized rats. MEMRI is not recommended for humans, so this study in 

rats is a great opportunity to find brain activity independent of the vascular 
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system, eliminating possible confounding factors of anesthesia (the animals 

are anesthetized during image acquisition, but the accumulation of calcium 

reflects the previous activity, when the animal was drinking), and with high 

spatial resolution [44]. Fourth, to estimate the RSNs’ time series we used 

the combination of PICA and dual regression, a powerful data-driven 

approach that allowed us to obtain RSNs’ time courses for each subject 

without requiring a priori specification of regions to analyze, thus allowing 

the evaluation of the entire RSNs and surpassing the limitation of ROI and 

seed-based approaches [77].  It is noteworthy to keep in mind that a single 

brain region does not represent an RSN and the fact that one region can 

participate in several RSNs, characteristics considered in PICA [50,77]. 

Besides, rs-FC is of excellent preclinical and clinical value, providing 

accurate biomarkers of disease [96,140,141] and being coupled to and 

modulated by structural connectivity [142]. 

 

 
4.4.8. Future work recommendations 

Future rs-fMRI research should include the estimation of integration 

and segregation measures and their interplay via graph theory measures, to 

further characterize the reorganization and communication between RSNs. 

Segregation could be measured in terms of modularity, system segregation, 

local efficiency and number of provincial hub nodes, while measures of 

network integration should include global efficiency and number of 

connector hub nodes. Neural complexity would be suitable to quantify the 

relationship between integration and segregation [143–147]. Besides, 

electroencephalogram (EEG)-based approaches would also be useful in 

estimating homeostatic mechanisms in the RSNs in several frequency bands 

[148]. PICA from an out-sample control group would be preferable to 

distinguish between control and alcohol states. Besides, for future studies in 
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fMRI we have planned a longer acquisition per run to improve the accuracy 

of the correlation values. For long signals we strongly recommend to clean 

the fMRI data with FMRIB's ICA-based X-noiseifier (FIX) [91], which is a 

reliable, automated approach for cleaning fMRI data of various types of 

noise, after a previous training.   

4.5. Conclusions 

We have performed an rs-fMRI longitudinal study in msP rats 

engaged in chronic, moderate alcohol drinking to study between-network 

rs-FC, and a cross-sectional MEMRI study about brain activity, to 

investigate the combination of rs-FC and activity as network homeostatic 

processes triggered by alcohol. Taking advantage of group-PICA and spatial 

regression we found seven RSNs and computed their pairwise rs-FC via L2-

regularized partial correlation. In MEMRI data we obtained increased 

activity in each atlas-based region as a percentage. Alcohol drinking led to 

hypo- and hyperconnectivities between RSNs, which were not age-related, 

and hyperactivities in prefrontal areas and the insular cortex. Interestingly, 

hypoconnectivity occurred when there was a transition from direct to 

indirect connection between pairs of RSNs, whereas hyperconnectivity 

occurred when an almost inexistent or indirect connection became even 

more indirect. We also highlight that combinations of hypo- or 

hyperconnectivities together with brain activity in one or both of the RSNs 

allows us to complement and support the assumption of Müller-Oehring et 

al. [53] indicating network deficiencies, dedifferentiations or 

neurocompensations. Taken together, our results indicate that RSNs and 

their key regions are altered by prolonged and moderate alcohol exposure, 

diminishing the executive control and behavioral flexibility. The absence of 

further detectable alterations in RSNs after alcohol discontinuation, under 
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abstinence, suggests that the alcohol exposed brain network has reached a 

new equilibrium in a different state. We therefore hypothesize that alcohol 

induced an allostatic change in the functional connectivity that does not 

evolve spontaneously to the original homeostatic state. Future research is 

needed to understand this transition using animal models and favor the 

design of therapies for humans concerning network remodeling rather than 

neurochemical principles.
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Chapter 5 

5.  Cortical gray matter alterations in 

alcohol use disorders 

5.1. Introduction 

In addition to functional alterations (see Chapter 4) chronic and 

excessive alcohol consumption results in structural brain damage. Whether 

these structural alterations are reversible is still an open question. It is 

difficult to assess this recovery since changes are subtle and a high 

percentage of people relapse. It has been proved that alcoholism leads to 

gray matter (GM) and white matter (WM) tissue loss, and an increase in 

cerebrospinal fluid (CSF). Volume changes take place in the cerebral cortex 

focusing on the frontal, parietal, and cingulate cortices, and in Ins, Thal, Hc 

and cerebellum [3].  

State-of-the-art morphometric methods are widely used in MRI 

studies to detect brain changes at the voxel level [3]. The voxel-based 

morphometry (VBM) methodology was first published in 2000 by 

Ashburner and Friston [149] and optimized in 2001 by Good et al. [150]. 

Currently, the development and improvement of registration and 

segmentation methods have led VBM to be a reliable method for basic and 

clinical research [151]. VBM allows voxelwise comparisons of the local 
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density or volume of GM or WM between groups or across conditions 

[149,150].  

VBM has been widely applied to study GM structural alterations 

driven by alcoholism, but some findings have been inconsistent. In order to 

overcome this limitation and identify consistent regional GM alterations 

across VBM studies, two meta-analyses have been conducted [16],[4] 

comparing with healthy controls (HCs). GM decreases in patients were 

consistently found in PFC, DS, Ins, PCC, STG, PreCG, ACC, left Thal and 

right Hc. Correlation between GM and alcohol-related variables has also 

been studied, aiming to know the etiology of the structural alterations [152–

156].  

Our main aim was to assess if there were local GM volume 

differences between a control condition and an alcohol abstinence condition, 

with special interest for the Ins, since other members of the TRANSALC 

project found functional changes there and we needed to assess if the 

functional effect was caused by structural GM differences. In case of GM 

volume differences, we also aimed to estimate associations between GM 

volume and alcohol-consumption variables.  

5.2. Material and methods 

5.2.1. Demographics of controls and alcohol abstinent patients  

Table 5.1 and Figure 5.1 show the demographics for the 69 male 

participants in the cross-sectional study: 34 controls (41.21  9.94 years old) 

and 35 alcohol abstinent patients (45.91  9.05 years old) who were 

detoxified (if necessary, treatment with benzodiazepines, discontinued for 5 

or more medication half-life periods, and no anti-craving medication) and 

remained in alcohol abstinence for 1-5 weeks (21.91  6.04 days).  
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Form 90 is a structured interview to assess alcohol consumption and 

related quantitative variables, developed by the National Institute on 

Alcohol Abuse and Alcoholism (NIAAA, Bethesda, Maryland, United States 

of America). The indices of alcohol consumption relate to 90 days before the 

date of baseline measurement [157]. Alcohol dependent scale (ADS) is a 25-

item, 10-minute self-report measure about the past 12 months that provides 

a quantitative measure of the severity of alcohol dependence (AD) 

symptoms, ranged from 0 to 47. The higher the ADS value, the higher the 

AD severity. ADS covers alcohol withdrawal symptoms, impaired control 

over drinking, awareness of a compulsion to drink, increased tolerance to 

alcohol, and salience of drink-seeking behavior [158,159].  

The participants were diagnosed with DSM-IV criteria. As expected, 

the controls did not meet any criteria. On average, the patients endorsed a 

moderate level of alcohol problem severity (6.49  0.82 criteria): seven 

subjects met 5 criteria; four subjects, 6, and twenty-four subjects met 7 

criteria, all being diagnosed as AD patients. According to DSM-5, seven 

subjects would have a moderate AUD and 28 subjects, a severe AUD. 

Table 5.1. Demographics data of participants in the VBM study. 

variables 
controls + 
abstinents 

controls abstinents 

age (years old) 43.59  

 9.72 

41.21  

 9.94 

45.91 

  9.05 

men/women 69/0 34/0 35/0 

abstinent days,  
Form 90 

43.57  

 35.68 

73.73  

 19.36 

15.14  

 20.99 

ADS score 8.13  

 7.87 

2.16  

 2.44 

14.28  

 6.69 

grams of alcohol per  
drinking day, Form 90 

146.54  

 147.07 

31.39   

  23.31 

255.10 

 130.80 

total grams of  
alcohol, Form 90 

10370.18  

 12932.07 

583.97  

 542.40  

19597.17  

 12193.71 
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Figure 5.1. Histograms of the alcohol-related clinical variables. 

 

5.2.2. Participant eligibility and recruitment 

Eligibility criteria were: age between 18 and 65 years old, right-

handed, normal or corrected-to-normal vision and AD diagnosis according 

to DSM-IV, with abstinence between 5 and 21 days prior to study inclusion. 

Patients were excluded if they had any other axis-I disorder psychiatric 

disorder according to DSM-IV (including mood disorder), MRI and medical 

contraindications for naltrexone, or changes in cardiovascular medication in 

the last days. Further exclusion criteria were a positive drug screening, 

current use of psychotropic or anticonvulsive medications, and epilepsy or 

neurological or severe medical illness. 
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The patients were recruited from the day clinic and inpatient wards 

of the Department of Addictive Behavior and Addiction Medicine at the 

Central Institute of Mental Health in Mannheim, Germany. 

 
5.2.3. MRI image acquisition 

The T1-weighted MR images were acquired in the Central Institute 

of Mental Health in Mannheim, Germany, (https://www.zi-

mannheim.de/en.html) using a Siemens MAGNETOM Trio a Tim 3 T 

scanner (Siemens AG, Munich, Germany). The T1-weighted MR images 

consisted of 192 sagittal slices per subject (field of view = 256 × 256, voxel 

size = 1 × 1 × 1 mm3), TE = 3.03 ms, TR = 2,300 ms, flip angle α = 9º. 

 

5.2.4. Voxel-based morphometry analysis 

The structural images were preprocessed and analyzed with FSL-

VBM [160,161], an optimized VBM protocol [150]  carried out with FSL 

tools [70,71]. Four steps were required before the analysis: 1) brain and GM 

segmentation, 2) study-specific standard GM template creation, 3) 

registration of the native GM images to the standard GM template and 4) 

spatial smoothing. These steps are illustrated in Figure 5.2.  

 

https://www.zi-mannheim.de/en.html
https://www.zi-mannheim.de/en.html
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Figure 5.2. Steps to perform voxel-based morphometry. First, GM is extracted 

from the anatomical images and they are then nonlinearly registered to a standard or 

subject-specific GM template. Afterward, the registered images are smoothed and 

modulated by the Jacobian of the nonlinear registration to correct for artificial local 

contractions or enlargements due to the nonlinear registration. Finally, a voxelwise 

statistical regression is performed to find changes in GM volume across conditions. 

 

1) Brain and GM segmentation 

The structural images were brain-extracted using BET (Brain 

Extraction Tool) [69], removing extracerebral tissues such as skull, skin 

and eyeballs with f = 0.5 and g = -0.15 as a first option, and f = 0.45 and g = 

-0.25 for subjects whose neck was mostly acquired (see Chapter 4 section 

4.2.3 for further explanation) and GM-segmented employing FAST 

(FMRIB’s Automated Segmentation Tool) [162]. Subsequent GM 

segmentation may depend on brain extraction. 

FAST segments three tissues: GM, WM and CSF, whilst also 

correcting for intensity nonuniformity (bias field, a low frequency artifact 

due to inhomogeneities in the radiofrequency field). FAST is based on a 

hidden Markov random field (HMRF) model, which is a stochastic process 
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generated by an MRF whose state sequence can be observed through 

observations. This methodology surpasses the limitations of the most 

common brain image segmentation method, finite mixture (FM) model, 

which is a histogram-based model that does not consider spatial information 

and therefore is only useful for images with low levels of noise. 

Unfortunately, there are partial volume effects and bias field distortion. In 

MRF theory, constraints are applied to neighboring pixels/voxels, with the 

hypothesis that neighboring pixels have similar intensities. An expectation-

maximization (EM) algorithm is involved in estimation of the model 

parameters. The spatial neighborhood information obtained with MRF is 

combined with probability based on Gaussian Mixture Model, and the 

balance between believing neighbors class or the own intensity value is 

adjusted by a beta parameter. The intensity model is a mixture of three 

Gaussians and it is based on the histogram as a probability distribution 

function. 

Original HMMs were designed as one-dimensional Markov chains 

that change their state according to a transition probability matrix l × l, 

where l is the number of states. Since Markov chains are not possible for 3D 

images, it is considered an HMM with MRF as the underlying stochastic 

process, instead of a Markov chain. The HMRF in FAST can be described 

with hidden MRF (whose state cannot be observed), observable random field 

and conditional probabilities: 

▪ X = {𝑋𝑖,𝑖 ∈ 𝑆} is the hidden MRF with values belonging to the 

set of indices S = {1, 2, … , N}  in a finite space L = {1, 2, …, l} 

with the Gibbs distribution [163] as the probability distribution 

P(x), shown in Equation 5.1: 

𝑃(𝑥) =  𝑍−1 exp(−𝑈(𝑥))                               (5.1)                    
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where Z is a normalizing constant called the partition function, 

and U(x) is the energy function shown in Equation 5.2: 

𝑈(𝑥) =  ∑ 𝑉𝑐(𝑥)

𝑐∈𝐶

                                (5.2) 

where c is a clique, a set of sites in S in which every pair of distinct 

sites are neighbors, except for single-site cliques. 𝑉𝑐(𝑥) are clique 

potentials over the cliques C, whose value depends on the local 

configuration of the clique c. 

▪ Y = {𝑌𝑖, 𝑖 ∈ 𝑆} is the observable or emitted random field with 

a finite space D = {1, 2 , … , d}. For x ∈ X, every 𝑌𝑖 has a 

conditional probability distribution called emission probability 

function, p(𝑦𝑖 | 𝑥𝑖 ), of the form f(𝑦𝑖;  𝜃𝑥𝑖) being 𝜃𝑥𝑖 the 

parameters to model the distributions. 

▪ conditional independence: for any x ∈ X, the variables 𝑌𝑖 are 

conditional independent, as shown in Equation 5.3. 

𝑃(𝑦 | 𝑥) =  ∏ 𝑃(𝑦𝑖 | 𝑥𝑖 )

𝑖∈𝑆

                            (5.3) 

The joint probability of X and Y is thus defined as in Equation 5.4.  

𝑃(𝑦, 𝑥) = 𝑃(𝑥)𝑃(𝑦 |𝑥) = 𝑃(𝑥) ∏ 𝑃(𝑦𝑖 | 𝑥𝑖 )

𝑖∈𝑆

             (5.4) 

The spatial dependency of 𝑋𝑖, modeled by 𝑋𝑖’s neighborhood 𝑋𝑁𝑖
, 

reformulates Equation 5.4 as shown in Equation 5.5. 

      𝑃(𝑦𝑖, 𝑥𝑖  | 𝑥𝑁𝑖
) = 𝑃(𝑦𝑖 | 𝑥𝑖 )𝑃(𝑥𝑖 | 𝑥𝑁𝑖

)                   (5.5) 
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Applying the properties above, the marginal probability distribution 

of 𝑌𝑖 is dependent on the parameter set 𝜃 and the neighborhood  𝑋𝑁𝑖
 and is 

denoted in Equation 5.6. 

𝑝(𝑦𝑖  | 𝑥𝑁𝑖
 , 𝜃) =  ∑ 𝑝(𝑦𝑖, ℓ | 𝑥𝑁𝑖

 , 𝜃)

ℓ∈𝐿

=  ∑ 𝑓(𝑦𝑖; 𝜃ℓ)𝑝(ℓ | 𝑥𝑁𝑖
)      (5.6)

ℓ∈𝐿

  

Assuming a Gaussian distribution of the intensity of the data, a 

Gaussian HMRF can be calculated with Equation 5.7, where 𝜃ℓ = (µℓ, 𝜎ℓ)𝑇. 

𝑝(𝑦𝑖 | 𝑥𝑁𝑖
 , 𝜃) =  ∑

1

√2𝜋𝜎ℓ
2

exp (−
(𝑦 − µℓ)2

2𝜎ℓ
2 ) 𝑝(ℓ | 𝑥𝑁𝑖

 )
ℓ∈𝐿

      (5.7) 

The model HMRF-EM involves brain tissue segmentation and bias 

correction, following these steps: 

1)  Initial parameter estimation and segmentation 

The algorithm starts obtaining initial tissue parameters and 

classification via tree-k-means (partitioning the intensities of the 

images into three clusters). The mean intensity and standard 

deviation are the tissue parameters and the classifications are GM, 

WM or CSF. 

2) Estimate the bias field 

As proposed by Well et al. [164], the bias field is estimated 

following Equation 5.8: 

𝑏𝑖
(𝑡)

=  
[𝐹 𝑅]𝑖

[𝐹𝜓−1 1]𝑖
                                     (5.8) 

where F is a lowpass filter, 𝜓 is the covariance matrix, R is the 

mean residual for a pixel and 1 is a one-column vector of ones.  

3) Calculate the likelihood distribution as in Equation 5.9: 

𝑝(𝑡)(𝑦𝑖|𝑥𝑖 , 𝐵) = 𝑔(𝑡)(𝑦𝑖 − 𝑏𝑖;  𝜃(𝑥𝑖))              (5.9) 
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where 𝐵 = (𝑏1, … , 𝑏𝑁) denotes the bias field. It is assumed that 

the pixel/voxel intensities follow a Gaussian distribution g. 

4) Estimate the class labels by MRF-MAP (maximum a posteriori) 

estimation as in Equation 5.10: 

𝑥(𝑡) = arg 𝑚𝑎𝑥𝑥 ∈ 𝒳 {𝑃(𝑦|𝑥, 𝜃(𝑡)) + 𝑃(𝑥)}               (5.10)              

5) Calculate the posterior distribution (Equation 5.11) 

𝑃(𝑡)(ℓ|𝑦𝑖) =  
𝑔(𝑡)(𝑦𝑖; 𝜃ℓ ) ·  𝑝(𝑡)(ℓ|𝑥𝑁𝑖

 )

𝑝(𝑦𝑖)
                     (5.11) 

6) Update parameters (Equation 5.12 and 5.13) 

𝜇ℓ
(𝑡+1)

=  
∑ 𝑃(𝑡)(ℓ|𝑦𝑖)𝑦𝑖𝑖 ∈ 𝑆

∑ 𝑃(𝑡)(ℓ|𝑦𝑖)𝑖 ∈ 𝑆

                                  (5.12) 

                (𝜎ℓ
(𝑡+1)

)2 =  
∑ 𝑃(𝑡)(ℓ|𝑦𝑖)(𝑦𝑖−𝜇ℓ)2

𝑖 ∈ 𝑆

∑ 𝑃(𝑡)(ℓ|𝑦𝑖)𝑖 ∈ 𝑆
                           (5.13)  

The parameters will have the values that make the observed 

results the most probable given the model. 

7) t + 1→ t and repeat steps 2 to 7 until there are enough iterations.  

GM, WM and CSF images are ranged from 0 to 1, representing the 

proportion of GM, WM or CSF in each voxel. The main options selected for 

FAST were: three classes of tissue, R (spatial smoothness for mix) = 0.3 and 

H (segmentation spatial smoothness) = 0.1.  

 
2) Study-specific standard GM template creation 

It is very important that the two groups under study are equally 

represented in the study-specific GM template (same number of subjects 

from each group) to avoid the possibility that the nonlinear registration is 

more accurate for the most represented group. If the GM template is biased, 

it is difficult to assess if the differences in the GM volume distribution 
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between groups are disease-related or are registration-related. Thus, 34 

controls and 34 (out of 35) abstinent alcoholic patients were selected for 

creating the GM template. 

First, the template-selected GM images were affine-registered [67] 

to the GM ICBM-152 template (McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill University, Montreal, Canada), 

concatenated into a 4D image, averaged and flipped along the x-axis to 

create a left-right symmetric template. A first-pass affine GM template was 

obtained after averaging these two mirror images. Second, the template-

selected GM images were registered to the first-pass GM template using 

nonlinear registration (free-form deformation with 20 mm initial control 

point spacing) [165], concatenated (4D image), averaged and flipped along 

the x-axis. Then, both mirror images were averaged leading to a symmetric, 

probabilistic, study-specific and standard GM template with 2 × 2 × 2 mm3 

resolution. 

 
3) Registration of the native GM images to the standard GM 

template 

Then, all the 3D GM images were nonlinearly registered with 

FNIRT (FMRIB’s non-linear image registration tool) [165] to the study-

specific GM template and concatenated into a 4D image. FNIRT requires a 

prior linear registration to model differences in size and position between 

brains, which was made by FLIRT with 12 degrees of freedom, correlation 

rate cost and trilinear interpolation. Please, refer to Chapter 4 section 4.2.3 

for further explanation. There was a modulation (compensation) to correct 

for local contraction or enlargement due to the nonlinear registration: each 

voxel intensity was multiplied by the Jacobian determinants of the warp field 
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(it is worth noting that this refers only to the nonlinear part; the affine part 

was not modulated to account for brain size) [150]. 

Equation 5.14 shows the nonlinear registration [166]: 

[

𝑥′

𝑦′

𝑧′

1

] = 𝐴 [

𝑥
𝑦
𝑧
1

] + [

𝑑𝑥(𝑥, 𝑦, 𝑧)
𝑑𝑦(𝑥, 𝑦, 𝑧)

𝑑𝑧(𝑥, 𝑦, 𝑧)
0

]                              (5.14) 

where x, y, z are the coordinates, A is a 4 × 4 affine matrix containing 

3 translations, 3 rotations, 3 zooms and 3 shears — as explained in Chapter 

4 section 4.2.3 — and dx(x,y,z), dy(x,y,z) and dz(x,y,z) are the nonlinear warp 

fields for dimensions x, y and z, respectively, with the same size as the 

reference image [166]. 

Nonlinear registration is a compromise between minimizing the cost 

function (making the source image look very similar to the reference image) 

and making the displacements/warps anatomically reasonable. 

Equation 5.15 shows the cost function to minimize, the sum-of-

squared differences: 

𝑂(𝑤) = ∑(𝑔(𝑥𝑖
′(𝑥𝑖, 𝑤)) − 𝑓(𝑥𝑖))2

𝑁

𝑖=1

                       (5.15) 

where O is the cost function that nonlinearly depends on the 

parameters w, f is the reference image (in VBM is the MNI152-template) 

and g denotes the source image (GM images). FNIRT modulates the 

intensity of f  globally and locally [166]. 

A Levenberg-Marquardt modification of the Gauss-Newton method 

(Equation 5.16) is used to find the parameters w by indicating where to 

continue in the parameter space w searching for a local minimum: 

𝑤(𝑘+1) =  𝑤(𝑘) −  𝐻|
𝑤(𝑘) 
−1 𝑂| 𝑤(𝑘)                                                                (5.16)                          
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where H denotes the Hessian and ∇O is the gradient of the cost 

function O.  

Regularization and subsampling are two methods to enforce the 

warps to be plausible within the free-form deformation. On one hand, 

subsampling refers to lower the resolution of the images by some factor 

(divided by 8, 4 or 2 for example) and then register these low-resolution 

images so that the bigger anatomical regions are registered first. The warp 

fields resulting from this first registration are then used as initial values in 

the next registration (with better resolution) and so forth until the last 

registration, performed in full resolution. On the other hand, regularization 

focuses on smooth/sharp warps and the mapping of one point in the original 

space to only one/several in the reference space. A smooth warp is more 

realistic than a very sharp warp.  

After considering the regularization, the cost-function in Equation 

5.15 changes to Equation 5.17.  

𝑂(𝑤) = ∑(𝑔(𝑥𝑖
′(𝑥𝑖 , 𝑤)) − 𝑓(𝑥𝑖))2 +  λε(w)

𝑁

𝑖=1

                    (5.17) 

where ε is the regularization function and λ determines the balance 

between how similar the images get and how smooth the warps should be 

according to the user. The larger the λ value, the smoother the warps.  

  

4) Spatial smoothing 

Finally, the registered and modulated GM images were concatenated 

and smoothed by an isotropic Gaussian kernel with a sigma of 3 mm (7.06 

mm FWHM). This smoothing step increases statistical power and facilitates 

overlap between subjects, important to find GM volume differences across 

groups.  
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Statistics and identification of cortical gyri 

Voxel-wise GLM was applied using permutation-based non-

parametric testing with 5000 permutations, correcting for multiple 

comparisons across space [94]. The results were statistical images (t-values) 

and the corresponding p-values after threshold-free cluster enhancement 

(TFCE) correction [167]. In all the comparisons, age was considered as a 

confound regressor. Brain cortical regions in the significant voxels were 

identified with the Harvard-Oxford cortical atlas [19]. Moreover, clusters 

with connectivity 26 were extracted from the statistical maps to further 

characterize the structural differences in GM volume.  

 

5.2.4.1. Gray matter volume comparisons in control and abstinent 

participants 

Between-group comparison of GM volume was carried out on a voxel 

level, considering age. Two hypotheses were tested: greater or smaller local 

GM volume in abstinence patients than in controls.  

 

5.2.4.2. Partial correlations between GM volume and alcohol-related 

variables 

Equation 5.18 allows us to obtain the Pearson’s r correlation values 

from the t-values obtained by FSL: 

𝑟 = 𝑠𝑖𝑔𝑛(𝑡) ·  √
𝑡2

𝑑𝑓 +  𝑡2 
                                      (5.18) 

where t is the t-value, r is Pearson’s r value and df are the degrees of 

freedom.  
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Age was taken into consideration to perform the partial correlation 

between GM volume and the four alcohol-related variables: 1) days of 

abstinence, Form 90; 2) ADS score, 3) grams of alcohol per drinking day, 

Form 90; and 4) total grams of alcohol, Form 90. A first analysis involved 

age and all the alcohol variables in the same design matrix and then a 

permutation analysis with FSL’s randomise. Afterwards, separate analyses 

were performed accounting for age and one alcohol-related variable. All the 

comparisons were performed solely in the voxels containing GM according 

to the study-specific GM mask.  

5.3. Results 

In this section, the statistical maps of the different comparisons are 

shown, together with a map localizing the different clusters (with 

connectivity 26) and a table with information about each cluster according 

to the Harvard-Oxford cortical atlas [19]. The percentages of the structures 

in the whole cluster reflect the sum of probabilities of that atlas structure in 

the cluster divided by the number of voxels in the cluster. The minimum 

percentage considered for the structures in each cluster is 2%. The maps are 

overlapped into the MNI-152 (Montreal Neurological Institute, McGill 

University, Montreal, Canada) template with 2 × 2 × 2 mm3 resolution.  

 

5.3.1. GM atrophy in abstinence condition 

Figure 5.3a contains the statistical map of t-values in the voxels 

where GM volume in alcohol abstinents was smaller than GM volume in 

control individuals (p < 0.025). This map is grouped into six clusters in 

Figure 5.3b, whose information is given in Table 5.2.  
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Figure 5.3. GM decreases in volume in abstinence condition with respect to 

control condition, with age as covariate. a) Statistical t-value map. b) Six clusters.  
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Table 5.2. Information about the six clusters where GM volume decreases in 

abstinence patients with respect to healthy controls. B = bilateral; Cl = cluster; 

Hem = hemisphere; L = left; Max = maximum; R = right; Vol = volume. 

Cl Hem Vol 

(mm3) 

[X Y Z] 

(mm) peak 

Max 

t-value 

Structures 

peak 

Structures whole 

cluster 

1 B 13,096 [2 -18 52] 4.49 PreCG, 54% 

SMC, 15% 

PCG, 3% 

PreCG, 20% 

PostCG, 13% 

SMC, 12% 

PCG,6% 

ACG, 4% 

2 L 11,400 [-38 4 44] 5.06 MFG, 37% 

PreCG, 19% 

PreCG, 24% 

MFG, 11% 

PostCG, 10% 

SFG, 3% 

3 R 10,728 [28 -30 52] 5.09 PreCG, 15% 

PostCG, 2% 

 

PreCG, 24% 

PostCG, 22% 

MFG, 2% 

4 B 4,816 [-2 -60 26] 4.43 PCUN, 85% 

SCLC, 5% 

PGC, 4% 

PCUN, 52% 

PCG, 11% 

SCLC, 5% 

CUN, 4% 

5 R 3,736 [32 -40 40] 4.53 PSMG, 18% 

SPL, 16% 

PostCG, 4% 

SPL, 18% 

SLOC, 12% 

ANG, 10% 

PSMG, 8% 

6 L 2,016 [-34 -48 36] 4.01 PSMG, 16% 

SPL, 12% 

ANG, 4% 

SLOC, 17% 

SPL, 8% 

ANG, 8% 

PSMG, 7% 
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5.3.2. Relationship between GM and alcohol consumption 

Figure 5.4 shows the Pearson’s correlation values between age and 

the alcohol-related variables (abstinence, Form 90; total grams of alcohol, 

Form 90; grams per drinking day, Form 90, and ADS score). Significant 

results were found in the partial correlation (accounting for age) of GM 

volume and each alcohol related variable separately, except for abstinence. 

 

Figure 5.4. Pearson’s correlation values between age and the alcohol-related 

variables.  Three variables about alcohol consumption (total, per day and ADS score) 

are highly positively correlated, being all of them highly anticorrelated with abstinence. 

abst = abstinence, Form 90. 

 

 
5.3.2.1. ADS score 

Figure 5.5a contains the statistical map of partial correlation values 

(accounting for age) showing the voxels where GM volume had a negative 

linear relationship with ADS score, considering control and abstinent 

subjects together, with p < 0.01. Seven clusters form this map, as shown in 

Figure 5.5b. Table 5.3 contains information about the location and the brain 

structures belonging to each cluster.  
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Figure 5.5.  Negative partial correlation between ADS score and GM volume, 

accounting by age. a) Partial correlation map. b) Map grouped into seven clusters. 
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Table 5.3. Information about the seven clusters with negative partial correlation 

between ADS score and GM volume, adjusting by age. B = bilateral; Cl = cluster; 

Hem = hemisphere; L = left; Max = maximum; R = right; Vol = volume. 

Cl Hem Vol 

(mm3) 

[X Y Z] 

(mm) peak 

Max 

t-value 

Structures 

peak 

Structures whole 

cluster 

1 L 14,648 [-32 -26 46] 4.77 PreCG, 13% 

PostCG, 8% 

PreCG, 25% 

PostCG, 13% 

MFG, 7% 

SFG, 2% 

2 R 13,888 [30 -24 54] 5.06 PreCG, 35% 

PostCG, 18% 

PreCG, 24% 

PostCG, 14% 

SPL, 3% 

MFG, 3% 

SFG, 2% 

3 B 5,984 [4 -6 48] 4.58 SMC, 46% 

ACG, 31% 

PCG, 5% 

PreCG, 2% 

PreCG, 16% 

SMC, 23% 

ACG, 20% 

PCG, 6% 

PostCG, 2% 

4 B 4,512 [-22 -66 26] 3.49 CUN, 12% 

PCUN, 9% 

SCLC, 5% 

SLOC, 4% 

PCUN, 51% 

CUN, 7% 

SCLC, 6% 

PCG, 3% 

5 L 1,088 [-32 -66 30] 4.82 SLOC, 22% SLOC, 34% 

6 R 968 [18 -64 40] 3.74 PCUN, 29% 

SLOC, 7% 

SLOC, 35% 

PCUN, 7% 

7 L 448 [-20 24 44] 4.28 SFG, 36% 

MFG, 8% 

SFG, 32% 

MFG, 11% 
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5.3.2.2. Grams of alcohol per drinking day 

Table 5.4 and Figure 5.6 contain the partial correlation results 

between GM volume and grams of alcohol per drinking day (accounting for 

age), with p-value < 0.01.  

 

Table 5.4. Information about the seven clusters with negative partial correlation 

between grams of alcohol per drinking day and GM volume, adjusting by age. Cl 

= cluster; Hem = hemisphere; L = left; Max = maximum; R = right; Vol = volume. 

Cl Hem Vol 

(mm3) 

[X Y Z] 

(mm) peak 

Max 

t-value 

Structures 

peak 

Structures whole 

cluster 

1 L 2,880 [-38 2 28] 4.19 PreCG, 32% 

IFGoperc, 6% 

MFG, 3% 

PreCG, 23% 

MFG, 17% 

IFGoperc, 8% 

2 R 1,352 [54 0 28] 4.9 PreCG, 28% 

PostCG, 2% 

PreCG, 29% 

PostCG, 17% 

3 L 624 [-26 -2 46] 3.76 MFG, 13% 

SFG, 8% 

PreCG, 5% 

MFG, 17% 

PreCG, 17% 

SFG, 7% 

4 L 552 [-54 -2 24] 3.93 PreCG, 49% 

PostCG, 5% 

PreCG, 41% 

PostCG, 11% 

5 R 296 [2 -8 46] 3.92 ACG, 40% 

SMC, 32% 

PCG, 9% 

PreCG, 2% 

ACG, 37% 

SMC, 31% 

PCG, 10% 

PreCG, 3% 

6 L 160 [-48 -16 34] 3.65 PostCG, 38% 

PreCG, 19% 

PostCG, 38% 

PreCG, 19% 

7 R 136 [24 -6 46] 4.76 PreCG, 9% 

SFG, 9% 

PreCG, 10% 

SFG, 9% 

MFG, 4% 
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Figure 5.6. Negative partial correlation between grams of alcohol per drinking 

day and GM volume, adjusted by age. a) Partial correlation map. b) Seven clusters. 
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5.3.2.3. Total grams of alcohol 

Table 5.5 and Figure 5.7 show the negative linear relationship of GM 

volume with total grams of alcohol per drinking day (accounting for age), in 

the group of control and abstinent subjects, with p < 0.01.  

 

Table 5.5. Information about the three clusters with negative partial correlation 

between total grams of alcohol and GM volume, adjusting by age.  Cl = cluster; 

Hem = hemisphere; Max = maximum; R = right; Vol = volume. 

Cl Hem Vol 

(mm3) 

[X Y Z] 

(mm) peak 

Max 

t-value 

Structures 

peak 

Structures whole 

cluster 

1 R 560 [54 -2 28] 4.40 PreCG, 28% 

PostCG, 8% 

PreCG, 29% 

PostCG, 13% 

2 R 208 [24 -4 46] 4.58 SFG, 10% 

PreCG, 6% 

MFG, 4% 

SFG, 11% 

PreCG, 10% 

MFG, 7% 

3 R 192 [2 -8 48] 4.30 SMC, 44% 

ACG, 27% 

PCG, 5% 

PreCG, 3% 

SMC, 38% 

ACG, 33% 

PCG, 8% 

PreCG, 5% 
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Figure 5.7. Negative partial correlation between total grams of alcohol per 

drinking day and GM volume, considering age.  a) Partial correlation map. b) Three 

clusters. 
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5.3.2.4. Summary of correlation maps 

Figure 5.8 summarizes Figure 5.5b, Figure 5.6b and Figure 5.7b to 

show the anatomical locations where one, two or the three alcohol-related 

variables were negatively correlated with GM volume after correcting by 

age.  

 

Figure 5.8. Overlapping of the partial correlation maps of the three alcohol-

related variables with GM volume. Cold colors illustrate the brain regions where 

there is no overlap, warm colors reflect the overlapping between two variables, and the 

overlap of the three alcohol-related variables in shown in black.  
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Figure 5.9 shows the overlapping of the map with GM decreases in 

abstinent inpatients (Figure 5.3) and the anatomical locations where two or 

three alcohol-related variables are negatively correlated with GM volume 

after accounting for age (Figure 5.8). The corresponding clusters are 

displayed in Figure 5.9b and described in Table 5.6. 

 

Table 5.6. Information about the clusters where there is an intersection of GM 

decreases in volume in abstinence condition with respect to control condition 

and negative correlation with GM volume of two or three alcohol-related 

variables.  Cl = cluster; Hem = hemisphere; L = left; Max = maximum; R = right; Vol 

= volume. 

Cl Hem Vol 

(mm3) 

[X Y Z] 

(mm) peak 

Max 

t-value 

Structures 

peak 

Structures whole 

cluster 

1 L 2,176 [-38 4 44] 5.06 MFG, 37% 

PreCG, 19% 

PreCG, 26% 

MFG, 16% 

IFGoperc, 6% 

2 R 1,088 [50 -2 28] 4.35 PreCG, 21% 

PostCG, 4% 

PreCG, 28% 

PostCG, 17% 

3 L 544 [-54 -6 30] 3.75 PreCG, 48% 

PostCG, 16% 

PreCG, 41% 

PostCG, 10% 

4 L 408 [-22 2 48] 4.42 SFG, 13% 

MFG, 7% 

PreCG, 14% 

MFG, 13% 

SFG, 7% 

5 R 328 [2 -8 48] 4.07 SMC, 44% 

ACG, 27% 

PCG, 5% 

PreCG, 3% 

ACG, 36% 

SMC, 31% 

PCG, 9% 

PreCG, 4% 

6 L 160 [-48 -16 36] 4.22 PostCG, 41% 

PreCG, 27% 

PostCG, 38% 

PreCG, 19% 
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Figure 5.9. Intersection of GM decreases in volume in abstinence condition with 

respect to control condition and negative correlation with GM volume of two or 

three alcohol-related variables. a) Statistical t-value map. b) Map grouped into six 

clusters. 
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5.4. Discussion 

5.4.1. GM volume comparisons in control and abstinence conditions 

The main structures where GM volume decreased in abstinents 

compared to controls (Figure 5.3) were PreCG, PostCG, SMC, MFG, 

PCUN and SPL (Table 5.2). The functions of these gyri and cortices help to 

understand the deficiencies caused by alcohol condition: control of 

movement (PreCG and SMC), processing of tactile and proprioceptive 

information (PostCG), personality, insight, prevision (MFG), sensory 

appreciation, language understanding, orientation (PCUN) and recognition 

of objects by touch and shapes (SPL).  

The first meta-analysis, by Xiao et al. [4], published in 2015, focused 

on 9 VBM studies [152,168–175] from January 2000 to November 2014, 

including a total of 359 (25.35% female, mean age = 40.76 years old) healthy 

controls (HCs), and 296 patients (23.31% female, mean age = 44.43 years 

old) with AD or alcohol abuse either in abstinence or not. GM decrements 

in patients were consistently found in PFC (including the ACC), DS, Ins, 

and PCC. We also found clusters in the bilateral PCC. 

In 2016, Yang et al. [5] published another meta-analysis, retrieving 

studies between January 2000 and December 2014, including some common 

studies with the previous meta-analysis [152,168–172] and others 

[154,176–180]. The 12 studies joined a total of 498 HCs (36.62% women) 

and 433 AD, abuse or addition individuals (37.42% women). The mean age 

of the HCs was 31.78 ± 14.29 years old and for the patients was 35.57 ± 

14.59 years old.  Compared to HCs, the AUD patients had consistent GM 

atrophies in Ins, STG, Str, dorsolateral PFC, PreCG, ACC, left Thal and 

right Hc. Like in this pooled meta-analysis, we also found clusters whose 

peak was in the right dorsolateral PFC/ACG and bilateral PreCG. 
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Next, we focus on studies that compare GM volume in HCs and 

abstinent patients, shown in crescent order of days in alcohol abstinence. 

Grodin et al. [169] compared 69 HCs (47 men,  22 women; 36.6  

1.1 years old) and 37 patients diagnosed with AD according to DSM-IV (21 

men, 16 women, with 40.2  9.2 years old) and in abstinence (duration not 

mentioned). GM volume decreased in AD patients in areas including the 

SFG, MFG, IFG, FPO, bilateral Thal, bilateral Pu, right ITG, and the CG. 

Four clusters coincided with the ones we obtained: right PCUN, right 

PreCG, left MFG and right PostCG.    

Van Eijk et al. [181] compared 55 HCs (42 men, 13 women; 45.3  

11.9 years old) versus 49 AD patients (40 men, 9 women, 47  10.1 years 

old) diagnosed with DSM-IV, recruited from the department of addiction 

medicine where they were detoxified, and on their first day of abstinence. 

GM volume loss in AD patients was located in several gyri including frontal 

gyri, cerebellum, Ins, PCUN and PreCG. Our clusters overlapped with their 

left CG, left PreCG, left SPL and right PCUN clusters.   

Mechtcheriakov et al. [171] compared 22 HCs (mean age 53.7 years, 

range 31–73 years; 14 men and 8 women) and 22 patients (mean age 53.6 

years old, range 31–69 years old; 14 men and 8 women), with alcohol 

addiction according to the 10th revision of the International classification of 

diseases (ICD), in alcohol abstinence for at least 10 days. We also found 

significant GM volume decrease in bilateral PreCG and left MFG in the AD 

patients. The other clusters they found were in the Ins, cerebellum, dHc and 

Thal. 

Segobin et al. [154] compared 20 male HCs (46.70  4.25 years old) 

and 19 inpatients (17 men, 2 women; 44.40  6.07 years old) with alcohol 

dependence (DSM-IV criteria) in abstinence for 11.05   5.20 days. We 
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coincide in one of their four clusters, in the PFC. Their other clusters had 

the maximum statistical peaks in the Ins, Hyp and cerebellum.  

Charlet et al. 2014 [173] studied MR images from 40 HCs (30 men, 

10 women; 44.1 ± 12 years old), 40 AD patients (30 men, 10 women; 44.9 ± 

11.4 years old) diagnosed with DSM-IV and recruited from the inpatient 

alcohol withdrawal program of a university, and in abstinence before MRI 

acquisition (4 to 25 days). GM reductions were found in several areas, 

including bilateral MFG, bilateral PreCG, left ACG, left Ins and inferior 

parietal lobule. Only these authors found increased GM volume, in left CUN. 

We also found GM decreases in AD patients in left MFG, left PreCG, 

bilateral middle CG, left paracentral lobule, left PostCG and bilateral 

inferior parietal lobule.  

Zois et al. [182] studied 87 HCs (45.9  10.6 years old; 18% female) 

and 95 AD patients (45.9  9.9 years old; 25% female) diagnosed with DSM-

IV, recruited from a day clinic and inpatient wards, and in abstinence (11.7 

 6.6 days, 3 to 38 days) before MRI acquisition. They found several clusters 

with GM volume reductions in AD patients versus HCs, including bilateral 

Ins, MFG, ACG, PreCG and PostCG. Our results coincided in bilateral 

PreCG and left PostCG. 

Demirakca et al. [168] compared a total of 66 HCs (45 ± 10.10 years 

old; 34 men and 32 women) with 50 AD patients (46.6 ± 8.2 years old; 27 

men and 23 women) diagnosed with DSM-IV and recruited from an 

inpatient alcohol withdrawal treatment. The patients were studied within 

the first 5 weeks following detoxification (4 to 37 days after the last alcohol 

consumption, with a mean of 16.5 ± 7.3 days). In the 27 male patients, GM 

loss was mainly localized in bilateral Ins, right PHG and right Hyp. None 

of these clusters coincided with ours. 
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Van Holst et al. [172] compared 54 male HCs (35.3 ± 10.1 years old) 

with 36 men (43.2 ± 11.03 years old) diagnosed with alcohol abuse or alcohol 

dependence according to DSM-IV, recruited from addiction treatment 

centers and in abstinence for at least two weeks (mean duration = 18 days) 

before the MRI scanning. They found GM volume shrinkages in the AUD 

patients in left SFG, left PreCG, left Thal, right Ins, right Pu, right SMG 

and bilateral SPL. We also found significant GM decreases in AD patients 

in right SMG and right SPL.  

Rando et al. [175] scanned 50 HCs (31.14 ± 9.04 years old; 44% 

female) and 45 AD patients (38.20 ± 7.74 years old; 22.2% female) who were 

35.12 ± 7.3 days in abstinence. GM atrophy was found in the medial frontal 

cortex, the right lateral PFC, and a posterior region surrounding the 

parietal-occipital sulcus. We also found significant results in the ACG and 

the PCG.  

Asensio et al. [183] studied 24 male HCs (31.91  9.34 years old) 

and 24 male alcohol abusers, according to DSM-IV, with 35.62  4.81 years 

old. The participants did not consume alcohol at least during 3 days prior to 

the scanning procedure (controls, last use: 24.52  43.56 days before, 

patients with alcohol abuse: 40.88  29.07 days before). The authors found 

two clusters where GM volume was smaller in the patients with mild AUD 

than the HCs: ventral-medial PFC and dorsal-medial PFC, being the latter 

very similar in location to our cluster 1 containing the SMC.  

Wang et al. [184] compared 20 male HCs (40.50 ± 8.17 years old) 

to 20 AD male patients (43.95 ± 6.30 years old) diagnosed with DSM-IV, 

recruited from a hospital, in abstinence for at least one month (41.5 ± 10.80 

days). The authors found reduced GM volume in left dACC, left medial PFC, 

left PCUN, left Pu, left IFG, right OC, right cerebellum, left S1, right dorsal 
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PCC and right premotor cortex. The last three clusters coincided in location 

with ours.  

Chanraud et al. [177] studied regional GM alterations in 24 male 

HCs (45 ± 5.6 years old), relative to 24 moderate AD patients (47.8 ± 67.7 

years old) who were detoxified and remained from 3 weeks to 2 years in 

abstinence with a mean of 31 ± 31 weeks. They found GM reductions in 

bilateral Hc, left PreCG, bilateral PostCG, PCG, STG, MFG, IFG and 

SMG. Only left PreCG and PostCG coincided with our clusters, although 

we got significant results in some of these gyri in other locations.  

In summary, our significant results in PreCG and PostCG are the 

clusters that most coincide with other studies. Like Grodin et al. [169], 

Rando et al. [175], Asensio et al. [183], Wang et al. [184] and Chanraud 

et al. [177] we did not found GM atrophy in insula. Grodin et al. did not 

specify the days in abstinence, and the patients in Asensio et al. [183] were 

alcohol abusers instead of AD, but the other three studies coincide in that 

they focused on AD patients who were detoxified and remained in abstinence 

more than 30 days on average. In our case 21.91  6.04 days. These were the 

three studies with the highest number of days in alcohol abstinence.  

The main strength of our study resides in the fact that the images are 

from AD inpatients, part of a controlled program. Compared to volunteers, 

the accuracy of the alcohol-consumption values is higher. We also employed 

VBM, a methodology that allows detailed results (in scale of voxels, 8 mm3 

in this case) to assess changes in GM volume between control and abstinent 

condition, and importantly, explained these changes as associations with 

alcohol-consumption variables.  
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5.4.2. GM volume correlations with alcohol-related variables 

PreCG, PostCG, SMC and MFG also showed to be crucial in the 

partial negative correlation between GM volume and two or three of the 

alcohol-related variables: ADS score, grams of alcohol per drinking day and 

total grams of alcohol (Figure 5.8). Notably, a negative correlation between 

GM volume and ADS score (Figure 5.5) explained  the changes in most of 

the areas where GM volume was smaller in abstinents than in control 

individuals (Figure 5.3). Days in abstinence during the 90 days prior to the 

MRI acquisition did not have a significant relationship with GM volume, 

which may indicate that once the alcohol-related damage has begun it is not 

reverted in early abstinence. 

Yang et al. [5] highlighted that GM shrinkage in the right Str was 

negatively correlated (r = −0.838) to the duration of alcohol 

dependence/abuse/addiction. We did not focus on subcortical regions, 

neither on that clinical variable, so it is not possible to compare. Besides, in 

the meta-analysis it was found that lifetime alcohol consumption was 

negatively associated with left MFG (r = -0.674) in coordinates overlapping 

with one of our clusters with ADS score and grams of alcohol per drinking 

day. Left Thal was also significant but we cannot compare with that.  

Rando et al. [175] found significant negative correlation between 

the GM volume in their medial frontal cluster and both the number of years 

of alcohol use and the number of days of alcohol consumption during the 90 

days before detoxification (r = - 0.38). In our data, our cluster was also 

negatively related to ADS scale, with partial correlation values between           

-0.35 and -0.5. Their lateral prefrontal cluster also correlated negatively 

with the aforementioned clinical variables, but in our case we did not obtain 

that cluster.  
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Asensio et al. [183] evidenced that the more impulsive the subjects 

(quantified with Barratt’s impulsivity score), the lower the GM volume in 

medial PFC. In our most similar clusters, GM volume negatively correlated 

with ADS score, and in some parts also with grams of alcohol per drinking 

day and total grams of alcohol, in the 90 days before MRI acquisition. These 

GM abnormalities in the cortico-striatal-limbic circuits may be involved in 

craving and functional alterations.  

Demiracka et al. [168] evicted that neither lifetime drinking history 

nor duration of addiction was correlated with GM volume. We did not 

compare those clinical variables, so we cannot compare with this study. 

The fact that the alcohol-related variables are highly correlated is a 

plausible reason for the lack of significant brain areas in the analysis with 

the design matrix accounting for all the alcohol-related variables. Moreover, 

this high correlation makes difficult to the find results due merely to one of 

the alcohol-related variables.  

 

5.4.3. Challenges in GM segmentation 

It is worth noting that accurate GM segmentation is crucial to obtain 

reliable VBM results and that two features challenge GM segmentation. 

First, the bias field and the partial-volume effect (multiple tissue classes in 

the same voxel occupation) cause Gaussian classes to overlap in the image 

intensity histogram (GM, WM and CSF), leading to misclassifications. 

Moreover, MR images sometimes present low contrast between GM and 

WM. FAST software succeeds in accounting for these challenges [162]. 

The only structure that was misclassified as WM was the brain stem, a 

structure we were not interested in. For a proper deep brain segmentation 

FIRST (FMRIB's integrated registration and segmentation tool) software, 

part of FSL software is further recommended.  
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5.4.4. Controversial interpretation of VBM 

It has been widely discussed that VBM results can reflect a real 

loss/increase of local GM volume or be artificially caused by problems in 

registration, for example misclassification, misalignments or folding in gyri. 

We have followed the recommendations from FSL software and the tips for 

best practices in Ridgway et al [151] aiming to obtain real changes in GM 

volume. The sophisticated analysis performed and the existing literature 

lends support to our findings. 

 

5.5. Conclusion 

First, we performed a VBM analysis comparing HCs and AD 

inpatients who were detoxified and remained in abstinence until the MRI 

scanning, with age as covariate. We obtained clusters with reduced GM 

volume in the inpatients, mainly in PreCG, PostCG, SMC, MFG, PCUN and 

SPL. Then, focusing on the brain voxels with GM according to our template, 

we partially (adjusting by age) correlated GM volume and three alcohol-

consumption variables: 1) grams of alcohol per drinking day, Form 90; 2) 

total grams of alcohol, Form 90 and 3) ADS score. These variables explained 

the effect of most of the significant brain voxels where GM decreased in the 

detoxified AD inpatients. Having images of controlled inpatients is a big 

advantage, and we find this study to be helpful in understanding GM 

deteriorations due to severe AUD.  
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Chapter 6 

6.  Characterizing dynamic brain states 

in fMRI signals 

Part of this chapter has been previously presented as a graphical 

abstract and poster: 

“Pérez-Ramírez U, Vidaurre D, Harrison S, Moratal D, Woolrich M, 

Smith S, Duff E. Hidden Markov modelling identifies distinct patterns of 

task-related network activity in fMRI. OHBM 2018, 17-21 June, Singapore, 

Republic of Singapore.” 

The ultimate goal of this work will be to classify brain states in our 

rs-fMRI data for the study of alcohol intake effects, but further validation of 

the approach presented in this chapter was needed, so we tested fMRI data 

with a known block-design paradigm.  

 

6.1. Introduction 

To adapt to changes in the environment and for cognition, the brain 

has to coordinate rapidly and dynamically across multiple brain regions 

[185]. Despite its importance, how these neural interactions arise remains 

unclear. It is worth noting that these dynamic properties cannot be 
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measured by traditional static FC analysis via correlation analysis between 

entire BOLD signals [186].  

It is challenging to develop analysis techniques in rs-fMRI data to 

truly capture the complexity of the brain's dynamics and connectivity. 

Obtaining consistent and precise functional networks is essential for the 

validity of subsequent functional analyses [187]. Many approaches have 

aimed to find methods that capture the temporal dynamics of modes, defined 

as spatial distributions over the brain, each sharing a common time course 

[79,188–193]. The simplest method is time courses extraction from labelled 

regions in an anatomical atlas, but the disadvantages are that anatomical and 

functional regions are not completely matched and an accurate registration 

is required [187]. Data-driven approaches include probabilistic independent 

component analysis (PICA) that searches spatially or temporally ICs [79], 

clustering [188], principal component analysis (PCA) [189] and Hidden 

Markov models [190]. Recently, two complex approaches that explicitly 

model the data have been developed, the multi-subject dictionary learning 

(MSDL) [191], and probabilistic functional modes (PFMS) [192,193]. 

MSDL applies hierarchical models for spatial subject variability, favoring 

smooth and sparse spatial distributions and capturing the temporal 

correlations between modes, whereas PFMs characterize subject variability 

and complex spatio-temporal interactions within a Bayesian framework.  

Several approaches have focused on studying the dynamic nature of 

whole brain activity in the resting state as measured by fMRI [185,186,194–

196]. Evaluation of these methods is typically done either using simulations 

or by correlating dynamic functional connectivity (dFC) metrics against 

non-brain measures like disease status [185,186,194–199]. Sliding windows 

approaches have been popular to investigate time-varying patterns or FC 

[200,201]. Their main disadvantage is the choice of the width of the time-
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window (temporal resolution of the change) because short windows may lead 

to noisy estimations, whereas long windows can lose faster changes. Other 

methods for tracking changes in covariance over time have been tested, 

highlighting the jackknife correlation method for its good performance 

[199]. Recently, a promising analysis approach based on the Hidden 

Markov Model (HMM; [202]) has been proposed,  HMM-MAR (Hidden 

Markov model- multivariate autoregressive) or HMM-Gaussian [186,195–

198]. This approach characterizes multiregion fMRI activity as a dynamic 

sequence of discrete brain states with distinct patterns of network activity 

[186,195–198], with no knowledge of the paradigm rest/task timings.  

Here we evaluate HMM-Gaussian on fMRI data, explicitly 

manipulating participants' cognitive state via a series of different tasks  

alternated with rest [51]. This offers a ground truth for the resulting dFC 

analyses. Our aim was to select a good combination of brain network’s time 

series extraction and characterization of the dynamics of the brain courses 

by several brain states. Pursuing this aim, we have applied several 

configurations of HMM-Gaussian to ICs and PFMs. The steady data of each 

task condition (visual, motor and visual-motor) in the block-design 

paradigm have been previously characterized with respect to rest condition, 

in terms of FC, by Duff et al [51]. Increases or decreases in variance 

occurred in regions whose function was related with the task, leading to 

increases or decreases in correlation that could be explained by additive 

changes in signal. To obtain predictive features of static FC and discriminate 

brain states, Sala-Llonch et al. [203] evaluated the performance of different 

combinations of: 1) parcellation (ROIs, atlas, PICA), 2) band-pass filtering 

in several frequency ranges or no filtering and 3) connectivity measures (full 

correlation, covariance or regularized partial correlation). They obtained the 
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highest discriminability rates with regularized partial correlation applied to 

high-dimensionality PICA parcellations and high-frequency data. 

 

6.2. Material and methods 

 
6.2.1. Participants and experimental paradigm 

Fifteen healthy volunteers (7 women, 8 men; age = 27.25 ± 4.4 years 

old; all right handed) without any previous neurological disorders were 

recruited in accordance with NHS national research ethics service approval 

(10/H0707/29) and provided written informed consent. The participants 

underwent a block-design paradigm alternating between 30-second blocks 

of visual (videos of colored abstract shapes), motor (sequential finger 

tapping) or visual-motor tasks (changing tapping direction when presented 

an irregular visual cue), separated by 15-second rest blocks.  

More in detail, the motor condition consisted of continuous 

sequential finger tapping against the thumb, using the right hand to achieve 

a tapping frequency of 1 Hz. Concerning the visual condition, it consisted of 

videos of colorful abstract shapes in motion. During the visuo-motor 

condition the participants viewed the videos while simultaneously tapping. 

Each of the three tasks was repeated four times during the block paradigm, 

making a total scan time of 9 minutes and 15 seconds. The data from one 

participant was discarded due to an error in the acquisition. 

Additionally, the subjects performed in steady state the same four 

experimental conditions (rest, visual, motor, visual-motor) for 5 minutes. 
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6.2.2. MRI image acquisition 

The participants underwent MR in a Siemens 3T scanner. For the 

block design data, fMRI data was acquired using a multiple gradient echo-

planar T2*-weighted pulse sequence, with the following parameters: voxel 

size = 3 mm isotropic, TR = 3,000 ms, TE = 30 ms, flip angle = 90°, imaging 

matrix = 64×64 and FOV =192 mm. Forty-six slices with slice thickness of 

3 mm and no gap were acquired in the oblique axial plane, completely 

covering the cortex and partially covering the cerebellum, for a total of 185 

brain volumes. Anatomical images were acquired using a T1-weighted 

magnetization prepared rapid acquisition gradient echo sequence 

(MPRAGE) with these parameters: TR = 2,040 ms, TE = 4.7 ms, flip angle 

= 8° and voxel size = 1 mm isotropic. Field maps were obtained to reduce 

spatial distortion of the functional images during the preprocessing.  

Steady functional data were acquired using a 32-channel head coil 

with the parameters: voxel size = 2 mm isotropic, TR = 1,300 ms, TE = 40 

ms, flip angle = 66°. Seventy-two slices with 2 mm thickness and no slice 

gap were acquired in the oblique axial plane, covering the whole cortex and 

cerebellum, for a total of 230 brain volumes. 

 

6.2.3. fMRI image preprocessing 

The data were processed using FSL-FEAT version 6.00 [204]. 

Common preprocessing for the block-design data and the steady data 

included motion correction with respect to the middle volume, field-map 

correction [67] and brain extraction. Block-design scans were spatially 

smoothed using a Gaussian kernel of FWHM of 5 mm, but no spatial 

smoothing was applied to the steady data. Steady-state data were 

additionally cleaned using FIX (FMRIB's ICA-based Xnoiseifier) automated 

denoising [91] to account for the influence of any non-neuronal 
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contribution to the BOLD signal. The functional images were registered 

with the anatomical image using Boundary-Based Registration [205]. 

Time-course pre-whitening was performed using FILM (FMRIB's 

Improved Linear Model) with local autocorrelation correction [204]. All 

structural images were nonlinearly registered to standard MNI (Montreal 

Neurological Institute, McGill University, Montreal, Canada) space using 

FSL’s FLIRT and FNIRT. Further, images underwent mean-based 

intensity normalization and high-pass temporal filtering (0.01 Hz for steady-

state scans; 0.005 Hz for block-design scans).  

 

Figure 6.1 shows a general overview of the methodology employed 

to estimate brain states. Briefly, the fMRI time courses from several brain 

networks were extracted with two approaches: PICA (section 6.2.4.) and 

PROFUMO (probabilistic functional modes; section 6.2.5.). Then, a method 

to infer brain states, HMM-Gaussian, was applied to these time courses, 

with different covariance types. Finally, we performed a statistical 

comparison with the aim of choosing the best combination of time courses 

extraction and HMM-Gaussian covariance type.  
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Figure 6.1. Methodology for brain states’ estimation.  a) The fMRI time courses 

from several brain networks were extracted with two approaches: PICA (probabilistic 

independent component analysis) and PROFUMO (probabilistic functional modes). 

PICA was set to 20 and 50 independent components (ICs) and PROFUMO was set to 

50 ICs to study different parcellations of the brain into brain networks. b) The 

estimation of states was performed with a method based on hidden Markov models and 

multivariate Gaussian distributions, the HMM-Gaussian. Four covariance types were 

studied for each brain parcellation and after statistical evaluations with a ground-truth 

paradigm the best combination for estimating brain states was selected.  

 
6.2.4. Probabilistic independent component analysis 

The analyses were performed in the block-design data. First, with 

PICA, the fMRI volumes were decomposed into 20 ICs and 50 ICs. The data 

were temporally concatenated and equal balance of false positives and false 

negatives was considered. Then, spatial regression was applied to obtain the 

time courses. Please, refer to Chapter 4 section 4.2.4.2 for more 

methodological details on the background of PICA. 

 

6.2.5. Probabilistic functional modes 

This analysis was performed in the block-design data. PROFUMO 

is a software developed by researchers from the Oxford Centre for 
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Functional MRI of the Brain in Oxford, United Kingdom, that identifies 

modes of coherent activity (PFMs, analogous to RSNs), i.e. spatial 

distributions over the brain, each of them sharing a common time course. 

Modes are similar to atlas functional parcellations, but a mode does not 

impose restrictions on the spatial properties, i.e. there is no restriction to 

being orthogonal or non-overlapping. A hierarchical model captures the 

spatial variation of modes across subjects, while keeping the group 

properties. PROFUMO strongly focuses on characterizing both subject 

variability and complex spatio-temporal interactions between modes [193].  

Going into more detail, the data matrix D is formed by v voxels and 

t time points, the spatial maps P by v voxels and m modes, and the time 

courses by m modes and t time points. Data D is expressed as a contribution 

from the PFMs (spatial maps and time courses) and a noise term 𝜀. It is 

assumed that the noise ε and the time courses A randomly vary in each run 

r, but the spatial maps are consistent in a subject s across all their runs r, as 

indicated in the matrix factorization approach of Equation 6.1.  

𝐷(𝑠𝑟) =  𝑃(𝑠)𝐴(𝑠𝑟) +  𝜀(𝑠𝑟)                                   (6.1)   

Equation 6.1 is formulated as a probabilistic model by modelling the 

noise contribution and by placing priors on the spatial maps (spatial priors) 

and the time courses (temporal priors) to ensure the correspondence over 

subjects. Concretely, in the subject-specific spatial maps the spatial prior 

encodes the mean group map and typical patterns of spatial variability. 

Further, the time courses are modeled using an HRF-based model for the 

temporal autocorrelation and a subject-specific temporal partial correlation 

matrix wherein variability in FC across subjects is allowed. All parameters 

are inferred simultaneously using a Bayesian approach [193]. 
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Spatial prior 

For each voxel v, given the noise level and the time course, it is 

assessed if the data supplies enough evidence to suggest that there is an 

fMRI effect. In an affirmative case, the aim is to find its size and the variation 

across subjects; in a negative case, the voxel weight is zeroed.  

The delta-Gaussian mixture model contains a delta component to 

account for the effects that are too weak to be noticed or not present on the 

data, and a Gaussian that models the observable effects and their variability 

across subjects, as shown in Equation 6.2.  

𝑝(𝑃𝑣𝑚
(𝑠)

|𝑞𝑣𝑚
(𝑠)

= 1) = 𝒩(𝑃𝑣𝑚
(𝑠)

|𝜇𝑣𝑚 ,𝜎𝑣𝑚
2 ) 

              𝑝(𝑃𝑣𝑚
(𝑠)

|𝑞𝑣𝑚
(𝑠)

= 0) = 𝛿(𝑃𝑣𝑚
(𝑠)

)                             (6.2)                                              

𝑝(𝑞𝑣𝑚
(𝑠)

) =  (𝜋𝑣𝑚)𝑞𝑣𝑚
(𝑠)

(1 − 𝜋𝑣𝑚)1−𝑞𝑣𝑚
(𝑠)

 

At each voxel three parameters parameterize the distributions of the 

spatial maps across subjects: 1) probability of an effect being present π (does 

a certain voxel contribute to that PFM?), 2) mean of the Gaussian μ (how 

big is the contribution of that voxel to that PFM?), and 3) standard deviation 

of the Gaussian σ (how much varies this contribution across subjects?). The 

variable q with zero value equals the delta component, and q = 1 refers to 

the Gaussian component. Notoriously, since there is no prior on the 

relationship between the spatial distributions of different modes, voxels can 

belong to multiple modes. Besides, the inference on this model combines the 

evidence from all the runs of a subject, weighted to account for the SNR of 

the time courses. 

It is standard to place a beta-hyperprior on π, an inverse gamma 

hyperprior on σ and a spike-slab hyperprior on each mode's voxelwise mean, 

with precision γ and sparsity λ — proportion of voxels that the user expects 



6. Characterizing dynamic brain states in a block-design paradigm 

 

154 
 

to be non-zero in each mode's group level spatial map —, leading to 

Equation 6.3 [193]: 

𝑝(𝜇𝑣𝑚|𝜌𝑣𝑚 = 1) = 𝒩(𝜇𝑣𝑚|0, γ𝑚
−1) 

                            𝑝(𝜇𝑣𝑚|𝜌𝑣𝑚 = 0) = 𝛿(𝜇𝑣𝑚)                                   (6.3)                                             

𝑝(𝜌𝑣𝑚) =  (𝜆)𝜌𝑣𝑚(1 − 𝜆)1−𝜌𝑣𝑚 

Temporal prior 

Since the temporal characteristics of modes relate to the BOLD 

hemodynamics, the observed signal y(t) is a convolution of the neuronal 

signal x(t) and a linear HRF h(t). The temporal prior sets that the 

autocorrelation induced in y(t) is the autocorrelation of a canonical double-

gamma HRF, as shown in Equation 6.4.   

𝐸[𝑦(𝑡1)𝑦(𝑡2)] = ∑ ℎ(𝜏)𝜏 ℎ(𝜏 − (𝑡1 −  𝑡2))               (6.4)   

 

The correlation structure of the canonical double-gamma HRF is 

used to construct a full covariance matrix, KA, for all the time points in a 

run, with a standard inverse gamma hyperprior α, on the precision. 

Therefore, the temporal prior on the time courses (𝐴𝑚
(𝑠𝑟)

) for a PFM mode m 

is calculated by the Equation 6.5 [193]: 

𝑝(𝐴𝑚
(𝑠𝑟)

|α) = 𝒩(𝐴𝑚
(𝑠𝑟)

|0, α−1𝐾𝐴)                       (6.5)                   

Noise model 

The noise model is white Gaussian noise with a mean for each voxel, 

v. The overall noise precision for each run, ψ, has a standard gamma 

hyperprior, while the mean has a Gaussian hyperprior, which as indicated in 
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Equation 6.6 corresponds to the probability of solving 𝜀(𝑠𝑟) in Equation 6.1 

[193]: 

   𝑝(𝜀𝑡
(𝑠𝑟)

) = 𝒩 (𝜀𝑡
(𝑠𝑟)

|𝑣(𝑠𝑟), (ψ(𝑠𝑟))
−1

𝐼)                                        (6.6)                                                    

= 𝑝(𝐷𝑡
(𝑠𝑟)

− 𝑃(𝑠)𝐴𝑡
(𝑠𝑟)

)  

Bayesian approach 

By doing an inference in a Bayesian framework, a balance between 

explanation of the data and good regulation by the priors is fulfilled. For 

computational cost reasons, a variational approach is used, with simplified 

posterior distributions q(x) and a factorization of the posterior over the 

variables Θ, so that Equation 6.7 is satisfied. 

𝑝(𝛩|𝐷) ≈  ∏ 𝑞(𝜃)

𝜃∈𝛩

                                         (6.7) 

The probabilistic functional modes (PFMs) were inferred with the 

PROFUMO algorithm version 0.5.2. Briefly, subject-specific spatial maps 

and time courses were extracted from the rs-fMRI data, which were all 

regularized by hierarchical, group-level priors, using a variational Bayesian 

approach [193]. One subject was discarded due to inaccurate PFMs, so for 

PROFUMO analysis there is one subject less than for PICA. 

 

6.2.6. Hidden Markov Model – Gaussian 

This method combines the Hidden Markov model (HMM) [202] and 

multivariate Gaussian distributions [206]. The Gaussian model 

characterizes the multiregion time series by linear historical interactions. 

HMM describes a time series as a sequence of states, each having its own 

model of the observed data (a Gaussian observation model).  
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HMM assumes that the time series can be described with a hidden 

sequence of a finite number of states as indicated in Equation 6.8. Indeed, 

the maximum number of states is specified by the user and some are dropped 

out for not having sufficient statistical validity.  

𝑥𝑡|𝑠𝑡 = 𝑘 ∼ multivariate Gaussian(𝜇𝑘, 𝛴𝑘)                (6.8) 

where 𝑥𝑡 contains the time series, 𝑠𝑡  denotes the hidden state at time 

point t (probability of each state being active at each time point) and k is a 

certain state. The multivariate Gaussian characterizes the distribution of 

each state k by two parameters: 𝜇𝑘 is a vector containing the mean BOLD 

activation of each brain region/network and 𝛴𝑘 is the covariance matrix 

codifying the variances and covariances between brain regions/networks 

when the state k is active. 

The state sequence is regularized by modeling the probability of 

transition between all pairs of brain states, Pr. Before observing the time 

series, the probability of a given state at time point t depends on the brain 

state that was active at the anterior time point t – 1, as indicated in Equation 

6.9. 

Pr(𝑠𝑡 = 𝑘) =  𝛴𝑙𝛩𝑙,𝑘 Pr(𝑠𝑡−1 = 𝑙)                             (6.9) 

where 𝛩𝑙,𝑘 is the transition probability matrix, composed of on-

diagonal elements that reflect the probability of persisting in the same state, 

and the off-diagonal elements controlling the transitions. The initial state 

probabilities are encoded by the parameter η. Taking this into account, the 

observed data at each time point are modeled as a mixture of Gaussian 

distributions, with weights 𝑤𝑡𝑘 = Pr(𝑠𝑡 = 𝑘). 

The time series of all the subjects were concatenated before applying 

the HMM-Gaussian, so that more samples were deemed and hence 

improving statistical strength. The HMM states were set to be a Gaussian 
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distribution with several covariance matrices and state-varying mean 

activity to account for the best option to properly characterize brain states. 

The states were estimated at the group level, but the state time courses (state 

activation) were subject-specific. An inference algorithm based on the 

principles of variational Bayes (VB) but requiring less computational cost 

was used to estimate the parameters from Equations 6.8 and 6.9: 𝜇𝑘, 𝛴𝑘, 𝑠𝑡  

and 𝛩𝑙,𝑘 [206]. Concretely, the model posterior distribution was 

approximated by assuming additional factorizations in the posterior 

distribution. First, these parameters were randomly initialized five times and 

the ones who got more free energy — an estimation of how well the model 

fits the data — were used. Then, the main inference procedure was carried 

out. Next, the main parameters to configure HMM are listed. 

HMM configuration parameters 

▪ Covariance matrix 𝛴𝑘 

• uniquefull: a single full covariance matrix (with off-diagonal 

elements different from zero) for all the HMM states. 

• full: full covariance matrix for each HMM state. 

• uniquediag: one diagonal covariance matrix for all the HMM states. 

• diag: a diagonal covariance matrix for each HMM state. 

▪ the mean 𝜇𝑘 of the time series will be used to drive the states. 

▪ Gaussian model (order 0). 

▪ 10 repetitions of HMM-Gaussian, to get the mean and standard deviation 

in the statistical measures. 

▪ K: maximum number of HMM states = 4 (true number). 
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▪ standardize each subject so that the time series have a mean of zero and a 

standard deviation equal to one. 

 
6.2.7. Relabeling of HMM-states 

The HMM-Gaussian established a numeration for the HMM-states 

that not always coincided with the numbers that we assigned to each 

experimental condition: 1) rest, 2) visual, 3) motor and 4) visual-motor in 

the ground truth paradigm. To evaluate properly the HMM-Gaussian 

performance, the HMM-state labels were reassigned following these steps: 

1) For each true state (experimental condition in the ground truth 

paradigm), calculate the percentage of time points predicted with each 

HMM numerical label. 

2) Find the maximum percentage (in all the true states) and change 

that HMM-state value to the corresponding true state. 

3) These true (ground truth) and predicted (HMM-Gaussian) 

numerical values are not further considered. 

4) Repeat step 2 until all the HMM-states are relabeled. 

 
6.2.8. Correlation of static functional connectivity 

This section refers to the correlation between correlation matrices 

across subjects in the steady data. First, the concatenated steady signals in 

each experimental condition (rest, visual, motor and visual-motor) were 

demeaned for each subject. Then, the Pearson’s r full correlation matrices 

for each condition were correlated across subject, one matrix per approach 

(20 ICs, 43 ICs and 27 PFMs). Then, we correlated the correlation matrix 

of subject X and the correlation matrix of subject Y, between all possible 

pairs of subjects and filled the steady FC matrix, to find out if the subjects 

were homogeneous in the static FC of the same experimental condition.  
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6.2.9. Metrics to evaluate brain states’ identification 

The first metric is from the field of information theory and it is used 

to evaluate the overall performance of HMM-Gaussian: 

 
▪ Mutual information (MI): similarity between two groups of 

labels (Equation 6.10). Normalized mutual information (NMI) 

ranges from 0 (no mutual information) to 1 (perfect correlation) 

and is calculated by Equation 6.11: 

𝑀𝐼 = ∑ 𝑈| 

|

𝑖=1

∑ 𝑉| 
|𝑈𝑖 ⋂ 𝑉𝑗 |

𝑁
log

𝑁|𝑈𝑖 ⋂ 𝑉𝑗 |

|𝑈𝑖 ||𝑉𝑗|
                    (6.10)

|

𝑗=1

 

𝑁𝑀𝐼(𝑈, 𝑉) =  
𝑀𝐼

√𝐻(𝑈) · 𝐻(𝑉)
                                                (6.11) 

where |𝑈𝑖 | is the number of samples in group 𝑈𝑖  and |𝑉𝑖 | is the 

number of samples in group 𝑉𝑖 , N is the total number of samples 

and H (Equation 6.12) is the entropy defined as lack of order or 

predictability, representing a measure of the number of states 

with significant probability of being occupied. 

                       𝐻(𝑈) = − ∑ 𝑝(𝑈𝑖) log 𝑝(𝑈𝑖)

𝑛

𝑖=1

                       (6.12) 

The five statistical measures below are the typical metrics to evaluate 

a classifier according to the number of true positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN), being correct rate (CR) 

the overall summary of good classification performance [207]: 

 

▪ Sensitivity (Sn): proportion of positives that are correctly 

identified, as shown in Equation 6.13.  
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𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                        (6.13) 

▪ Specificity (Sp): proportion of negatives that are correctly 

identified is calculated with Equation 6.14. 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                        (6.14) 

▪ Positive predictive value (PPV): proportion of positive results 

that are true positives, as shown in Equation 6.15. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                        (6.15) 

▪ Negative predictive value (NPV): proportion of negative results 

that are true negatives (Equation 6.16). 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
                                       (6.16) 

▪ Correct rate (CR): overall good performance of the classifier 

(Equation 6.17). 

𝐶𝑅 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                (6.17) 

The rest of the metrics are the most specific to HMM-Gaussian, since 

they are related to the states’ time courses, frequencies or occupancies of 

state visits, and transitions from one state to another.  

▪ State time courses: sequence of states that are individually the 

most probable, with probabilities. 

▪ Viterbi path: most likely sequence of states. Each time point is 

assigned to only one state. 

▪ Fractional occupancy: on one hand, performed across trials/runs 

it establishes how much time on average the HMM spends on 
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each state at each time point. On the other hand, it can be 

calculated separately per subject, detailing each state to 

investigate differences in occupancies between subjects. In this 

case, it informs about the time each subject/trial/session spends 

in each state (i.e. the average state probability across time, per 

session or subject). 

▪ Dwell time: number of time points per state visit, to reflect the 

temporal stability of the states. 

▪ Dwell interval: number of time points between state visits. 

▪ Switching rate: it is a measure of stability per subject, calculated 

with the Equation 6.18.  

𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
          (6.18) 

For example, if a signal has 185 time points (184 possible 

changes of state), and there are 25 brain states estimated (24 

changes of state) the corresponding switching rate is 24/184.  

▪ Transition matrix: this measure reflects the transition 

probabilities from any state to any other state, without 

considering the probability to remain in the same state.  

The spatial maps for each HMM brain state can be obtained after 

weighting the PICA/PFM spatial maps by the HMM state’s mean activity. 
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6.3. Results 

6.3.1. Brain networks 

From the PICA set to 20 ICs, all the ICs were RSNs. Seven ICs were 

discarded from the PICA set to 50 ICs, being RSNs the remaining 43 ICs. 

Finally, 27 PFMs out of 50 resulted of biological interest. The three 

approaches gave the same RSNs (Table 6.1), differing in the way they were 

splitted up (by hemispheres, anterior or posterior, or no splitted). These 

networks are consistent with previous scientific works [115,208].  

 

Table 6.1. RSNs for the characterization of brain states in a block-design task 

fMRI paradigm.  

RSNs 

visual-medial network (VMN) precuneal network (PN) 

visual-occipital network (VON) frontoparietal network (FPN) 

visual-lateral network (VLN) language network (LN) 

auditory network (AN) executive control network (ECN) 

default-mode network (DMN) dorsal attention network (DAN) 

salience network (SN) cerebellar network (CN) 

cingulo-opercular network (CON) motor network (MN) 

sensorimotor network (SMN)  

 

Figure 6.2 shows the DMN obtained by the three approaches (PICA 

with 20 ICs, PICA set to 50 ICs and PROFUMO set to 50 ICs), to visually 

compare with the DMN obtained by Veer et al. [208]. 
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Figure 6.2. DMN obtained by three approaches: PICA with 20 ICs, PICA set to 

50 ICs and PROFUMO set to 50 PFMs, with the ground truth by Veer et al.  

[208]. a) PICA set to 20 ICs. b) PICA with 50 ICs. c) PROFUMO with 50 PFMs.   
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6.3.2. Mutual information 

NMI allowed us to get a general overview of the performance of 

HMM-Gaussian, with four covariance types, applied to ICs or PFMs. Figure 

6.3. represents the mean and standard deviation values after 10 runs of 

HMM-Gaussian inferred on 20 ICs (red), 43 ICs (blue) and 27 PFMs 

(purple).  

 

 

Figure 6.3. HMM-Gaussian performance evaluation with normalized mutual 

information, considering three brain parcellations and four covariance types.  The 

bars show the mean and standard deviation of NMI after 10 runs of HMM-Gaussian. 

a) uniquefull covariance. b) full covariance. c) uniquediag covariance. d) diag covariance.  
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Uniquefull covariance offered the best results in the three approaches, 

being the combination with 27 PFM the best option (higher NMI, on 

average 0.15). 

 

 
6.3.3. Other statistical measurements 

Sn, Sp, PPV, NPV and CR provided a more detailed information 

about how well each experimental condition was classified as an HMM state. 

Matrices for the four covariance types are shown:  uniquefull (Figure 6.4), full 

(Figure 6.5), uniquediag (Figure 6.6) and diag (Figure 6.7), after running 

HMM-Gaussian ten times. Uniquefull covariance led to the best results. 

 

6.3.3.1. Uniquefull covariance 

The best overall performance with the covariance type uniquefull was 

obtained with PROFUMO (Figure 6.4c), a CR equal to 48.68%. The best Sn 

results were in the visual condition, followed by the motor condition. The 

best tradeoff between Sn and Sp corresponded to the visual condition, having 

acceptable PPV and NPV.  

HMM-Gaussian applied to 43 ICs gave slightly better CR (40.95%; 

Figure 6.4b) than the application to 20 ICs (38.97%; Figure 6.4a). With 20 

ICs the rest condition was not properly classified most of the times, being 

the motor condition the best classified in both, 20 ICs and 43 ICs.   
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Figure 6.4. Statistical measures for uniquefull covariance. a) 20 ICs. b) 43 ICs. c) 

27 PFMs. μ = mean; σ = standard deviation; ICs = independent component; PFMs = 

probabilistic functional modes; v-motor = visual-motor.  

 

6.3.3.2. Full covariance 

Concerning full covariance, once again PROFUMO was the best 

approach, with a CR equal to 32.77% (Figure 6.5c). In this case, visual-motor 

was the condition with the best tradeoff between Sn and Sp, presenting high 

NPV and low PPV.  

The results with 20 ICs gave slightly better CR (25.42%; Figure 6.5a) 

than the application to 43 ICs (24.69%; Figure 6.5b). Both approaches gave 

very similar Sn, Sp, PPV and NPV for the same experimental condition, and 

across conditions.  
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Figure 6.5. Statistical measures for full covariance. a) 20 ICs. b) 43 ICs. c) 27 PFMs. 

μ = mean; σ = standard deviation; ICs = independent component; PFMs = probabilistic 

functional modes; v-motor = visual-motor. 

 
6.3.3.3. Uniquediag covariance 

The best CR with the covariance type uniquediag was obtained with 

PROFUMO (Figure 6.6c), 40.06%. The best tradeoff between Sn and Sp 

corresponded to the visual-motor condition, having high NPV and lower 

PPV.  

HMM-Gaussian applied to 20 ICs gave slightly better CR (32.10%; 

Figure 6.6a) than the application to 43 ICs (28.05%; Figure 6.6b). In both, 

visual-motor condition was the worse classified condition, and visual 

condition the best.  



6. Characterizing dynamic brain states in a block-design paradigm 

 

168 
 

 

Figure 6.6. Statistical measures for uniquediag covariance.  a) 20 ICs. b) 43 ICs. c) 

27 PFMs. μ = mean; σ = standard deviation; ICs = independent component; PFMs = 

probabilistic functional modes; v-motor = visual-motor. 

 
6.3.3.4. Diag covariance 

Concerning diag covariance, PROFUMO gave the best CR, equal to 

40.35% (Figure 6.7c). Visual-motor was the condition with the best tradeoff 

between Sn and Sp, having high NPV and lower PPV.  

Twenty ICs gave slightly better CR (29.94%; Figure 6.7a) than 43 

ICs (28.54%, Figure 6.7b). For 20 ICs, visual condition only got a Sn of 

17.82; and for 43 ICs, visual-motor did not overcome 20%. With 20 ICs, 

motor and visual-motor conditions were the best classified conditions, while 

for 50 ICs rest and motor conditions were. 
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Figure 6.7. Statistical measures for diag covariance. a) 20 ICs. b) 43 ICs. c) 27 

PFMs. μ = mean; σ = standard deviation; ICs = independent component; PFMs = 

probabilistic functional modes; v-motor = visual-motor. 

 
6.3.4. Viterbi path 

Although the time courses from all the subjects were concatenated, 

in this section the Viterbi path of only the first subject is displayed, for better 

visualization. In the same figure, the results with the four covariance types 

are presented together with the ground truth on the right side (block-design 

paradigm, shifted the 6 seconds needed for the HRF), for 20 ICs (Figure 6.8), 

43 ICs (Figure 6.9) and 27 PFMs (Figure 6.10).  
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Figure 6.8. Example of Viterbi paths for one subject and 20 ICs considering the 

four covariance types, together with the block design experimental paradigm or 

ground truth. ICs = independent components.  

 

With uniquefull covariance and 20 ICs (Figure 6.8), the inferred brain 

states and switching rate were the most similar to the ground truth, while 

uniquediag and diag covariance types led to a faster transient than it should. 

With full covariance the whole subject was classified as a single brain state.   
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Figure 6.9. Viterbi paths and ground truth paradigm for one subject, with 43 ICs. 

Four covariance types are considered (uniquefull, full, uniquediag and diag). ICs = 

independent components.  

 

With uniquefull covariance and 43 ICs (Figure 6.9), the inferred brain 

states and switching rate were the most alike to the true paradigm, while 

uniquediag and diag covariances led to a faster transient than it should. With 

full covariance almost the whole subject was classified as a single brain state.   
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Figure 6.10. Viterbi paths and ground truth paradigm for one subject with 27 

PFMs. Four covariance are considered (uniquefull, full, uniquediag and diag). PFMs = 

probabilistic functional modes.  

 

With PROFUMO, uniquefull covariance (Figure 6.10) led to the most 

similar paradigm to the ground truth, while the rest of the covariance types 

were similar in switching rate but gave a worse classification.  

The fact that full covariance combined with PICA classified whole 

subjects as an HMM state made us suspect that the subjects were more 

heterogeneous between them than the corresponding experimental 

conditions per se. To corroborate this assumption, we studied the static FC 

in the steady data.  
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6.3.5. Static functional connectivity 

The full correlation of the correlation matrices in steady state is 

shown in Figure 6.11 (20 ICs) Figure 6.12 (43 ICs) and Figure 6.13 (27 

PFMs) in the four experimental conditions: rest, visual, motor and visual-

motor. As can be observed from these figures, the correlation values were 

low across the same condition for all the subjects, so the hypothesis that the 

subjects were very heterogeneous across the same condition was proved.  

 

 

Figure 6.11. Static functional connectivity in the four experimental conditions, 

for 20 ICs. a) rest condition. b) visual condition. c) motor condition. d) visual-motor 

condition.  
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Figure 6.12. Correlation of static FC matrices between pairs of subjects in the 

four experimental conditions, for 43 ICs.  a) rest condition. b) visual condition.            

c) motor condition. d) visual-motor condition. FC = functional connectivity. 

 
With PROFUMO (Figure 6.13), positive and negative correlations 

were obtained. The correlation across subjects was lower than the obtained 

with PICA time series, probably due to PROFUMO’s ability to characterize 

subject variability. 
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Figure 6.13. Correlation of correlation matrices in the steady data, between pairs 

of subjects in the four experimental conditions and for 27 PFMs.  a) rest condition. 

b) visual condition. c) motor condition. d) visual-motor condition.  

 

 
6.3.6. Selected configuration: PFMs and uniquefull covariance 

For the best combination, PFMs and uniquefull covariance, we 

present the temporal characteristics of the HMM states and their 

relationship to the experimental conditions: fractional occupancy, dwell 

time, dwell interval, switching rate and transition probability. We show the 

corresponding spatial maps as well. These results, compared with the 
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paradigm (ground truth), suggest that the HMM is successfully able to 

identify true switching of functional dynamics from fMRI data. 

HMM revealed brain states with close correspondence to the 

experimental conditions. Figure 6.14a depicts the probability that each state 

is active at each time point (states' time courses), averaged across subjects. 

Two states were prevalent in a single experimental condition (HMM-rest 

and HMM-motor). HMM-visual was prevalent in both the visual and visual-

motor conditions. The final state, HMM-DMN (default mode network), was 

distributed across all conditions, most often during the motor and visual-

motor conditions, as reflected in the Viterbi path (Figure 6.14b). 

The average activation maps for the four brain states (Figure 6.14c) 

reflect these tendencies. HMM-motor presented positive values around the 

motor cortex and negative across visual, parietal and frontal areas. HMM-

visual comprised activation of foveal visual regions and deactivation of 

eccentric regions. HMM-rest appeared to be the inverse of the visual and 

motor states. The final state, HMM-DMN, corresponded to the DMN.  

Figure 6.15illustrates the temporal characteristics of the brain states. 

The state occupancy distributions were similar across subjects; for example, 

the maximum fractional occupancy (proportion of time spent in each state) 

per subject never exceeded 45% (Figure 6.15a). The dwell time (Figure 

6.15b) and dwell interval distributions (Figure 6.15c) varied, but the median 

dwell time was around 15 seconds for all the states with 50-second median 

dwell intervals. State switching was approximately at the rate of condition 

switches (Figure 6.15d). Certain brain state transitions were more probable 

than others (Figure 6.15e): HMM-motor after HMM-rest, HMM-visual 

after HMM-motor and HMM-rest after HMM-DMN. HMM-DMN 

primary occurred after HMM-visual or HMM-motor (perhaps the subjects 

got mind wandering after motor/visual conditions.  
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Figure 6.14. Results of the HMM inference using Gaussian distributed and mean-

driven states, on fMRI data from 13 subjects scanned under a block-design 

paradigm alternating rest with visual, motor or visual-motor tasks. 
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Figure 6.15. Temporal characterization of the HMM states’ time courses 

obtained after the HMM-Gaussian inference on fMRI data from 13 subjects 

scanned under rest, visual, motor and visual-motor conditions.  
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6.4. Discussion 

6.4.1. PICA versus PROFUMO  

In Figure 6.2, a DMN similar to the one by Veer et al. [208] was 

obtained with PICA 20 and PROFUMO 50. A higher dimensionality in 

PICA (PICA 50), made the DMN to split up into two ICs (posterior part of 

the DMN shown in Figure 6.2). Two different DMN-ICs, although 

biologically driven, are difficult to compare with the results of other works, 

therefore the lower dimensionality is desirable for group-PICA 

decomposition. We find that PROFUMO extracted the most anatomically 

matched DMN. Further, it has been hypothesized that although PICA 

approaches perform well, independence is not the most appropriate concept 

to isolate brain networks, because no functional system is fully segregated 

[191]. 

 
6.4.2. PROFUMO’s strengths to extract RSNs’ time courses  

FC is supposed to reflect variations in functional coupling between 

brain regions. Nevertheless, due to the limitations of full and partial 

correlation, it is feasible that other aspects of cross-subject variability 

besides functional coupling might also lead to FC changes: 1) spatial 

mismatch between the defined functional region and the true region for any 

subject [93,189] and 2) signal amplitude in one/some regions/networks 

[51]. Bijsterbosch et al. [209] performed a set of simulations and 

comparisons with PICA and PFMs to assess how much the FC changes were 

due to spatial variability, amplitude and functionally coupling. They 

concluded that 2/3 of subject variability in FC is explained by cross-subject 

spatial variability (in size and shape). Thus, it was proved that obtaining FC 
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measures that are merely associated with changes in functional coupling 

requires an excellent subject-specific mapping of regions/networks.  

Since PFMs are more sensitive to changes in functional coupling, 

irrespective of spatial location and signal amplitude, they have a better 

performance in obtaining the brain states with respect to PICA. ICs and 

PFMs showed different patterns of FC because PFM highly accounts for 

complex spatio-temporal interactions and spatial differences between 

subjects. Importantly, the temporal HRF-based prior on the time courses 

allows identifying modes that are neural in origin, rather than structured 

artifacts. The selected configuration (PFMs using the whole data, without 

applying PCA) works on the full data, which has several advantages respect 

to PICA, a method that relies on the PCA step to separate the BOLD signal 

and the noise, involving ICs contaminated by the noise or loss of signal. 

 

6.4.3. Considerations for HMM-Gaussian 

Steady data confirmed the heterogeneity in static connectivity across 

subjects in the same condition. The fact that a whole subject was more 

similar to another whole subject than their brain connectivity in the same 

experimental condition, prevented full covariance matrix to be the ideal 

covariance type. That is, in this data set static connectivity limited the 

advantages of dynamical connectivity in the block-design paradigm. 

Consequently, characterizing the dynamics of brain data according to its 

mean activity during each experimental condition (uniquefull covariance) was 

the best option. 

The fourth HMM state corresponded to the DMN, instead of being 

a visuomotor network, and was present during all the conditions. DMN is 

usually active at rest, but these results are sensible, since the task conditions 

required minimal attention. 
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6.5. Conclusions 

The HMM-Gaussian approach, combined with PFMs, is a promising 

method to characterize subject variability and dynamic spatio-temporal 

interactions. The HMM could identify brain states without an explicit 

condition model and identified a DMN state that may appear once a task 

state has stabilized. Holding the covariance constant across states (not state-

specific) has been crucial to obtain mean-driven states that have reasonable 

correspondence with the conditions, despite high inter-subject variability in 

covariance and the fact that one condition is the combination of another two. 

This work allows to know in more detail how PFMs work on a task-based 

paradigm and favors that a future version of PROFUMO will be part of the 

neuroimaging software FSL. It is plausible that in the near future 

researchers use connectivity-based atlases created with PFMs instead of the 

current atlases. This evaluation in a block-design paradigm with a ground 

truth gave us profitable hints to apply HMM-Gaussian in our rs-fMRI data 

from the alcohol experiment, part of our future work. Our aim is to obtain 

imaging biomarkers from dynamic functional connectivity that allow us to 

better understand the biological underpinnings of AUDs. 
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Chapter 7 

7.  Conclusions 

The experimental studies in chapters 4 to 6 showed that 

neuroimaging techniques to estimate rs-FC, brain activity and GM volume 

can be successfully applied to multimodal MR images to further understand 

the progression of AUD.  

In Chapter 4 we dealt with acquisition and maintenance of AUD in 

msP rats, genetically selected rats showing high voluntary alcohol 

consumption. We took benefit of rs-fMRI and MEMRI images to study 

brain connectivity and activity, respectively, to characterize brain network 

homeostasis mechanisms, comparing control and alcohol conditions. 

Chapter 5 focuses on brain structural recovery after detoxification 

and alcohol abstinence, compared to a health condition. We quantified brain 

GM volume in both conditions, along with the relationship with several 

alcohol-consumption variables.  

The study in Chapter 6 validates an approach to extract RSN’s time 

courses combined with a method to obtain dynamic brain states. This 

methodology was applied to fMRI data of healthy volunteers who 

underwent a paradigm with rest, visual, motor and visual-motor conditions. 

In a near future we aim to obtain dynamic brain states from the rs-fMRI data 

of Chapter 4.  



7. Conclusions 

184 
 

These three neuroimaging studies have contributed to identify brain 

targets for AUD treatment. Concretely, the structural and functional 

biomarkers of chronic alcohol dependence explain impairments in executive 

control, reward evaluation and visuospatial processing. Our brain is a 

complex set of functionally linked brain regions that continuously share 

information with each other. We have unveiled network homeostatic 

processes triggered by alcohol, by combining functional connectivity and 

brain activity results in resting state. These results could serve as a starting 

point for the development of therapies focusing on readjusting brain 

networks. Regarding the structural connectome, gray matter changes may 

be involved in the pathophysiology of AUDs. GM decreases in abstinence 

condition with respect to control condition were inversely correlated to ADS 

score; total grams of alcohol per drinking day, Form 90; and total grams of 

alcohol, Form 90. It is worth noting that characterizing subject variability 

and dynamic spatio-temporal interactions in alcohol-related rs-fMRI will 

allow to dynamically compare the behavior of brain RSNs as a biomarker of 

AUD.
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