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Abstract

In silico medicine is believed to be one of the most disruptive changes in the near fu-
ture. A great effort has been carried out during the last decade to develop predicting
computational models to increase the diagnostic capabilities of medical doctors and
the effectiveness of therapies. One of the key points of this revolution, will be person-
alisation, which means in most of the cases creating patient specific computational
models, also called digital twins. This practice is currently wide-spread in research
and there are quite a few software products in the market to obtain models from
images. Nevertheless, in order to be usable in the clinical practice, these methods
have to drastically reduce the time and human intervention required for the creation
of the numerical models.

This thesis focuses on the proposal of the image-based Cartesian grid Finite Ele-
ment Method (cgFEM), a technique to automatically obtain numerical models from
images and carry out linear structural analyses of bone, implants or heterogeneous
materials.

In the method proposed in this thesis, after relating the image scale to correspond-
ing elastic properties, all the pixel information will be used for the integration of the
element stiffness matrices, which homogenise the elastic behaviour of the groups of
pixels contained in each element. An initial uniform Cartesian mesh is h-adapted to
the image characteristics by using an efficient refinement procedure which takes into
account the local elastic properties associated to the pixel values. Doing so we avoid
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an excessive elastic property smoothing due to element integration in highly hetero-
geneous areas, but, nonetheless we obtain final models with a reasonable number of
degrees of freedom.

The result of this process is a non-conforming mesh in which C0 continuity is
enforced via multipoint constraints at the hanging nodes. In contrast to the standard
procedures for the creation of Finite Element models from images, which usually
require a complete and watertight definition of the geometry and treat the result as
a standard CAD, with cgFEM it is not necessary to define any geometrical entity, as
the procedure proposed leads to an implicit definition of the boundaries. Nonetheless,
it is straightforward to include them explicitly in the model if necessary, such as
smooth surfaces to impose the boundary conditions more precisely or CAD models
of endoprostheses for the simulation of implants. As a consequence, the amount of
human work required for the creation of the numerical models is drastically reduced.

In this thesis, we analyse in detail the new method behaviour in 2D and 3D
problems from CT-scans, X-ray images and synthetic images, focusing on three classes
of problems. These include the simulation of bones, the material characterisation of
solid foams from CT scans, for which we developed the cgFEM virtual characterisation
technique, and the structural analysis of future implants, taking advantage of the
capability of cgFEM to easily mix images and CAD models.
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Resumen

Se cree que la medicina in silico supondrá uno de los cambios más disruptivos en el
futuro próximo. A lo largo de la última década se ha invertido un gran esfuerzo en el
desarrollo de modelos computacionales predictivos para mejorar el poder de diagnós-
tico de los médicos y la efectividad de las terapias. Un punto clave de esta revolución,
será la personalización, que conlleva en la mayoría de los casos, la creación de mode-
los computacionales específicos de paciente, también llamados gemelos digitales. Esta
práctica está actualmente extendida en la investigación y existen en el mercado varias
herramientas de software que permiten obtener modelos a partir de imágenes. A pesar
de eso, para poder usar estos métodos en la práctica clínica, se necesita reducir drás-
ticamente el tiempo y el trabajo humano necesarios para la creación de los modelos
numéricos.

Esta tesis se centra en la propuesta de la versión basada en imágenes del Cartesian
grid Finite Element Method (cgFEM), una técnica para obtener de forma automática
modelos a partir de imágenes y llevar a cabo análisis estructurales lineales de huesos,
implantes o materiales heterogéneos.

En la técnica propuesta, tras relacionar la escala de color de la imágen con valores
de propiedades mecánicas, se usa toda la información contenida en los píxeles para
evaluar las matrices de rigidez de los elementos que homogenizan el comportamiento
elástico de los grupos de píxeles contenidos en cada elemento. Se h-adapta una malla
cartesiana inicialmente uniforme a las características de la imágen usando un pro-
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cedimiento eficiente que tiene en cuenta las propiedades elásticas locales asociadas a
los valores de los píxeles. Con eso, se evita un suavizado excesivo de las propiedades
elásticas debido a la integración de los elementos en áreas altamente heterogéneas,
pero, no obstante, se obtienen modelos finales con un número razonable de grados de
libertad.

El resultado de este proceso es una malla no conforme en la que se impone la con-
tinudad C0 de la solución mediante restricciones multi-punto en los hanging nodes.
Contrariamente a los procedimientos estandar para la creación de modelos de Elemen-
tos Finitos a partir de imágenes, que normalmente requieren la definición completa y
watertight de la geometrá y tratan el resultado como un CAD estandar, con cgFEM
no es necesario definir ninguna entidad geométrica dado que el procedimiento prop-
uesto conduce a una definición implícita de los contornos. Sin embargo, es inmediato
incluirlas explícitamente en el modelo en el caso de que sea necesario, como por ejem-
plo superficies suaves para imponer condiciones de contorno de forma más precisa o
volúmenes CAD de dispositivos para la simulación de implantes. Como consecuen-
cia de eso, la cantidad de trabajo humano para la creación de modelos se reduce
drásticamente.

En esta tesis, se analiza en detalle el comportamiento del nuevo método en proble-
mas 2D y 3D a partir de CT-scan, radiográfias e imágenes sintéticas, centrandose en
tres clases de problemas. Estos incluyen la simulación de huesos, la caracterización de
materiales a partir de TACs, para lo cual se ha desarrollado la cgFEM virtual char-
acterisation technique, y el análisis estructural de futuros implantes, aprovechando la
capacidad del cgFEM de combinar fácilmente imágenes y modelos de CAD.
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Resum

Es creu que la medicina in silico suposarà un dels canvis més disruptius en el futur
pròxim. Al llarg de l’última dècada, s’ha invertit un gran esforç en el desenvolupa-
ment de models computacionals predictius per millorar el poder de diagnòstic dels
metges i l’efectivitat de les teràpies. Un punt clau d’aquesta revolució, serà la person-
alització, que comporta en la majoria dels casos la creació de models computacionals
específics de pacient. Aquesta pràctica està actualment estesa en la investigació i hi
ha al mercat diversos software que permeten obtenir models a partir d’imatges. Tot i
això, per a poder-se utilitzar en la pràctica clínica aquests métodes es necessita reduir
dràsticament el temps i el treball humà necessaris per a la seva creació. Aquesta tesi
es centra en la proposta d’una versió basada en imatges del Cartesian grid Finite El-
ement Method (cgFEM), una técnica per obtenir de forma automàticament models a
partir d’imatges i dur a terme anàlisis estructurals lineals d’ossos, implants o materials
heterogenis. Després de relacionar l’escala del imatge a propietats macàniques corre-
sponents, s’usa tota la informació continguda en els píxels per a integrar les matrius
de rigidesa dels elements que homogeneïtzen el comportament elàstic dels grups de
píxels continguts en cada element. Es emphh-adapta una malla inicialment uniforme
a les característiques de la imatge usant un procediment eficient que té en compte
les propietats elàstiques locals associades als valors dels píxels. Amb això, s’evita un
suavitzat excessiu de les propietats elàstiques a causa de la integració dels elements en
àrees altament heterogénies, però, tot i això, s’obtenen models finals amb un nombre
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raonable de graus de llibertat. El resultat d’aquest procés és una malla no conforme
en la qual s’imposa la continuïtat C0 de la solució mitjançant restriccions multi-punt
en els hanging nodes. Contràriament als procediments estàndard per a la creació de
models d’Elements finits a partir d’imatges, que normalment requereixen la definició
completa i watertight de la geometria i tracten el resultat com un CAD estàndard,
amb cgFEM no cal definir cap entitat geométrica. No obstant això, és immediat
incloure-les en el model en el cas que sigui necessari, com ara superfícies suaus per
imposar condicions de contorn de forma més precisa o volums CAD de dispositius per
a la simulació d’implants. Com a conseqüéncia d’això, la quantitat de treball humà
per a la creació de models es redueix dràsticament. En aquesta tesi, s’analitza en
detalls el comportament del nou métode en problemes 2D i 3D a partir de CT-scan
i radiografies sintétiques i reals, centrant-se en tres classes de problemes. Aquestes
inclouen la simulació d’ossos, la caracterització de materials a partir de TACs, per a
la qual s’ha desenvolupat la cgFEM virtual characterisation technique, i l’anàlisi es-
tructural de futurs implants, aprofitant la capacitat del cgFEM de combinar fàcilment
imatges i models de CAD.
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Chapter 1

Introduction

Nowadays, the use of numerical models based on volumetric image data is widespread
in biomechanics. Great efforts have been made to solve the elasticity problem in
a number of patient specific medical applications using the Finite Element Method
(FEM), common in structural engineering. This is the case, for instance, of the
prediction of bone fracture risk, [1], [2], [3], [4], and the evaluation of bone quality
parameters for the detection of osteoporosis, [5] and [6]. Preoperative implant sim-
ulation is a particularly promising use for patient-specific numerical models. This
is fundamental for several applications such as studying the effect of positioning [7],
predicting the long term prosthesis performance thanks to the recent advances in
bone remodelling [8], [9] and [10], designing customized implants taking advantage of
optimization and 3D printing [11] and [12].

FEM is a numerical technique which provides approximate solutions for Bound-
ary Value Problems (BVPs) described by Partial Differential Equations (PDEs). It
started to be developed at middle of the last century fuelled by the necessity to solve
complex problems related to elasticity and structural analysis in aeronautical and civil
engineering.
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1. Introduction

After gaining solid mathematical bases in the 1960s and 1970s, it spread to a
wider variety of disciplines such as, among others, chemistry and biology, and became
the predominant simulation method in Computer Aided Engineering (CAE), which
consists of a design stage, in which a component geometrically defined by a Computer
Aided Design (CAD) system, and an analysis stage, in which its behaviour under a
specific load condition is predicted by performing a FEM analysis.

The high cost in terms of man-hour is well known in the case of ordinary FE
applications, in which the generation of the mesh from CAD models is often one of
the most time consuming steps of the whole simulation process, as pointed out by
[13] and [14].

In this context, a great number of numerical techniques have been proposed to
streamline the modelling of complex geometries. Most of them are geometry indepen-
dent techniques defined by the umbrella term of Finite Elements in ambient space,
[15] but available in the literature under a number of different names such as Fictitious
Domain, [16], or Embedded Methods, [17], among others. These were originally de-
veloped to reduce the modelling effort for standard, CAD-based FE problems, which
is, even in this case, responsible for about 80% of all the simulation time cost, [18].
These methods simplify the mesh generation by using an auxiliary domain Ωe, in
general characterized by a simple, easy to mesh geometry, containing the problem
domain Ω. The auxiliary, or meshing, domain Ωe is discretised instead of the problem
domain Ω. During the evaluation of the element integrals these methods require the
information about the problem domain because the mesh does not conform to Ω.

The Cartesian grid Finite Element Method (cgFEM), which is the background
of this thesis, belongs to the category of Finite Elements in ambient space. It uses
geometry-independent grids to create non conforming discretisation meshes in order
to make the modelling stage automatic and overcome the shortcomings of traditional
FEM.

In geometry-based cgFEM the problem domain is immersed into a hierarchical
structure of Cartesian grids. For the elements on the boundary the stiffness matrix
is calculated solely by integrating the part of the element actually lying within the
domain Ω. Special techniques are used to account for the exact geometry during the
element integration process, thus avoiding modelling errors associated to an inexact
representation of the boundary [19]. A local h-adaptive refinement is used to enhance
the solution [20].
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In the last decades, it has become more and more common to carry out FEM
simulations on models obtained from Volumetric Images such as Computed Tomog-
raphy (CT) and Magnetic Resonance (MR) scans for certain applications, especially
in biomechanics and material science.

(a)

(b)

Figure 1.1: Classical meshes of CT-based femur model. (a) voxel-based hexahedral
mesh; (b) geometry-based tetrahedral mesh.

Even more challenging obstacles to automatic modelling can be found in these
cases, because the surfaces and volumes are not expressed in an explicit form in the
first place, but they have to be obtained from bitmaps by means of segmentation
tools. It is necessary to avoid the presence of unconnected domains and to make the
surfaces close exactly when they define volumes. These problems are not trivial and
their solution is hard to automate.

A common approach consists in selecting a number of pixels in the image based
on the grey level and assigning an element of the FE mesh to each pixel/voxel, as
done for instance by [5] and [21]. This produces hexahedral meshes which, in some
cases, can be processed to smooth the external surfaces. This method generates FE
models which have a very large number of degrees of freedom and therefore involves
a high computational effort, see Figures 1.1a and 1.2a.
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1. Introduction

(a)

(b)

Figure 1.2: Classical meshes of CT-based proximal femur model. (a) voxel-based
hexahedral mesh; (b) geometry-based tetrahedral mesh.

Another common solution is to create surfaces on the basis of the variation of the
color levels in the image and to use them to define volumes. Then the unconnected
domains have to be deleted and the mesh can finally be created in the usual way
as if it were a CAD model, [22], [23]. In this case, surfaces are required to create
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perfectly closed volumes, which might possibly need human intervention. The result-
ing geometry can be seen as extra information which does not exist in the original
image. In both cases the image needs to be heavily processed before mesh tools can
be used, see Figures 1.1b and 1.2b. Furthermore, the way they deal with material
properties usually consists of individuating which living tissue corresponds to each
volume and assigning the corresponding material characteristics from the literature
as if the domains were homogeneous. This makes it impossible to take into account
the heterogeneity of the material during the simulation using standard methods. For
prosthesis analyses, for example, the geometry-based FE approach, [24], is usually
preferred because the assembly between the geometrical models can be performed
with standard CAD tools. On the other hand, when a reliable relation between voxel
values and elastic properties is available, as in the case of bone CT scan, it is usually
easier to take it into account using voxel-based methods due to the correspondence
between elements and voxels. Doing the same with geometry-based meshes is more
complicated because the elements do not conform to the pixels. A possible solution
lies in assigning each integration point the average value of the stiffness corresponding
to the surrounding pixels. Nevertheless the size of this influence area is not univocally
defined, [25].

This thesis is a contribution to the relatively recent efforts to overcome the short-
comings of these standard methods by using the approach of Finite Elements in Am-
bient Space to domains defined in images. In particular we remark the application to
image-based problems of X-FEM, [26] and [27], Composite Finite Elements, [28], both
taking advantage of a level set representation of the boundaries obtained by standard
segmentation procedures, and the Finite Cell Method (FCM), [29] and [30], which
combines the fictitious domain approach with high-order hierarchical Ansatz spaces
by p-adapting a non conforming Cartesian mesh in which the pixels are treated as in-
tegration subdomains. Recently a method combining FCM and Isogeometric analysis
(IGA) has been proposed [31] to model the elastic behaviour of trabecular bone from
µCT scans. This includes a B-spline level set function, which makes it possible to
obtain a smooth representation of boundaries from the pixelated segmentation mask
of the trabeculae, and locally refined spline spaces for the problem discretisation.

We chose to avoid both the level set technique and the element interpolation func-
tion enrichment typical of X-FEM as, apart from implying more complex algorithms,
these techniques require an image-segmentation stage that, in most cases, involves
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1. Introduction

considerable human intervention. As in FCM, we reduce the image segmentation
burden by superimposing a Cartesian mesh on the image and introduce all the infor-
mation provided by the image at the element integration stage. In contrast to FCM,
we use h-adaptivity to refine the mesh. Doing so, we simplify the methodology and
act in accordance with the numerical results, shown in Section 2.3.1, which suggest
to use low order interpolation functions for the problem under consideration.

Objectives

In this thesis we address the problem of creating numerical models from medical
images for the linear elasticity problem. In particular our objective is to develop
and validate procedures for the reduction of the human intervention required at the
modelling stage as well as the overall computational cost of the simulation. We
consider problems over domains defined by images, focusing on the structural analysis
of bone tissue.

In particular our contribution aims at:

• reducing of the modelling burden by making the mesh generation automatic;

• introducing the local pixel elastic properties into the numerical model;

• simplifying the process of coupling image and CAD based models, necessary, for
instance, in the case of in silico validations of implants;

• reducing the computational cost at the integration and resolution stages.

These aspects have been tackled by developing an image-based version of the
Cartesian grid Finite Element Method (cgFEM) [32] and in particular by:

• directly superimposing cgFEM hierarchical structure on images and using het-
erogeneity indicators to guide the automatic mesh adaptation;

• applying special integration schemes which include all the information provided
by the image;
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• using geometry-independent elements which can easily take into account infor-
mation from different sources such as CADs and CT scans.

• taking advantage of the special features of Cartesian grids.

After this short introduction, we introduce the main characteristics of image-based
cgFEM, proposed in this thesis, in Chapter 2, which contains results about the method
behaviour for problems with different material property distributions, orders of the
interpolation functions and integration schemes. Chapter 3 shows applications of
cgFEM to the numerical characterisation of the overall elastic behaviour of solid foams
from µCT scans. Chapter 4 introduces the problem of prosthetic device simulation
through a number of examples which include the calculation of natural frequencies to
evaluate the stability of future implants.
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Chapter 2

Image-based cgFEM

This chapter presents the image-based cgFEM developed in this thesis. The method
is based on the geometrical cgFEM, which will be introduced first.

2.1. The geometrical cgFEM

The Cartesian grid Finite Element Method (cgFEM), is a numerical technique
which uses a hierarchical set of nested regular Cartesian grids to create an adaptive
geometry-independent calculation mesh of non-conforming regular quatrilaterla/hex-
ahedral elements. In this thesis this method is applied for the solution of structural
problems in linear elasticity. Originally, cgFEM main purpose was addressing issues
related to the high cost of meshing and re-meshing, a well as the cost of stiffness ma-
trix integration in FE models. These are especially relevant in iterative procedures,
for instance in shape or topological optimization.
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2. Image-based cgFEM

In geometrically defined problems, the domain is available as a CAD model. This
is intersected with a quadtree/octree hierarchical structure of Cartesian grids, see
Figure 2.1, to obtain the corresponding cgFEM model. The FE calculation is carried
out on a mesh consisting of elements belonging to different levels of the hierarchical
structure. This makes mesh adaptivity particularly fast and cheap as all the elements
and their mutual relationships are known a priori.

We call this discretisation mesh to distinguish it from the integration mesh. These
do not coincide, in contrast to standards FE. On the one hand, the discretisation mesh
is the support of the FE interpolation functions and, due to the regular element shape
the Jacobian is constant at each element as there is no possibility of element distortion
during the meshing and remeshing processes. On the other hand, the integration mesh
consists of all the subdomains necessary for the numerical integration of the element
stiffness matrix, that is for the definition of the Gauss point locations. The distortion
of the integration subdomains does not affect the accuracy of the method.

The intersection of the hierarchical structure with the problem geometrical domain
makes it possible to distinguish three classes of elements depending on their position
as they can lie in the bulk, on the boundary or outside the problem domain. The last
are discarded. It is worth mentioning that, even in h-adapted cgFEM meshes, the
elements are geometrically similar.

Due to this similarity, all the inner elements on a domain, homogeneous from the
elastic properties point of view, have proportional stiffness matrices with scale factors
only depending on the difference between refinement levels [33]. Consequently, it is
possible to compute the stiffness matrix of one inner element only and scale it to
obtain those of all the other inner elements with the same material properties.

In contrast, the elements cut by the geometrical boundary are decomposed into
triangular or tetrahedral integration subdomains, for 2D ad 3D problems respectively,
to properly capture the geometry near the boundary during the integration stage, see
Figure 2.2, therefore, their stiffness matrices have to be computed separately.

At this stage it is possible to take into account the geometrical boundaries with
different degrees of approximation: linear, as shown in Figure 2.2, with higher poly-
nomial degrees or exact using trasfinite interpolation in 2D [32] or a NEFEM inspired
integration technique in 3D problems, [34].

As shown by Figure 2.2, external boundaries can be considered a special case of
interface between domains of different material properties.
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Level 0

Level 1

Level 2

Level 3

(a)

(b)

Figure 2.1: cgFEM mesher. (a) First levels of the hierarchical structure of nested
Cartesian grids; (b) Example of non-conforming Finite Element mesh with cgFEM.

11
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Void

Material 2

Boundary i

(external bound ry)

Boundary j

Integration points

Nodes

Phantom node (external) Standard node (internal)

Material 1

Figure 2.2: Triangular integration subdomains of cgFEM element containing geomet-
rical boundaries.

It is worth highlighting that, whereas the discontinuity is taken into account in
the integration scheme, the strain discontinuity at the interface is not included in the
model since the element shape functions and their derivatives are continuous inside
the element domain.

Substituting the discontinuous material behaviour with a continuous one can be
seen as a material homogenisation process at the element level.

The computational effort required to create the stiffness matrix is therefore pro-
portional to the number of elements cut by the boundary. Consequently, the problem
complexity associated to the evaluation of element matrices is reduced by one dimen-
sion.

In addition, once the system matrix is assembled, it is possible to reduce the
computational cost associated to its resolution by properly reordering the system
DOFs. This can usually be done in most algebraic systems of equation, nevertheless
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2.2. The image-based cgFEM

in the case of cgFEM this reordering is faster and more efficient due to the a priori
knowledge of the mesh connectivity and hierarchy, see [32].

The first step of the meshing process is the creation of a uniform Cartesian mesh.
Afterwards, this is firstly refined on the basis of geometrical criteria without the
necessity to solve the FE problem, and, finally, in an iterative process following an a
posteriori Zienkiewicz and Zhu error estimator, [35] and [36] based on the use of a
recovered stress field obtained by an enhanced version of the superconvergent patch
recovery (SPR) technique, [37] and [38].

In geometry-based problems, the Dirichlet boundary conditions are enforced on
the geometrical boundary in a weak sense via stabilized Lagrangian multipliers, [39]
and [40].

Next section explains the element integration procedures used in image-based
cgFEM. Even though these differ from the integration technique of the geometry-
based cgFEM, nonetheless they are based on the concept of properly integrating the
element matrices while keeping a standard continuous function approximation even
for heterogeneous elements as those on the boundaries.

2.2. The image-based cgFEM

In this section we propose image-based cgFEM as a methodology to create FE
models of objects defined by images. We will first describe the element integration
technique in Section 2.2.1. The kind of relation used to relate material properties
and pixel intensity values is treated in Section 2.2.2. Finally, in Section 2.2.3, we will
introduce a mesh refinement strategy based on element heterogeneity.

2.2.1. Element integration

When cgFEM is applied to image-based problems, once the structure of Cartesian
grids is superimposed on the image, it is no longer possible to distinguish elements
in the bulk from those on the domain boundary, see Figure 2.3a, as this is available
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2. Image-based cgFEM

as a distribution of image grey levels instead of a well defined geometrically contour.
Under the assumption that it is possible to properly assign local material properties to
the pixels according to their colour level, all the elements in the mesh contain, in the
general case, heterogeneous materials as in the case of the elements on the boundary
in standard geometrical cgFEM, se Section 2.1. Hence, these elements will be treated
in a similar way, that is by properly integrating the element stiffness matrix ke (2.1),
which homogenizes the elastic behaviour of the different domains, as in the case of
Figure 2.2. (Note that, following this approach, not only B, the matrix containing the
shape function derivatives in linear elasticity, depends on the spatial coordinates x−−
but alsoD, the linear Hooke’s law matrix, does. As a consequence, ke is evaluated as:

ke =

∫
V e

BT (x)D(x)B(x)dV (2.1)

In the process, all the pixels contained in the elements are taken into account at the
integration stage. As opposite to the procedures used for this purpose in conforming
meshes, in the Cartesian environment this is straightforward because, as explained
later in this Section, the mesh creation guarantees that an integer number of pixels is
contained in each element. The evaluation of the element integrals can be carried out
by adopting different numerical quadrature rules. In this thesis we take into account
three possibilities:

• a Riemann sum inspired integration quadrature, see (2.2), in which an inte-
gration point is located at the centre of each pixel i with constant weight, see
Figure 2.3b, and the weight wi, corresponding to each pixel/integration point is
constant for all pixels and equal to the relative area of each pixel in the element;

ke =
IP∑
i=1

BT (ξi)D(ξi)B(ξi) | J(ξi) | wi (2.2)

• a domain decomposition quadrature, see (2.3), in which a Gauss integration
scheme is applied at each pixel considered as homogeneous from the point of
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2.2. The image-based cgFEM

(a)

(b)

Figure 2.3: Uniform cgFEMmesh. (a) Detail of neck CAT scan cross section immersed
in uniform mesh; (b) Magnification of the element highlighted in green.
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2. Image-based cgFEM

view of the elastic properties;

ke =

IS∑
i=1

IP∑
j=1

BT (ξij)DiB(ξij) | J(ξij) | wj (2.3)

• a least square-based recovery of the elastic property field, see (2.4) and (2.5),
which makes it possible to integrate with the proper Gauss quadrature a con-
tinuous function on the element domain.

The Riemann sum option is generally less accurate compared to the Gauss quadra-
ture, in addition its accuracy depends on the level of mesh refinement as the number
of pixels per element and, consequently, of integration points decreases when the
elements are split.

In order to quantify this loss of accuracy, in the following sections, we compare it
with the subdomain decomposition scheme which uses the proper number of integra-
tion points independently from the element level in the hierarchical structure. This
is similar to the solution presented in [41] for image-based FCM.

The downside of the subdomain decomposition scheme, compared to the Riemann
sum one, lies in the higher number of integration points required.

In both of these two methods, the number of integration points is kept constant
over the mesh refinement since all the pixels are integrated with the same quadrature
rule, therefore, in an h-adapted mesh, elements from different levels of the Cartesian
hierarchical structure contain a different number of IP making the process harder to
parallelise.

In the third solution, the material property samples are fitted in each element by
the polynomial p(ξ)Tae. The column vector p represents the polynomial basis of a
given order, p = {1 ξ η ζ ξ2 η2 ζ2 ξη ξζ ηζ ...}T , and the column vector a contains
the polynomial coefficients for each element e. The recovered material property field
is piecewise continuous and discontinuous at the interface between neighbouring ele-
ments. The polynomial p(ξ)Tae can be least squares fitted to the material properties
Pi at the centre of the pixels ξi by the minimization of the functional Π with respect
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to each one of the polynomial coefficients aj as follows:

min
aj

Π = min
aj

NP∑
i

(Pi − p(ξi)
Ta)2 (2.4)

This leads to the system of linear equations[
NP∑
i

p(ξi)p(ξi)
T

]
a =

NP∑
i

Pip(ξi) (2.5)

which has to be solved to compute the coefficient column vector a for each element
in the mesh.

The element stiffness matrix can be finally computed, see (2.2), by using the
proper Gaussian quadrature on the basis of the degree of the integrand. Due to the
regularity of cgFEM meshes and the fact that the set of Gauss points used for the
integration is the same, in local coordinates, for all the elements in the mesh, we can
compute the B matrix only once for a given level and scale it for all the elements in
the mesh, [42]. In contrast, in the previous methods, it is necessary to compute a B

matrix per level. Figure 2.4 shows a schematic representation of the three methods.
If a mesh contains elements from the 4th level of the Cartesian grid structure and

each of them contains 32 × 32 × 32 pixels, the number of integration points for which
it is necessary to compute the shape function derivatives is 32768 in the case of the
Riemann sum. The number of integration points per element is 8 times higher for the
decomposition in subdomains when the shape functions are linear whereas it is only
27 if the LS fitting is used.

Let’s consider the previous case of a mesh only containing 4th level elements. If
the mesh is h-refined with 5th level elements of 16 × 16 × 16 pixels the B matrix has
to be computed at 4096 additional locations. Introducing level 6, 7 and 8 element
increases the number of locations by 512, 64 and 8 respectively, reaching an overall
number of 37448. Independently of the mesh refinement, the LS technique, continues
to require the computation of the B matrix at 27 positions only.

The least square fitting alone cannot guarantee neither the stability of the method
nor the compliance with the energy conservation principles. This is due to the fact
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2. Image-based cgFEM

(a)

(b)

(c)

Figure 2.4: Schematic 1D representation for the integration techniques presented in
Section 2.2. (a) Riemann sum; (b) Decomposition in integration subdomains; (c)
Fitting-based integration.

that, in principle, no restriction is enforced which guarantees physical admissibility
of the extrapolated values.
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2.2. The image-based cgFEM

The material model considered in this thesis is assumed to be isotropic at the IP
level. Its behaviour is defined by two independent parameters. If we use the standard
engineering elastic constants, the value is admissible only if positive, in the case of
the Young’s modulus, and between 0 and 0.5 in the case of the Poisson’s ratio.

In order to guarantee the uniqueness and physical admissibility of the solution,
the unacceptable values obtained after the extrapolation are detected and the LS
coefficient scaled to keep the same average value but with values in the admissible
range.

For reasons which are made clear below, in Section 2.3, we propose to use the
image-based cgFEM with linear shape function as well as linear fitting to avoid a
series of drawbacks which appear if higher order functions are used together with a
pixelised domain description. It is pointless to increase the LS fitting order with low
order shape functions. It only increases the computational cost (more IPs) and makes
unphysical elastic property values more likely to appear and harder to correct.

2.2.2. Local material properties

CT scan pixel values are expressed in Hounsfield units (HU), these measure the
local average X-ray absorption of the material volumes corresponding to the pixels.
Typical HU ranges for the main biological materials can be found in the literature.
In the field of bone mechanics, an intense research has been carried out to relate
bone Hounsfield values to corresponding elastic properties. In most of the cases two-
step non-linear relationships (between HU scale and apparent mineral density and
between apparent mineral density and Young’s modulus) have been proposed, see, for
instance, [43], [44] and [45]. The purpose of this thesis does not include the obtention
of reliable HU-E relationships, as it mainly focuses on the numerical aspects of the
method. Therefore, in the simulations that follow we use various kinds of 2D and 3D
images, trying when it is possible to extract material data from the literature.

In most of the cases, especially when an anatomical site-specific law, [46], is not
available, we propose to associate given pixel values to the average elastic properties
found in the literature and then linearly interpolate the values in between, obtaining
a piece-wise linear functions as schematically shown in Figure 2.5. At the level of the
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Figure 2.5: Schematic representation of the relation between grey scale pixel values
and material properties.

pixel, we consider linear isotropic material models. Doing so we only let anisotropy
appear at the macroscopic level as a result of the image heterogeneity.

2.2.3. Mesh adaptivity

To prevent the method from performing a too aggressive homogenisation, we pro-
pose to h-adapt the mesh according to the pixel heterogeneity in the first place,
before any FE calculation is carried out. This process is fast and inexpensive, since
it is based on the Cartesian grid hierarchical structure, in which the nth-level is the
result of splitting each element of the grid of the (n− 1)th-level in two new elements
along each direction. Due to this procedure, each parent element can be divided into
2D new elements, being D the problem spatial dimension.

As shown in Figure 2.6a, an initial uniform grid is superimposed upon the image.
Afterwards, the mesh is refined through an iterative process. The element heterogene-
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2.2. The image-based cgFEM

ity is evaluated at each step and used to choose the elements to split, an additional
check and refinement of their neighbours makes it possible keep a maximum difference
of one level between adjacent elements.

The user has to provide the starting and maximum allowed mesh levels as well
as the parameters which define the refinement criterion. The process leads to a final
mesh as the one shown in Figure 2.6b.

We propose to use the index IeR, defined in (2.6) as an indicator of the element
heterogeneity, being αA

i the value of the Young’s modulus E assigned to the pixel i
within the domain A.

IeR =
∆αΩe

∆αΩ
=
max(αΩe

i )−min(αΩe

i )

max(αΩ
j )−min(αΩ

j )
; (2.6)

The heterogeneity evaluation method is rather general, in the sense that it could be
easily extended to anisotropic material models by computing an IeR-like index for each
independent parameter which defines its elastic behaviour and use then these indices
to define a mesh refinement criterion.

In the following, for simplicity, all the meshes are refined evaluating the Young’s
modulus heterogeneity only. It is reasonable as the main interest in this thesis is in
the mechanical behaviour of bone or metallic foams. In the former case, the vast
majority of the relationships between stiffness and HU proposed take into account
the Young’s modulus only, usually, assigning a constant Poisson’s ratio close to 0.3.

The mesh obtained at the end of the refinement process is strongly dependent on
the problem, that is on both the image and the HU-E relationship. Nevertheless,
in the vast majority of the simulations that have been carried out so far, IeR ≈ 0.2

has provided adequate models. A study on the effect of the prescribed value of IeR is
shown in Section 2.4.1.

The heterogeneity-based refinement presented so far is not based on any error
estimator and is similar to the refinement, based on geometrical features only, which is
carried out in cgFEM, before the computation of any FE solution. Since heterogeneity
is not the only aspect which determines high values of the stress gradient it cannot
substitute error estimation. Nevertheless, this method is inexpensive and provide
good results with lower DOFs than a uniform mesh, as a consequence, it can, at
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2. Image-based cgFEM

(a)

(b)

Figure 2.6: Mesh refinement process. (a) Initial uniform mesh; (b) h-adapted mesh.
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least, provide a good starting point for further error estimation-driven mesh refining
processes.

2.3. Validation

In the current section, we present some validation results obtained for synthetic
2D images. In Section 2.3.1 we mainly focus on the effect of the elastic property
distribution and mesh size on the analysis results and on the image resolution influence
in Section 2.3.2.

Later on we refer to the following expression for the error in energy norm, see [47]:

er = 100

√√√√√
∣∣∣∫Ωex

σT
exD

−1
ex σexdΩ−

∫
Ωh
σh

TD−1
imσhdΩ

∣∣∣∫
Ωex
σT

exD
−1
ex σexdΩ

= 100

√
|Uex − Uh|

Uex
(2.7)

in which σ, U ,Ω and D are stress, strain energy, problem domain and material com-
pliance matrix. The subindexes ex and h identify the magnitudes for the exact
problem and the FE one respectively, whereas the subindex im refers to the material
properties as they are extracted from the image. The exact solution is calculated
analytically, if its formulation is available as in the case of Section 2.3.1.1 and 2.3.2,
otherwise it is substituted for a numerical solution obtained from a more accurate FE
model, as in Section 2.3.1.2. It is worth mentioning that we use the absolute value in
(2.7) to make it possible for us to represent the error norm in a logarithmic scale.

In the validation problems presented in this Section, the Poisson’s ratio has a
constant value of 0.3 and the stiffness matrices are computed using the integration
subdomain (IS) scheme, see (2.3), to make the integration error negligible.
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2. Image-based cgFEM

2.3.1. Effect of mesh size and elastic property

distribution

In this section, we analyse cgFEM convergence behaviour in the case of uniform
mesh refinement with different Young’s modulus distributions for linear and quadratic
FE interpolation. In order to better understand the effect of the element size, the
refinement is carried out until obtaining meshes even finer than the corresponding
bitmaps, i.e. considering several elements in each pixel, called sub-pixel meshes.

We consider three problems based on 128 × 128 pixel grey scale images. In the first
one the bitmap is created from a geometrical model containing strong discontinuities,
see Section 2.3.1.1, whereas in Sections 2.3.1.2 the images are obtained from analytical
elastic property distributions.

2.3.1.1. A strong discontinuity case

The first case shows the convergence behaviour of the image-based model of a
homogeneous pipe with a circular cross-section loaded by internal pressure under the
hypothesis of plain strain condition according to Figure 2.7a and Table 2.1.

This problem is a typical benchmark in computational mechanics and has a well
known analytical solution.

As usual, the model is simplified by taking advantage of its symmetry, there-
fore, only one fourth of the pipe is studied imposing convenient symmetry boundary
conditions.

The image used in the simulation, see Figure 2.7b, was obtained by integrating
a NURBs-based geometrical representation of the cylinder in a uniform mesh. This
mesh had the same resolution as the desired resulting image. We evaluated the
percentage area of each element covered by the cylinder and assigned a grey level
proportional to this area percentage to this element. Considering each element as
a pixel we created the grey scale image of the cylinder. To ensure full control on
the conversion from vector to bitmap and all its approximation sources, we avoided
to use standard graphic software, choosing instead to use geometry-based cgFEM to
carry out the conversion from vector to bitmap representation. The procedure result
is meant to mimic an idealised (noise free) X-ray scan, in which we assume that the
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a

b
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L3

L2

L1

L4

(a)

(b)

Figure 2.7: One fourth of pipe section with internal pressure in plain strain condition,
extracted from [42]. (a) Geometrical model; (b) Corresponding bitmap model.

pixel colour only depends on the partial volume effect (PVE) (caused by the fact that
a number of pixels represent partially empty volumes) and that the corresponding
Young’s modulus is proportional to the pixel value. The latter is implicit in our
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2. Image-based cgFEM

choice to establish a linear relation between the Young’s modulus and the grey scale
computed by interpolating the values in Table 2.1.

a [m] 3

b [m] 6

P [MPa] 1

Material E [MPa] Grey level
Material 1 0 0

Material 2 1000 255

Table 2.1: Properties referred to the models in Figure 2.7.

Integrating a CAD representation over a uniform grid and converting the pixel
values into grey scale, ensures that the only difference between the models lays in the
inaccurate representation near the boundaries, which is pixel-size dependent.

The results in terms of strain energy and error are shown in Figure 2.8. The dash-
dotted trace refers to sub-pixel meshes, in which each pixel is discretised into several
elements, of the image-based problems. The super pixel meshes, where each element
contains several pixels, are represented as solid lines. To distinguish the interpolation
degree, the results obtained with linear and quadratic shape functions are represented
with round and square markers respectively.

In the upper part of the graph we represent the FE and exact energy norms
vs degrees of freedom for the linear and quadratic image-based models. The solid
black horizontal lines represent the exact (solid) and estimated pixel-based (dotted)
solutions. This estimated pixel-based reference solution is computed by solving the
problem with a very refined uniform quadratic mesh (the level 9 of the nested Carte-
sian structure). Figures 2.9, 2.10 and 2.11 show how the exact solution of the pixmap
(the stepped problem) is different from the solution of the corresponding geometrical
problem. In particular, the effect of the discontinuities, due to the piece-wise constant
distribution of elastic properties, is apparent in the magnification of the von Mises
stress field close to the Neumann boundary for the image-based linear overkilled solu-
tion in Figure 2.11b, where each pixel has been discretised into 4 × 4 elements. The
effect of the discontinuities near the boundary is consistent with the stress oscillations
found in [48] and [49] for pixel-based FE models
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Figure 2.8: Relative energy norm and error convergence of the problem shown in
figure 2.7 with uniform mesh refinement and image resolution of 128 × 128 pixels.

As it is to be expected, the blue and red curves in Figure 2.8 top do not converge to
the analytical solution, but to the dotted line. In particular both linear and quadratic
sub-pixel meshes diverge from the exact analytical solution as the refinement increases.

Since the discontinuous reference solution is higher in terms of strain energy than
the exact one, the convergence curves intersect the exact solution.These intersections
are marked by vertical dotted lines which are prolonged to the lower graph because
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Linear geometric

(a)

Linear bitmap level 16x16x16

(b)

Figure 2.9: Von Mises stress field distribution for the geometry (a) and the 128 ×
128 image-based (b) models in Figure 2.7a with linear interpolation functions and
uniform level-6 mesh. The image-based model contains 2 × 2 pixels per element, see
the blue curves in Figure 2.8.
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Quadratic geometric

(a)

Quadratic bitmap

(b)

Figure 2.10: Von Mises stress field distribution for the geometry (a) and the 128
× 128 image-based (b) models in Figures 2.7a and 2.7b with quadratic interpolation
functions and uniform level-3 meshes. The image-based model contains 16 × 16 pixels
per element, see the red curves in Figure 2.8.
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(a)

(b)

Figure 2.11: Overkilled solution for the 128 × 128 image-based model in Figure 2.7b
with linear interpolation functions and a sub-pixel uniform level-9 mesh discretising
each pixel with 4 × 4 elements, corresponding to the last points of the blue curves in
Figure 2.8. (a) Von Mises stress field distribution; (b) Magnification of the Von Mises
stress representation in area close to the Neumann boundary.

they are relevant to understand the error behaviour. This intersection occurs for
coarser meshes in the case of quadratic interpolation.
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The relative error in energy norm versus degrees of freedom is plotted in the lower
graph of Figure 2.8. The solid black curves, characterised by the theoretical slope
of 0.5 and 1 with respect to the number of degrees freedom, are the convergence
results for the cgFEM geometric problem (for linear and quadratic FE interpolation
order respectively). The blue and red curves correspond to the homologous ones in
the upper graph. They refer to the image-based models with linear and quadratic
interpolation functions and represent the strain energy value computed according to
(2.7). As a consequence, in each of them an ideal point can be individuated which
corresponds to the relative intersection in the upper graph and for which the error
equals 0. The vertical dotted lines are, therefore, asymptotes for the error curves and
the asymptotic branches are represented with a dashed trace. These 0 error points do
not correspond to any actual mesh and will only appear if the singular image solution
has a strain energy higher than the exact solution. They are the result of a strain
energy compensation between the discretisation error and the modelling error since
the former decreases throughout the refinement process, as in usual FEM, whereas
the latter increases because finer meshes better capture the difference between the
pixmap and the geometrical model.

As the number of degrees of freedom increases beyond the vertical asymptotes,
the blue and red error curves significantly diverge from the respective geometrical FE
solutions. As a consequence, they lose the theoretical convergence rates in logarithmic
scale of 0.5 for linear and 1 for quadratic interpolation functions.

For linear interpolation functions, the geometry and image-based solutions behave
alike provided that the elements are bigger than the pixels, however the solution
clearly diverges for sub-pixel meshes (represented as dash-dot lines). In the case of
quadratic elements, in contrast, this phenomenon starts appearing for coarser meshes
because of the higher discretisation error reduction rate.

In the lower part of Figure 2.8 we also plot the image-based model error con-
vergence curves with respect to the image solution, in cyan and magenta for linear
and quadratic elements respectively. They result from substituting the exact strain
energy U in (2.7) with the estimation of the pixelised model solution corresponding
to the black dashed line in the upper graph. As the mesh is refined these curves tend
to have the same slope. This behaviour is reasonable considering that the pixelised
model is piecewise discontinuous and, as a consequence, the discontinuities prevent
the convergence from reaching the theoretical values guaranteed for problems with
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smooth solutions. The convergence slope is, therefore, determined by the discontinu-
ities and is independent from the FE interpolation order. In this numerical example,
the bitmap intrinsic inaccuracy in the domain boundary representation prevents the
numerical solution from converging to the exact one with the increase of the number
of degrees of freedom. In contrast, a limit appears for which the increase of compu-
tational cost due to the mesh refinement ceases to reduce the error with respect to
the analytical solution. In this case, this limit can be set at around 2 × 2 and 16 ×
16 pixels per element for linear and quadratic FE interpolation respectively. Refining
the mesh beyond these values is uneconomical. The number of mesh levels suitable
for the simulation is broader for linear FE interpolation functions, as a consequence,
this polynomial order appears more suitable for the h-refinement of cgFEM.

2.3.1.2. A smooth Young’s modulus distribution

Figure 2.12 shows a [-0.5, 0.5]×[-0.5, 0.5] plate under plane strain loaded with
uniform unit tension on the upper side and symmetry boundary conditions on the
lower and left sides. We consider two Young’s modulus distributions, one polynomial
expressed in (2.8) and another bi-sinusoidal, expressed in (2.9).

The Young’s modulus distributions are shown together with the problem boundary
conditions in Figures 2.12a and 2.12b respectively.

A 128 × 128 pixel image was obtained computing the analytical mean value of the
Young’s modulus in the area of each pixel and converting it into grey scale for each
case.

E(x, y) = (y + 10)(x+ 10)2 (2.8)

E(x, y) = (y + 10)(x+ 10)2(1 + 0.7 sin (2πx) sin (2πy)) (2.9)

In the image-based models we established a linear relation between colour and stiffness
in such a way that the minimum of the function in (2.8) and (2.9) on the problem
domain corresponds to 0 and its maximum to 255 in grey scale.

32



2.3. Validation

(a)

(b)

Figure 2.12: Square plate models representing the smooth variations of Young’s mod-
ulus. (a) Polynomial distribution (2.8). (b) Bi-sinusoidal distribution (2.9).
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Polynomial Young’s modulus distribution

As in the previous section, the upper graph of Figure 2.13 compares the energy
norm convergence of the image-based models for linear (blue) and quadratic (red)
shape functions. The reference and the estimated image solutions are traced as solid
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Figure 2.13: Relative energy norm (top) and error (bottom) convergence of the prob-
lem shown in figure 2.12a with uniform mesh refinement and image resolution of 128
× 128 pixels.

and dashed black lines respectively. These solutions were computed with quadratic
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8 level meshes integrating the element stiffness matrix with the analytical Young’s
modulus distribution in the first case and with the value from the 128 × 128 bitmap
in the second one.

The estimated reference strain energy for the pixelised model is higher than that
estimated for the corresponding continuous property distribution, therefore the blue
and red curves intersect the solid black line, similarly to Section 2.3.1.1.

In this case, the intersection is only represented for linear interpolation functions
in Figure 2.13 for an element size that would be slightly smaller than 2 × 2 pixels
per element. Note that, in this case, the convergence curve starts diverging from the
theoretical behaviour of the continuous model for a coarser mesh than in the previous
numerical example.

In the quadratic case it occurs for a coarser mesh outside the represented range.
The intersection is marked and prolonged to the error graph and used to draw the
asymptotic curve branches.

The reference curves for the continuous material property distribution converge
at the theoretical rate for linear and quadratic interpolation functions.

In this case the estimated reference solutions for the continuous and the pixelised
material distributions are closer than in Section 2.3.1.1, nevertheless the behaviour of
the image-based simulation is similar for linear interpolation functions (blue curve).
Instead, the discretisation error is negligible compared with the modelling one in the
case of quadratic meshes (red curve) and, consequently, the solution directly converges
to the modelling error.

Note that, for linear interpolation functions, the error convergence curve is less
stable than in the previous cases and shows a certain divergence from the theoretical
curve even at 2 × 2 pixels per element.

Bisinusoidal Young’s modulus distribution

The results in Figure 2.14 refer to the problem shown in Figure 2.12b and were com-
puted as in the previous case, see Figure 2.12a.
Differently from the previous numerical example, the estimated solution of the con-
tinuous model is higher, in terms of strain energy, than the estimated solution for the
pixelised model. This results in the absence of any intersection of the blue and red
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Figure 2.14: Relative energy norm (top) and error (bottom) convergence of the prob-
lem shown in figure 2.12b with uniform mesh refinement and image resolution of 128
× 128 pixels.

strain energy curves for the continuous model therefore no asymptotic branch can be
found for the error evolution.

From the analysis of the three problems we deduce that the relationship between
the exact solution of the exactly defined problems and that of the corresponding
pixelised models is strongly problem-dependent.
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As in the case of Figures 2.8 and 2.13, the error behaviour in the case of linear
interpolation in Figure 2.14 follows the theoretical convergence path of the continuous
model provided that the meshes are coarser than the bitmap. Once the mesh is refined
beyond this limit the refinement stops enhancing the solution. The same happens for
much coarser quadratic meshes.

As in the previews case, this is an intrinsic bitmap model error which cannot be
reduced by either decreasing the element size or increasing the polynomial order of
the interpolation functions. In contrast to the model in section 2.3.1, in this case the
model error is related to the discontinuous elastic property representation instead of
the boundary inaccurate definition.

2.3.2. Image resolution effect

In this section we analyse the effect of the image resolution on cgFEM results
by comparing the convergence behaviour for uniform refinement of pixelised models
of 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024 pixels. These were obtained
from the geometrical model in Figure 2.7a following the same procedure as in Section
2.3.1.1.

Figure 2.15 shows the evolution of strain energy versus the number of degrees
of freedom for linear (p=1) and quadratic (p=2) interpolation functions. To make
the comparison easier, the graphs are in the same scale. The convergence for the
geometrically-defined cgFEM model is a solid black curve and the analytical solution
is represented as an horizontal dashed line. In this case we only show results for super-
pixel meshes with a minimum number of 1 pixel per element, that is, no sub-pixel
mesh was used, in contrast to Section 2.3.1.1.

Figure 2.15 confirms the expectation that higher image resolutions guarantee re-
sults closer to the exact value of the non-pixelized problem. Similarly to Figure 2.8,
all the curves intersect the exact solution and tend to higher strain energy values.
These decreases getting closer to the exact value as the image resolution increases.
Nevertheless, in this case the linear interpolation behaves better than the quadratic
one as the corresponding strain energy values are closer to the exact solution.

The same behaviour can be observed in Figure 2.16 which shows the relative
error in energy norm versus degrees of freedom. As in Section 2.3.1.1, the error was
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Figure 2.15: Relative energy norm for the model in figure 2.7 with different resolutions
and uniform refinement. Left: linear interpolation. Right: quadratic interpolation.

calculated according to (2.7) using the benchmark problem exact solution. The black
curves of Figure 2.16 represent the geometry-based cgFEM convergence curves with
the theoretical slopes of 0.5 for linear and 1 for quadratic interpolation functions.
We connected the error values obtained for images with different resolutions but the
same number of pixels per element with thin black curves, which show the convergence
behaviour of the pixelised problem to the analytical solution of the geometrical one
as the image resolution increases.

A stable convergence is only recognisable in the cases in which the discretisation
error is low compared to the modelling error, i.e. for linear meshes with one pixel
per element and, more clearly, for quadratic meshes with eight or fewer pixels per
element. The asymptotic part of the curves tends to appear earlier with respect to
the most refined mesh, as the image resolution increases. Linear elements show proper
behaviour until 2 × 2 pixels per element for all the considered resolutions. The case of
quadratic elements is less stable and predictable as they lose the proper convergence
rate for a variable number of pixels per element.
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Figure 2.16: Relative error in energy norm for the model in figure 2.7 with differ-
ent resolutions, degree and uniform refinement. Left: linear interpolation. Right:
quadratic interpolation.

2.3.3. Conclusions

According to these results, a limit exists beyond which mesh refinement stops to
be effective and looses the theoretical convergence slope. This is due to the fact that
enriching the FE solution only affects the discretisation error whereas, because of the
pixelized nature of the model, the model error remains unaffected as it only depends
on the image resolution. Quadratic shape functions reach this limit for coarser meshes
than linear ones, as they guarantee a lower discretisation error for the same element
size, in problems characterised by smooth solutions.

Taking into account this phenomenon, we consider sensible to use linear interpo-
lation functions for cgFEM as the convergence behaviour over the mesh refinement
is closer to the theoretical one for geometry-based problems in all the numerical ex-
amples presented and, especially in the case of strong discontinuities, see Figure 2.15.
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2. Image-based cgFEM

Quadratic shape functions can lead to models in which, the increase of the com-
putational cost, degrees of freedom, increments the error in energy norm instead of
reducing it.

With these and the previous results we can conclude that, in general, linear el-
ements guarantee a reasonable convergence rate as long as the elements contain a
number of pixels higher than what we can call the reliability limit that would be
2 × 2 or 4 × 4 pixels, depending on the problem and the image resolution. This
implies that, if our target solution is the exact continuous one, which in the general
case is unknown and cannot be estimated by FE refinement, it may be convenient to
carry out simulations with super-pixel meshes. This also means that in traditional
pixel-based methods the increase of computational cost does not correspond to the
accuracy enhancement expected in geometry-based FE. In addition the availability
of a higher number of valid mesh levels for which the theoretical convergence rate is
kept makes linear interpolation function more suitable for h-refinement.

Taking into account these considerations, all the problems presented from now on
are solved with linear elements.

2.4. Numerical results

In this section we present some simulations carried out on actual medical images
by using image-based cgFEM with linear interpolation and meshes h-adapted on the
basis of material property heterogeneity evaluations. Section 2.4.1 shows the influence
of the heterogeneity index IeR index value on the mesh refinement. Section 2.4.2 will
consider a 2D X-ray scan to study the performance of different integration techniques
comparing uniform and colour-based h-adapted meshes. Section 2.4.3 will show an
application in 3D for which the model is obtained from the CBCT scan of a human
jaw.
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2.4. Numerical results

2.4.1. Effect of the heterogeneity index on mesh

adaptivity

Figure 2.17 shows the dependency of the mesh density on the heterogeneity index
IeR, see (2.6), for the problems described in details later on in Sections 2.4.2 and 2.4.3.
The mesh density is quantified by the index D√DOF/DOFmax.
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Figure 2.17: Effect of prescribed value of IeR on the number of degrees of freedom.

The definition of the density index makes it possible for us to obtain an estimator
independent from the problem dimensionality D. The index is computed on the basis
of the problem degrees of freedom DOF and DOFmax, the number of degrees of free-
dom of a corresponding voxel-based uniform mesh, in which each voxel corresponds to
a Finite Element. The values referring to the problem in Section 2.3.1 are represented
in blue whereas those for the models in Section 2.4.3 are in red.

Both curves show how a value of 0.2 for the index IeR leads to a range in which
the mesh is at the same time sensitive to the parameter but also stable. This makes
it possible for the user to have control over the final mesh.

Figures 2.18a to 2.18d show the meshes corresponding to the IeR values of 0.2±0.1

highlighted in Figure 2.17.
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(a) (b)

(c) (d)

Figure 2.18: h-adapted refinement sensitivity. Phalanx model of Section 2.4.2. (a)
IeR = 0.3; (b) IeR = 0.1. Mandible model of Section 2.4.3. (c) IeR = 0.3; (d) IeR = 0.1.
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2.4.2. cgFEM application to 2D X-ray scan.

Quadrature rule influence

The goal of this section is to evaluate the performance of the integration procedures
described in Section 2.2.

To do so, we study the energy norm convergence for both uniform and h-adapted
meshes obtained from an actual X-ray scan. This is the 2D phalanx model shown in
Figure 2.19 simulated under plane strain.

We created a piece-wise linear, C0 continuous relationship which provides the
Young’s modulus on the basis of the pixel intensity value. This function was obtained
by interpolating the values extracted from the literature shown in Table 2.2, see [50]
and [51]. All the pixels are assigned a constant value of the Poisson’s ratio of 0.3.

Material Air Muscle Bone 1 Bone 2
Grey level 0 150 190 255

E [GPa] 0.000 0.645 14.000 14.200

Table 2.2: Material Properties referred to Figure 2.19.

Figure 2.19a shows the area of interest extracted from the X-ray scan whereas
Figure 2.19b shows the curves defined on the model for the imposition of the Neumann
and Dirichlet boundary conditions represented as cyan arrows and green triangles
respectively. The former impose a uniform pressure value 1 MPa and the latter null
displacement on the corresponding curves.

The h-adapted mesh was obtained by recursively splitting the elements for which
IeR ≤0.2, see (2.6), starting with an initial uniform mesh of level 4 and refining up to
the 8th level of the Cartesian structure.

At each refinement step, the elements exceeding the assigned value of IeR are split
into 4 elements. After that a recursive check is carried out on the neighbours of
the new elements to identify level gaps of more than one level between contiguous
elements. In these cases, the coarser elements are split in turn to guarantee that the
difference between contiguous elements is of one level at the most, in the mesh used
for the FE calculation.
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(a)

(b)

Figure 2.19: Phalanx simulation. (a) Hand X-ray image; (b) Phalanx image used in
the simulation with the curves created for the boundary conditions imposition.
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(a)

(b)

Figure 2.20: Phalanx simulation. (a) cgFEM mesh obtained by range evaluation
guided h-adaptivity; (b) von Mises stress distribution in MPa.

It is worth highlighting how the heterogeneity-driven h-refinement manages auto-
matically capturing the tissue boundaries despite the fact that no explicit segmenta-
tion was applied.
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Figure 2.21: Strain energy versus the number of degrees of freedom (left) and inte-
gration points (right) for the uniform refinement of the model in Figure 2.18 with
different integration schemes.

Figure 2.20a shows the von Mises stress field corresponding to the mesh in Figure
2.20b.

Although the model is not realistic, both because it is a 2D representation of a
three dimensional body and because the X-ray absorption along the third direction
makes it impossible to properly distinguish the different absorption rates, the stress
distribution looks consistent with the body load condition.
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Figure 2.21 shows the uniform refinement convergence for the quadrature pro-
cedures detailed in Section 2.2. The charts represents the strain energy versus the
number of DOFs and integration points (IP) in the first and second charts respec-
tively. On the one hand, the number of DOFs affects the hardware requirements and
computational time necessary to solve the FE system of equations. On the other
hand, the number of IPs has a strong influence on the computational cost at the
integration stage.

The dash-dotted horizontal lines in Figure 2.21 represent the mesh refinement
range (between 2 × 2 and 4 × 4 pixels per element) for which we observed in the pre-
vious numerical simulations that the solution diverges from the theoretical behaviour
and the mesh refinements stops enhancing the result.

In Figure 2.22 we compare the behaviour of uniform (dashed) and h-adapted
(solid) meshes in terms of strain energy versus degrees of freedom.

In both cases, the blue curves refer to the integration by subdomain decomposition,
see (2.3), the red ones to the Riemann sum based integration scheme, see (2.2), and
the magenta curves to the integration based on least square fitting, see (2.4) and (2.5).

Among the schemes presented in this chapter, the integration by subdomain de-
composition is the one we take as a reference to study the convergence behaviour as
it uses a Gauss quadrature appropriate to the polynomial degree of the integrand.
In Section 2.3, we assumed that the divergence from the theoretical slope is not due
to the integration technique but to the inaccuracy of the underlying pixelized model.
Compared to the other quadratures presented, this scheme is the most expensive,
in the general case, since the overall number of integration points it requires is the
product between the number of pixels in the model and that of Gauss points per
integration subdomain. This also implies that it is independent from the mesh re-
finement and, as a consequence, the computational cost associated to the element
stiffness matrix integration is the same for coarse and refined meshes.

In this section the integration by subdomain decomposition is used as a reference
to evaluate by comparison the behaviour of the other integration techniques proposed
for the image-based cgFEM.

In the numerical examples shown in Section 2.3 the use of linear shape functions
guarantees that the difference between the image and geometry-based models is neg-
ligible provided that the number of pixels in each element of the mesh is equal or
higher than 4 × 4. In the cases analysed, the theoretical error convergence slope is
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Figure 2.22: Strain energy versus number of degrees of freedom for uniform and h-
adapted refinement of the model in Figure 2.21 for different integration schemes.

lost between 4 × 4 and 2 × 2 pixels per element. We consider these mesh refinement
values as reliability limits. These are plotted as black dash-dotted horizontal lines
corresponding to the strain energy of the model integrated by subdomain decompo-
sition.

As shown in Figures 2.21 and 2.22, the Riemann and subdomain decomposition
integration schemes have a similar accuracy below the upper reliability limit. Never-
theless, the Riemann scheme uses one-forth of the integration points of the domain
decomposition scheme.
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If the meshes are finer than the upper reliability limit, the strain energy overesti-
mation of the Riemann quadrature is due to a loss of accuracy as it uses fewer and
fewer integration points per element as the mesh gets finer.

In contrast, the least square-based integration technique provides strain energy
values higher than the other two techniques for coarse meshes. The overall integration
point number is lower than in the other techniques, in which it is constant, but it
grows along the refinement process.

As shown in Figure 2.22, for h-adapted meshes we find the same pattern as in
uniform refinement with the exception of a general reduction in the overall number
of degrees of freedom which guarantees a lower computational cost for a similar level
of strain energy.

The accuracy of the results provided by the LS technique is similar to the reference
integration scheme for meshes contining less than 16 × 16 pixels per element. The
LS interpolation overestimates the strain energy for coarser meshes. Even though it
cannot be considered a general rule, in this particular problem the overestimation
of the strain energy makes the result closer to the convergence value than the other
integration schemes.

From the point of view of the computational cost, the LS technique requires fewer
integration points for meshes refined below the lower reliability limit (with more than
2 × 2 pixels per element). In addition, since the number of integration points per
element is constant (as in the case of geometry-based cgFEM inner elements), the B
matrix has to be evaluated for one element only and can be scaled for elements belong-
ing to different levels of the Cartesian structure. In Riemann sum and integration
subdomain decomposition-based quadratures, in contrast, the B matrix evaluation
has to be carried out for an element of each of the levels involved in the mesh.

On the basis of what was shown in figure 2.22, we consider the LS the most suitable
technique for h-refined models (provided that appropriate limits for the element size
and maximum heterogeneity allowed are properly chosen) and an effective way to
reduce the computational cost in the context of heterogeneity-based h-adaptivity.
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2.4.3. A 3D cgFEM jaw bone model

As a mere example of efficiency of the meshing process, in Figure 2.23 we show
one eighth of an h-adapted model obtained from a cone beam CT (CBCT) without
previous segmentation. This consists of about 2.8 million nodes and was obtained in
63 seconds with an Intel(R) Core(TM) i7-3770K 3.50 GHz and a RAM of 16 GB of
451 × 451 × 451 voxels.

Figure 2.23: One eighth of a h-adapted mesh of an unsegmented dental CBCT scan.

In many cases, even in 3D CT scans, Hounsfield scale alone is not sufficient for
distinguishing different kinds of biological tissue as very different elastic properties
can correspond to the same HU level depending on the location. This makes the
model in Figure 2.23 unsuitable for numerical analysis. Furthermore, this particular
volumetric image is a Conic Beam CT scan (CBCT), which is preferred for a number
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of applications because it reduces the X-ray doses patients receive but is expressed in
a specific 16 bits grey scale instead of in Hounfield as CT scans.

In order to obtain a suitable model, we carried out a segmentation of the bony
part of the CBCT, see Figure 2.24.

Grey level 0 227 228 1500 2000 4095

E [GPa] 10−4 10−4 0.5 1.5 7 30

Table 2.3: Material Properties referred to Figure 2.19.

In particular this is a 451 × 451 × 451 isometric CBCT with cubic voxels having a side
of 0.2 mm. The image was firstly reshaped to make it perfectly fit the hierarchical
structure of Cartesian grids. To do so, pixels with a value corresponding to null
Young’s modulus were added to the scan. After that, a semi-automatic segmentation
was used. This is based on thresholding, dilation and erosion and provides a logical
matrix used to exclude the elements which only contain irrelevant voxels, see Figure
2.24a.

In the simulation, all the voxels were assigned the same Poisson’s ratio value of 0.3
and the Young’s modulus was computed by using a C0 continuous, piecewise linear
interpolation of the values in Table 2.3.

The problem of converting CBCT grey scale to the Hounsfield one, see [52], exceeds
the purpose of this thesis, consequently, the Young’s modulus values in Table 2.3 were
extracted from the literature.

To h-adapt the mesh we set a value of IeR = 0.2. The initial mesh was a uniform
grid corresponding to the level 2 of the nested Cartesian grid structure. The maximum
level allowed was 8, which corresponds to elements containing 2 × 2 × 2 voxels, see
Figure 2.24b.

The element stiffness matrices were integrated by using LS-based technique, see
Section 2.2.1. Figure 2.25 shows the problem boundary conditions. On the green
surface all the degrees of freedom were constrained and on the red square of 100 mm2

a pressure of 1 Mpa was applied.
The von Mises stress field is shown in Figure 2.26 for the model cut by the grey

plane represented in Figure 2.25. Figure 2.26 shows the expected stress distribution

51



2. Image-based cgFEM

(a)

(b)

Figure 2.24: Jaw CBCT scan based model. (a) Segmented jaw; (b) FEAVox h-adapted
mesh.
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Figure 2.25: Boundary conditions for the problem in Figure 2.24a. Lengths are
expressed in mm.

due to bending in the cortical bone and the area locally affected by the pressure
application.

The model presented in this case study was obtained from a clinical CBCT scan
and is characterised by the complexity and computational cost typical of actual sim-
ulation in the biomechanical field. Even though the software is implemented in
MATLAB R©, which is affected by the typical slowness of interpreted languages, it can
handle problems of this size on a regular PC thanks to the characteristics of cgFEM.
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Figure 2.26: von Mises stress field expressed in MPa for the problem in Figure 2.24.

In particular the mesh creation and the integration of the element stiffness matrices
took advantage of the speed provided by the hierarchical Cartesian grid structure
and the LS integration technique respectively whereas the computational cost of the
solution of the system of equations was reduced by the h-adaptive strategy and the
DOF reordering made possible by the a priori knowledge of the mesh structure. This
last aspect was exhaustively treated in [32] and [53].
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Chapter 3

Material Characterisation

3.1. Introduction

Computational characterisation of materials from CT scan data is currently a rel-
evant area, for a variety of reasons, both in industry as well as in medicine. On the
one hand, modern structural components rely, to a great extent, on the behaviour
of their constitutive materials. These have an unprecedented influence on the design
solutions as the industrial processes to change their macroscopic response by inter-
vening on their micro and mesostructures are both technologically and economically
feasible [54], [55].

On the other hand, as bio-signal and image-based computational techniques gain
ground in medical applications, the assessment of the macroscopic behaviour of dif-
ferent kind of biological tissues (typically heterogeneous and structured at different
length scales, [56] and [57]) by the use of numerical techniques can potentially be a
powerful tool in the diagnosis of certain pathological conditions, such as osteoporosis.
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In addition to being potentially cheaper (and non invasive in the case of in vivo
samples) compared to actual mechanical tests, computational characterisation also
permits to apply load conditions which are hard or impossible to reproduce on phys-
ical samples but, nonetheless, may be fundamental to understand the behaviour of
structured materials especially when they distance from isotropy.

Even though machines capable of providing volumetric images with the required
resolution are not as common as mechanical testing machines, CT scan-based virtual
characterisation of materials is still competitive with experimental testing as it is non
destructive, requires a lower number of specimens and a smaller amount of human
intervention.

In this chapter, we focus on the characterisation of solid cellular materials. These
have a vast range of applications in a number of different industrial fields [58] primary
to reduce the weight of mechanical components but also to increase their impact
absorption capabilities, enhance acoustic and thermal isolation, create stiff filters,
depending on the specific use.

Lately, due to the recent success of 3D printing technologies, the interest in solid
cellular materials has grown even in applications for which reducing weight is of
secondary importance, such as biomedical engineering.

In trauma, orthopaedics and dental implantology, for instance, porous materials
promise to reduce implant failure rates [59] leading, on the one hand, to devices with
bio-mimetic mechanical properties less likely to produce stress shielding, [60], [61],
and, on the other hand, to surfaces with enhanced osteoinducing properties capable
of promoting secondary stability [62], [63].

Due to the presence on the market of equipments capable of providing fine res-
olution images of human trabecular bone [64], [65], the mechanical characterisation
of solid foams from images is also considered a suitable way to assess bone quality
and, therefore, the likelihood of osteoporotic fractures, as it is known that loss of
connectivity in the cancellous structure has a key role in the phenomenon [66].

As complex structure of solid foams can lead to anisotropic behaviour [67], it is
common to use the same homogenisation procedures developed for heterogeneous,
potentially anisotropic composite materials [68].

By far, the most common numerical homogenisation technique consists in using
FEA to virtually test a sample of material, the so called Representative Volume
Element (RVE), [69], [70], [71].
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After a short introduction to numerical homogenisation in Section 3.2, we propose
the cgFEM virtual characterisation technique, which is a powerful automatic tool to
obtain homogenised properties of heterogeneous materials from RVEs described by
volumetric images. We apply it to solid foams in small deformation regime using a
linear elasticity model. The cgFEM virtual characterisation technique includes one
of the most effective tools for the reduction of the RVE size, the window method [72],
which will be treated in Section 3.3. Section 3.4 explains the procedures we followed
to obtain experimental results for printed PLA foam samples to be used for the model
validation. It also describes how we obtained and preprocessed the µCT scan used
in the simulations. cgFEM virtual characterisation also includes strategies for the
accurate definition of the relation between the local apparent density and the pixel
intensity value in solid foams, Section 3.5, as well as a simple method to properly
relate apparent density and Young’s modulus avoiding the stiffness overestimation
introduced by establishing a direct proportionality between them, in Section 3.6.
Finally, in Sections 3.7 and 3.8 the effect of the window thickness is studied and
the results obtained with the cgFEM virtual characterisation are compared with the
experimental data and semi-empirical formulae from the literature.

3.2. Numerical characterisation of

heterogeneous material in linear

elasticity

For the estimation of the RVE constitutive relations in linear elasticity, we assume
the displacement and strain fields to be small enough and the load imposition quasi
static. Consequently we can neglect both thermal and dynamic effects and consider
the stress-strain relationship linear. Similarly, we also assume the material to be free
from initial stress or strain,
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3. Material Characterisation

These hypotheses lead to the familiar formulation

σ = E : ε (3.1)

The well known linear relation of the second order 3 × 3 strain and stress tensors and
the forth order tensor E containing the 81 material constants. Due to the symmetry
of the Cauchy stress and strain tensors, their order can be reduced and the number of
material constants decreased to 36. Therefore (3.1) can be written in Voigt notation
as:



σ11

σ22

σ33

σ12

σ23

σ31


=



E1111 E1122 E1133 E1112 E1123 E1113

E2211 E2222 E2233 E2212 E2223 E2213

E3311 E3322 E3333 E3312 E3323 E3313

E1211 E1222 E1233 E1212 E1223 E1213

E2311 E2322 E2333 E2312 E2323 E2313

E1311 E1322 E1333 E1312 E1323 E1313





ε11

ε22

ε33

2ε12

2ε23

2ε31


(3.2)

The material compliance matrix in (3.2) describes the behaviour of a generic
anisotropic material under infinitesimal strain conditions and is symmetric due to
the first thermodynamics principle. As a consequence the maximum number of in-
dependent elastic coefficients necessary for its definition can be additionally reduced
to 21 for a fully anisotropic material. Nonetheless, under certain circumstances the
number of constants decreases as in the case of monoclinic and orthotropic materials.
These are characterised by 13 and 9 constants respectively if a convenient reference
system is used. If this is oriented along the symmetry planes, the shear stress compo-
nents will only depend on the corresponding strain components and will be uncoupled
from the other ones. When this condition is independent from the reference system
orientation, the material is isotropic and the number of necessary constants is 2.

Numerical homogenisation is commonly based on (3.3), known as the Hill’s condi-
tion [73], which provides the criteria for the selection of a statistically representative
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3.2. Numerical characterisation of heterogeneous material in linear elasticity

volume element (RVE) Ω.

〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω (3.3)

Where 〈 〉Ω is the mean value over the domain Ω.
(3.3) is satisfied by Kinematic uniform boundary conditions (KUBC) on the RVE

boundary, see (3.4) and Figure 3.1. .

u|∂Ω = 〈ε〉Ω · x (3.4)

Static uniform boundary conditions (SUBC) on the boundary also satisfy the Hill’s
condition, (3.5).

t|∂Ω = 〈σ〉Ω · n (3.5)

In (3.4) and (3.5), x and n are the position of the domain boundary ∂Ω and unit
vector normal to it.

The application of one of the load conditions described in (3.4) and (3.5) to a sta-
tistically representative RVE provides an approximation of the behaviour of a micro-
scopic sample located in the core of a large sample. The uniform boundary conditions
descends from the mandatory requirement that the sample is small enough compared
to the structure to which it belongs and large enough to have small boundary field
fluctuation [74].

Given a heterogeneous structure and the properties of each of component, Material
numerical characterisation permits to obtain the overall material compliance matrix
if the RVE is representative.

We assume the strain ε and stress σ fields at each point of the RVE Ω under a
given load condition to consists of a fluctuation ˜ about an average value 〈 · 〉Ω, see
(3.6)

ε = 〈ε〉Ω + ε̃; σ = 〈σ〉Ω + σ̃ (3.6)
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x y z

xy xz yz

Figure 3.1: Imposition of unit KUBCs on solid foam RVE.

The averaged values represent the behaviour of an equivalent homogeneous material.
Therefore numerical homogenization seeks the compliance matrix D relating the

averaged strain and stress, see (3.7), if the Hill’s Condition is satisfied.

〈σ〉Ω = D〈ε〉Ω (3.7)

3.3. Window method in cgFEM

It is well known that the RVE size has a great influence on the results of hetero-
geneous material numerical homogenisation. The first reason is that RVE becomes
statistically more representative of the material average structure and behaviour as
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3.3. Window method in cgFEM

its size increases. The second one is that the set of boundary conditions, which has
to guarantee a given mean strain or stress value in the RVE are generally inconsistent
with the actual load transfer between the RVE and the surrounding heterogeneous
material and consequently introduces a source of inaccuracy in the area close to the
boundary.

This results, for instance, in an overestimation of the RVE stiffness in the case of
KUBC (3.4) and in its underestimation with SUBC (3.5) [75]. Increasing the RVE
size reduces its surface-volume ratio. For an infinite RVE this effect disappears and all
the boundary conditions satisfying the Hills condition converge to the same result.

RVE

Window

Figure 3.2: Schematic representation of KUBC imposition on an RVE with the window
method.

In order to keep the RVE size small and, consequently, the computational cost of the
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3. Material Characterisation

simulation low, we use the window method proposed in [72] for the homogenisation
of CT scans of concrete samples with a uniform voxel-based FE mesh and applied in
[68] for the numerical characterisation of solid foams with the FCM. The optimality
of the method was theoretically and numerically proved in [76].

The objective of every homogenisation method is the determination of the consti-
tutive coefficients of a homogeneous material equivalent to the heterogeneous RVE.
The window method consists in embedding the RVE into a larger volume of this
equivalent material and applying the proper boundary conditions on the window ex-
ternal contour instead of the RVE boundary. As the coefficients of this homogeneous
equivalent material are unknown, an iterative process is used for their evaluation.

In particular we apply KUBCs on the window external boundaries and compute
the average stress in the RVE, see Figure 3.2. The procedure starts with the appli-
cation of the rule of the mixture on the RVE to define the material property tensor
which is assigned to the window elements as an initial guess. Then, the cgFEM model
is created, distinguishing the elements on the RVE and those on the window. We solve
the problem for the 6 KUBCs shown in 3.1, and compute the material elastic prop-
erty tensor from the average values of the stress tensor in the RVE and the average
strain conditions applied. This is then assigned to the element on the window for
the following iteration until the Frobenius norm of the increment of two consecutive
window compliance matrices decreases under a given threshold. This is 1% for the
numerical examples in Sections 3.7 and 3.8.

It is worth mentioning that the further iterations are less expensive then the first
one because neither the model has to be re-meshed nor the stiffness matrices for the
elements on the RVE have to be computed again. Apart from the solution of the
system of equations, each iteration only requires updating the stiffness matrices of
the elements on the window, but this is inexpensive because they are proportional
to each other by a scale factor known a priori and share the same material property
matrix, therefore only one element is integrated, similarly to the inner elements in
standard geometrical cgFEM, see Section 2.1.
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3.4. 3D printed foam experimental testing

3.4. 3D printed foam experimental testing

This section explains how we obtained the specimens for the experimental valida-
tion of the homogenisation method as well as the CT scan representing their structure.

x

y

z

Figure 3.3: 3D printing process and coordinate system.
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3. Material Characterisation

We started by segmenting the µCT scan of and ALPORAS aluminum foam spec-
imen using the software 3DSlicer [77]. The segmentation mask was than treated to
increase the cell wall thickness with Matlab R© [78] and converted to a STL file.

X

Y

Z

Figure 3.4: PLA 3D printed foam sample corresponding to Spec 5 (5 yellow marks)
and coordinate system.

From this, Several PLA foam specimens, Figure 3.4, were printed form this geo-
metrical model with the 3D Printer Ultimaker 3, see Figure 3.3. Then, we had one
of the PLA specimens scanned with the MicroCT 80 by Scanco Medical [79] at a
resolution of 29 µm.
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3.4. 3D printed foam experimental testing

The PLA foam CT scan was sub-sampled at 2 × 2 × 2, 4 × 4 × 4 and 8 × 8 × 8
in order to reduce the computational cost of the simulation. The 4 × 4 × 4 was used
in the homogenisation process.

On the one hand, the process made it possible to have a reasonable number of
similar specimens to test. The wall thickness increase was necessary to reduce the
effect of the 3D printing machine precision on the specimen structure.

In comparison with the original Aluminium ALPORAS foam, the new specimens
have thicker walls and smaller the pores. Therefore, these are better defined in the
µCT for the same resolution in comparison to the original ALPORAS foam. The
volumetric image was used for the numerical characterisation with cgFEM, whereas
six specimens underwent displacement controlled uniaxial compression during two
sessions with different testing machines.

In the following, we will describe the two test series, show the strain-stress curves
corresponding to each test and identify the linear elasticity parts of the curves as the
one providing a coefficient of determination R2 of 0.999 for a linear fitting.

3.4.1. First group of tests: compression in z-direction

For the first test section, we used an electromechanical machine Ibertest ELIB 50,
see Figure 3.5.

We tested two samples of 27.30 and 27.26 g respectively (Spec 1 and Spec 2 in
Figures 3.6 and 3.7). The strain-stress curves for Spec 1 at loading condition and
Spec 2 for both loading and unloading are shown in Figure 3.6.

The compression curves in Figure 3.6 show a non-linear behaviour in the first
part typical of small mismatches between the machine plates and specimen contact
surfaces, which are not perfectly parallel to each other. When, as the compression
goes on, the surfaces start matching and the stress-strain relationship becomes linear
in the small strain range in which the test was carried out.

Figure 3.7 shows the part of the curves used for the calculation of the Young’s
modulus in the linear elastic range.

65



3. Material Characterisation

Figure 3.5: Set up of the first PLA foam compression test series.
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Figure 3.6: Stress-strain curves from test 1.
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Figure 3.7: Young’s modulus calculation in test 1.

3.4.2. Second group of tests: compression in x, y and

z directions

Five additional tests were carried out with a Mashimadsu Autograph AG-X Plus
100 kN machine, Figure 3.8.

The specimens weighed 27.3, 27.36, 27.33, 27.18 and 27.54 g respectively. For each
specimen loading and unloading were taken into account, see Figure 3.9. We refer to
each specimen with a number from 1 to 5 and the load direction (LD) according to
the reference system shown in Figure 3.4.

For the first compression test we reused the first specimen of the first test series
(called Spec 1 LD Z in both tests) as a pilot to choose the test range fo the other
specimens, therefore, in that case, we reached the non linear part of the strain-stress
relation, see the light blue curve in Figure 3.9.

The linear sections for loading and unloading are shown separately in Figures 3.10
and 3.11 with the corresponding Young’s modulus values.
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3. Material Characterisation

Figure 3.8: Set up of the second PLA foam compression test series.

Load Direction X Y Z
Mean 346.86 414.46 453.01
Standard Deviation - 162.69 70.05

(a) Young’s modulus in MPa during load

Load Direction X Y Z
Mean 504.50 495.49 536.98
Standard Deviation - 161.42 53.77

(b) Young’s modulus in MPa during unload

Table 3.1: Mean values and standard deviation for the test results in loading (a) and
unloading (b) conditions.
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Figure 3.9: Stress-strain curves from test 2.
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Figure 3.10: Young’s modulus calculation from test 2 loading.
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Figure 3.11: Young’s modulus calculation from test 2 unloading.

Tables 3.1 show the mean and standard deviation for the directional Young’s
modulus values obtained by the groups of tests in loading (a) and unloading (b)
conditions.

In the following, we will take as a reference the Young’s modulus values obtained
in unloading conditions under the assumption that during the loading the behaviour
of solid foams is biased by local effects, see [80].

3.5. Relation between density and pixel

colour

In this section, we present a method for the determination of the relationship
between the values of the pixels in the foam CT-scan and the corresponding relative
density values.
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For the sake of clarity, it is worth reminding that we had a 3D printed PLA
foam sample scanned at a resolution of 29 µm, see Section 3.4. This was similar to
the samples used in the experimental tests presented in the previous section. We
obtained a 4 × 4 × 4 sub-sample from the original µCT scan. All the computational
results presented in this chapter refer to this lower resolution (116 µm) volumetric
image.

We assume density is null below a lower pixel colour threshold and one over an
upper one and consider the relative density to have a linear dependency with pixel
colour between these two values, see Figure 3.12. This volume averaging for pixels
on interfaces implies the hypothesis that, due to discrete spatial resolution of the CT
scan, the radiodensity is linearly proportional to the amount of PLA in the volume
corresponding to the respective pixel. This phenomenon is also known as tissue frac-
tion effect and is only one of the two causes of the partial volume effect (PVE), the
error affecting the accuracy of medical volumetric images at the interface between
different materials [81]. The other phenomenon, included in PVE, is the convolution
blurring due to the detector finite size and the image reconstruction process. This is
the main responsible for the inaccuracy of the volume averaging assumption in general
and increases with the radiodensity difference between the materials in the same pixels
[82]. In our particular case, however, we consider that the sub-sampling we perform
on the original µCT scan to reduce the computational effort required, mainly magni-
fies the inaccuracy due to the tissue fraction effect and, therefore, makes it possible
for us to overlook the contribution of the convolution blur to the PVE. Consequently,
we expect to introduce negligible sources of inaccuracy by considering the relation
between pixel radiodensity and density linear.

This is represented as the slope in Figure 3.12, defined by two unknown parame-
ters: the midpoint V0 and the half-width ∆.

It is possible to determine the geometric locus which satisfies the specimen den-
sity in the V0-∆ plane, by iteratively fixing V0 and looking for the ∆ value which
corresponds to the specimen density.

Figure 3.13 shows an example of isodensity curves for sub-sampled volumetric
images 2 × 2 × 2, 4 × 4 × 4 and 8 × 8 × 8 times smaller than the original one.
In the case of high resolution µCT scans sub-sampling is often necessary to reduce
the computational cost of FE analyses. We use some considerations on the foam
histogram, to complete the definition of the relation between pixel values and density.
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Figure 3.12: CT scan histogram and relative density.

The blue curve in Figure 3.14 represents the µCT scan histogram after the 4 ×
4 × 4 sub-sampling. The left and right peaks are associated to Hounsfield values
corresponding to air and PLA respectively. Since the pixels affected by the PVE have
lower HU values compared to those in the bulk, we assume that these are the main
responsible for the lack of symmetry of the frequency distribution about the PLA
peak. This would be a symmetric Gaussian-type distribution about a mean value in
the case the µCT scan represented solid PLA only. Similar hypotheses are common
in thersholding of 2D images [83], CT scans [84], [85] and MRIs [86]. We obtain
an estimation of this theoretical PLA pixel distribution by symmetry from the right
half of the peak, see red dotted line in Figure 3.14 and a magnified representation in
Figure 3.15.
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Figure 3.13: Geometrical loci satisfying the experimental specimen density for sub-
sampled volumetric images.

It is impossible to completely distinguish the voxels affected by the PVE from
those with a reduced HU value because of the normal distribution from the pixel
value only. In spite of that, under the previous hypotheses, we can estimate the
amount of voxels whose density would be underestimated, depending on the location
of the right limit of the density slope V0 + ∆. By integrating the red dotted curve,
the expected theoretical solid PLA distribution, we can estimate the percentage of
pixels in the bulk taken into account correctly. Following this strategy, we distinguish
two sources of error. On the one hand, we underestimate the stiffness contribution
of solid PLA pixels classified as affected by PVE (part of the red curve to the left of
V0 + ∆ in Figure 3.14). On the other hand, we overestimate the stiffness contribution
due to the voxels affected by PVE classified as solid (difference between the blue and
red lines to the right of V0 + ∆ in Figure 3.14.
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Figure 3.14: Histogram of the 4×4×4 sub-sampled CT scan and estimated theoretical
pixel value distribution for a solid PLA sample.

Figure 3.16 shows the histogram analysis of the 4 × 4 × 4 sub-sample of the PLA
foam specimen scanned but not mechanically tested obtained as described in Section
3.4. The isodensity V0-∆ curve in Figure 3.16a refers to the measured density value
of the physical specimen. As shown in Figure 3.16b, for each point of this curve, only
one couple of values is possible for the lower (V0 −∆) and upper (V0 + ∆) limits of
the density slope in Figure 3.12. Consequently, for each point of the isodensity curve,
it is possible to compute the percentage of the solid PLA voxels properly classified
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Figure 3.15: Magnification of PLA frequency peak in the histogram of the sub-sampled
4×4×4 CT scan in Figure 3.14.

by computing the ratio between the integrals of the red curve in Figure 3.15 in the
intervals [V0 + ∆,∞) and (−∞,∞).

The values of this estimated confidence on the proper treatment of the voxels in
the bulk is shown in Figure 3.16c. It is worth reminding that when the confidence
level increases, the number of pixels affected by the PVE classified as solid is expected
to increase too. The values of V0 and ∆ for a confidence level of 68%, 95% and 99.7%
are highlighted.

Figure 3.18 shows the relative density map corresponding to the three aforemen-
tioned confidence levels. The distributions in Figure 3.18a seems to capture the inner
defects of the printed material better than Figures and 3.18b and 3.18c.
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Figure 3.16: Results of the histogram analysis for the 4 × 4 × 4 sub-sample of the
PLA foam µCT. (a) V0-∆ isodensity curve for the measured density of the physical
specimen; (b) Upper (V0 + ∆) and lower (V0 −∆) limits for linear slope of the ρ-HU
relation; (c) Estimated percentage of solid PLA voxels properly classified.
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Figure 3.17: Rho-HU relation for different confidence levels.

In this case, we worked with the 27.30 g specimen, which has a density of 0.49
g/cm3. Due to the great µCT size, which makes it extremely expensive to process
it directly with cgFEM, we obtained a coarser volumetric image more suitable for
computing by sub-sampling to an image 4 × 4 × 4 times smaller. So far we have set a
relationship between density and pixel colour which satisfies the experimental appar-
ent density value of the specimen, see Figure 3.13, and depends on the parameters V0

and ∆, see Figure 3.12. These also provides a similar relationship between Young’s
modulus and pixel colour under the hypothesis that this is linearly proportional to
the density value in the range in which the image is affected by the PVE.

The specimen weight and volume make it possible for us to find the couples V0-∆,
which guarantee the same density of the printed foam, assuming solid PLA density is
1.25 g/cm3, see Figure 3.16.
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Figure 3.18: Part of the central slice in the x-y plane of the CT scan of the PLA foam
specimen. Density map representation depending on the confidence level: (a) 68%;
(b) 95%; (c) 99.7%.
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3.6. Partial volume correction function

Assuming a PLA Young’s modulus of 3.2 GPa, previously measured by tension
test on homogeneous PLA specimens manufactured with the same 3D printer as the
foams, and a Poisson’s ratio of 0.36, taken from the literature [87], all the attempts to
reproduce the experimental results moving on the iso-density curves resulted in severe
stiffness overestimations. Our hypothesis is that the simple direct proportionality
between density and Young’s modulus is not suitable for images heavily affected by
the PVE such as foams.

In this section we propose a Young’s Modulus correction coefficient ᾱ which makes
it possible for us to take into account statistically the effect of the arbitrary orientation
of the surface within the voxel, see Figure 3.24.

In this implementation of cgFEM, the material is considered isotropic at the level
of the pixels, that is the D matrix computed at the pixel level is defined by the
Young’s modulus and Poisson’s ratio only, in contrast to the elastic compliance ten-
sor computed by the homogenisation analysis for the whole RVE which, in the general
case, can be completely anisotropic. Consequently a simple tension on the pixel ex-
tracted from the rest of the image is independent from the load direction. In contrast,
if we substitute the pixel with the underlying geometrical model the corresponding
Young’s modulus is highly directional. For the sake of clarity, we introduce the 2D
example shown in Figure 3.19. We consider the tension test in the x direction on an
intermediate grey level pixel, see Figure 3.19a, and assume the grey level value only
depends on the PVE, that is all the underlying geometries with the same quantity
of material provide the same colour of the pixel. For simplicity, we consider that the
boundary of the material within the pixel is a straight line. This is called l and is
defined by the angle β of its unit normal vector n with the x direction and by the
intersection with the square diagonal d at the point P, see Figure 3.19b. The Young’s
modulus measured during the test would be null for β=0◦, Figure 3.19c whereas it
would perfectly follow the mix rule for β=90◦ Figure 3.19e.

These can be considered as special cases of Ruess and Voigt bounds. Intermediate
stiffness values can be found at different values of β for the same volume ratio, see
Figures 3.19c to 3.19e.
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Figure 3.19: Scheme of pixel affected by partial volume effect. A pixel of a given grey
level (a), can be the product of different intersection patterns with the plane l, (b),
which share the same area but behave differently in the same load conditions, such
as (c), (d) and (e).

To take into account this effect in pixels with density values below that of the
core material, we introduce the partial volume correction function ᾱ(ρ) having values
between 0 and 1. This scales the Young’s modulus to its average value along all the
possible load directions for a given pixel density.

It is possible to compute ᾱ by extending to the third dimension the example in
Figure 3.19. For this purpose, we have cut out a polyhedron from a unit cube with
an arbitrary plane, see Figure 3.20, and compute the vertical stiffness and volume
of the polyhedron for a high number of positions and orientations of the intersecting
plane. Finally we resample the relative density of the polyhedra (the ratio between
their volume and the volume of whole cube) and for each density value, we averaged
the vertical stiffness over all the possible plane orientations to obtain an estimation
of ᾱ(ρ).

In the following, we use some simplifications to approximate ᾱ(ρ) numerically.
As in the 2D case of Figure 3.19, we vary the intersecting plane by changing the
direction of its normal and its intersection point with one of the cube space diagonals.
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3.6. Partial volume correction function

Figure 3.20: Polyhedron cut out by surface.

In contrast to the 2D example, in 3D we need 2 angles to define the plane direction.
These are the polar angle φ and azimuth angle θ, see Figure 3.21.

We vary these angles between 0◦and 85◦with steps of 5◦whereas consider equidis-
tant intersection points on the cube space diagonal for the definition of the intersecting
plane. For each intersection we compute the polyhedron volume in relation to the
whole cube.

For each polyhedron cut out from the cube we approximate the overall vertical
stiffness by using the well known simplified model for non-uniform bars under axial
tension, see Figure 3.22.

Under the assumption that all the components of the stress tensor are negligible
except the normal stress component in z direction σ, the Hooke’s law is satisfied at
the bar cross section for any value of z by
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Figure 3.21: Spherical coordinate system.

A0

a( )

z

L0

F

F

Figure 3.22: Schematic representation of simplified model for non-uniform bars under
tension.
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3.6. Partial volume correction function

σ(z) = Eε(z) (3.8)

where ε is the normal strain in direction z and E the material Young’s modulus. The
corresponding element of infinitesimal thickness δz undergoes the length change δl:

δl = F
δz

Ea(z)
(3.9)

where F is the external axial force and a(z) the cross section area value at z. We
obtain the overall length change of the bar by integrating (3.9) over the initial length
L0 and divide by L0 to compute the average strain value in the z direction 〈ε〉:

〈ε〉 =
F

EL0

∫ L0

0

dz

a(z)
(3.10)

If we consider the apparent tension value 〈σ〉 = F/A0 applied to the upper pixel
surface, the average stress-strain relationship is

〈σ〉 =
L0E

A0

∫ L0

0
dz
a(z)

〈ε〉 (3.11)

(3.11) makes it possible for us to estimate the directionality coefficient α, which
accounts for the reduction of the cube stiffness by scaling Young’s modulus.

〈σ〉 = αE〈ε〉 (3.12)

The coefficient α depends on the cross section variation along z and, therefore, only
on the intersection between the plane and the cube, which can be univocally defined
by the pixel density, polar and azimuth angles.

α(ρ, φ, ϑ) =
L0

A0

∫ L0

0
dz
a(z)

(3.13)

The integral at the denominator of (3.13) is computed numerically by a first degree
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3. Material Characterisation

Newton-Cotes quadrature. This uses 101 samples of the area values a(z) of the
intersections between the polyhedron and equidistant horizontal planes.

The α values are then resampled at the desired values of ρ, see Figure 3.23

=0.0

=0.2

=0.4

=0.6

=0.8

=1.0

Figure 3.23: Dependency of α on cutting plane direction (ϑ and φ) and ρ.

As the relative position of the interface with respect to the load direction is not known
a priori, we average α over the angles ϑ and φ defining the intersecting plane direction.
To do so we resampled the results in ρ by defining 11 equidistant values in the interval
[0,1] for ρ and, for each of them, we computed ᾱ, the arithmetic mean value of α.

The resulting partial volume correction function ᾱ only depends on the pixel
density, see Figure 3.24.
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3.7. Analysis of the effect of the window thickness

The ᾱ coefficient is used to correct the piecewise linear relationship between
Young’s Modulus and pixel values accordig to 3.12. The dependence of the partial
volume correction function and relative pixel density, defined as the ratio between
the pixel density ρ and that of the material in the bulk ρb, versus pixel grey value is
schematically shown in Figure 3.24.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

Pixel grey level

Pixel relative density  /
b

Partial volume correction function 

Figure 3.24: Example of pixel relative density and partial volume correction function
vs grey level.
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3. Material Characterisation

3.7. Analysis of the effect of the window

thickness

In this section we focus on the sensitiveness of the cgFEM virtual characterisation
technique to the window thickness, which depends on the level of the uniform Carte-
sian grid superimposed to the image before the mesh refinement process, see Section
2.2.3. When the initial uniform Cartesian mesh is created, not all the elements out-
side the CT scan are deleted. Instead, the most internal layer of them is kept whereas
the other ones excluded. As a result, the mesh is surrounded by a constant thickness
cubic shell of elements, which constitute the window. These window elements are
not deleted throughout the refinement process, but they can be h-adapted led by the
heterogeneity of bitmap elements nearby, which, in contrast, are treated as shown in
Chapter 2.2.

The window elements are homogeneous but completely anisotropic in the general
case. They all have the same elastic properties and are geometrically similar, like the
inner elements in the geometry-based version of cgFEM and are treated in the same
way, see Section 2.1.

We apply the displacement sets shown in Figure 3.1 to the external boundary of
the window and compute the mean value of the stress tensor of the bitmap elements.
Doing so, we obtain a column of the compliance matrix for each one of the six sets of
Dirichlet conditions.

The resulting compliance matrix is then used for the window elements in the
following step of the iterative process, which stops when the Frobenius norm of the
difference between the compliance matrices computed at two consecutive steps is lower
than 1%. We use the rule of the mixture to compute its starting guess values.

In our implementation of the window method, the window thickness is not arbi-
trary, its values in the numerical examples correspond to three typical levels for the
initial Uniform Cartesian grid, level 4, 5 and 6, respectively. These led to the meshes
shown in Figure 3.25 after the refinement process, carried out as in Section 2.4.1.

Figure 3.26 shows the sensitivity of some of the elastic properties obtained by
homogenisation to the window relative thickness, i.e. the ratio between the window
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3.7. Analysis of the effect of the window thickness

(a)

(b)

(c)

Figure 3.25: cgFEM meshes for different initial grid levels with the window method.
(a) Level 4; (b) Level 5; (c) Level 6.
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Figure 3.26: Dependency of the cgFEM virtual characterisation technique on the
window thickness. (a) Young’s modulus; (b) Shear modulus; (c) Poisson’s ratio.
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3.8. Numerical vs experimental results

thickness and the side of a cube of the same volume as the RVE. The values of the
relative window thickness so computed are 0.1063, 0.0531 and 0.0266 for the meshes
shown in Figure 3.25 (a), (b) and (c), respectively.

All the meshes are refined up to level 7, which guarantees the number of pixels
in each element is 4 × 4 × 4 pixels at least. The relation between the pixel values
and elastic properties was obtained for a confidence value of 99.7%, see Figure 3.17
applying the partial volume correction function ᾱ, see Section 3.6.

In the considered thickness range, the sensitivity of the Poisson’s ratio as well as
the Young’s and shear moduli to the window thickness is very low.

3.8. Numerical vs experimental results

The bitmap element integration is carried out with the Riemann-based integration
technique (2.2), a sensible choice due to the high amount interfaces in the CT scan.

Figure 3.27 shows the PLA foam Young’s modulus values obtained experimentally,
see Section 3.3, which are used for the comparison with numerical results obtained
with the cgFEM virtual characterisation technique.

The circular and the square markers represent the Young’s modulus values ob-
tained by loading and unloading, respectively. The difference between these values is
due to local non linear phenomena which are not included in the computation model,
therefore we also plot the interval between them, as a dotted line, as it is reasonable
to expect an intermediate value from the numerical simulations.

The tests can be distinguished by their colour, as reported in the legend. The
horizontal axis in Figure 3.27 refers to the direction along which the specimen was
loaded during the test (1, 2 and 3 for directions x, y and z, respectively).

We did not include the first test of the second group (corresponding as a light blue
curve in Figures 3.9, 3.10 and 3.11). The corresponding results are not considered
reliable as the specimen had already been tested (test one of the first group) and,
during the load cycle of the second test, it entered the non linear elasticity range.

In Figure 3.27 the unload case of the Specimen 1 in the first group is missing, as
it was not recorded during the test.
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Figure 3.27: Young’s modulus values obtained by mechanical testing of the PLA
specimens.

The comparison between the experimental and the computational results is shown
in Figure 3.28

We plot the cgFEM virtual characterisation results as horizontal segments at their
respective value on the y-axis and centred on the corresponding direction, x-axis,

The black segment refer to values with the ᾱ partial volume correction function,
whereas for the red ones a piecewise linear relation between Young’s modulus and
pixel colour. The density-colour relationships for 99.7%, 95% and 68% confidence
were used.

As a reference, in Figure 3.29 we also add some semi-empirical results for closed
cell foams from the literature, as horizontal dotted lines. The black ones represent the
results of Gibson and Ashby [88] obtained under the assumption of periodic structure.
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Figure 3.28: Comparison between the Young’s modulus values computed with the
cgFEM virtual material characterisation with and without the partial volume correc-
tion function and the experimental results in Figure 3.28.

E

Es
≈ ϕ2

(
ρ

ρs

)2

+ (1−ϕ)
ρ

ρs
(3.14)

with and ν ≈ 1
3 . E and ρ are the foam Young’s modulus and density respectively,

whereas the subindex s refers to the solid material. ϕ is the fraction of solid mass
contained in the cell edges. Some typical reference values are 0.6 6 ϕ 6 0.8 for thin
wall cells and 0.01 6 ϕ 6 0.07 for relatively thick wall cells.

The red dotted horizontal line represents the PLA foam expected Young’s modulus
values according to the formula proposed by Roberts and Garboczi for random closed
cell structures [89].

E

Es
= 0.694

(
ρ

ρs

)1.54

(3.15)

It is worth noting that both models assume the foam to be isotropic and the pressure
of the gas in the cells is neglected.
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Figure 3.29: Comparison between the Young’s modulus values obtained with the
cgFEM virtual characterisation technique and the semi-empirical formulae in (3.14)
and (3.15).

The high dispersion of the experimental results, in particular along the y-direction,
makes it clear that more compression tests in all directions are necessary. In spite of
that, however, the performance of cgFEM virtual characterisation appears reasonably
good, especially when the partial volume correction function is used. This avoids
the stiffness overestimation which appears when the Young’s modulus is considered
linearly proportional to the density.

The computed values are reasonable, as shown by the good matching with both
the experimental results and semi-empirical formulae, in particular with Roberts and
Garboczi’s. Compared to these, which assume the foam is perfectly isotropic, our
procedure can capture anisotropic behaviour, see Figure 3.30, which is not easily
achievable even by mechanical testing. In addition, it is applicable to a much wider
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3.8. Numerical vs experimental results

range of heterogeneous materials provided their structure is available as a volumetric
image.
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Figure 3.30: Convergence of the technical constants of elasticity over the iterations
for a window thickness relative value of 0.0531 and confidence level of 95%.

Figure 3.30 shows the values of the technical constants of elasticity of the ho-
mogenised material at each iteration of the window method for the mesh in Figure
3.25a and a confidence level of 95%. The starting points represent the values for the
isotropic material obtained by the mixture rule used as an initial guess. After the
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3. Material Characterisation

first calculation, the window material assumes anisotropic characteristics and con-
verges quickly.

It is worth mentioning that, throughout the process the FE mesh is constant,
the only parameter that changes is the compliance matrix of the window elements,
therefore the bitmap stiffness matrix has to be computed and assembled during the
first calculation only. The integration of the window elements is inexpensive because
it is only necessary to compute the element stiffness matrix for one of them and scale
it, as in the case of the internal elements in the geometrical version of cgFEM, see
Section 2.1. The system of equations, in contrast, has to be solved at each iteration.

94



Chapter 4

Implant Simulation

4.1. Implant simulation with cgFEM

A promising application of image-based cgFEM is related to the simulation of
future implant behaviour.

The procedure is not new, instead it is common enough as testified by the pres-
ence on the market of commercial codes, such as Simpleware Scan IP [90], [91], or
Materialise Mimics [92], [93], primarily devoted to this application.

The most common strategy to create a patient-specific FE model of a prosthetic
device after implantation consists in obtaining a geometrical model from the patient
volumetric image by using specific software and assemble the device and biological
models together. The result can be meshed as a normal CAD model with standard
FE codes, see Figure 4.1.

Again, as in the case of purely anatomical models, the most cumbersome and
manual step of the process is the creation of the geometrical model from the volumetric
image as well as the next step of manipulating and merging the geometrical models.
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4. Implant Simulation

Implant geometrical modelCT series

Mandible geometrical model

FEM model

Figure 4.1: Example of standard implant modelling procedure.
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4.2. Merging image- and geometry-based cgFEM for patient specific simulation of
future implants

In addition to this standard procedure, as cgFEM is capable of providing FE
models from both geometry or images, it offers two additional alternative approaches:

• using the bitmap and the CAD to integrate the biological part and the prosthetic
device, respectively, in the same FE mesh;

• pixelating the CAD model, superimposing it to the image and treating it as an
additional object represented in the medical image.

The first option reduces the preprocessing work required for modelling and is
presented in Section 4.2 whereas, the second one is presented in Section 4.3 and takes
advantage of commercial codes which make it possible to obtain regular hexahedral
meshes from CAD files and reduces the problem to a pure image-based cgFEM model.

The following sections show examples for both these procedures.

4.2. Merging image- and geometry-based

cgFEM for patient specific simulation of

future implants

In this Section, we present the details of a procedure which takes advantage of
both geometry- and image-based cgFEM to simulate the effect of future implants and
include local tissue information available in the image. The process starts with the
image importation and reshape, see Figure 4.2a, in order to make them suitable for
the mesh h-adaptive process.

The closed geometry representing the prosthetic device is then introduced or de-
fined on the image space and immersed in the Cartesian grid structure which is
overlapped to the bitmap, see Figure 4.2b. On the one hand, the pixels whose cen-
tre is contained inside the closed geometrical contour are deactivated because they
correspond to the parts which have to be removed in order to insert the implant, see
Figure 4.3a. On the other hand, the closed geometrical domain is assigned homoge-
neous material properties as in standard geometry-based cgFEM, see Figure 4.3a.
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(a)

(b)

Figure 4.2: Prosthetic device modelling. (a) Bitmap domain; (b) Geometric contour
defined on the bitmap domain.

Once the mesh has been created, three categories of elements are distinguished on
the basis of their position with respect to the geometrical domain. As shown in Figure
4.3b, the elements of the hierarchical structure can be external to the geometrical
boundary (light grey elements), internal (dark grey elements) or can lie on it (white
elements).
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future implants

(a)

Internal elements 

Elements on the boundary 

External elements 

(b)

Figure 4.3: Prosthetic device simulation. (a) Geometric domain and active pixels
corresponding to the prosthesis in 4.2; (b) Conceptual image of FEAVox mesh for the
geometry-image mixed problem.

On the one hand, the elements inside geometrical domain have proportional stiff-
ness matrices ke, as in the geometry-based cgFEM, see Section 2.1, and are treated
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Gap between the integration schemes 

Triangularization of the geometric domain 

Overlapping areas 

(a)

Integration points 

Triangulation with image property fitting 

Geometric boundary 

(b)

Gap between the integration schemes

Overlapping areas

Integration pointsGeometrical domain

Image property fitting

Geometric boundary

Figure 4.4: Representation of the integration procedure adopted on the elements on
the contour of a geometrical domain in FEAVox. (a) Riemann Sum approach; b)
Least-squares fitting approach.

consequently. On the other hand, the external elements completely lie on the image
and their integration follows the procedure described in Section 2. A new class of
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future implants

elements appears when geometrical and bitmap models are combined: those partially
lying on the geometrical domain and containing active voxels.

These are divided in triangular integration sub-domains on the geometric side, as
in the geometry-based cgFEM while, on the side of the image, one of the the bitmap
integration presented in Section 2.2 is applied only to the active pixels, see Figure 4.4.

It is to be noted that, if the Riemann sum or the subdomain decomposition based
integration techniques are used, the intersection between geometry and bitmap is not
null neither their union perfectly covers the original image, see Figure 4.4a, whereas
this does not occurs in the case of least-squares fitting, see Figure 4.4b.

The sudden material change between prosthetic device and biological tissue is de-
tected by the image refinement procedure, hence the mesh is refined in these areas and
the inaccuracy associated to the excessive homogenization of the material properties
is controlled.

4.2.1. Numerical examples

We will now present numerical examples for 2D and 3D medical images.

4.2.1.1. Hip arthoplasty 2D model

Figure 4.1 shows an application of the method to a 2D problem under plane
strain condition. We performed a FE calculation, which simulates the effect of a hip
prosthetic device in a femur.

An X-ray image of a femur was used for this purpose, see Figure 4.5a. It was
cut out in order to delete the hip joint. The NURBs-based 2D contour was used to
define the domain representing a short-stem arthoplasty, see Figure 4.2b. A straight
line was defined at the bottom of the X-ray scan to impose a null displacement
Dirichlet boundary condition. The implant joint was loaded with a parabolic pressure
distribution reaching a maximum value of 10 MPa at the centre of the loaded arc and
decreasing to zero at the edges.

The material properties were taken from references [50] and [51] and are shown in
Table 4.1.
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(a) (b)

Figure 4.5: Hip implant cgFEM model. (a) X-ray of a femur and the same image
with the joint removed; (b) Device geometry definition and boundary conditions.

Material E [GPa] ν Gray level
Titanium 116.000 0.32 −
Bone 14.200 0.30 255

Muscle 0.645 0.43 150

Air 0.000 0.0 0

Table 4.1: Material Properties referred to Figure 4.5.

For the creation of the FE model, the bitmap and the geomety were immersed in an
initial uniform mesh of level 5 and then an h-adaptive refinement was performed by
imposing a value of 0.2 for IeR and of 9 for the maximum refinement level allowed. The
resulting analysis mesh is shown in Figure 4.6a. Note that although the different living
tissues have not been explicitly segmented, the mesh refinement process automatically
identifies the boundaries of the tissues and refine the mesh to properly capture their
geometry.
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future implants

The von Mises stress field induced on the system prosthesis-bone by the load is
shown in Figure 4.6b.

(a) (b)

Figure 4.6: Hip implant cgFEM model. (a) h-adapted mesh; (b) von Mises stress
field at the integration points in MPa.

Considering the limitations of the image, the von Mises stress field obtained is
reasonable. The compression-bending appears in the stress distribution with higher
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4. Implant Simulation

values near the edges of the prosthetic device and of the bone and the transfer of
momentum from the device to the human tissue. The stress concentration at the
neck of the prosthesis was captured.

4.2.1.2. Spinal fusion 2D model

We also present the 2D plane strain simulation of a fixation system used in spine
fusion surgeries, see Figure 4.7.

(a) (b)

Figure 4.7: Spinal fusion example. (a) Spine implant; (b) X-ray scan region used in
the spine impant simulation.

In this case we used the X-ray scan region highlighted in Figure 4.7a. We removed the
intevertebral disc and directly defined the implant on the image. As in the previous
case the pixels with a centre lying inside the implant domain were automatically deac-
tivated. Additional lines were added to apply null displacement Dirichlet conditions
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future implants

(a) (b)

Figure 4.8: Implant fusion modelling stages. (a) Model boundary conditions; (b)
cgFEM mesh.

at the bottom of the model and a constant pressure of 1 MPa on the top, see Figure
4.8a.

Figure 4.9: Von Mises stress field.

The material properties were the same as in the previous case. Figure 4.8b shows
the h-refined mesh and 4.9 the von Mises stress field. The latter shows the typical
bending pattern in the implant and the load transfer from the vertebrae to the rods.
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4.2.1.3. Dental implant 3D model

In this example, a 3D CAD model representing a simplified dental implant is
combined with a jaw cone beam computed tomography (CBCT) scan following the
procedure described in this section.

CBCT is a volumetric imaging technique especially popular in dentistry. By using
conic divergent X-rays, CBCT makes it possible for clinicians to reduce the irradiation
doses received by patients by more than 90% in comparison to standard CT scans.
This is obtained at the cost of a higher number of artefacts and a lower reliability in
the correlation between pxel intensity values and local bone mineral density.

We use the 3D NURBs-based CAD model of a simplified dental implant, see Figure
4.10b and the subregion highlighted in Figure 4.10a of the segmented jaw CBCT scan
used for the simulation in Section 2.4.3.

The CAD model was immersed into the portion of the CBCT scan, the voxels con-
tained in the device volume were deactivated in the corresponding logical sub-matrix
from the segmentation process. The assembly and the corresponding h-adapted FE
mesh are shown in Figure 4.11. Homogeneous Dirichlet Boundary conditions are en-
forced upon all the DOFs of the nodes lying on the green surfaces in Figure 4.11a and
a distributed load with components of -2 MPa in the y and z directions is applied on
the CAD model surface highlighted in red.

The bitmap and the geometry were initially immersed in a uniform mesh of level
4 and then an h-adaptive refinement was performed by imposing IeR ≤ 0.2. The
maximum refinement level allowed was 5.

The same material properties as in the previous problem were used for the CBCT
scan, see Section 2.4.3, except for the prosthesis which was assumed to be made of
titanium and, as a consequence, was assigned a Young’s modulus and a Poisson’s
ratio of 110 GPa and 0.32 respectively. The least-square integration scheme was
used for the CBCT scan. In the elements cut by the CAD model the integration
was performed by decomposition in tetrahedral subdomains on both sides of the
interface, see Figure 4.4b. The subdomains on the interface were integrated by using
the NEFEM-integration techniques as described by [34].

Figure 4.12a shows the von Mises stress distribution of the assembly. In order to
make visible the stress distribution inside the bone, the CBCT scan was cut with the
grey plane shown in Figure 4.11a and only the front of the bitmap is shown. The von
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(a)

(b)

Figure 4.10: Dental implant simulation model components (position is expressed in
mm). (a) Part of the CBCT, see Figure 2.24, used in this simulation; (b) Screw
simplified CAD model.
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(a)

(b)

Figure 4.11: Jaw CBCT scan based model. (a) Segmented jaw with boundary condi-
tions; (b) FEAVox h-adapted mesh.

Mises stress distribution in the prosthetic device is magnified in Figure 4.12b. The
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Figure 4.12: Dental implant von Mises stress field expressed in MPa. (a) Front section
of Figure 4.11a; (b) Prosthetic device detail.

typical load transfer between the implant and the cortical bone at the implant upper
threads and the lower stress state at the interface between the deep trabecular bone
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and the screw tip are visible. The stress map is plotted differently for the CBCT scan
and and the CAD model. In the former the strain values are computed at the centre
of the pixels and the D matrix associated to the pixel is used to compute the stress
in that position. In the latter, in contrast, we use the SPR technique to obtain a
C 0 continuous stress field. For representation purposes only, this is computed at the
vertices of the external faces of the integration tetrahedra, represented as finer facets.
This example shows how suitable cgFEM is for the simulation of osteointegrated
implants in a patient specific framework. The method makes it possible to directly
locate the implant CAD model on the volume of the bitmap model of the mandible
to obtain a conjoined model. On the one hand, cgFEM eliminates the necessity of
further manipulation of the models and, on the other hand, it takes advantage of the
specific strengths of each of them: the detailed spatial distribution and the elastic
properties provided by the CT scans exact geometrical representation of the CAD.

4.3. Pixelation of CAD models

In this section we follow a different procedure to introduce implants in image-based
cgFEM models. Instead of directly combining the image and the geometrical infor-
mation as in the previous section or a CAD model obtained from image segmentation
with the implant one, as in the vast majority of the applications, we introduce the
implant information into the medical image and directly use the image-based version
of cgFEM. This procedure includes a preliminary stage, at which we use the pre and
post-processing commercial software GiD [94], [95], [96] combined with an in-house
Matlab-based preprocessing code. The latter makes it possible to manually locate the
implant in the CT scan, as it is usually done in surgical planning, and provides the
solid body motion parameters which are used by GiD to convert the implant model
into a uniform Cartesian mesh which perfectly fits the CT scan spatial distribution
by using GiD Cartesian meshing tool. The corresponding voxels in the CT scan are
assigned the Hounsfield scale values corresponding to titanium. The resulting volu-
metric image is suitable for image-based cgFEM simulations. Figures 4.13 and 4.14
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(a) (b)

Figure 4.13: Dental implant. (a) CAD model; (b) Voxelised model.
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(a)

(b)

Figure 4.14: Dental implant position. (a) Axial plane; (b) Sagittal plane.
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4.3. Pixelation of CAD models

show the pixelization of a dental implant and the final CT scan containing the implant
in the proper position respectively.

The procedure is obviously less accurate in the geometrical representation of the
prosthetic device, which is pixelized at the same resolution as the CT scan, neverthe-
less we consider it to be precise enough for the application addressed in the following
section.

4.3.1. Application to preoperative assessment of

dental implant stability

In this section, we propose an image-based biomarker for the preoperative assess-
ment of bone quality, which will provide information about whether the area, which
will host the future implant, guarantees the proper stability to the device or not.

The biomarker is based on the assumption that bone elastic behaviour in the area
surrounding the implant has a prominent role in its stability and a strong effect on
its vibrational behaviour [97].

We compute the isolated device natural vibration modes and quantify the sur-
rounding bone quality by analysing the effect of its stiffness on the natural frequen-
cies. We do not include the mass in the model of the bone because the simulation
of the actual vibrational physical behaviour of the implant exceeds the scope of this
work and would probably make it harder by introducing a great amount of new low
frequency modes not related to the implant stability.

The natural frequencies associated to the deformation modes of a metal implant
are expected to be much higher than those of the surrounding bone due to difference
of stiffness, as a consequence the low frequencies would have to be discarded. On the
other hand, we are not interested in simulating the implant-tissue behaviour, but only
to determine a bone quality parameter.

To achieve this goal, we base our method on the evaluation of the implant natural
frequencies alone introducing the contribution of the surrounding biological material
to the system stiffness ignoring its density.

In the following, we use the Riemann sum integration, see Section 2.2 for the
integration of both the element stiffness and the mass matrices ke and me. The
element mass matrix, see Equation 4.1, is written as a function of the FE discretisation
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Device

Modes and natural frequencies

f1 f2 f1 + f f2 + fDevice in bone

Modified modes and frequencies

(a)

Device

Modes and natural frequencies

f1 f2 f1 + f f2 + fDevice in bone

Modified modes and frequencies

(b)

Figure 4.15: Scheme of implant natural frequencies and modes change due to the
surrounding bone. (a) Free device; (b) Implanted device.
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functionsN(ξi) computed at the centres of the voxels, the determinant of the Jacobian
matrix | J(ξi) | of the element and the quadrature constant weights wi and the density
ρ associated to each pixel.

me =

IP∑
i=1

ρ(ξi)N
T (ξi)N(ξi) | J(ξi) | wi

(4.1)

In all the simulations in this section, the value of ρ is 4506 kg/m3 inside the device,
which is assumed to be made of titanium, whereas outside the implant ρ is considered
null.

We follow the well known procedure of writing the unconstrained and unloaded
dynamic problem

Mü + Ku = 0 (4.2)

in the frequency domain

(K− ω2
nM)Ũn = 0 (4.3)

with the assumption of purely harmonic motion u(t) =
∑

n Ũne
iωnt, justified by the

absence of dumping. Since the system is not restrained, the six lowest frequency
modes are the rigid body motion degrees of freedom, and can be discarded.

We applied the method to the dental implant in Figure 4.13, which is located as
shown in Figure 4.14.

Tables 4.2 show the lowest eight natural frequencies apart from the solid body
motion modes, for the device alone or surrounded by bone respectively. The corre-
sponding modes are shown in Figures 4.17 and 4.18.

A general increase in the natural frequencies is apparent. Even though the low
frequency bending modes are easily recognisable, the higher frequencies modes have
a different order or shape.

We want to find modes whose natural frequencies can be used as a biomarkers of
the surrounding bone support capability.
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Mode number Frequency [Hz] Label
7 37865 a
8 38384 b
9 77235 c
10 85459 d
11 87351 e
12 119828 f
13 140642 g
14 142552 h
(a) free device. See figure 4.17

Mode number Frequency [Hz] Label
7 61481 a
8 62494 b
9 111004 c
10 114837 d
11 119744 e
12 127315 f
13 167891 g
14 171070 h

(b) device and surrounding bone. See figure 4.18

Table 4.2: Frequency values of the first eight non-rigid body motion modes of the
dental implant alone (a) and surrounded by bone (b).
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Figure 4.16: Natural frequencies of dental implant versus bone Young’s modulus scale
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.17: Dental implant alone vibration modes of first non rigid body motion
lowest natural frequencies. The corresponding natural frequencies are shown in Table
4.2a.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.18: Dental implant surrounded by bone vibration modes of first non rigid
body motion lowest natural frequencies. The corresponding natural frequencies are
shown in Table 4.2b.
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These modes have to be recognisable, that is undergo a limited shape change when
surrounding bone is introduced in the simulation. At this preliminary stage we focus
on the lowest 8 modes (excluding the 6 rigid body motion). If we only take into
account the most recognisable flexion modes (a) and (b), we notice an increase of
62% for both of them. In order to check the viability of the method, we study the
sensitivity of the implant natural frequencies to the surrounding bone stiffness. To do
so, we repeat the natural frequency analysis of the implanted devices multiplying the
bone Young’s modulus by a scaling coefficient k, and evaluate its effect on the natural
frequencies. Prior, it is necessary to use the Modal Assurance Criterion (MAC), [98],
[99], [100], to check which modes are comparable between two calculations carried out
with different k values. As the modes are ordered from the lowest frequency to the
highest, the use of MAC technique is necessary to track the mode along the k value
change. It can happen that, due to the effect of the surrounding tissue stiffness, the
order of consecutive modes changes.

When the surrounding tissue stiffness increases one of the modes can stop to be
fully recognisable in the set of the new modes taken into account. In this case we just
discard it.

The modes from the seventh to the fourteenth were computed for k values of 0,
0.25, 0.5, 0.75 and 1. Each of the 8 modes for k = 0 was compared with all the other
modes with different k values with the MAC technique. The results are shown in
Figure 4.19 for modes seventh to tenth and in Figure 4.20 for eleventh to fourteenth.
In the following we will refer to each mode by its order in the case of the implant
alone (k = 0).

The shape and order is substantially unchanged for modes seven, eight and twelve.
The order changes for the eleventh and ninth modes between k = 0.25 and k = 0.5

and between k = 0 and k = 0.25 for the fourteen mode. In both cases, the mode
shapes are still easy to track. Instead, the mode is not as clear for modes 9, 10 and 13
in the mode range taken into account and, consequently, these modes are discarded.
Figure 4.16 shows the frequency change corresponding to modes 7, 8, 9, 11, 12 and
14.

The least sensitive one is the axial deformation mode 12, whereas the others
all have some bending and twisting component and show a similar behaviour as the
surrounding tissue stiffness increases. In particular, in the range considered, the mode
which increases its natural frequency the most is the twist mode 9. Nevertheless the
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Figure 4.19: Dental implant natural vibration modes MAC comparison. Modes from
7 to 10

highest relative frequency change can be found for the low frequency bending modes
7 and 8.
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Figure 4.20: Dental implant natural vibration modes MAC comparison. Modes from
11 to 14
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4.3.2. Stability of hip endoprosthesis

The same analysis was carried out on the the hip device model in Figure 4.21.

(a) (b)

Figure 4.21: Hip inplant implant. (a) CAD model; (b) Voxelised model.

Table 4.3 shows the low frequencies for the hip model alone and surrounded by
bone.
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Mode number Frequency [Hz] Label
7 2403 a
8 2675 b
9 5209 c
10 5445 d
11 7261 e
12 8408 f
13 9081 g
14 10618 h
(a) free device. See figure 4.23

Mode number Frequency [Hz] Label
7 3347 a
8 4713 b
9 6354 c
10 7643 d
11 8168 e
12 12077 f
13 12549 g
14 16709 h

(b) device and surrounding bone. See figure 4.24

Table 4.3: Frequency values of the first eight non-rigid body motion modes of the hip
implant alone and surrounded by bone.

As expected all the frequencies increase with the stiffness of the surrounding tissue,
see Figure 4.22.
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Figure 4.22: Natural frequencies of hip implant versus bone Young’s modulus scale
coefficient.

123



4. Implant Simulation

Natural frequencies are listed in table 4.3 for k = 0 and k = 1 respectively, whereas
the corresponding mode shapes are shown in Figures 4.23 and 4.24.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.23: Hip implant alone vibration modes of first non rigid body motion lowest
natural frequencies. The corresponding natural frequencies are shown in Table 4.3a.

The lowest 8 natural frequencies, not associated to rigid body motion modes, are
shown in Table 4.3 and the corresponding modes in Figures 4.23 and 4.24.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.24: Hip prosthesis surrounded by bone vibration modes of first non rigid
body motion lowest natural frequencies. The corresponding natural frequencies are
shown in Table 4.3b.

The Mode Assurance Criterion for the lowest 8 non-rigid body modes of the hip
device in Figures 4.26 and 4.25 shows that, differently from the dental implant, the
modes stay easily recognisable as the surrounding tissue becomes stiffer. In addition,
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with the only exception of modes 9 and 10, which invert their order between k = 0

and k = 0.25, all the other modes considered do not change their order.

Figure 4.25: Hip implant natural vibration modes MAC comparison. Modes from 7
to 10.
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Figure 4.26: Hip implant natural vibration modes MAC comparison. Modes from 11
to 14.

The natural frequencies associated to the pair of the lowest bending modes increase
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by 39% and 76%, respectively. In this femur model and for the considered range, the
most sensitive modes are the 8th and the 12th, which increases by 57%.

The results obtained for hip model are similar to those calculated for the dental
implant. In both cases the modes which show the highest relative change are the low
frequency bending ones, which therefore would be suitable for an experimentation
with clinical data analysis to properly define a bone quality indicator for a given kind
of implant.
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Chapter 5

Closure

The following subsections summarise the main contributions of this Thesis as well as
the research lines opened.

5.1. Summary

In this Thesis we introduce an image-based version of cgFEM for solving linear
elasticity problems on domains defined by 2D and 3D bitmaps and demonstrate its
performance in a variety of cases. The key points of the new method can be summa-
rized as follows:

• The use of Cartesian grids reduces the effort to model objects defined by 2D and
3D images keeping the number of degrees of freedom reasonable at the same time
[101], [102], [103], [104], [105], [106]. An initial uniform grid is superimposed
on the image and an h-adaptive process refines the mesh based on the level of
heterogeneity of the pixels contained in each element. This makes it possible to
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automatically take into account the interfaces, implicitly defined in the image,
which are captured by the refinement process, as well as the information about
the local elastic property provided by each pixel. This has been especially
developed to deal with the structural analysis of heterogeneous solid materials,
especially bone and bone-implant ensembles.

• We present and study the behaviour of different integration schemes based on
direct pixel integration (Decomposition in integration subdomains and Riemann
sum) and fitting to pixel values (Least squares) [107]. The convergence studies
carried out highlight the range of usability of the mesh refinement, limited by
the intrinsic presence of a modelling error due to the discrete nature of images.
This cannot be reduced by h-refinement unlike discretisation error, therefore the
theoretical convergence to the exact solution is guaranteed to a certain extent
but it has a limit. Once the mesh refinement process produces a solution that
reaches this limit, further mesh refinements increase the computational cost
without increasing the result accuracy. From this point of view, voxel-based FE
models are in this situation by default. This effect is analogous to the cases in
which the error due to a poor geometrical description is higher than the error
due to the FE discretisation [108].

The Riemann sum based integration scheme showed to be a cheaper alterna-
tive to the subdomain decomposition scheme, as the integration error, which
increases for finer meshes, starts to be relevant beyond the range of convenient
application of mesh refinement.

Finally the least squares integration strategy is a practical solution to reduce
the computational cost necessary to obtain the element stiffness matrices and
converges to the results of the other two techniques as the element size decreases.

On the basis of the numerical results obtained, we propose to use the least
square or Riemann sum integration strategies and linear elements containing 2
pixels in each direction at least.

• We propose the cgFEM virtual characterisation strategy: an homogenisation
technique based on the use of Cartesian grids [109] to characterise heteroge-
neous materials represented in volumetric images. It was applied to 3D printed
PLA close cell foams and partially validated with experimental results and em-
pirical formulae. The proposed technique also includes an implementation of the
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Window Method in the framework of cgFEM making it possible to reduce the
RVE size required by the homogenisation technique at the cost of an iterative
procedure. The window method is particularly compatible with cgFEM. On the
one hand, this is due to the fact that the window creation is automatic as it
is obtained by construction form the external element layer of the first uniform
mesh, which is the starting point for meshing with cgFEM. On the other hand,
one window element only requires to be integrated at each step of the process,
thank to the fact that, similarly to the internal elements in geometrical cgFEM,
the stiffness matrices of all the window elements are also proportional to each
other.

• A methodology to take into account the anisotropy of the voxels affected by
the Partial Volume Effect in the relation between voxel intensity and elastic
properties. This is specific for models with a high number of interfaces and not
pre-segmented as those used for solid foams characterisation with cgFEM, in
which the elements are not conforming with any geometric boundary.

The definition of the relation between voxel value and elastic properties also
takes advantage of an inexpensive procedure which includes the specimen weigh-
ing and the image histogram processing.

• The proposed procedure produces results which match well with the experi-
mental ones, in contrast to the latter, can provide a complete description of the
anisotropic behaviour of the material in the linear elastic range and, in compar-
ison, are much cheaper as they require a smaller amount of human intervention.

• Two Alternative procedures were proposed to include implants in patient specific
simulations reducing the user intervention [101], [110], [111], [112].

The first one consists in the direct inclusion of both the patient CT scan and
the prosthesis CAD model in the same hierarchical Cartesian grid structure.
The element stiffness matrices are obtained by combining the geometrical and
image-based versions of cgFEM. The elements totally overlapped to the CAD
have proportional stiffness matrices, therefore their calculation is inexpensive.
The elements overlapped to both the CAD and the volumetric image undergo a
mixed integration including both the decomposition in tetrahedra of the geomet-
rical part and the voxel integration. The heterogeneity-based mesh refinement
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makes it possible to conveniently adapt the model reducing the size of the mixed
integration elements.

The second approach consists in the voxelisation of the CAD model by using
commercial software capable of providing Cartesian meshes of geometrical mod-
els, such as GiD. The Cartesian mesh is created in order to be compatible to the
volumetric image and directly included. This second solution is less accurate
than the first one, as it reduces the quality of the implant definition introducing
the same model error affecting the discontinuous volumetric image. Neverthe-
less, it simplifies the process reducing it to a standard image-based cgFEM
calculation. This solution will have a sufficient accuracy in certain kinds of
evaluations such as the implant stability assessment.

• A new indicator for the preoperative assessment of bone quality has been pro-
posed [113]. This is based on the analysis of the natural frequencies of the
device alone and implanted, computed by cgFEM and CT scans. The homolo-
gous modes can be matched by using the well known Mode Assurance Criterion
(MAC). We consider that the influence on the implants natural frequencies due
to the bone characteristics could be used as an indicator to evaluate implant
stability.

5.2. Open research lines

This work has opened up several lines of research on cgFEM technology as follows:

• Development of an error-driven mesh refinement strategy.
Taking advantage of the wide experience in error estimation of the research
group involved in the development of this Thesis, a logical development would
be the implementation of a posteriori error estimators suitable for image-based
problems and the evaluation of their performance. These would make it possible
to introduce better criteria for the mesh refinement, as material heterogeneity
is only one of the possible sources of error. The first choice would be the use of
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Zenkiewicz-Zhu estimators [114], due to their low computational cost and high
effectiveness. There are different possible alternative strategies. For instance,
in contrast to standard FEM problems, in image-based cgFEM, the ZZ error
estimator is expected to behave quite differently depending if the recovered so-
lution is obtained form the strain or the stress field due to the different influence
of the intrinsic modelling error due to the bitmap piece wise continuity. Ad-
ditional restraints [115] could also show unexpected behaviours, in the case of
bitamp-based models. Once a suitable error estimation method is developed, it
will make it possible to apply more sophisticated mesh strategies such as goal
oriented error estimation [116]. The presence of homoscedastic distributions
(i.e. with a constant standard deviation of the error terms of the fitted model)
of bone elastic properties in bi-logarithmic scale for human femur [44] could
also make it possible to optimise the mesh trying to minimise the error in the
obtention of the probability density function (PDF) in the FE results.

• Improvement and validation of the homogenisation technique.
On the one hand, in spite of the promising results obtained, it is necessary to
carry out a high number of additional mechanical tests for the assessment of
the directional values of the Young’s modulus by uniaxial compression, due to
the great dispersion found in the experimental measurements carried out so far
on printed PLA foams. The natural development would be the study of the
effect of the printing direction to evaluate the influence of the hypothesis of
local isotropic elasticity of the basis material. Mechanical tests on solid spec-
imens printed in different direction would help understanding the convenience
of implementing a locally orthotropic material model. As an alternative to the
Partial Volume Correction Function, a method based on the evaluation of the
local gradient of the pixel value field could be used together with a proper or-
thotropic material model. It will be necessary to assess the performance of the
method with additional foam specimens, with different structures, density val-
ues and materials. It would be also beneficial to improve the voxel clustering
for the definition of the density-pixel intensity relation, in the case of µCT scans
of solid foams. For this purpose automatic procedures based, for instance, on
Gaussian mixture models [117], [83] could be used. This would make it possible
to reduce the user intervention in the numerical homogenisation process.
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• Validation of the natural bone quality biomarker.
An extensive experimentation with large sets of preoperative CT-scans would
be necessary to validate and make usable the natural frequency-based bone
quality indicator. The information about the implantable device survival related
to the database should be accessible in order to be able to properly define
the most suitable frequencies to use as biomarkers and their thresholds. The
experimentation would have to take into account the device and anatomical site
specificity as well as the variability due to the volumetric image capture method
and would be a retrospective clinical study on patient data stored by health care
centres.

• Implant-bone contact simulations.
Another development from results obtained in this thesis, is the use of advanced
contact models [118], [119], to simulate the interaction between the a CAD-based
device model and an image-based patient-specific one with independent cgFEM
meshes. This is a research line currently in progress in the framework of another
thesis in the same research group, which will make it possible to study the
implant behaviour in the very first postoperative stages, when osteointegration
has not occurred yet. In some cases, as for immediate-load dental device, this
information is particularly valuable.

• Bone remodelling.
The image-based version of cgFEM can be a good starting point for the imple-
mentation of bone remodelling procedures capable of forecasting the change in
bone density over time due to the local stress state. Such models can be used for
the optimisation of implants to avoid their long term failure due, for instance,
to bone resorption.
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