
Moving patterns
recognition &
Location for

Robotics

Final thesis report

Author:

Carlos Romero Bretó

Directors:

Dr. Ángel Valera Fernández

Dr. Antonio José Sánchez Salmerón

1

Section Page

Introduction 1 5

Aims 1.1 5

Possible scenario 1.2 5

Behaviour & expected results 1.2.1 6

Justification 1.3 6

Report organization 1.4 6

Theoretical approach 2 8

Image definition 2.1 8

Image dissection 2.1.1 8

Colour models 2.1.2 9

Image types 2.1.3 10

Colour images 2.1.3.1 10

Grey-scale images 2.1.3.2 10

Cameras 2.2 10

Lenses 2.2.1 11

Sensors 2.2.2 11

Diaphragms 2.2.3 12

Some example cameras 2.2.4 12

Image processing 2.3 13

Some commonly used techniques 2.3.1 13

Preprocessing 2.3.2 14

Robots 2.4 16

What a robot is 2.4.1 16

Brief history of robotics 2.4.2 17

Robot components 2.4.3 17

Classification of robots 2.4.4 18

Types of robot controllers 2.4.5 21

Patterns 2.5 22

Defining patterns 2.5.1 22

Shooting conditions 2.5.2 22

Fine-tuning patterns 2.5.3 24

2

Features extraction 2.6 25

Example 2.6.1 25

Classification of techniques 2.6.2 25

Tools & Libraries 2.7 28

MS Visual Studio 2008 2.7.1 28

OpenCV library 2.7.2 30

Webcam XP 2.7.3 30

Logitech Pro 9000 drivers 2.7.5 30

HTTP fetching curl library 2.7.4 31

Code functions tree 3 32

Practical approach 4 33

Acquiring images 4.1 33

Accessing the camera 4.1.1 33

Preparing images storage 4.1.2 34

Accesing stored images 4.1.3 34

Displaying images 4.2 35

Operation modes 4.3 35

Processing loop 4.4 36

Image acquisition 4.4.1 38

Preprocessment 4.4.2 38

Information extraction 4.4.3 39

Processing diagram 4.4.4 44

Displaying obtained information 4.4.5 46

Application overview 5 48

General tab 5.1 50

Button "Fondo" 5.2 50

Button "Foto!" 5.3 51

Key bindings 53

Button "Video!" 5.4 53

Tabs related to information output 5.5 54

Ellipses tab 5.5.1 54

3

Patterns tab 5.5.2 55

Conclussions 6 56

Future work 6.1 56

Bibliography 7 57

Annex A – Set of patterns A 58

Annex B – Usage example B 64

Annex C – UML C 66

4

Introduction

This work, developed as a final degree project at Universidad Politècnica de València, feeds off the fields of
pattern recognition and robotics, applying the former to fine-tune control the behaviour of the latter. Robot
control algoritms, even designed as they indeed are to be accurate, are subject to noise, random interference
from the environment, etc. which may cause them to prove themselves not quite so. Some of these problems or
deviations from what should have been an ideal controller response, in particular when it comes to know
where a certain robot is related to the world, can be detected and therefore rectified easily with a camera and
software analyzing the scenario. This camera should track its movements and, somehow, be able to tell one
robot from the other (for instance, by means of marks present in them).

One way to achieve this is by means of patterns attached to the robots themselves. Since we know the
configuration of our patterns (which can vary greatly in size, kind of elements composing them, etc.) we can
analyze the captured images with pattern recognition techniques and find out this and other information.

Aims
The project aims at providing a location and identification solution for a set of moving robots with
their movements recorded and simultaneously processed. Gathered information could be dealt with in
several ways:

• Displayed in an application.
The process could be either set to continuously get and process information in real time, and
thus showing all or part of the data gathered as it changes over time, or in a more detailed and
paused fashion, capturing just some frames and showing all of their details.

• Stored for further anylisis.
For developing routes tracing for mobile robots. For instance, the desired and resulting routes
could be displayed graphically, making them easy to compare to one another.

• Be fed to the robots controlling algorithm.
Of course, the algorithm itself can improve its behaviour by using the data provided as its
input, effectively becoming feedback on how well it has been faring so far.

• etc.

Possible scenario

A possible scenario is depicted in figure 1:

Robots are assumed to move freely on the area marked as ground, meaning they can move anywhere in

5

Figure 1 – Depiction of possible scenario

the area the camera captures. It is necessary to impose some restrictions in its topology, for instance, a
gradually descending slope or higher/lower areas. In particular, patterns must remain within sight and
in an affordable angle, so no critical information is missed (if that happens, at best the information
may stop its flow, at worst it may turn out to be wrong). As far as this project is concerned, the ground
is perfectly horizontal and fairly well illuminated. Also, we will discuss why a zenital camera location
(that is, its vector parallel to the ground normal vector) is better, and how those with an angle are
bestleft avoided, mainly due to perspective distortion. Here, robots are represented just by cubes. Each
one of them carries a pattern on top of it, so its normal is parallel to the ground's as well.

Regarding how the robots actually move, we have got several possibilities at our disposal. Among the
ones we will later on offer a brief explanation of, we will choose a few to reflect how results vary
according to the movements patterns typically found in each one of them.

Behaviour and expected results

Output should follow the structure shown in table 1, the 3 variables corresponding to the 3
degrees of freedom present in a 2D scene. Please note this table will be repeated for each
detected artifact, so we must ensure as well a way to find out which of them the corresponding
data is associated to (that is, an ID for each set of results).

Orientation Position

α1 x1 , y1

α2 x2 , y2

α3 x3 , y3

.

Table 1 : Output

Information is gathered and processed as fast as it is possible. The processing time in which
each frame is taken care of should differ marginally from one to the following, so a frequency
can be computed with frames/second units or FPS. The

Justification
Nowadays a great amount of research is done involving computer vision. It is a big field of study, where
many approaches to one same problem are possible, each one with advantageous characteristics and
some other not quite so ones. Often, these projects cannot rely just on themselves to fully check
whether they are doing things the right way. An additional work, focused on analyzing their outputs
and offering a second opinion, is desirable to get more accurate or fast results.

This project attempts to be of help in those cases where other projects are suitable to benefit from it,
like robot coordination. In this sense, it can be understood like a support tool which checks whether
the behaviour of other systems remains within acceptable ranges.

Report organization
The report has been organized in four main groups plus two annexes:

• A theoretical approach, covering aspects and options available to be taken in consideration

6

when dealing with the problem, like the necessary techniques to apply, the technology
available, etc.

• A practical approach, where the algorithm is actually implemented. Means to test it and watch
it work are developed here as well. Explanation of the code, both of the computations and the
testing environment, is provided in detail.

• An interface overview for the accompanying application. This application helps in visualizing
the problem and how a solution is reached; usage samples are provided as well in Annex B.

• A compilation of the software tools required, and how they must be set up.

• Annex A is a compilation of the patterns used, in real size.

• Annex B deals with an application sample usage to demonstrate how the intended recognition
can be carried out once every necessary component has been installed and set up.

• Annex C depicts the UML schema for the developed application.

7

Theoretical approach

As has been briefly stated the amount of fields of study involved is quite varied. It is an important task
to coordinate all of them in the proper way so the task gets carried out while its results prove accurate
and close to what really is going on. Additionally, each one of them must be properly set to work in an
efficient way so the highest FPS possible is achieved.

We will discuss the different options which this work found along the way. Among several possibilities
for a given circumstance it will be stated which was decided for and applied, or which just could not be
further contemplated due to some impossibility in their usage. Some of them, particularly those
related to feature extraction, were partially implemented and subsequentially abandoned due to being
of lower quality of some others. The best example of this is considering the image as either a set of
blobs, which can be connected with 4- or 8-connectivity, or as a set of edges which can be
approximated to a finite number of ellipses.

Some background information is provided as well on several aspects, offering an environment onto
which set this work and clearly see its relationships with each discipline. Available technology (like the
different types of cameras, light conditions, etc.) is described, its properties explained and finally
discussed about on whether they are desirable or not. Even if not extremely crucial, the basics of robot
control are shown as well – as long as the required information is present within each frame, it does not
matter much the way it moved from point A to point B.

Last but not least it is necessary to establish a formal algorithm to be followed then finally obtaining
the output values. Thought is given to how it manages its data structures and how it handles the
available resources.

Image definition

The way captured images are prepared and analyzed is a cornerstone in the recognition plus location
process, or simply location. The factors contributing to a good handling are diverse, like aproppriate
settings for the camera, proper preparation for the data gathering to be carried out next, and correct
interpretation when it comes to features extraction.

Image dissection
An image will be represented by a grid
of pixels or pictorial elements,
following a box-like pattern and area
assumed not to be null. Each one of
them is identified by a 2-D coordinate
(xi, yi), which determines its relative
position to some origin. This is called
an array and within each of these cells
one or several values are stored,
depending on the type of image it is
representing. These bidimensional
arrays are bound by two values, the
width and height of the image, and so
a valid pixel for a given image is that
the coordinates of which are within
the range

([0, width - 1] , [0, height – 1])

 for X and Y respectively.

8

Figure 2 - Image pixels

Pixel connectivity
Furthermore, connections among these pixels can be established. For instance, the
neighbours of a given one are defined as those in touch with it in 4 or 8 directions
(commonly called 4- and 8-connectivity):

8-connectivity includes, as figure 3 shows, those pixels only in touch via the corners of
the pixel.

Colour models
A colour model defines a meaning for each of the values stores in the pixels. Different values in
different colour spaces can provide the same resulting image, and conversions among them are
possible via different formulas. The de facto standard for computers is RGB, while YUV being
closer to that of humans and more compact is more commonly found in analogial or digital TV
equipment; for instance, it is used in the PAL and NTSC broadcast standards.

Y'UV
Its term encompass one for luminance and 2 for crominance; the separate terms bounds
are as follows:

• Y' : [0.0 , 1.0]
• U : [-0.436 , 0.436]
• V : [-0.615 , 0.615]

Y'UV has as a property greater capabilities of hiding flaws in the image due to errors in
transmission or compression. Even if initially was considered as an option for our
images it was later declined due to ease of compatibility issues with other parts of the
project.

RGB
3 values are stored for each pixel, one for each component in the RGB colour mode,
corresponding respectively to the red, green and blue components in the final colour.
Normalized bounds for all three components are:

[0.0 , 1.0]

There may exist an additional one for the alpha-channel, usually used in transparencies
and of no relevance for our purposes.

Conversion between Y'UV and RGB
As can be seen in figure 4 conversion between the two colour models is pretty
straightforward with a conversion matrix:

9

Figure 3 - Types of connectivity

Given that it is widely accepted and that OpenCV is particularly focused towards it, the RGB
colour model will be assumed in this project. Both colour and gray-scale images use this
system, even though in the gray-scaled ones case its three components are summarized as their
mean into one single value, corresponding to the pixel intensity.

Image types
Usually cameras capture colour images, which are great for human vision. Grey-scaled are just
quite like so; however, their representation is simpler as less information is required: to convert
from a colour image to a gray-scaled one, one just must obtain the mean of the component
values and stick with it. Also, several techniques are more easily applied on images the pixels of
which are defines by just a single value.

Colour images
These images will be those initally captured and will serve as the starting point for the
rest to come. They also provide an excellent background on which to represent data we
consider interesting, as they show exactly what the cameras record and the information
can be overlapped on it to produce user-friendly output.

Gray-scale images
Grey-scaled images can directly be obtained from a colour one by means of this formula,
applied on a pixel-per-pixel basis:

Gx,y = (Rx,y + Gx,y + Bx,y) / 3

The obtained values represent from now on how close the pixel intensity is to complete
black or complete white, in an ascending scale. Given we are dealing with normalized
values, the intensity level will remain within [0.0 , 1.0] as well.

Cameras

Cameras represent means by which the world's representations can be captured and stored. The term
camera comes frome the camera obscura latin term meaning "dark chamber". Cameras are the source
of the captured images, capturing the world and projecting it onto a suitable sensor, i.e., a device that
records and stores images.

10

Figure 4 - Y'UV to RGB and vice versa conversion matrix

Figure 5 - Camera schema

The first camera is known as pinhole camera and merely consists of an enclosed volume with a pinhole
(which would later become a lens) through which light is admitted, forming an image of external
objects on some surface. These images can be still or a moving set of them, forming a video for
instance. An schematic view of this can be seen in figure 5, where the surface images are projected on
in this case is some modern sensor.

When it comes to transferring the data from the sensor to the computer, the type of cameras comes
into play. For USB cameras it is enough to copy the data to a local buffer and use it from that point. For
web cameras it is often needed to fetch the image via HTTP, accessible in some simple server the
camera itself provides.

Their main components of a camera are the lens, the sensor and the diaphragm; all of them modify
how the resulting images are acquired. A brief overview of them follows, along its most important
properties. Also, two cameras which were used during development are shown as examples.

Lenses
Lenses typically found in cameras are positive or convergent or convex, meaning their focal
distance is positive as well. Focal distance is defined as the length of the optical centre of the
lense and the point in which the incoming, parallel light beams become focused. In analogy to
the human eye, the lense would be the pupil.

Sensors
Image sensors are in charge of converting an optical image into an electronic signal by reacting
to the amount and frequency of the light it receives. Most popular sensors are formed up by
either a charge-coupled device (CCD, which is an analogical device) or a complementary metal-
oxide-semiconductor (CMOS, which requires some additional circuitry). Analogous to a human
eye, a sensor would correspond to the nerve endings present in the back of it.

11

Figure 6 - Focal distance

Figure 7 - CCD and CMOS camera sensors

Diaphragms
A diaphragm is a thin opaque structure with an opening at its centre; diaphragms stop the
passage of light except for that passing through this aperture. Again, in the human eye the
diaphragm tasks are performed by the iris, limitating the amount of light reaching inside
through the pupil. It is worth noting that the diaphragm must be placed in the light path of the
lens, and the center of the aperture must coincide with its optical axis as well. The aperture
levels are standardized with fixed values in the form f X, where some examples for X are shown
in figure 7.

Some example of cameras
The two cameras described here are very briefly summarized, with their distinctive features
highlighted. Much more information could be extracted from it, however, most of it is
irrelevant for the project. For instance, shutter time (the shutter would be the "eyelid" of the
camera and controls exposition time) can be relatively low (meaning new images are available
at a higher frequency) but, since the processing overhead is large by itself, it means most of
them will be wasted while we deal with the current one. Put in short, our goal regarding this
will be to process each image as fast as possible and skip to the first available after that has been
done.

USB cameras – Logitech Pro9000
This camera is depicted in figure 8. Some important specifications provided by the
manufacturer are in table 2. During development this camera was positioned with the
lens center parallel to the ground's normal (that is, facing exactly down) and therefore
perspective deformations were kept to a minimum. As we will see, this offers many
advantages like smaller sizes for patterns and their contents more easily segmentated.

Focal length 2.7 mm

Image Sensor 1/2'' CMOS

Diaphragm aperture f 1.8

Resolution 640x480 to 1600x1200

12

Figure 7 - Different apertures for a diaphragm

Figure 8 - Logitech Pro9000 camera

Table 2 - Pro 9000 characteristics

Network cameras – AXIS 212 PTZ
Again, the important facts are gathered in table 3. This camera is capable of panning,
tilting and zooming; however, changes in any of those during capture would mean
different or otherwise changed views of the scene, making it an unsuitable option
(specially since we will need a background image according to which the processing of
the rest of captured images will be carried out). During development this camera had a
great inclination angle (and was positioned at a greater distance, with only lower
resolutions available) making it a bad choice for image acquisition. However, for some
time it was the only one available so it finally was included, serving as an example on
how images are fetched from a web camera.

Focal length 3.7 mm

Image Sensor CMOS

Diaphragm aperture f 2.0

Resolution 160x90 to 640x480

Table 3 - AXIS 212 PTZ characteristics

Image processing

Image processing can be applied both to a photograph or a video frame and involves images as input,
such as the previously described, and another image, or perhaps a set of features extracted, etc. as
output. Most techniques treat the image as a two-dimensional signal (with several or just one
components) and apply standard signal-processing techniques to them.

Some common techniques
The following are some of the more widely used ways to transform an image. We offer a
selection of those which were considered to be included in the final project, and is by no means
a complete list.

13

Figure 9 - AXIS 212 PTZ camera

Geometry transformation
These encompass those of Euclidean nature, like enlargement, reduction and rotation.
They produce images like the original except their geometry has varied: it may have
been stretched in a certain direction, or rotated α degrees. Enlargement is of particular
interest, it would allow a certain difference between two consecutive pixel values to be
distributed throughout a larger number of them, therefore making it simpler to trace a
dividing line between those lying "closer" to one value or the other.

Images difference
The main purpose of this technique is to detect changes between two images,
considering one of them as the background and the other as the one we should detect
objects in. Some requirements exist for this to work, namely, aligned, equally-sized
images and pixel values lying within the same range, so the comparison makes sense.
This background substraction can be carried out either by directly substracting the
values and clamping the results to the previously set bounds, or by dividing such values
and therefore obtaining a ratio.

Radial distortion correction
Radial distortion, also known as barrel distortion, is
an effect caused by the camera lens. Modern ones are
relatively free of such geometric distortion; however,
a small amount always remains. It is most visible
when taking pictures of structures having straight
lines which then appear curved up to a certain degree
determined by the distance from the centre in a
symmetrical fashion – hence the name. A
polynomial transformation is enough to correct this.
However, we will not be correcting this parameter
due to the shape of the patterns we will adopt, which
we shall discuss later in this document to be sort of
oblivious to it.

Preprocessing
The stage of preprocessing starts as soon as the image to be analyzed is captured, and aims at
transforming it in such a way other algorithms, like pattern recognition ones, can be easily
applied. Preprocessing is a standard step in image processing and crucial when it comes to
properly analyze the information contained in them, either by highlighting the aspects we are
interested in or hiding those in which we are not, as both tend to interweave. We will assume
the input of this step to be are gray-scale images, acquired either by converting the colour ones
into them or simply setting the camera to capture like so for us.

Thresholding
Thresholding is the simplest method of
segmentation, and can be used to create
binary images. It feeds from a gray-scale
image and has each of its of its pixels
evaluated as lower or higher than a certain
threshold and labeled, respectively,
"background" or "object" pixels. This is
known as threshold above; the opposite,
considering "background" pixels those
with higher value than the threshold and
vice versa, is known as threshold below.

14

Figure 10 - Barrel distortion

Figure 11 - Thresholding function

Once these labels have been set a binary or monochrome image can be created by
assigning the maximum value to "object" pixels and the minimum to "background"
pixels, effectively making it a black and white image.
Additionally, thresholds may be multiple (choosing for instance those pixels with their
values ranging between the two of them) and have varying values according to which
region of the image they affect (also known as adaptive thresholding). The effect of a
single-value thresholding can ben seen in figure 12.

Thresholding value selection
The most important aspect to take into account when using thresholding is the value
which will be used to distinguish between "background" and "object" pixels. It can be
manually set, or a thresholding algorithm may compute a value automatically based on
the results obtained for a certain initial value (this is known as automatic thresholding).
Some simple ways to determine this number are, for example, taking the mean of all
pixels or choosing that corresponding to the biggest valley in the image histogram
(though, regarding the latter, it cannot be assured the histogram will possess clearly
defined valleys).

For our purposes a single value, non-adaptive threshold will be used, as our
experimenting conditions will tend to be foreseeable .

15

Figure 12 - Thresholding

Figure 13 - Figuring out a good threshold value

Light correction
The area the camera will capture will most probably be subject to gradual changes in
illumination across its surface, be it because, for instance, the image is lighter on one of
its sides because of a closer light source. Previously to any of the patterns to be present
in the scene, light can be captured easily by taking a grey-scale picture (as its values
merely represent intensity) to be used as "what the empty scene looks like". It can later
on be used to alter the values in subsequent captures in order to minimize the effect of
light.
Background image effect on the result
A per-pixel ratio is computed from the background image pixel values against its mean
illumination.

Ratiox,y = BGroundx,y / BGroundmean

The higher the value of this ratio the further the currently examined pixel should lie
from the mean, probably due to irregular light patterns, in the subsequent captured
images. This can be used to correct them, adjusting up and down the illumination in
accordance to what the background suggests.

Img' x,y = Imgx,y * Ratiox,y

Robots

A robot is an electro-mechanical system programmed to perform a certain task, taking decisions on
how to achieve it by reading its sensors' input. It could be said, by observing it, to have a purpose of its
own, particularly if they are able to exhibit an intelligent behaviour for instance mimicking that of
humans or other animals. Robots are mainly divided into mobile and static according to their
capabilities or purpose of moving around as they proceed with their assigned tasks, although many
other features exist: whether they possess a moving arm, intended for industrial usage or otherwise
home-related jobs, etc.

Robotics is a broad term dealing with the design, construction, operation, etc. of robots.

What a robot is
There is not a rule of thumb to tell what actions are robot-like and which are not. The general
definition of a robot expects from it things like moving, working a mechanical arm and sensing
its surroundings while carrying out a task by means of thought-out actions. In this project
robots are merely observed and are used, along with the patterns they carry, as a source of
coordinates and orientation angles to be estimated. Once that is accomplished, feedback is
provided for instance on whether the control algorithm is performing OK. Naturally, mobile
robots are the best option available since they are able to actually move and drag their patterns
around with them. Static robots could be used as well, attaching the pattern to its arm and
tracking the location of it instead of the main robot body.

Special attention should be paid in the case of say an arm configuration, for the elevated
amount of degrees of freedom may cause the pattern to become hidden. Degrees of freedom are
the set of independent displacements and rotations that specify the current location (position
plus orientation) of a body or system. For robots which execute tasks with a mechanical arm in
the open kinematic chain, consisting of rigid links connected at joints, each joint may provide
an additional degree of freedom. One of these systems is said to be redundant if the number of
controllable degrees is greater than the actual amount of them – for instance, the human arm
operates in a 6-degrees of freedom fashion (3 for position and 3 for orientation) while
possessing the ability to operate with 7 (3 in the shoulder, 1 in the elbow and 3 more in the

16

wrist).

Brief history of robotics
Even though there have been attempts at designing and building robots for hundreds of years,
the first fully automated robot only appeared in the second half of the 20th century. However, it
took a short time to become widely-known and the concept spread fairly quickly. For instance,
the term robot was first used in printed form by Czech writer Karel Čapek in his play Rossum's
Universal Robots, in 1921, while the term robotics was coined in 1941 by Isaac Asimov in a
short story called Liar! A brief timeline of experiences with robots can be found in table 4.

Year Significance

1st century Descriptions of over 100 machines and automata utilizing
pneumatics, like a wind organ.

1206 Programmable automaton band.

1738 Mechanical duck able to eat, flap its wings, excrete...

1961 First installed palletizing robot.

1975 Programmable universal manipulation arm.

2009 Largest, strongest industrial robot with six axes is built.

Table 4 - Important historical facts for robotics

Robot components
The list of important components varies according to the configuration of the robot. However,
some of them are likely to appear in every configuration.

Power source
Currently the most commonly found option is batteries, with compressed gases or
liquids as a possible alternative.

Actuators
Actuators convert stored energy into movement. The classical actuator is the electric
motor; research on pneumatic muscles (contracting when air is forced inside it) and
electroactive polymers (slight contraction upon electricity running through it) has been
carried out however.

Sensors

17

Figure 14 - Lego NXT motor

Sensors may offer an estimation of a physical variable important for the robot's
behaviour for some reason. The nature of this variable can vary greatly – from
temperature or contact/non-contact to present electromagnetic radiation in the form of
visible or infrared light, and coded as an image in some format, or ultrasounds.

Manipulators
Robots need to interact with objects in order to affect the real world. Objects can be
picked, assembled, destroyed... via manipulators like mechanical grippers, consisting of
at least two fingers for picking and letting go, or vacuum grippers (provided the surface
is smooth enough to allow suction).

Classification of robots
Whether a robot moves in space or not is a distinctive enough feature to classify them as mobile
or stationary robots. In this work our attention will be focused on the mobiles ones, as they will
provide the real challenge in tracking the patterns along their path, without dwelling much in
how they achieve this. A brief, broader discussion on this is nevertheless necessary.

The three more obvious ways to classify a mobile robot are:

According to their intended use
First characteristic to establish a separation between the different types of robots is the
purpose they are expected to achieve. In that way, we can talk about industrial robots,
which are expected to be productive at some certain repetitive task, or mobile robots
which are of a more research-inclined nature.
Industrial robots
An industrial robot is defined as an automatically
controlled, reprogrammable, multipurpose
manipulator with three or more axes designed for a
variety of industrial tasks like welding, painting,
assembling, palletizing, etc.

The most commonly used are:

• Articulated robots.
• SCARA robots.
• Cartesian coordinate robots.

• Mobile robots

18

Figure 16 - KUKA KR 210-
2 industrial robot

Figure 15 - Lego NXT distance sensor

A mobile robot is an automatic machine capable of moving in a given environment,
therefore not fixed to one physical location. This kind of robots are our main interest in
this thesis, as they provide movement to the patterns in order to check the correct
working of their tracking. Most of the experimentation was carried out using Lego NXT
robots, which allow many possible configurations and sensors.

According to the environment they move in
This in an important factor when it comes to robot design, as different environments
will require different means of locomotion. The most popular classification is:
Land-based
The most common to be found, they are usually wheeled but also include legged robots
(with two legs mimicking humans and resembling animals or insects with more of
them). The robots classified under this category are of interest to us.
Air-based
They are known are UAVs (unmanned aerial vehicles) and include planes or helicopters.
They are characteristic by the considerable difficulty in flight control. Also, given their
usually fast speed, applying our project to track them would prove a rather limited
option as it deals with static cameras.

Water-based
Most of the work done in the area has had a commercial focus, like pool-cleaner robots.
They are usually known as AUVs (Automated Underwater Vehicles). Should these kind
of robots interact with our research, it would be needed of them to remain in a roofed
area (or keep a fixed camera above them by some other means) and not to go
underwater (as the pattern would no longer be visible).

According to the employed movement device
The choice of means of movement will dictate where the robot may actually move.

19

Figure 18 - Parrot Air Drone

Figure 17 - Lego NXT robot configuration

Given the nature of the work we are dealing with we will limit ourselves to a
classification within the wheeled robots. Far more options exist, like robots with 5 or
more wheels or a car-like steering approach, though they are not that common in
robotics and were not further considered for our purposes.

1 point of contact robots
These are based on the inverted pendulum
physics, where the point of contact can be
for instance a wheel or even a ball.
Gyroscopes are used to detect the inclination
and an appropriated motor response is
calculated many times per second, therefore
keeping the main mass of the robot above
the pivoting point. One of these was used in
the tests carried out during development,
consisting of a ball at the base of the robot
which is made spin by two motor-controlled
wheels in touch with its surface.
2-wheeled robots
Also called dycicles they are rather hard to balance
as they need to keep moving not to fall. The trick
consists in keeping the base of the robot under its
centre of gravity. A good example is the Segway
personal transporter, which resembles the model
depicted in figure 20 with an additional vertical
handle. A person can climb on its base and, by
means of inclining this handle forward or backward
with their weight, they can tell the robot to move in
the appropriate direction while keeping balance.
3-wheeled robots
This kind of robots are among the most estable provided they move on some reasonably
smooth surface. There are two options regarding how the movement is controlled. In
figure 21 a differentially steered robot schema is shown: rotation during movement is
afforded by varying the relative rate of rotation of both the wheels attached to motors,
while the free turning wheel is just used to keep balance. Another possibility, called
powered steering, keeps both motors at equal rates of rotation and adds a third motor
attached to the steering wheel to help in rotation along the ground's normal vector. For
our purposes we will stick to the differentially steered approach, as it is simpler and most
robots available follow it.

4-wheeled robots

20

Figure 20 - 2-wheeled robot

Figure 19 - Inverted pendulum

Figure 21 - Differentially steered robot

One way to achieve this is take the differentially steered approach and add a second free
turning wheel for extra balance. On the other hand, four total motors could be
attached, one per wheel, and be fed with the same impulses if they are on the same side.
As can be guessed the main difficulty in this is keeping each pair of wheels turning at
the same pace.

Types of robot controllers
Robot controllers are a particular case of system controllers where the variables controlled
reflect the actions and current state of the robot. A very straightforward way to put them to use
lies in motor control, feeding aproppriate responses to it. Merely as an introduction we will
offer a brief description of the main types of controls to be found – mobile robots in general
will definitely need a closed-loop controller because feedback is crucial in their behaviour.

Open-loop controller
An open-loop controller obtains its output by just processing in some way its inputs,
meaning the system will not pay attention the process' feedback to check on how it
actually is faring. This model is adequate for well defined, simple tasks.

Closed-loop controller
On the contrary, a closed-loop controller does take into account the output of the
system in its calculations, measuring it by a sensor and comparing it to the reference or
setpoint value.

The way this computed deviation from the desired result, or error, affects the behaviour
of the controller gives way to 3 possible actions based on current and/or previous
values.

Proportional action
The computed action to be fed to the system is only dependent on the current error. On
its own it may cause sluggish performance and oscillations in the output signal. In some
delicate equipment this can cause breakdown.
Derivative action
Derivative actions deal with the rate of change of the error signal – not only it is
important to know how far we are from the desired value but also how fast we are
approaching it.

21

Figure 22 - Open-loop controller

Figure 23 - Closed-loop controller

Integral action
This actions gives a greater importante to relatively long lasting, constant error values in
an attempt to reduce them to zero.

Patterns

With a general idea in mind regarding what will be going on it is necessary to pay attention to how
patterns will be defined along with the conditions the camera will be capturing frames in. These two
considerations will remain closely tied together and, and often, changes in one of them will affect the
other and vice versa.

We have got some freedom during pattern design; after all, it is up to us to determine how they shall be
recognized and located. In the same fashion, the cameras can be adjusted to best fit the conditions we
experiment in: all tests were carried out in a lab room where light conditions, interferences from non-
project related sources and so on were kind of avoidable. This was nonetheless a recurring area to think
on since some of the changes and additions adopted during development (like an inclination in the
camera angle or the quality of the camera itself) greatly modified the restrictions imposed on patterns.

Defining patterns
A good pattern should fulfill the following requirements:

• First and foremost it must contain the information we will look for when examining it,
and just that. This means its position and the direction it is facing should be inferable
from its contents. In other words, redundant information should be kept to a minimum
while keeping explicit.

• It should be possible with fairly ease to, given one of the components of the pattern
design, be able to determine which other components belong to the same group. This
could be understood as unity and compactness.

• Patterns should be easily distinguishable one from each other, even when packed
together in a small area. In order to determine which of the detected artifacts in the
image belong to a certain pattern, relative position among them should be a preferred
guideline than, say, distances. A good way to express this is isolation among patterns.

Let's see how this reflects on the design decissions:

Content
As we know, most important features to extract from the patterns are position (or a
centre), an angle and an identification. A good way to make the representation more
compact is to pack two or more of the desired attributes into one, so with just one
feature several bits of information can be obtained.

To see how this applies to our case, let's consider
concentric circles (other types of figures were
considered, like triangles for instance, but none
proved reliable enough to pack position and ID
into them like circles). By considering a centre
shared by several circles we can not only mark that
center as the central point of the pattern, and thus
obtain the position, but also to count them up an
take this number as an identifier for the global
structure.

22

Figure 24 - Concentric
circles can be used for

location and identification
tasks

The immediately arising question is, how many of these concentric circles are necessary
in order to consider grouping them into a detected pattern? Two of them proved to be
enough as long as some rules to avoid randomly detected circles which happened to
share their centre fooling us into believing a real pattern is present.

Next and last aspect to consider is the angle the pattern is rotated. Inherent to the circle
is its radius, which can be taken as an arrow pointing from the centre of the pattern to
the faced direction.

All things considered, the final appearance of a
pattern is depicted in figure 25. The basic pattern is
conformed by a middle dot and an outer circle, and
the number of additional circles between them will
identify the pattern: no inner ellipses would mean
pattern #0 and five ellipses would correspond to
pattern #5, for instance. A radius is added as well,
without actually touching the circles.

Size
A reasonable size is important for two reasons: first, if it is too small the camera may be
unable to properly detect the features in it, and second, if it is too big robots may get cut
short on area available for movement.

Finding out an appropriate size was a rather empirical process. The resolution and
location of the cameras played prominent roles, as both affected directly the minimum
required size. As we will discuss shortly, this could mark the difference between using a
pattern with a 60cms long diameter and one with 25cms.

Number of paterns
The maximum number of detectable patterns is a fairly arbitrary value which,
nonetheless, should be established prior to execution as we are likely to know how many
robots will come into play. For our work a total of 6 was taken, this value also is a good
balance between demonstration purposes and the room available within the pattern, as
a higher number of patterns means more tightly-packed lines.

Shooting conditions
Under shooting conditions we encompass the variables affecting the camera while it shoots. We
shall focus primarily in the distance to the objects of interest, the resolution it takes pictures at
and its relative position.

Distance and camera location
The Logitech USB camera was placed, as we mentioned earlier, with its shooting
direction parallel to the ground's normal. This caused the circles in the patterns not to
appear distorted and eased the tasks of recognition. On the other hand, the AXIS web
camera aimed at the scene at approximately 45º which for one caused perspective
distortion and also meant a greater shooting distance.

No data was gathered as to which impact the actual shooting distance had on the result,
as the cameras were not moved during development, but presumably the greater it is
the more resolution will be needed and the greater the impact of its inclination, if any.
A distance of about 3 metres was estimated for the straight-down looking one
(Logitech) and 5-6 for the perspective one (AXIS).

23

Figure 25 - Pattern #1

Resolution
3 resolutions were employed during tests. For one side we are interested in keeping it as
small as possible, given that lower resolutions involve less computational cost. However,
they offer a lesser degree of detail as well. Out of 800x600, 960x720 and 1024x764 the
second one proved to be more balanced (and the greatest achievable in the AXIS camera
due to its limitations)

Some conclusions
It is easy to conclude best results were obtained with the Logitech camera. Not only the
size of patterns reduced drastically, but it also was way better located and of
significantly better manufacture. Just as a reference, with this camera an 800x600
resolution usually missed about half the patterns in Annex A, while with 960x720
managed to get them all right. Moreover, data is transferred via USB which is definitely
faster than accessing a web server and retrieving an image object with an HTTP request.

Fine-tuning patterns
This section will deal with some final thoughts on proper pattern design. The support for the
content should ideally be pure white, while the contours should be black. Also, matt is
preferable to shiny as the latter may confuse the algorithms due to bright spots being taken for
white space (that is, the reflection of light on a shiny black surface may appear white in a
picture of the scene).

Enclosing patterns
It has been stated that the radius
present in the patterns does not
get in touch with the concentric
circles, so they are not
considered as the same object
during analysis. Therefore, circles
should have an opening or gap
through which this radius can be
drawn. However, this must not be
the case for the outer circle: if left
open, the detection of this outer
contour as an additional circle
would depend on the ground and
particularly the shadows the
robots itself cast. In other words,
it would mean the number of concentric ellipses would vary. Since pattern
identification relies on that number to compute it, we cannot afford it and will instead
stick to clompletely closed outer circles.

For additional security the outer circle should have a further enveloping area of white so
the whole outer circle and its contents remain isolated from the ground.

All this can be graphically viewed in figure 26 or in annex A.

What about overlapping patterns?
A particular situation may arise when using robots smaller than the patterns attached to
them. Even if the robots are not that close together (given their size) it will result in an
unacceptable position as the patterns will overlap with each other, effectively causing at
least one of them to not be identified properly. There is not much that can be done
regarding this, the best solution being either using smaller robots or further reducing
the size of patterns.

24

Figure 26 - Detail of patterns' outer circle

Features extraction
Features extraction is a technique consisting of drastically reducing the amount of information to a
small in comparison set of features. Image processing can benefit greatly from it as the input data it
usually handles is usually large and redundant, making it suitable to be transformed into a set where
only the meaningful data and characteristics are stored. If chosen wisely, they should prove to be a
source of relevant information for the task at hand, using a reduced representation instead.

Example
For instance, to illustrate the concept applied to image processing let's consider a picture like
the one presented in section Thresholding and figure 27.

The image has been thresholded and the silhouettes of the rice grains can be seen. If we were
interested in, say, find out information on thegrains we could apply a blob extraction algorithm
which would create uniquely labeled sets of connected components. In this case, the
connection or property between the pixels conforming a grain of rice is sharing the same color
(white) and being isolated from other grains' pixels by a different color (black). Each one of
these sets is a blob and each one of them may be processed separately – for instance, we could
count them up or compute their area, resulting in synthesized information from the image.

Classification of techniques
Feature extraction techniques can be classified by their complexity, by the kind of
characteristics they look for...

Low level: Edge detection
An edge is not a physical entity, the same way shadows are not, but rather the points
where the picture ends and the wall starts; more formally, it is a set of points where their
brightness is estimated to vary sharply. This can also be expressed by stating the image
is a 2D function and edges are variations which at some points render it discontinuous.
Edges are assumed to be pointing in one of a variety of directions.
Canny edge detector
The canny edge detector uses an edge detection operator like for instance Sobel. This
operator returns values both for the first derivative in the horizontal and vertical
direction, from which gradient and direction can be computed with the formulas in

25

Figure 27 - Thresholded image showing rice
shapes

figure 28.

The resulting direction must be approximated to 1 of 8 pre-established directions like
those which 4 axes afford. It is important to note how these angles represent vertical,
horizontal and diagonal directions, though as a whole they may be rotated (and
therefore not necessarily at 0, 45, 90 or 135 degrees).

The gradient magnitude is then checked in the rounded up direction against those
directions conforming a 90º degrees angle with it. For instance, if the gradient direction
is 45º, the magnitude in the positive way of the Z angle will be compared to to that of
both the positive and negative ways of the K angle. If it is greater than the these two
other values separately, the examined area (a pixel for example) will be considered an
edge.

Shape-based
Shape-based feature extraction techniques form subsets of pixels which when
considered together satisfy certain geometrical conditions. The two examples we are
interested and will next explain are blob extraction (grouping up neighbouring, similar
pixels) and the least square fitting of ellipses (which deals with the best approximation
of ellipses given an input binary image for the edges present in it).

Blob extraction
This technique uniquely labels all groups of neighbouring "object" pixels, grouping
them into blobs or connected regions. The algorithm consists of two steps.

• Iterating through each of the pixels, we look for one which is "object" and has
not been labeled yet. We will denominate it the seed pixel, and once found, we
assign to it a new label and proceed to step 2. Once every "object" pixel in the
image owns a label the algorithm concludes.

• Using a filling algorithm, we will assign this new label to all pixels neighbour to

26

Figure 28 - Formulas for
gradient and direction

Figure 29 - 4 axes, 8 directions

the seed pixel. This part will end when we run out off for expanding (that is, the
whole of the blob is surrounded by "background"), returning to part 1.

In figure 30, all pixels conforming the left pear could have a label value of 1 while the
one in the right would have value 0.

When applying the blob extraction algorithm for our purposes a few features should be
extracted from those detected. For example:

• Centre of gravity. In the case of a ring-shaped blob (like those acquired when
segmenting a concentric circle) it would roughly correspond to the circle's
centre.

• Bounding box. That is, the maximum coordinates for both axes present in the
pixels set minus the minimum coordinates. This is a rough estimation of the
blob's size, from which a radius can be inferred if dealing with ring-shaped
blobs.

Least-square fitting of ellipses
This technique aims at adjusting the parameters of a model function with the form

f (x, β)

to best fit a data set. In our case the function to adjust is that of a general ellipse, that is,
a group of points with constant distances to 2 fixed points, rotated a counter-clockwise
α angle and with a and b as its axes lengths.

27

Figure 30 - 2 blobs in an image

Figure 31 - Blob bounding box

As we have stated, an image and in particular a gray-scaled one can be interpreted as a
2D function with the form f (x, y), where the result for integer values of both x and y is
the brightness in pixel (x, y). If a thresholding has been applied to this image we can
consider the pixels as a data set of n points (Xi, Ci), with i = 1 .. n and Ci the
coordinates of the pixel.

A residual ri will be defined by the difference between the expected distance to the
ellipse's corresponding point and that offered by the pixel coordinates.

The optimum least-square approximation will be that which minimizes the sum of
these residuals, hence best fitting the desired function.

This is the technique we will be using in this report, as it proved more efficient to
directly detect ellipses from the circles and radius present in the patterns than finding
their regions and then figuring out to which of them they correspond. It is implemented
in the OpenCV function cvFitEllipse2d().

Tools and libraries
Much of the work carried out by the project deals with coordinating external, previously developed
work. The main tools employed during the development stage were:

Microsoft Visual Studio 2008
Visual Studio is an IDE or Integrated Development Environment for Windows Systems. Several
programming languages are supported, like Visual Basic, C#, etc. though the entirety of this
project will be written in C++. With many features to make it appealing as a good candidate, its

28

Figure 32 - General ellipse

integrated debugger along the many capabilities it offers is particularly worth mentioning.

MFCs
The Microsoft Foundation Classes or MFCs conform a library
with the objective of wrapping the Windows API in C++ classes.
It is particuarly easy with MFCs to create Windows-like
interfaces by means of the classes it provides and their
respective methods. Many of Windows controls also have got
their respective classes. The typically found controls palette can
be observed in figure #.

• A group box is a static control used to consider as a
whole a group of other, related controls.

• Buttons are used to initiate an action. A button is useful
when clicked, positioning the mouse over it.

• A radio button is a Windows control made of two
sections: a round box O and a label. In practice two or
more radio buttons are required to be of any use, with
only one of them selected at any given time.

• An edit box is a control used to either display text, request it, or to do both. It it
provided as a rectangular control with a sunken white background and 3-D
borders. We shall only use them for displaying text information, keeping them
non-editable.

The version used is MFC 9.0.30729.5570, released in April 2011 and shipped with
SP1 for Visual C++ 2008.

Linked libraries
A small number of libraries are required as well during both compilation and execution.
For the latter they will need to be present in either the execution directory or the OS
library path. During development it was necessary to tell VS2008 to dynamically link
with them (Project properties -> Configuration properties -> Linker -> Input ->
Additional dependencies).

libcurl.lib Retrieves internet objects given a resource URL. With WebcamXP
the server is simulated locally.

cv210.lib
cv0aux210.lib
cxcore210.lib

highgui210.lib

Required for OpenCV capabilities usage.

libsasl.dll
openldap.dll

zlib1.dll
Necessary for HTTP fetching. curl library relies on these ones.

Table 5 – Required libraries

29

Figure 33 -
MFCs

controls
palette

OpenCV library
OpenCV, or Open Source Computer Vision Library encompasses a set of programming
functions dealing with real time computer vision. It was originally launched by Intel in 1999
and officially released at the IEEE Conference on Computer Vision and Pattern Recognition in
2000. Originally written in C, since version 2.0 it incorporates a new C++ interface. It has
many applications in mobile robotics, providing toolkits useful for the field as we shall see in
the Practical Approach section.

Installing OpenCV library
Latest version for windows can be found on

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

It consists of a simple executable file which will handle the process for us.

Webcam XP
Webcam XP handles connections to remote web cameras integrating a server responding to
HTTP requests. The server is simulated locally, allowing to retrieve captured images accessing
the 127.0.0.1 or localhost address.

Installing and connecting to a web camera
An installer can be downloaded from

http://www.webcamxp.com/download.aspx

The free version only allows connections to be established with one single camera,
which suits us just fine as such is the way we will be working. Its interface is shown in
figure 34.

Most of the features it provides remain unused here, as our main concern is the obtention of
images. The process to connect to a camera is relatively simple: on the right tab we select one of
these available slots and fill its properties page with:

30

Figure 34 - Webcam XP interface

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/
http://www.webcamxp.com/download.aspx

• Web camera vendor and model.

• Web camera IP address.

• User & Password, if any.

• Source or local name.

From that point on and as long as Webcam XP keeps executing the images will be
accessable in the camera's default path. In the case of AXIS camera the path will be:

http://localhost:8080/cam_1.jpg

Where cam_1.jpg will be the source or local name we used in the previous steps.

Version 5.5.0.8 was used.

Logitech pro 9000 drivers
These drivers handle the connection and data transfer between the PC and the Logitech camera
via the USB port.

The drivers are available for download here:

http://www.logitech.com/es-es/support-downloads/downloads/business-
products/devices/4597?WT.z_sp=Model

Again, instalation will be handle for us.

HTTP fetching curl library
libcurl is a free client-side URL transfer library, supporting FTP and HTTP among others,
user+password authentication, file transfer resume, etc. In our thesis it is used as the coded way
to access the simulated local server in our machine for accessing images. A command-line
utility is also available, though it would not be particularly useful here.

Installing libcurl
curl is available for download in the following internet address:

http://curl.haxx.se/download.html

For this thesis curl version 7.21.6 was used. The Windows executable download will
properly set up the library.

Code functions tree

cam.h
cam.cpp

size_t
int
void
int

cam_writeData (void*, size_t, size_t, FILE*);
cam_initialize (void);
cam_shutdown (void);
cam_shoot (IplImage **gray, IplImage **color);

31

http://curl.haxx.se/download.html
http://www.logitech.com/es-es/support-downloads/downloads/business-products/devices/4597?WT.z_sp=Model
http://www.logitech.com/es-es/support-downloads/downloads/business-products/devices/4597?WT.z_sp=Model
http://www.logitech.com/es-es/support-downloads/downloads/business-products/devices/4597?WT.z_sp=Model
http://localhost:8080/cam_1.jpg

procells.h
procells.cpp

void
void
void
bool
void

ells_segment (void);
ells_shutdown (void);
ells_initialize (void);
ells_properSize (ellipse*);
ells_fillEllipseData (int, CvSeq*);

procii.h
procii.cpp

IplImage*
IplImage*
IplImage*
void

pii_processFrame (void);
pii_threshold (IplImage*);
pii_normIntensity (IplImage*);
pii_bgroundGetMean (void);

robs.h
robs.cpp

void
bool
void
void
void
void
void

robs_extract (void);
robs_concentric (ellipse*, ellipse*);
robs_initialize (void);
robs_shutdown (void);
robs_setIDFromNSubelipses (int);
robs_markRobotsLocations (IplImage*);
robs_fillRobotData (int, int*, int);

pfc.h
pfc.cpp

void
void
void

showMessage (int, int);
initialize_all (void);
shutdown_all (void);

PFC_VS8Dlg.h
PFC_VS8Dlg.cpp

void
void
void
void
void
void

dlg_initialize (void);
dlg_showVideo (void);
dlg_showFoto (void);
dlg_cycleThroughStuff (void);
dlg_cleanEllipseData (void);
dlg_showNumericalData (void);

Table 6 – Code functions tree

32

Practical approach

This section will deal with the most code-oriented part of the project, dwelling into how it is organized and its
general structure. We will start explaining some general features such as how images are captured, how they
are displayed and some protocols and other details to keep in mind.

Acquiring images

PTZ-212 AXIS (webcamera) and Logitech Pro9000 camera models were used. First thing to do is
creating a connection to the webcam, then retrieving images at a certain rate.

Accessing the camera
Two different kinds of cameras are taken into consideration: webcam and USB-connected.

Web cameras
In the first case, the camera should allow snapshots to be taken accessing a certain file
on the server it provides, without any particular security or identification required.
Hence curl library, by which we shall fetch the objects with an HTTP request, will need
to access the following URL:

#define CAM_BITMAP_URL "http://158.42.163.46/bitmap/image.bmp"

Where the shown IP address is that which was used during development. However,
Webcam XP software which will allow us to simulate the server on our computer,
besides some other additions. The accesses will therefore take place in localhost, as if
downloading a local JPG file:

#define CAM_JPG_URL "http://localhost:8080/cam_1.jpg"

Webcam XP just requires to be running when downloading the files, as the connection
needs to be kept. The webcam IP is fed to this software, as well as the image filename
(cam_1.jpg, here).

Camera initialization is pretty straightforward and is packed into cam_initialize(). A
handle of type CURL*, named curl, is created for ease of use as well as a file descriptor
onto which dump images:

FILE *camFD = NULL;
CURL *curl = NULL;
. . .
void cam_initialize (void) {

curl = curl_easy_init ();
curl_easy_setopt (curl, CURLOPT_URL, CAM_JPG_URL);
curl_easy_setopt (curl, CURLOPT_WRITEFUNCTION, cam_writeData);
curl_easy_setopt (curl, CURLOPT_WRITEDATA, camFD);

}

This results in CAM_JPG_URL, camFD and cam_writeData() associated to curl as the
resource URL, file descriptor and writing function it expects, respectively.

cam_writeData() is simple, its header is specified by curl:

size_t cam_writeData (void *ptr, size_t size, size_t nmemb, FILE *stream)
{

33

http://localhost:8080/cam_1.jpg
http://158.42.163.46/bitmap/image.bmp

// stream remains unused
return fwrite (ptr, size, nmemb, camFD);

}

Releasing all resources is done easily by calling cam_shutdown() which, in turn, calls
curl's shutdown function and frees the file descriptor, should it have not been properly
closed earlier:

void cam_shutdown (void) {
curl_easy_cleanup (curl);
if (camFD) fclose (camFD);

}

In summary, a picture is retrieved from CAM_JPG_URL and written to the file pointed by
camFD via the cam_writeData() function.

USB cameras
Regarding USB-connected cameras, the initialization is much shorter, as we get
OpenCV's help:

CvCapture *capture;
. . .
void cam_initialize (void) {

if ((capture = cvCaptureFromCAM (0)) == NULL) {
showMessage (PFC_MESS_CVCAPTUREFROMCAM, false);
return PFC_BAD;

}
}

Same happens with their shutdown function:

void cam_shutdown (void) {
cvReleaseCapture (&capture);

}

Preparing images storage

OpenCV offers an easy interface to store images via an IplImage* structure, relevant fields of
which are:

• int nChannels
• int depth

Represent, respectively, number of color components per
pixel and the size, in bits, of each one of them. Pr0duct of
both yields the memory required to store a single pixel.

• int height
• int width
• int imageSize

Size, in pixels.
height * width = imageSize

• int widthStep Offtset, in bytes, from one pixel to the one immediately
beneath; or, amount required to represent a full horizontal
line of pixels.

• char* imageData Pointer to memory location holding start of image.

Table 7 – IplImage structure

34

Accessing stored images

Each time cam_shoot() is invoked curl_easy_perform() will be too in turn for webcameras
and retrieve a frame. In webcameras, as we will be fetching an image object, data will be
channeled to "color.jpg", using camFD file descriptor (which needs to be open/closed
separately). It is then read both as a color and a gray-scale image into the corresponding
variables and further processed from that point:

int cam_shoot (IplImage **gray, IplImage **colour) {
camFD = fopen ("color.jpg", "wb");
curl_easy_perform (curl);
fclose (camFD);
IplImage *gray = cvLoadImage ("color.jpg", CV_LOAD_IMAGE_GRAYSCALE);
IplImage *color = cvLoadImage ("color.jpg", CV_LOAD_IMAGE_COLOR);

}

Regarding USB-connected cameras, the frame obtained is directly stored in an IplImage
structure, so no access to disk is requierd:

int cam_shoot (IplImage **gray, IplImage **colour) {
IplImage *colour;

. . .

colour = cvQueryFrame (capture);
gray = cvCreateImage (cvSize (g_img_w, g_img_h), 8, 1);
cvCvtColor (colour, gray, CV_BGR2GRAY);

}

Finally the gray-scaled image, however it was obtained, is equalized to improve quality.

cvEqualizeHist (gray, gray);

Displaying images

Choosing a destination window and dumping onto it the data from the desired image buffer is
enough. The following line of code creates a window called "umbral":

cvNamedWindow ("umbral", CV_WINDOW_AUTOSIZE);

And the following one dumps the image data stored in IplImage *umbral to that window:

cvShowImage ("umbral", umbral);

The result is a window titled "umbral" where the image stored, assuming it contains valid data,
will be displayed. This is quite versatile, as replacing umbral for any other IplImage* variable,
color for instance, would instead show the corresponding frame.

Operation modes

Two operation modes are allowed during application execution:

35

• Photograph mode
• Video mode

First one obtains a single frame and offers as much information as can be obtained from it after
processing. Second one is pretty much the same; however, processing is carried out over a sequence of
frames and only important information (namely, final pattern coordinates and orientation) is
displayed, graphically. Typically, the former will be used to fine-tune parameters, depending on light
conditions, etc. and the latter will employ the so obtained values.

Both modes allow interaction – on Photograph ellipses and patterns are treated as lists for the
user to browse the details of each one separately, while Video just offers the resulting location data for
each robot in a graphical way. Please refer to sections Button "Foto!" and Button "Video!" for further
details and particularly for a list of key bindings.

Processing loop

The pattern-detection loop will be applied once to every captured frame, and its basic outlay is this:

IplImage *pii_processFrame (void) {
Capture a frame. -- cam_shoot ()

Preprocessing: intensity normalization, thresholding. -- pii_intensity(),
pii_threshold()

Detecting ellipses. -- ells_extract()
Pattern detection based on the obtained set of ellipses. -- robs_segment()
Displaying information graphically. -- robs_markRobotsLocations()

}

Before any of this is carried out, however, several general initializations are required to take place with a
call to initialize_all(), which shall be invoked upon application start.

void initialize_all (void) {
ells_initialize (); // ellipses
robs_initialize (); // patterns/robots
cam_initialize (); // camera

}

It handles the rest of the project's modules, the structures holding the retrieved information in
particular. They follow here, along with these structures' definition; ellipses...:

#define MINIMUM_AREA_I_INITIAL 6
. . .
struct ellipse {

IplImage *img;
CvPoint center;
CvSize size;
float angle;
int meanSize; // Media de los dos radios.

};
. . .
struct ellipse *g_ells;
int g_ells_num;
int g_ells_actual;
. . .
void ells_initialize (void) {

36

g_ells = NULL;
g_ells_actual = g_ells_num = 0;

}

... and patterns:

#define MAX_ROBOTS 6
. . .
struct robot {

int *ells;
int n_ells;
float angle;
int ID;
CvPoint center;
double radius;
IplImage *img;

};
. . .
int g_robs_num;
int g_robs_actual;
struct robot g_robs[MAX_ROBOTS];
. . .
void robs_initialize (void) {

g_robs_actual = g_robs_num = 0;
for (int i = 0; i < MAX_ROBOTS; i++) {

g_robs[i].ells = NULL;
g_robs[i].n_ells = 0;
g_robs[i].angle = 0;
g_robs[i].center = cvPoint (0, 0);
g_robs[i].radius = 0;
g_robs[i].ID = -1;

}
}

Also, their shutdown functions are like this:

void ells_shutdown (void) {
if (g_ells != NULL) {

free (g_ells);
}
g_ells_num = g_ells_actual = 0;

}

void robs_shutdown (void) {
for (int i = 0; i < MAX_ROBOTS; i++) {

g_robs[i].n_ells = 0;
g_robs[i].angle = 0;
g_robs[i].ID = -1;
g_robs[i].center = cvPoint (0, 0);
g_robs[i].radius = 0.0;
if (g_robs[i].ells != NULL) {

free (g_robs[i].ells);
g_robs[i].ells = NULL;

}
}

g_robs_num = g_robs_actual = 0;
}
Finally, shutdown_all() will take care to release all resources by calling the respective module

37

shutdown functions. Here, fondo represents the background image taken with no robots present.

void shutdown_all (void) {
cam_shutdown ();
robs_shutdown ();
ells_shutdown ();
if (fondo) cvReleaseImage (&fondo);

}

Image acquisition
We need to store two versions of the captured image: the colour one and the gray-scaled one.
cam_shoot() makes this task easy:

IplImage *gray, *colour;

if (cam_shoot (&gray, &colour) == PFC_BAD) { // guarda en fichero.
return NULL;

}

Preprocessment
This stage encompasses intensity normalization and thresholding the image to a binary
black/white format on which to detect objects.

A more in-depth explanation of both follows:

pii_normIntensity – IplImage* pii_normIntensity (IplImage *gray)
fondo represents a background image loaded either at application startup, using the
last acquired background image, or when button "Fondo" is pressed (see the Button
"Fondo" section). Upon load its mean intensity is computed and stored into int_media.
The following algorithm computes a set of per-pixel ratios for the background image
which, when multiplied, would make the values for each one equal to this mean.

IplImage *fondo;
. . .
IplImage *pii_normIntensity (IplImage *gray) {

if (fondo) {
float f, u;
IplImage *a = gray;
for (int i = 0; i < g_img_h; i += 1) {

for (int j = 0; j < g_img_w; j += 1) {
f = (fondo->imageData + i*fondo->widthStep)[j];
u = (a->imageData + i*a->widthStep)[j];
u *= (int_media / f); // ratio
if (u > 255.0) u = 255.0;
(a->imageData + i*a->widthStep)[j] = u;

}
}

}
}

pii_threshold – IplImage* pii_threshold (IplImage *in)
This function returns the binarized input image.:

#define GEN_THRESHOLD_I_INITIAL 190
#define GRAY_MAX_VALUE 255
float g_gen_threshold = GEN_THRESHOLD_I_INITIAL;

38
Figure 35: pii_threshold()

. . .
IplImage *pii_threshold (IplImage *in) {

IplImage* out;
out = cvCreateImage (cvGetSize (in), 8, 1);
cvThreshold (in, out, g_gen_threshold,

GRAY_MAX_VALUE, CV_THRESH_BINARY);

return out;
}

The resulting image will still have an 8-bit depth, even if only two values are required
from now on in terms of representation (255 for white or «background», 0 for black or
«object»). In short, the other 7 bits per pixel are wasted.

Information extraction
Two more blocks of code –ellipse and robot/pattern detection– are called last within
pii_processFrame().

Ellipse recognition

A set of ellipses in the image will be
identified via OpenCV. The resulting is stored
for artifact recognition, where concentric sets
mark pattern central coordinates..

As opposed to the mathematical model,
OpenCV ellipses only possess one center,
height and width (h and w in Figure 36,
respectively) and an orientation angle α
against the Y vertical axis. In the figure's
generic example α equals roughly to 90 + 45
= 135 degrees.

ells_segment() coordinates de
identification tasks and dumps the extracted information in the designated areas, i.e.
g_robs[] and g_ells[]:

void ells_segment (IplImage *umbral) {
CvMemStorage *storage = cvCreateMemStorage (0);

CvSeq *contour = cvCreateSeq (CV_SEQ_ELTYPE_POINT,
sizeof (CvSeq),
sizeof (CvPoint), storage);

cvFindContours (umbral, storage, &contour, sizeof (CvContour),
CV_RETR_LIST, CV_CHAIN_APPROX_NONE,
cvPoint (0, 0));

CvSeq **auxContour = (CvSeq **) malloc (10 * sizeof (CvSeq *));

for (CvSeq *iter = contour; iter ; iter = cont_iter->h_next) {
if (iter->total >= g_ells_area_minima) {

auxContour[g_ells_num] = iter;
g_ells_num++;
if (g_ells_num % 10 == 0) {

auxContour = (CvSeq **) realloc (auxContour,

39

Figure 36 - An ellipse

(g_ells_num + 10) *
sizeof (CvSeq *));

}
}

}

auxContour = (CvSeq **) realloc (auxContour,
g_ells_num * sizeof (CvSeq *));

g_ells = (struct ellipse *) malloc (g_ells_num * sizeof (struct ellipse));
for (int i = 0; i < g_ells_num; i++) {

ells_fillEllipseData (i, &auxContour[i]);
}

cvReleaseMemStorage (&storage);
free (auxContour);

}

As can be seen the procedure consists in extracting the contours from the image, count
up those which actually have a chance of turning into an ellipse, then gather their
information in g_ells[] by means of successive calls to ells_fillEllipseData(),
which will actually dump it all onto the structure.The number of valid ellipses (that is,
those where the originating contour number of pixels are greater than the specified
value in g_area_minima) is counted up in g_ells_num; the rest are discarded. This data
is of mostly numerical nature:

void ells_fillEllipseData (int i_ells, CvSeq **contour) {
CvMat *p_f = cvCreateMat (1, (*contour)->total, CV_32FC2);
CvMat p_i = cvMat (1, (*contour)->total, CV_32SC2, po_f->data.ptr);
cvCvtSeqToArray (*contour, p_f->data.ptr, CV_WHOLE_SEQ);
cvConvert (&p_i, p_f);
CvBox2D box = cvFitEllipse2 (p_f);

g_ells[i_ells].center = cvPoint (cvRound (box.center.x),
cvRound (box.center.y));

g_ells[i_ells].size = cvSize (cvRound (box.size.width *0.5),
cvRound (box.size.height *0.5));

if (box.size.width > box.size.height) {
g_ells[i_ells].sizeRatio = box.size.width / box.size.height;

} else {
g_ells[i_ells].sizeRatio = box.size.height / box.size.width;

}
g_ells[i_ells].angle = box.angle;

g_ells[i_ells].meanSize = cvRound ((g_ells[i_ells].size.height +
 g_ells[i_ells].size.width)
 * 0.5);

cvReleaseMat (&p_f);
}

Data returned by cvFitEllipse2() assumes the returned size of the ellipses' axes in
box at their full length; however, for our computations employing “radius” lengths is
more convenient, thus the values are halved. .meanSize is just the mean of both
radiuses and is used to display an approximate version of the pattern by means of simply
a circle, later on.

Pattern recognition

40

With the set of ellipses obtained what is left to do is grouping those which share very
nearby centers, with two or more of them present meaning the presence of a pattern,
and finding out its orientation. This is done in function robs_extract():

void robs_extract (void) {
bool *taken = (bool *) malloc (g_ells_num * sizeof (bool));
for (int i = 0; i < g_ells_num; i++) taken[i] = false;
int *aux_list = (int *) malloc (g_ells_num * sizeof (int));
for (int n = 0; n < g_ells_num; n++) {

int aux_n = 0;
if (taken[n] == true) continue;
taken[n] = true;
if (ells_properSize (&g_ells[n]) == false) continue;
for (int nn = 0; nn < g_ells_num; nn++) {

if ((n != nn) && (taken[nn] == false) &&
(robs_concentric (&g_ells[n], &g_ells[nn]) &&

(ells_ells_properSize (&g_ells[nn]) == true)) {

taken[nn] = true;
aux_list[aux_n] = nn;
aux_n++;

}
}
if (aux_n > 1) {

int aux_n_biggest = -1;
for (int i = 0; i < aux_n; i++) {

if (g_ells[aux_list[i]].meanSize >
g_robs[g_robs_num].radius) {

g_robs[g_robs_num].radius =
g_ells[aux_list[i]].meanSize;
aux_n_biggest = i;

}
}
if (g_robs[g_robs_num].radius < 21) continue;
robs_fillRobotData (n, aux_ell_list, aux_n);
g_robs_num++;
if (g_robs_num == MAX_ROBOTS) {

return;
}

}
}
free (taken);
free (aux_ell_list);

}

As data is gathered it is stored in the temporal structure aux_ell_list on which aux_n
is a counter, representing all the ellipses associated to a certain one under current study.
Thus, through each iteration a value for aux_n greater than 0 means a robot has been
found (i.e. at least another ellipse is concentric with it) and g_robs_num is
updated accordingly – this variable is also used to track which pattern position to write
on.

taken[] keeps track of which ellipses have already been checked and/or are part of a
robot along one or more concentric additional ellipses, so they can be skipped in later
loop iterations. There also exist size restrictions, checked separately; therefor, to be
valid, an ellipse must successfully pass these two function guards, robs_concentric()
and ells_properSize():

41

#define CONCENTRIC_SLACK_X 2
#define CONCENTRIC_SLACK_Y 2
. . .
bool robs_concentric (ellipse *e, ellipse *ee) {

int dif_x = abs (e->center.x - ee->center.x);
int dif_y = abs (e->center.y - ee->center.y);

return ((dif_x <= CONCENTRIC_SLACK_X) &&
(dif_y <= CONCENTRIC_SLACK_Y));

The maximum and minimum values for the following checks have been obtained
empirically, taking into account the size of the patterns and the distance from the floor
to the camera:

bool ells_properSize (struct ellipse *e) {
bool ok = true;

if ((e->size.height <= 1) || (e->size.width <= 1)) {
ok = false;

}
if (e->meanSize > 31) {

ok = false;
}
if (e->sizeRatio > 1.3) { // deben ser redondas, aprox.

ok = false;
}
return ok;

}

Finally, robs_fillRobotData() is in charge, in the first place, of dumping the so
obtained information to its corresponding place in the designated structures, and
second of finding out its orientation angle by guessing which is the correct ellipse to
examine in order to do so (i.e. the ellipse corresponding to the 'radius' on the patterns):

void robs_fillRobotData I (int n, int *aux_ell_list, int aux_n) {

aux_n++;
g_robs[g_robs_num].ells = (int *) malloc (aux_n * sizeof (int));
g_robs[g_robs_num].n_ells = aux_n;
robs_setIDFromNSubellipses (g_robs_num);
g_robs[g_robs_num].center.x = g_ells[n].center.x;
g_robs[g_robs_num].center.y = g_ells[n].center.y;

g_robs[g_robs_num].ells[0] = n;
for (int i = 1; i < aux_n; i++) {

g_robs[g_robs_num].ells[i] = aux_ell_list[i - 1];
}
. . .

}

Finding the pattern orientation remains yet to
do, and is achieved in the last block of code by
choosing that ellipse which center is within
some boundaries (that is, by checking the
related ellipse is centered in the area
surrounding the centre of the pattern) while
simultaneously not being concentric. Again,
the size characteristics of such ellipse have

42
Figure 37: Detected ellipses

been found empirically, and the results can be observed in Figure 37. Also,
robs_setIDFromNSubellipses() just takes care of substracting 2 from the number of
subellipses conforming the robot to find its ID, clamping the values to [0, 5].

In the following second part of the function the ellipse determining the angle is found
and the value adjusted.

void robs_fillRobotData II (int n, int *aux_ell_list, int aux_n) {
. . .
for (int a = 0; a < g_ells_num; a++) {

if (a == n) continue;
bool found = false;
for (int aa = 0; aa < aux_n; aa++) {

if (aux_ell_list[aa] == a) {
found = true;

}
}
if (found) continue;

// Además debe ser alargada...
if (g_ells[a].sizeRatio < 2.0) {

continue;
}
// ...y no exceder ciertos tamaños.
if ((g_ells[a].meanSize > 7) ||

(g_ells[a].size.height <= 1) ||
(g_ells[a].size.width <= 1)) {
continue;

}

int desp_x = abs (g_robs[g_robs_num].center.x -
g_ells[a].center.x);

int desp_y = abs (g_robs[g_robs_num].center.y -
g_ells[a].center.y);

int d = (int) sqrt ((double)(desp_x*desp_x + desp_y*desp_y));

if ((d > (g_robs[g_robs_num].radius / 3)) &&
(d < ((2* g_robs[g_robs_num].radius) / 3))) {

g_robs[g_robs_num].angle = g_ells[a].angle;
// corregir angulo según el cuadrante de la elipse:
// Arriba izquierda
if (isUpLeft (g_ells[a].center.x, g_robs[g_robs_num]) {

g_robs[g_robs_num].angle += 180;
}
// Abajo izquierda
if (isDownLeft (g_ells[a].center.x, g_robs[g_robs_num]) {

if (g_robs[g_robs_num].angle < 90)
g_robs[g_robs_num].angle += 180;

}
// Arriba derecha
if (isUpRight (g_ells[a].center.x, g_robs[g_robs_num])) {

if (g_robs[g_robs_num].angle > 90)
g_robs[g_robs_num].angle -= 180;

}
// Abajo derecha
if (isDownRight (g_ells[a].center.x, g_robs[g_robs_num])) {

}
// Arriba centro
if (isUpCentre (g_ells[a].center.x, g_robs[g_robs_num])) {

g_robs[g_robs_num].angle -= 180;

43

}
// Abajo centro
if (isDownCentre (g_ells[a].center.x, g_robs[g_robs_num])) {

g_robs[g_robs_num].angle += 180;
}

}
}

}

The angle correction is summarized in figure 38:

Processing diagram

44

Figure 38 : Angle correction

45

Displaying obtained information

robs_markRobotsLocations() takes an input image and adds to it markers for both location
and identification for each detected pattern. Regarding its usage a few things need to be set
beforehand. OpenCV provides means to write text into an image – we are interested in writing
the robot IDs, and hence define the text properties in order to actually do so on the image along
their outlining circle:

void robs_markRobotsLocations (IplImage *out) {
CString text;
CvFont font;
double hScale = 0.75;
double vScale = 0.75;

46

int lineWidth = 2;

cvInit
Font (

&font, CV_FONT_HERSHEY_SIMPLEX | CV_FONT_ITALIC,
hScale, vScale, 0, lineWidth);

for (int i = 0; i < MAX_ROBOTS; i++) {
if (g_robs[i].ID != -1) {

CvPoint aux_c =
cvPoint (

g_robs[i].center.x + g_sciss_x,
g_robs[i].center.y + g_sciss_y);

cvCi
rcle
(

out, aux_c, (int) g_robs[i].radius,
CV_RGB (255, 0, 0), 2);

text.Format (CString ("%ld"), g_robs[i].ID);

cvPut
Text
(

out, (const char*) text.GetBuffer(),
aux_c, &font, CV_RGB (0, 0, 255));

}
. . .

The last step involves drawing the orientation-indicating line, which should lie on top of the
physical pattern starting from its center and with a length equal to the mean value of the most
external ellipses radiuses.

. . .
double seno = (double) sin (g_robs[i].angle*0.01745329251994);
double coseno = (double) cos (g_robs[i].angle*0.01745329251994);

CvPoint aux_c2;
aux_c2 = cvPoint (g_robs[i].radius*seno, -g_robs[i].radius*coseno);
aux_c2.x += g_robs[i].center.x;
aux_c2.y += g_robs[i].center.y;

cvLine (out, aux_c, aux_c2, CV_RGB (255, 0, 0), 2);
}

}

An example of resulting image obtained when all 6 patterns are present is shown in figure 39:

47
Figure 39 - Identification results

Application overview

Figure 40 displays the initial application's main window. It is composed of 3 different tabs, of which one
gathers user-dependant information and the two others show data relative to found ellipses and detected
patterns. Foto! and Video! buttons enter Photograph and Video modes, respectively, while button Fondo
captures a frame to be used as a background image. There is also an exit button on the bottomwhich upon
being clicked on will free all allocated resources and shut the application down.

Upon dialog startup all slider controls are initialized the way described in the next code snippet. The variables
are Control Variables, meaning modifying them or invoking their methods directly modifies the interface after
the call to UpdateData(). Also, the background image can be loaded from a previous session if it exists, that is,
if file fondo.jpg can be opened (as can be observed, every freshly acquired one is saved in disk with that
name).

#define GEN_THRESHOLD_I_INITIAL 41
#define INITIAL_STR_BIN_THRESHOLD "41"
#define GRAY_MAX_VALUE 255
#define MINIMUM_AREA_MIN 6
#define MINIMUM_AREA_MAX 50
#define MINIMUM_AREA_I_INITIAL 6
#define MINIMUM_AREA_STR_INITIAL "6"
. . .
void CPFC_VS8Dlg::dlg_initialize (void) {

m_gen_threshold.SetRangeMin (0, false);
m_gen_threshold.SetRangeMax (GRAY_MAX_VALUE, false);
m_gen_threshold.SetPos (GEN_THRESHOLD_I_INITIAL);

48

Figure 40: Application interface

m_gen_threshold_value = INITIAL_STR_BIN_THRESHOLD;
m_ell_contour.SetRangeMin (MINIMUM_AREA_MIN, false);
m_ell_contour.SetRangeMax (MINIMUM_AREA_MAX, false);
m_ell_contour.SetPos (MINIMUM_AREA_I_INITIAL);
m_ell_contour_value = MINIMUM_AREA_STR_INITIAL;

fondo = cvLoadImage ("fondo.jpg", CV_LOAD_IMAGE_GRAYSCALE);
if (fondo) {

cvNamedWindow ("fondo utilizado", CV_WINDOW_AUTOSIZE);
cvShowImage ("fondo utilizado", fondo);
showMessage (PFC_MESS_USING_THIS_BACKGROUND, false);
cvDestroyWindow ("fondo utilizado");
cvEqualizeHist (fondo, fondo);
pii_bgroundGetMean();

} else {
showMessage (PFC_MESS_NO_BACKGROUND_FOUND, false);

}

dlg_cleanEllipseData ();
UpdateData (false);

}

dlg_cleanAcquiredData() is another dialog function which sets all information output labels to "--" once
the information they may be displaying is no longer relevant (and during dialog initialization as they will not
have been used yet):

void CPFC_VS8Dlg::dlg_cleanAcquiredData (void) {
m_ells_num = "--";
m_ells_actual = "--";
m_ells_center_x = "--";
m_ells_center_y = "--";
m_ells_altura = "--";
// etc.
UpdateData (false);

}

Also, whenever the application is running and one of the sliders is modified an OnHScroll event is generated.
This event is captured and taken care of by means of a call to the following function, with a pointer to the
slider received as a paramater:

void CPFC_VS8Dlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) {
if (nSBCode == SB_THUMBTRACK) {

if (pScrollBar == (CScrollBar *) &m_gen_threshold) {
m_gen_threshold_value.Format (CString ("%ld"), nPos);
g_gen_threshold = (float) nPos;

SetDlgItemText (IDC_STATIC_GEN_THRESHOLD_VALUE,
m_gen_threshold_value);

m_gen_threshold.SetScrollPos (nPos, true);
UpdateData (false);

} else if (pScrollBar == (CScrollBar *) &m_ell_contour) {
m_ell_contour_value.Format (CString ("%ld"), nPos);
g_ells_area_minima = nPos;

SetDlgItemText (IDC_STATIC_ELLS_AREA_MINIMA_DATA,
m_ell_contour_value);

m_ell_contour.SetScrollPos (nPos, true);
UpdateData (false);

}

49

}
}

Based on the received slider identifier the corresponding one is updated, setting the global variable's value to
the correct value and the scroller in position.

The user input via these controls affects the processing loop directly, modiying the values it will use.
Descriptions of the different parts of the interface and their functions follow:

General tab

The slider is attached to g_gen_threshold, directly influencing the main loop results (particularly in
Video mode, as the results are immediately seen). Binary threshold values must lie within [0, 255]
range since these are the possible values for a
pixel in a gray-scaled image. The three radio
buttons, for their part, determine the
resolution at which we will attempt to captures
frames; again, changes here will start affecting
the obtained results obtained with
pii_processFrame().

void CPFC_VS8Dlg::OnBnClickedRadio640x480() {
g_img_w = 640;
g_img_h = 480;

}

Button "Fondo"

The button titled "Fondo" is pretty straightforward: upon clicking on it a picture is taken and stored in
a dedicated image buffer to be used when normalizing the subsequent images' intensity.

void CPFC_VS8Dlg::OnBnClickedButtonCapturaFondo() {
IplImage *colour;

if (cam_shoot (&fondo, &colour) == PFC_BAD) {
showMessage (PFC_MESS_CURL_EASYPERFORM_JPG, true);
return;

}
cvReleaseImage (&colour);
cvSaveImage ("fondo.jpg", fondo);
cvEqualizeHist (fondo, fondo);

cvNamedWindow ("fondo utilizado", CV_WINDOW_AUTOSIZE);
cvShowImage ("fondo utilizado", fondo);
showMessage (PFC_MESS_USING_THIS_BACKGROUND, false);
cvDestroyWindow ("fondo utilizado");

pii_bgroundGetMean ();
}

It is pretty similar to the previously discussed background image loading; here, the camera is the
source instead of the hard drive.

50

Figure 41: General tab

Button "Foto!"

Button "Foto!" will invoke onBnClickedButtonFoto() ...

void CPFC_VS8Dlg::OnBnClickedButtonFoto() {
dlg_showFoto ();

}

... which will in turn force the application to capture data and enter the loop present within
dlg_showFoto(), that is, Photo mode:

void CPFC_VS8Dlg::dlg_showFoto (void) {
IplImage *foto = pii_processFrame ();

// Foto original en color, aquí marcaremos los centros de robot.
cvNamedWindow ("foto", CV_WINDOW_AUTOSIZE);

if (g_ells_num == 0) {
showMessage (PFC_MESS_NO_ELLIPSES_FOUND, false);
cvDestroyWindow ("foto");
return;

}
cvShowImage ("foto", foto);

dlg_cycleThroughStuff ();

cvReleaseImage (&foto);
cvDestroyWindow ("foto");

}

When in Photo mode and after processing is done detailed information will be available regarding both
ellipses and patterns. This is shown via dlg_cycleThroughStuff() function, which arbitrates actions
to take to properly display the information. Most important variables here are g_ells_actual and
g_robs_actual, which the function modifies according to the user input and which represent,
respectively, the currently displayed ellipse and pattern.

void CPFC_VS8Dlg::dlg_cycleThroughStuff (void) {
int key = 0;
IplImage *ellipses = cvCreateImage (cvSize (g_img_w, g_img_h), 8, 1);
IplImage *robots = cvCreateImage (cvSize (g_img_w, g_img_h), 8, 1);
// Ventana para ellipses
cvNamedWindow ("ellipses", CV_WINDOW_AUTOSIZE);
cvZero (ellipses);
cvEllipse (ellipses, g_ells[g_ells_actual].center, . . .);
cvShowImage ("ellipses", ellipses);
// Ventana para artefactos/robots
cvNamedWindow ("robots", CV_WINDOW_AUTOSIZE);
cvZero (robots);
if (g_robs_num > 0) {

cvCircle (robots, g_robs[g_robs_actual].center, . . .);
}
cvShowImage ("robots", robots);

dlg_showNumericalData ();

bool cambio;
while (key != 27) { // ESC

cambio = false;
// izquierda elipse?

51

if ((key == 'a') || (key == 'A')) {
cambio = true;
g_ells_actual--;
if (g_ells_actual < 0) g_ells_actual = g_ells_num - 1;
cvShowImage (g_imgLabels[I_ELLIPSES], g_ells[g_ells_actual].img);

}
// derecha elipse?
if ((key == 'd') || (key == 'D')) { . . . }
// izquierda robot?
if ((key == 'q') || (key == 'Q')) {

 = true;
g_robs_actual--;
if (g_robs_actual < 0) { g_robs_actual = g_robs_num – 1;
cvShowImage (g_imgLabels[I_LOCALIZACION], g_robs[g_robs_actual].img);

}
// derecha robot?
if ((key == 'e') || (key == 'E')) { . . . }
if (cambio == true) {

cvZero (ellipses);
cvEllipse (ellipses, g_ells[g_ells_actual].center, . . .);
cvShowImage ("ellipses", ellipses);
if (g_robs_num > 0) {

cvZero ("robots");
for (int i= 0; i <g_robs[g_robs_actual].n_ells; i++) {

cvCircle (robots, g_robs[g_robs_actual]. ...);
}
cvShowImage ("robots", robots);

}

dlg_showNumericalData (); // show changes in displays.
}
key = cvWaitKey (10);

}
cvDestroyWindow ("ellipses");
cvDestroyWindow ("robots");

dlg_cleanAcquiredData (); // clean displays.
}

Two functions interact with the interface in order to actually modify it. First one is
dlg_cleanAcquiredData(), which has already been discussed, and second is
dlg_showAcquiredData() which rather uses uses several instructions similar to the following ones to
display it:

void CPFC_VS8Dlg::dlg_showAcquiredData (void) {
m_ells_center_x.Format (CString ("%ld"), g_ells[g_ells_actual].center.x);
m_robs_angle.Format (CString ("%.2f"), g_robs[g_robs_actual].angle);
. . .
UpdateData (false);

}

52

Variables starting with m_ represent interface controls of which method .Format is called for each one
to properly display the required value. A final call to UpdateData() is again necessary as a means to
make the changes visible. In this particular example, the current ellipse's center X coordinate and
current pattern's rotation angle are being updated, respectively.

What follows is a summary of the key bindings used during the cycling:

Key Effect

'a' or 'A' Cycle to previous ellipse.
'd' or 'D' Cycle to following ellipse.

Table 8 - Key bindings for cycling ellipses

Key Effect

'q' or 'Q' Cycle to previous artifact.
'e' or 'E' Cycle to following artifact.

Table 9 - Key bindings for cycling robots

Button "Video!"

A single window will open upon pressing "Video!" button, showing the captured frames along
information on any located and identified patterns.

void CPFC_VS8Dlg::dlg_showVideo (void) {
int key = 0;
IplImage *video = NULL;
IplImage *auxVideo;

cvNamedWindow ("video", CV_WINDOW_AUTOSIZE);

53

Figure 43: Artifacts windowFigure 42: Ellipses window

while (key != 27) {
auxVideo = video;
video = pii_processFrame (); // video will already carry location

// marks for identified patterns.

cvShowImage ("video", video);

if (auxVideo) cvReleaseImage (&auxVideo);

key = cvWaitKey (20); // ms
}

cvReleaseImage (&video);
cvDestroyWindow ("video");

}

Upon return from function pii_processFrame() the main difference with Photo mode arises: rather
than displaying nearly all of the gathered information for the user to browse, it limits itself to location
data regarding every robot in a graphical way. What is more important, the process is repeated within a
loop and thus updates continuously take place (analyzing robots as they move about, for instance).
With the currently involved processing a framerate of around 4-5 fps was achieved.

Tabs related to information output

These two tabs, regarding detected ellipses and robots, follow the same working pattern. They remain
initially deactivated, and once the processing loop has started they will only be functional when in
Photograph mode (their status will not be modified during Video mode).

As was mentioned in the previous section,
once a single frame in Photograph mode has
been processed and all possible information
extracted, two different sets of items will be
created: first comes a list of all ellipses,
bounded by [0, g_ells_num], and then a list
of detected patterns bound by [0,
g_robs_num]. Two other variables,
g_ells_actual and g_robs_actual keep
track of the index of the currently displayed
ellipse and pattern, respectively, and
therefore of all its associated information. Also, both ellipses and patterns possess a center in (X, Y)
which for both of them is displayed as well.

With each of the previously described key bindings one of the adjacent ellipses/patterns in the list will
gain the application focus, updating the interface controls. In Figure 44, for instance, there are 24
ellipses and the currently selected one is #17, while we are seeing the second pattern's details ouf of a
total of 4 of them. In this case they are almost concentric as well, which leads to think said ellipse must
be part of the currently selected pattern.

We will now explain the other information displayed for each type of item:

Ellipses tab

Feature Explanation

54

Figure 44: Common information regarding ellipses and
patterns

Altura – Height Distance measured from the ellipse's along the
vertically-running axe Y when rotation equals
to 0 i.e. ellipse axes are parallel to global axes.

Anchura – Width Same applies to its width, this time measured
from ellipse's center to the sideways-running
axe, X.

Rotación – Rotation angle α-degrees rotation applied to the ellipse.

Table 9 - Ellipses most prominent characteristics

A slider control is also present in this tab, titled "#mín. contour". It controls the minimum
number of contour points required for an ellipse to be such, basically acting as a size filter. The
Lowest possible value in the variable g_ells_area_minima cannot be lesser than 6 since below
this value cvFitEllipse2() will not be able to determine the layout of the would-be ellipse.

Patterns tab

Feature Explanation

Rotación – Rotation angle α-degrees rotation applied to the pattern,
assumed to be equal to that of the first ellipse
known to be part of the pattern.

ID Identification detected for the pattern, or,
number of concentric ellipses between the
outer bounding ellipse and the central point.

Table 10 - Robots most prominent characteristics

55

Figure 46 - Robots information

Figure 45 - Ellipses information

Conclussions

An affordable, relatively easy solution was offered for the problem of identifying and locating patterns in a 2D
space. Even if its results cannot be immediately applied nor have a visible effect on the environment, it is
indeed of great help when used in conjunction with those other works related to controlling the analyzed
moving robots. The output can be fed to these systems to obtain, for example, an estimation of the error to
which react accordingly, making the system as a whole more efficient and accurate.

A set of videos can be played, showing the results of the identification and location of patterns as the group of
mobile robots perform tasks or simply move in the designated area.

• Videos showing the camera output along the summary of results. This video is a record of the robots'
actual movements, feeding directly from the camera, and some additional information stating their
coordinates and rotation angle in a graphical way. This information is updated with each complete loop
of the algorithm, which happens several times per second.

• Videos showing internal steps in the identification and location tasks. Typically these correspond to
umbralization images or the resulting set of detected ellipses.

Future work
A very closely related project to work with is robot coordination. A group of them may perform tasks
collectively – for instance, we can assume each one of them individually is unable to move a certain
object, while collectively it is feasible. Even if their controlling algorithms already contemplate how to
detect other robots and keep track of their locations (with wireless communications, for example), it
would be a great addition to have a supervision system watching for them, which can either
corroborate their results or correct them.

In order to measure how effective it actually turns out to be, a robots coordination project could toy
with the option to run with or without this additional feedback. At the very least some improvement
should be observed, like a greater chance of reacting to situation changes in a faster and more reliable
way. It would be interesting to know, for example, how previously hard situations to solve are now
reduced. For instance, robots may block each other during identification if they carry it out with
mounted cameras (meaning any robot could not see what lies behind those around in the path of its
line of sight). With the help of a zenital camera this is now trivial, as the different patterns will remain
within visibility range constantly.

Finally, some more work could be put into reducing the size of patterns, for instance, by experimenting
with different camera shooting distances (trading off visibility area) or higher resolutions (which may
cause a decrease in FPS due to heavier workload).

56

Bibliography

[1] The C++ Resources Network. http://www.cplusplus.com/

[2] OpenCV Processing Library. http://ubaa.net/shared/processing/opencv/

[3] MFCs Reference. http://msdn.microsoft.com/en-us/library/d06h2x6e%28v=vs.71%29.aspx

[4] Wikipedia. http://en.wikipedia.org/wiki/Main_Page

[5] The Tech Museum – Degrees of Freedom. http://www.thetech.org/exhibits/online/robots/arms/7deg.html

[6] Hanno's viewport. Sander, I. http://ingrit.com/ingolf/viewport/index.htm

[7] Digital Image processing. González, R.C. Woods, R.E.

[8] Técnicas de segmentación de imagen. Salmerón, A. Pérez Jiménez, A. http://web-sisop.disca.upv.es/~sdv/

[9] Classification of robots. Rapp, Steve.
http://www.hgs.k12.va.us/Engineering_and_Robotics/Robotics/FlashPaperVersion/ROB_Chapter11.html

[10] Rasterización de imagen sintética: rellenado de áreas. Monserrat, C.
http://users.dsic.upv.es/~cmonserr/TID/Bloque1_apuntes.pdf

[11] The method of least squares. J.Miller, Steven.
http://web.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf

[12] AXIS PTZ-212 cameras. http://www.axis.com/files/datasheet/ds_212ptz-v_34051_en_0812_lo.pdf

[13] Logiech Pro 9000 cameras. http://www.logitech.com/repository/1403/pdf/25618.1.0.pdf

57

http://www.logitech.com/repository/1403/pdf/25618.1.0.pdf
http://www.axis.com/files/datasheet/ds_212ptz-v_34051_en_0812_lo.pdf
http://web.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/MethodLeastSquares.pdf
http://users.dsic.upv.es/~cmonserr/TID/Bloque1_apuntes.pdf
http://www.hgs.k12.va.us/Engineering_and_Robotics/Robotics/FlashPaperVersion/ROB_Chapter11.html
http://web-sisop.disca.upv.es/~sdv/
http://ingrit.com/ingolf/viewport/index.htm
http://www.thetech.org/exhibits/online/robots/arms/7deg.html
http://en.wikipedia.org/wiki/Main_Page
http://msdn.microsoft.com/en-us/library/d06h2x6e(v=vs.71).aspx
http://ubaa.net/shared/processing/opencv/
http://www.cplusplus.com/

Annex A – Set of patterns

Pattern # 1

58

Pattern # 2

59

Pattern # 3

60

Pattern # 4

61

Pattern # 5

62

Pattern # 6

63

Annex B – Usage example

Depending on whether we will be using a USB camera or a web camera we will need to choose, respectively,
among the following two sections. Af ter that the final thesis project can be launched.

Setting up Logitech Pro 9000 controller
If we do not launch the software by ourselves it will run upon attempting to access the camera. In
section Web Camera Controller we can adjust some parameters. No tracking, panning and tilting, etc.
features should be used. Zoom is not recommended either. Auto focus is a handy one though.

64

Figure 47 - Logitech web camera controller interface

Setting up Webcam XP
After installing the software we just need to execute it and follow these steps:

65

Figure 48 - Connecting to a web camera

Figure 49 - Choosing camera manufacturer and model

Running final thesis project
If this is not the first time it is launched and a background image was previously loaded, it will be
shown in a separate window and a message will pop up informing us.

66

Figure 50 - Web camera parameters

Figure 51 - Thesis project interface and background-related message

If the last background image was taken some time ago or under different conditions it will be a good
idea, before setting any of the robots or patterns in the scene, to press the button "Fondo" in order to
capture it. If successful, we will be told so and then returned to the main window. Once we have got a
suitable background image it is the right moment to distribute the robots and their patterns.

Let us focus on the "Video!" button now. When clicked the application will enter its main loop and
show graphical output. It is most probably necessary to switch to the binary image output (see section
pii_threshold) to adjust the thresholding value correctly.

At any moment we can change the resolution by using the radio buttons provided for that purpose. The
esc key will take us back to the main window. On the other hand button "Foto!" will perform the same
task, though only to a single frame. Diverse information regarding ellipses and any detected pattern
will be displayed in the main window, using the keybindings in sections Key bindings to navigate
through it.

Finally, it is important to keep in mind that the windows opened by these two buttons cannot operate
simultaneously – any of them active will need to be shut down with esc before the other can be
activated.

67

Figure 52 - Moving patterns identification & location

Annex C – UML

68

