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Abstract

Environmental pollution is one of the main problems that affect our planet. In-
dustrial growth and urban agglomerations, among others, are contributing to the
diversification and chronification of this problem. The presence of environmental
pollutants at high levels affect human health, with air quality and noise levels being
examples of factors that can cause negative effects on people both psychologically
and physiologically.

Traditionally, environmental pollution is measured through monitoring centers,
which are usually fixed and have a high cost. However, the ubiquity of microcom-
puters and the increase in the number of sensors embedded in our smartphones,
have paved the way for the appearance of new strategies to measure such pol-
lution. Thus, Mobile Crowdsensing has become a new paradigm through which
smartphones emerge as an enabling technology, and whose widespread adoption
provides enormous potential for growth, allowing large-scale operations, and with
costs acceptable to our society. Through crowdsensing, smartphones can become
flexible and multipurpose detection units that, through the sensors integrated into
these devices, or combined with new sensors, allow monitoring regions of interest
with good spatial and temporal granularity.

In this thesis, we focus on the design of crowdsensing solutions using smart-
phones. We deal with environmental pollution problems, specifically noise and
air pollution. With this objective, the crowdsensing proposals that have emerged
in recent years are studied in the first place. The results of our study show that
there is still a lot of heterogeneity in terms of technologies used and implemen-
tation methods, although modular designs at both client and server seem to be
dominant.

Concerning air pollution, we propose an architecture that allows measuring
air pollution, specifically ozone, in urban environments. Our proposal uses smart-
phones as the center of the architecture, being these devices responsible for reading
the data obtained by an external mobile sensor, and then sending such data to a
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central server for processing and analysis. In this proposal, several problems have
been analyzed with regard to the orientation of the external sensor and the sam-
pling time, and the proposed solution has been validated in real scenarios. The
results obtained show that the orientation of the sensor and the sampling period,
within certain limits, have very little influence on the captured data. Also, by
comparing the heat maps generated by our solution with the data from the exist-
ing monitoring stations in the city of Valencia, we demonstrate that our approach
is capable of providing greater data granularity.

Concerning noise pollution, we propose an architecture to measure noise levels
in urban environments based on crowdsensing, and whose main characteristic is
that it does not require user intervention. In this thesis, we detail aspects such
as the calibration of smartphones, the quality of the measurements obtained, the
sampling instant, the server design, and the client-server interaction. Besides,
we have validated our solution in real scenarios to demonstrate the potential of
the proposed solution. Experimental results show that, with our proposal, it is
possible to measure noise levels in different urban or rural areas with a degree
of precision comparable to that of professional devices, all without requiring the
intervention of the user, and with reduced consumption of system resources.

In general, the different contributions of this doctoral thesis provide a starting
point for new developments, offering efficient calibration strategies and algorithms
to make representative measurements. Besides, a significant advantage of our
proposal is that it can be implemented straightforwardly by both public and non-
governmental institutions in a short time, as it relies on accessible technology and
open source software.
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Resumen

La contaminación ambiental es uno de los principales problemas que afecta a nues-
tro planeta. El crecimiento industrial y los aglomerados urbanos, entre otros, están
contribuyendo a que dicho problema se diversifique y se cronifique. La presencia
de contaminantes ambientales en niveles elevados afecta la salud humana, siendo
la calidad del aire y los niveles de ruido ejemplos de factores que pueden causar
efectos negativos en las personas tanto psicológicamente como fisiológicamente.

Tradicionalmente, la contaminación ambiental se mide a través de centrales de
monitorización, que por lo general son fijas y tienen un coste elevado. Sin embargo,
la ubiquidad de los microcomputadores, y el aumento de los sensores incorporados
en nuestros smartphones, han hecho posible la aparición de nuevas estrategias para
medir dicha contaminación. Así, el Mobile Crowdsensing se ha convertido en un
nuevo paradigma mediante el cual los teléfonos inteligentes emergen como tecno-
logía habilitadora, y cuya adopción generalizada proporciona un enorme potencial
para su crecimiento, permitiendo operar a gran escala, y con unos costes asumi-
bles para la sociedad. A través del crowdsensing, los teléfonos inteligentes pueden
convertirse en unidades de detección flexibles y multiuso que, a través de los senso-
res integrados en dichos dispositivos, o combinados con nuevos sensores, permiten
monitorizar regiones de interés con una buena granularidad tanto espacial como
temporal.

En esta tesis nos centramos en el diseño de soluciones de crowdsensing usando
smartphones donde abordamos problemas de contaminación ambiental, específica-
mente del ruido y de la contaminación del aire. Con este objetivo, se estudian, en
primer lugar, las propuestas de crowdsensing que han surgido en los últimos años.
Los resultados de nuestro estudio demuestran que todavía hay mucha heterogenei-
dad en términos de tecnologías utilizadas y métodos de implementación, aunque
los diseños modulares en el cliente y en el servidor parecen ser dominantes.

Con respecto a la contaminación del aire, proponemos una arquitectura que
permita medir la contaminación del aire, concretamente del ozono, dentro de en-
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tornos urbanos. Nuestra propuesta utiliza smartphones como centro de la arquitec-
tura, siendo estos dispositivos los encargados de leer los datos de un sensor móvil
externo, y de luego enviar dichos datos a un servidor central para su procesamiento
y tratamiento. En esta propuesta se han analizado varios problemas con respecto
a la orientación del sensor externo y al tiempo de muestro, y se ha validado la
solución propuesta en escenarios reales. Los resultados obtenidos demuestran que
la orientación del sensor y el período de muestreo, dentro de ciertos límites, tienen
muy poca influencia en los datos capturados. Además, mediante una comparativa
de los mapas de calor generados por nuestra solución con los datos de las estaciones
de monitorización existentes en la ciudad de Valencia, demostramos que nuestro
enfoque es capaz de proporcionar una mayor granularidad de los datos.

Con respecto a la contaminación acústica, proponemos una arquitectura para
medir los niveles de ruido en entornos urbanos basada en crowdsensing, y cuya
característica principal es que no requiere intervención del usuario. En esta tesis
detallamos aspectos tales como la calibración de los smartphones, la calidad de las
medidas obtenidas, el instante de muestreo, el diseño del servidor, y la interacción
cliente-servidor. Además, hemos validado nuestra solución en escenarios reales para
demostrar el potencial de la solución alcanzada. Los resultados experimentales
muestran que, con nuestra propuesta, es posible medir niveles de ruido en diferentes
zonas urbanas o rurales con un grado de precisión comparable al de los dispositivos
profesionales, todo ello sin requerir intervención del usuario, y con un consumo
reducido en cuanto a recursos del sistema.

En general, las diferentes contribuciones de esta tesis doctoral ofrecen un punto
de partida para nuevos desarrollos, ofreciendo estrategias de calibración y algorit-
mos eficientes de cara a realizar medidas representativas. Además, una importante
ventaja de nuestra propuesta es que puede ser implementada de forma directa tanto
en instituciones públicas como no gubernamentales en poco tiempo, ya que utiliza
tecnología accesible y soluciones basadas en código abierto.
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Resum

La contaminació ambiental és un dels principals problemes que afecten el nostre
planeta. El creixement industrial i els aglomerats urbans, entre altres, estan con-
tribuint al fet que aquest problema es diversifique i es cronifique. La presència de
contaminants ambientals en nivells elevats afecta la salut humana, sent la qualitat
de l’aire i els nivells de soroll exemples de factors que poden causar efectes negatius
en les persones, tant psicològicament com fisiològicament.

Tradicionalment, la contaminació ambiental es mesura a través de centrals de
monitoratge, que en general són fixes i tenen un cost elevat. No obstant això,
la ubiqüitat de les microcomputadores i l’augment dels sensors incorporats als
nostres telèfons intel·ligents han fet possible l’aparició de noves estratègies per
a mesurar aquesta contaminació. Així, el mobile crowdsensing s’ha convertit en
un nou paradigma mitjançant el qual els telèfons intel·ligents emergeixen com a
tecnologia habilitadora, i l’adopció generalitzada d’aquest proporciona un enor-
me potencial per al seu creixement, ja que permet operar a gran escala i amb
uns costos assumibles per a la societat. A través del crowdsensing, els telèfons
intel·ligents poden convertir-se en unitats de detecció flexibles i multiús que, a
través dels sensors integrats en els esmentats dispositius, o combinats amb nous
sensors, permeten monitoritzar regions d’interès amb una bona granularitat, tant
espacial com temporal.

En aquesta tesi ens centrem en el disseny de solucions de crowdsensing usant
telèfons intel·ligents, on abordem problemes de contaminació ambiental, específi-
cament del soroll i de la contaminació de l’aire. Amb aquest objectiu, s’estudien,
en primer lloc, les propostes de crowdsensing que han sorgit en els últims anys.
Els resultats del nostre estudi demostren que encara hi ha molta heterogeneïtat
en termes de tecnologies utilitzades i mètodes d’implementació, encara que els
dissenys modulars en el client i en el servidor semblen ser dominants.

Pel que fa a la contaminació de l’aire, proposem una arquitectura que permeta
mesurar la contaminació d’aquest, concretament de l’ozó, dins d’entorns urbans.
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La nostra proposta utilitza telèfons intel·ligents com a centre de l’arquitectura, sent
aquests dispositius els encarregats de llegir les dades d’un sensor mòbil extern, i
d’enviar després aquestes dades a un servidor central per al seu processament i
tractament. En aquesta proposta s’han analitzat diversos problemes pel que fa
a l’orientació del sensor extern i al temps de mostratge, i s’ha validat la solució
proposada en escenaris reals. Els resultats obtinguts demostren que l’orientació
del sensor i el període de mostratge, dins de certs límits, tenen molt poca influèn-
cia en les dades capturades. A més, mitjançant una comparativa dels mapes de
calor generats per la nostra solució amb les dades de les estacions de monitoratge
existents a la ciutat de València, vam demostrar que el nostre enfocament és capaç
de proporcionar una major granularitat de les dades.

Pel que fa a la contaminació acústica, proposem una arquitectura per a mesurar
els nivells de soroll en entorns urbans basada en crowdsensing, i la característica
principal de la qual és que no requereix intervenció de la persona usuària. En
aquesta tesi detallem aspectes com ara el calibratge dels telèfons intel·ligents, la
qualitat de les mesures obtingudes, l’instant de mostratge, el disseny del servidor
i la interacció client-servidor. A més, hem validat la nostra solució en escenaris
reals per a demostrar el potencial de la solució assolida. Els resultats experimen-
tals mostren que, amb la nostra proposta, és possible mesurar nivells de soroll
en diferents zones urbanes o rurals amb un grau de precisió comparable al dels
dispositius professionals, tot això sense requerir intervenció de l’usuari o usuària,
i amb un consum reduït quant a recursos del sistema.

En general, les diferents contribucions d’aquesta tesi doctoral ofereixen un
punt de partida per a nous desenvolupaments, i ofereixen estratègies de calibratge
i algorismes eficients amb vista a realitzar mesures representatives. A més, un
important avantatge de la nostra proposta és que pot ser implementada de forma
directa tant en institucions públiques com no governamentals en poc de temps, ja
que utilitza tecnologia accessible i solucions basades en el codi obert.
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Chapter 1

Introduction

1.1 Motivation

Currently, human beings are contributing to the degradation of the environ-
ment, which has become one of the most significant problems for humanity.

The economic growth, the industrial development, the increasing number of vehi-
cles in circulation, and large metropolis, create a series of conditions that affect, to
a lesser or greater extent, the quality of the environment. In these circumstances,
industrialized societies have altered the ecosystem by introducing different types
of pollutants, including air pollution, water contamination, soil contamination,
noise pollution, and thermal and radioactive contamination, among others.

In general, these pollutants are harmful to human health in different ways.
In particular, people living in urban environments are prone to experience high
air pollution levels, as well as increasing environmental noise. The first of these
problems clearly affect the life quality of people, causing health problems, and
also having a negative impact on the whole planet by provoking climatic changes
and reduced agricultural production [3, 93, 94]. Regarding the second problem,
it has been shown that people subjected to a certain level of noise can present
alterations such as loss of hearing ability, disturbed sleep and rest, communication
difficulties, irritability, aggressiveness, as well as problems to develop attention
and mental concentration.

Taking the issues mentioned before into account, current concerns for envi-
ronmental protection require undertaking a constant supervision. Traditional so-
lutions based on static environmental monitoring stations, are in general charac-
terized by having high costs and large sizes, thereby allowing to obtain pollution
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1. Introduction

values with a high precision, but with a low level of granularity. On the other
hand, technological developments have enabled the used of alternative approaches
based on crowdsensing to take advantage of the resources and sensors integrated
into smartphones, promoting collaborative monitoring in densely populated areas.

In this regard, crowdsensing solutions aimed at monitoring environmental noise
and air quality are characterized by having designs where the quality of the data
obtained, as well as energy consumption issues, have not been fully addressed.
Therefore, getting an integral and reliable solution that allows measuring the lev-
els of environmental contamination through crowdsensing could be an effective
approach to facilitate the establishment of effective policies to improve our envi-
ronment.

1.2 Objectives and Methodology

The main objective of this thesis is the creation and development of crowdsensing
solutions for monitoring environmental pollution using smartphones, and requiring
a minimum user intervention. Specifically, we will propose a solution for measuring
air quality, and another solution to measure noise levels in urban environments.

To achieve the general goals of the thesis, the following specific objectives are
defined:

• Study the state of the art to determine the most relevant contributions in the
crowdsensing area and propose a generic crowdsensing architecture based on
a client-server approach.

Regarding air pollution:

• Propose a solution for environmental monitoring for measuring air pollution
(specifically, ozone levels), including sensors, Android applications, and a
web-based cloud application, and validate the proposed solution through
real experiments.

• Analyze the data sampling process on how to properly calibrate the sensor,
and how to reduce time variability.

• Study the best strategy to use mobile sensors by first determining the in-
fluence of sensor orientation on the captured values, and then analyzing the
influence of time and space sampling in the interpolation process.

• Validate the proposed architecture through comparison against infrastructure-
based data.

Regarding noise pollution:
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• Study the feasibility of using commercial smartphones as noise level measure-
ment units by determining their accuracy when compared to a professional
noise measurement unit.

• Determine the best sampling strategy and algorithm to retrieve noise level
samples using different types of smartphones.

• Determine the most adequate strategy for capturing environmental noise
using smartphones by accounting for their context while minimizing energy
consumption.

• Develop an Android application for noise sensing offering reliable and mean-
ingful measurements.

• Develop a web interface based on central management of crowdsensing tasks
accounting for spatial and temporal restrictions, and offering transparent
task dissemination to the system users.

• Validate the proposed noise sensing architecture in real environments.

Regarding the methodology used in this thesis, first the different sensors adopted
will be calibrated by relying on professional devices, which will be used as refer-
ence. Then, a development phase will follow where the different restrictions of the
crowdsensing architecture are taken into account for creating both the client and
the server software sides. Finally, the effectiveness of the proposed crowdsensing
architecture will be assessed through real field tests.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. In the next chapter, we present the
state of the art regarding smartphone-based crowdsensing solutions. To properly
analyze these previous works, we first define a reference framework based on which
we proceed to classify the different proposals. Chapter 3 we present an overview of
the environmental pollution problem. Chapter 4 presents Ecosensor, an architec-
ture that enables performing air quality measurements based on crowdsensing. In
Chapter 5 we present our full architecture for noise pollution monitoring. Chapter
6 details the procedure to achieve accurate ambient noise levels using commercial
smartphones. In Chapter 7 we show how to make sure that meaningful noise val-
ues are obtained by proposing a decision tree that avoids invalid samples while
minimizing resource consumption. In Chapter 8 we present the validation of the
proposed architecture in real environments. Finally, In Chapter 9 we present the
conclusion of this work, as well as ideas for future work. It also includes a summary
of the different publications related to this thesis.
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Chapter 2

Smartphone-based CrowdSensing:
Existing Solutions

In this chapter, we analyze a set of previous works regarding crowdsensing solutions
based on smartphones. To this aim, we first describe the mobile crowdsensing
concept and analyze different surveys carried out to date. Then, we propose a
taxonomy to classify the existing proposals adequately, and we do proceed to
analyze, with appropriate discussion the different works available in the literature
from the perspective of the proposed taxonomy.

2.1 The CrowdSensing concept

The use of mobile phones has experienced a significant increase in the past
decade. In fact, according to the 2015 International Telecommunication

Union (ITU) report [56] for 2015, the ratio of cellular phone subscriptions was
97%, which represents 7084 million subscribers in the world. In addition, this
subscriber increase is reflected in the technological advantages offered by mobile
devices. Furthermore, mobile devices available nowadays have a high compu-
tational power, and include different communication technologies (e.g., WiFi, 4
Generation Telecommunication (4G), Bluetooth), and have multiple embedded
sensors (e.g., Global Positioning System (GPS), gyroscope, accelerometer, micro-
phone and camera, among others). This technological growth, together with the
increasing number of subscribers, has caused the community of researchers and
developers to create different applications using smartphones as sensors.
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Cloud Data Collection Servers

Mobile Sensing Client

External Sensors
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Services Technology
Communications Technology

Figure 2.1: Generic structure of crowdsensing solutions.

Pioneering research anticipated the arising of such new applications, describing
them as “participatory sensing” [22] or “people-centered sensing” [25]. In both
cases, the idea is that the user should be able to gather data anywhere, anytime,
by making use of mobile sensor devices for information retrieval, processing and
sharing. Later on, researchers considered this new paradigm as a subtype of
crowdsensing denoted as “mobile phone sensing” [72].

Mobile phone sensing benefits from the processing and communication capabil-
ities of available smartphones which, combined with one or more sensors, becomes
an enabling technology to support different types of applications. Moreover, mo-
bile crowdsensing relies on a large number of participants to collect data from the
environment through its integrated sensors and, after capturing the data, these
data are sent to a server to perform data mining tasks including data-fusion,
analysis, and information dissemination. Typically, sensors that register partici-
pant information (e.g., location, movements) and environmental data (e.g., images,
sounds) are very common. On top of that, some solutions use external sensors,
which are integrated into the mobile solution through its communication inter-
faces, including sensors for environmental pollution and health monitoring. In
this sense, mobile crowdsensing provides new perspectives for improving living
conditions in our digital society. A general example of a mobile crowdsensing
solution is shown in Figure 2.1.
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2.1. The CrowdSensing concept

To date, we can find different surveys that study and summarize the many
existing proposals. Below we proceed to describe briefly the different surveys
found in the literature according to their chronological order of publication.

• Lane et al. [72] made a pioneer survey addressing the use of mobile phones as
sensors, analyzing the significant progress mobile phones have experienced
in order to incorporate multiple sensors. Also, they describe various existing
proposals according to certain algorithms, applications and systems devel-
oped to date. Similarly, they describe some proposals grouped by areas such
as transportation, environmental monitoring, and health. They also propose
an architecture composed by three different elements dedicated to sensing
(mobile phone), learning (analysis) and informing (shared data).

• Ganti et al. [44] proposed the term Mobile Crowd-Sensing (MCS) and de-
scribed a reference architecture. This survey only showed a few proposals
categorized as participatory (users are involved) and opportunistic (users are
not involved). Additionally, it identifies some characteristics that influence
these solutions such as limited resources, privacy and security, data integrity,
data aggregation and data analytics.

• Khan et al. [68] present a taxonomy where they differentiate between person-
nel sensing, social sensing and public sensing. This classification is performed
from the point of view of participatory and opportunistic sensing.

• Zhang et al. [148] propose an approach which characterizes the various
crowdsensing proposals in four stages: task creation, task assignment, in-
dividual task execution, and crowd data integration. These features are
described as What, When, Where, Who, and How (4W1H).

• More recently, both Zhang et. al. [152] and Jaimes et al. [58] proposed a
classification based on incentive mechanisms for mobile crowdsensing. The
former classified incentives into three categories: entertainment, services,
and economic. The latter used incentive mechanisms as metrics to evaluate
crowdsensing, and introduced a tree-level taxonomy for crowdsensing incen-
tive mechanisms. In the same context, different authors [60, 123, 61] propose
incentive mechanisms that rely on auction techniques for evaluating quality
awareness in the mobile crowdsensing context. In particular, the first uses
combinatorial auction models, while the second extends that work by intro-
ducing more fine-grained techniques; concerning the third work, it proposes
a framework that integrates incentives, data aggregation and data perturba-
tion mechanisms. However, they did not propose any reference architecture,
addressing solely the taxonomy of their proposals, and the algorithms sup-
porting these proposals.
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• Guo et al. [47] propose a new sensing paradigm called Mobile Crowd Sensing
and Computing (MCSC) that empowers ordinary citizens to contribute data
sensed or generated from their mobile devices, aggregating and fusing the
data in the cloud for crowd intelligence extraction and human-centric ser-
vice delivery. This paper proposes a taxonomy and a reference architecture
for MCSC. In the taxonomy the proposals are classified as: mobile sensing
(user involvement, data contribution, user awareness, sampling), crowd data
collection (networking, incentives, scale), crowdsourced data processing and
intelligence extraction (processing architecture, intelligence, purpose, data
mining, data quality), hybrid human-machine system, and security & pri-
vacy. With regard to the architecture, the proposals presented in this paper
are divided into several levels: crowdsensing, data collection, data process-
ing, and applications.

As it quickly becomes evident through this brief state-of-the-art analysis, to
date only few surveys [44, 148, 152, 58, 47] specifically addressed existing crowd-
sensing solutions, is that some authors focused on specific issues such as incentives,
and yet others focused on sensing styles. Instead, in this chapter, we will propose a
reference client-server architecture. Then, based on that architecture, we proceed
to classify up to 64 different proposals, thus providing a more comprehensive view
than the surveys presented before on this topic (see Table 2.1 for details). No-
tice that the number of peer-reviewed publications only takes into account those
references actually classified according to the proposed taxonomies.

Figure 2.2 shows the number of crowdsensing-related proposal search on differ-
ent impact journal and conference, and that mobile crowdsensing applications have
experienced a significant increase in the last five years. Specifically, researchers
have focused their efforts on various areas including environment monitoring [105,
108, 113, 145], transportation and urban sensing [6, 26, 67, 75, 117], healthcare
[54, 78, 100, 128, 155], social issues [21, 49, 83, 92, 130], and others [38, 97, 103,
135, 146].

Table 2.1: Crowdsensing surveys.

Solutions Year # Publications reviewed
Lane et al. [72] 2010 25
Ganti et al. [44] 2011 13
Khan et al. [68] 2013 43

Calabrese et al. [23] 2014 26
Zhang et al. [148] 2014 15
Zhang et. al. [152] 2015 32
Jaimes et al. [58] 2015 22
Guo et al. [47] 2015 41
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Figure 2.2: Number of Crowdsensing-related proposals in the past 5 years.

The different crowdsensing proposals available are characterized by having dif-
ferent designs, and involve different architectural levels. For instance, some au-
thors propose solutions they call framework, middleware, or system, among other
terms. No matter which term is used, these solutions can have a global approach
(full architecture), or only specify a subset of the architecture by describing one
or more components.

2.2 Reference Architecture for Mobile CrowdSensing

In this section, we propose a client-server design which can be adapted to the
different mobile crowdsensing architectures available in the literature. By making
the different proposals fit into our architecture, in sections that follow it will then
become straightforward to compare these proposals in terms of scope, complexity,
and completeness.

Our proposed architecture integrates two main modules: the Mobile Sensing
Client (MSC) module, and the Cloud Data Colletion Server (CDCS) module.
These two modules are connected to each other through a Data Transmission
network, as shown in Figure 2.3. The MSC is the mobile phone, or the set of
mobile phones, that provide sensing functionality by capturing data, and then
relaying that data to the CDCS. The latter is a single server or a server farm that
allows receiving, processing, analyzing, and sharing sensed data. Typically, data
sharing also includes the delivery of reports to participants MSC.

For both the MSC and the CDCS we have considered four subcomponents,
some of them sharing common characteristics on both MSC and CDCS. For in-
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Figure 2.3: Proposed Mobile CrowdSensing architecture.

stance, both Client Interface Manager (CIM) and Server Interface Manager (SIM)
provide a graphical interface to a regular user or to the system administrator
through the respective Interface Managers. On the bottom of the architecture,
the Server and Client Communications Manager (CCM) have also a similar pur-
pose, typically being the component on the client that establishes connections with
the server component since it should always be available. Nevertheless, configura-
tion and task instructions, along with data reports, can also be transmitted from
the server to client through a push procedure.

The Data Management components at client and server sides, also have some
similarities, both being responsible for data processing, storage, and query. The
main difference between these subcomponents is that, in the CDCS, the computa-
tion, storage, and analysis is made at a level and dimension that is clearly superior
to the one made at the client, which has fewer resources.

Two distinctive components in our architecture are the Client Sensor Manager
(CSM), responsible for the administration of the sensors, and the Server Task
Manager (STM), that handles different tasks mostly related to data processing.
Below we proceed to describe the different architectural elements in more detail.
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2.2.1 Mobile Sensing Clients (MSCs)

In the scope of mobile crowdsensing, the main goal of the mobile client devices is
performing data sensing, and forwarding sensed data to the main server, although
global data reports can also be returned to clients.

Concerning the target areas to be sensed, these can differ greatly depending on
the type of application (inside buildings, outdoor, underground, in public places,
etc.). In addition, each specific application will also have different requirements in
terms of required sensors. For instance, sensors able to monitor the environment
greatly differ from those able to monitor social interactions or the effectiveness of
public transportation. In addition, sensing tasks can be triggered automatically
(either periodically or based on events), or manually through an explicit user inter-
vention. Typically, automatic mechanisms follow server instructions, while manual
interactions are made possible through a user interface specifically developed for
that purpose. Independently of the actual mode of operation, the application can
offer certain incentives in the form of a game [119] or other approaches, to mo-
tivate users into adopting it. Such incentives become specially important when
the user interest in the global generated data is based on the aggregation and
processing of all measurements at the server. Also, it often occurs that the user
interest remains low (e.g., data being sensed is not a concern to the user); in those
cases, complementary sources of motivation are required to make users run the
crowdsensing application.

Focusing on the client architecture, Figure 2.4 shows that, to support all user
activities, we have a set of managers responsible for all tasks: Client Interface
Manager (CIM), Client Data Manager (CDM), Client Sensor Manager (CSM)
and Client Communications Manager (CCM). Each of these four components
has a controller subcomponent, being the different controller elements the ones
actually responsible for supporting bidirectional interactions between the different
system elements. We now proceed to detail each of the Client components.

Client Interface Manager (CIM)

This component allows applications to interact with the user (Graphical User
Interface (GUI)). The user interface allows displaying the values obtained from
sensors in real time, to visualize previous traces through a query to its internal
data storage, or to query the server in order to retrieve global data reports about
a specific target area. The values can be visualized through the use of graphics,
maps, or other forms of representation. To achieve this goal two subcomponents
are proposed: the Client User Interface, and the Interface Controller:

• Client User Interface. It allows configuring the different parameters asso-
ciated to sensing tasks, such as regulating the data acquisition frequency,
defining when data should be sent to the server, and also when captures
should start and stop, among others. It can also show the user feedback
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Figure 2.4: Mobile Sensing Client (MSC) Components.

about ongoing or past captures, as well as global reports. It is worth high-
lighting that some crowdsensing solutions have no interface at the client side,
meaning they only process captured data and relay them to the server.

• Interface Controller. It provides the needed services to format data for
presentation through the User Interface. For this endeavor, it must interact
with the local storage or with the server, and it may rely on different external
libraries as well (e.g. graphical representation of captured values in a map
using Google Maps).

Client Data Manager (CDM)

This element, responsible for data handling and storage, is one of the main archi-
tectural elements of the client. It is composed by five different subcomponents:
Data Controller, Plugin extensions, Data Processing, Local Storage, and Query.
We now proceed to detail each of them:
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• Data Controller. It is the most critical subcomponent, providing the services
and functions required to interact with the different subcomponents of the
CDM. This interaction is made with the client via the Interface Controller,
with the server via the Communications Controller, and with the sensors via
the Sensor Controller. Also, it can handle data collection tasks as defined by
the user, or defined by the server through task pushing. It includes classes
and methods to start, stop, and configure these tasks.

• Plugin extensions. This element allows integrating specialized plugins for a
specific task such as data analytics, or to add listeners to social networks
including Facebook and Twitter, among others. The advantage of these plu-
gins is that they can be easily incorporated to mobile devices via repositories
such as Google Play or similar ones. Additionally, it allows plugging-in a
set of algorithms that perform functions including audio processing, online
programming algorithms, and spatial coverage analysis.

• Data Processing. This element processes raw data based on application re-
quirements before displaying them to the end user or submitting them to
the server. Although data processing can also be executed at the server side
CDCS, doing it at the client allows reducing the amount of unnecessary data
produced by sensors, while also maximizing energy savings and communi-
cations bandwidth, and so it is often preferred. Typically, data processing
elements include either filtering, aggregation, or both functions. An example
of filtering is the removal of unnecessary data fields. Examples of aggrega-
tion/fusion of data include the unification of data from different sensors, or
of different samples from the same sensor.

• Local Storage. This element allows storing the captured data in a local data
structure, which is usually a simple database like SQLite. Some solutions
available in the literature skip this component, and they only process data
and forward them to the CDCS. The local storage allows users to perform
queries, inserts, updates, and deletes to the data according to application
requirements. Typically, when storing data coming from sensors, it is often
preprocessed before storage. In the context of crowdsensing applications,
the main types of data stored include location information, energy levels,
and sensor-specific values.

• Query. This element allows, through structured language queries, to access
data from sensors. In particular, it will interact with all the components that
make up the CDM. Among its typical features, one that stands out is the
use of mobile analytics for optimizing data streaming from sensors. In some
cases, this component facilitates the interaction with external databases at
the CDCS in order to retrieve global data reports.
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Client Sensor Manager (CSM)

The Client Sensor Manager is the element responsible for the actual sensing tasks.
Typically, it relies on high-level sensor abstractions to manage the underlying
physical sensors (internal or external) as well as virtual sensors. Its functions
usually include sensor discovery and sensing capabilities. Furthermore, it manages
the sensor sampling frequency, as well as the preprocessing of captured data. The
preprocessing executed at the CSM is only performed if necessary and considering
the actual characteristics of the sensor. Finally, the integration of external sensors
and virtual sensors is performed by the sensor controller via the communications
manager.

The CSM has five subcomponents: Sensor Controller, Preprocessing, Sensor
Input/Output (I/O) Manager, Physical Sensor and Virtual Sensor. Below we
describe each of its components:

• Sensor Controller. It enables access to the services offered by the Sensor
Manager, thus providing access to virtual sensors, gyroscope, and GPS,
among others.

• Preprocessing. It allows the data delivered by the Sensor I/O Manager to be
processed before being passed to other components. An application example
is an audio capture which must be classified into voice and non-voice regions
so that the individual speaker is segmented. Another example is the raw ac-
celerometer data that is provided for the three axes, which can be combined
to obtain the total value. In some cases, these raw data can be processed at
both CSM and CDM.

• Sensor I/O Manager. It allows a level of abstraction for accessing both
physical and virtual sensors, getting the raw data for subsequent treatment.
This way, upper layers do not have to be aware of the type of sensor (phys-
ical/virtual) and its actual location.

• Local Sensor. These are sensors available either on mobile devices them-
selves, or nearby external sensors directly accessible by the mobile device.
Concerning the type of sensor, most internal sensors used belong to the
generic or media type. Generic sensors are those sensors embedded in mobile
devices for general-purpose applications. Examples of these sensors include:
GPS, accelerometer, gyroscope, magnetometer, and barometer, among oth-
ers. With regard to media sensors, it refers to embedded sensors that provide
support to multimedia applications via microphone or camera. Finally, ex-
ternal sensors typically extend the sensing functionality by providing sensing
capabilities not supported by the smartphone itself.

• Virtual Sensor is a logical type of sensor based on an abstract class that
acts as a wrapper, encapsulating information that can be produced by a
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real sensor, a mobile phone, or a combination of other virtual sensors. Vir-
tual Sensors can have multiple input data streams that can be other virtual
sensors or sensors accessible through a network, but there can be only one
output data stream towards the sensing application. The Global Sensor Net-
works (GSN) standard data model [71] is a good example of such a class of
sensors.

Client Communications Manager (CCM)

The Client Communications Manager is responsible for the transmission and re-
ception of the data through the network. Since nowadays mobile phones include
several communication interfaces including Wireless Fidelity (WiFi), Bluetooth,
or Cellular, this empowers them to communicate in all sorts of environments, being
able to adapt to different network topologies (centralized, distributed, or hybrid).
The MSC may transfer the data to a primary server (centralized), toward several
servers (distributed), or among themselves Peer-To-Peer (P2P). The latter occurs
when there are nodes that serve as intermediaries for the transmission of data
between nodes, and that have a limited ability to process and filter data from the
sensor.

The CCM is composed by two subcomponents: the Communications Controller
and the Native Networking - Application Programming Interface (API). In detail,
these subcomponents are responsible for the following tasks:

• Communications Controller. It provides access to the services of the under-
lying communications network, allowing to create a data channel towards
the CDCS. In particular, it is an abstract component that allows encapsu-
lating Simple Object Access Protocol (SOAP) and Representational State
Transfer (RESTful) web services, where the first is an Extensible Markup
Language (XML)-based protocol that uses service interfaces to expose the
business logic, and the second is an architectural paradigm that supports
different data formats including JavaScript Object Notation (JSON), XML,
Hypertext Markup Language (HTML), and Plain Text (TXT). Since com-
munication between clients may also be required, this component will be
endowed with P2P networking capabilities, possibly acting as a relay be-
tween other clients and the server(s).

• Native networking API. This component is inherent to each mobile operating
system platform, and it is the one providing the actual establishment of end-
to-end connections between client and server.

2.2.2 Cloud Data Collection Server

In the context of Crowdsensing applications, the main goal of the server compo-
nent, which may physically consist of a single server or a server farm, is to collect
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all data gathered by the different clients, storing the data, and then performing all
sorts of data analytics. Then, to provide the administrator or clients themselves
with a summary of the most relevant information. Also, the server allows defining
and automating some of the data collection tasks. For example, the administrator
can create new tasks, and these can be deployed to clients either automatically or
manually; an example of this can be the collection of the noise levels for a given tar-
get area during a given period of time. Figure 2.5 shows our proposed architecture
for the CDCS, which includes four components: Server Interface Manager (SIM)
, Server Task Manager (STM), Server Data Manager (SDM), and Server Com-
munications Manager (SCM). Notice that each of these components includes a
controller. Such controllers have a critical function in the scope of our archi-
tecture, as it is the communication between adjacent controllers that allows the
different components to work together, similarly to the situation at the client side.
Compared to clients, CDCS elements have much greater processing and storage
capabilities. Thus, data are typically processed for a better understanding through
different statistical techniques (Data Mining). Also, the management interface is
usually web-based, allowing the administrator to manage, visualize and share large
amounts of data easily.

Depending on network scalability requirements, servers may work in either
centralized, distributed, or cloud-based environments. The latter allows to benefit
from deployment facilities, reduced cost, and optimized resource usage, thereby
minimizing infrastructure requirements. Concerning available technologies, server
solutions may rely on a wide range of platforms, from distributed architectures in
the cloud such as Amazon Web Services (AWS) infrastructure services (Amazon
Elastic Compute Cloud (EC2) and Amazon Simple Cloud Storage Service (S3))
[35], and Google Cloud Messaging (GCM) [36], to open source approaches such as
Apache Tomcat [103, 84, 112, 65], BPEL4People [31, 55], WS-HumanTask, and
JBoss JBPM [54].

Below we describe in more detail the different components at the server side.

Server Interface Manager (SIM)

The Server Interface Manager is responsible for the interaction between user and
system for task and data handling. It includes two components: the Server User
Interface and the Interface Controllers.

• Server User Interface. It allows the user to manage and schedule sensing
tasks interactively. It also supports the visualization of charts relative to
sensed data. Both these actions are performed using a graphical interface
that is in general web-based, meaning that the system manager can operate
remotely.

• Interface Controller. This is the component actually in charge of communi-
cating with other components to meet the service requirements. An example
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Figure 2.5: Cloud Data Collection Server Components.

is the programming of a sensing task, where the interface controller coordi-
nates with task controllers for task planning and dissemination, and with the
data controller for handling data storage. In addition, it also provides API to
allow developers to participate in the development of different crowdsensing
applications and services.

Server Task Manager (STM)

Task Management is one of the main components at the server side according
to our proposed architecture, being responsible for the planning, scheduling, and
pushing of crowdsensing tasks. Tasks can be deployed to mobile devices either
manually or automatically, and in general, they rely on a system-specific language
that typically differs from one solution to another due to lack of standardization.
It is also worth highlighting that most implementations rely on open source tools.

The subcomponents that integrate the STM are the following:
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2. Smartphone-based CrowdSensing: Existing Solutions

• Task Controller. It works as a handler, providing the functionality required
by the server task manager. Typically it must attend administrator requests
and may push new scheduled tasks onto clients. It can also make use of
learning or approximation algorithms that optimize data collection in order
to minimize energy/resource consumption at the client side. Additionally,
this subcomponent includes classes and methods to start, stop, and configure
the different tasks. Finally, it provides the services and functions required to
interact with the other controller components. To contact with clients, some
implementations are based on Publish/Subscribe approaches where a server
(or servers) provides a set of services to users. Additionally, in many of
these publish/subscribe systems, the server can take intermediary functions
where publishers send the messages to such intermediary server (broker),
and the subscribers subscribe to information considered to be of interest,
thus making this server responsible for handling the filtering, storage, and
management toward the subscribers.

• Task Definition and Scheduling. Among its features we can find the alloca-
tion of time and frequency of sensing, the number of mobile devices to be
enabled for data collection, and the characteristics of the sensor to monitor,
among others.

• Task Deployment. It allows the deployment of tasks to MSCs, which can
be a mere set of instructions interpreted by the existing applications. To
support this option, a language defined by the application is often used,
and it is typically based on Structured Query Language (SQL), XQuery, or
XML. Alternatively, a new application/component is pushed to the mobile
terminal whenever new functionalities must be supported.

• Task Storage. This component is responsible for the storage of current and
past tasks. Since requirements are typically low, any database system suf-
fices. In fact, it is not necessary to rely on a standard database, being also
common to use a set of files, where each file describes a single task.

Server Data Manager (SDM)

This component is responsible for the processing, storage, and analysis of the data.
It is composed of a data controller, middleware APIs, a data processing element,
a query and analysis element, and a database. Below we describe in more detail
each of these components.

• Data Controller. It offers access to the services offered by the SDM, sup-
porting a set of algorithms or applications that allow handling of data in
collaboration with the task controller, interface controller, and other system
components. In addition, it acts as a handler for communications to/from
middleware APIs.
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2.2. Reference Architecture for Mobile CrowdSensing

• Middleware API. A middleware API is typically an extension providing more
sophisticated data processing/analysis. It can incorporate data analysis tools
such as Data Mining, analytical libraries or other, allowing to easily handle
large volumes of data. Deployments at this level can be drivers or web
services that enable access to databases through Java Database Connectivity
(JDBC) or other methods, such as CUPUS [11] and CAROM [146], which
additionally provide data fusion and data filtering techniques.

• Data Processing. The functionality of this component is similar to the data
processing made at the client CSM. The main difference is the volume of data
that has to be handled at the server side. Typically, it provides functions to
filter and merge multiple streams of data, providing aggregation levels that
clearly surpass those levels achievable at the client side. With this purpose,
it uses techniques that require a higher level of processing, such as Fluid
Structure Interaction (FSI) [146], among others.

• Query and Analysis. This component integrates both query and data analy-
sis functionalities. It allows, through a structured query language, to access
the resources available at the server’s database. Additionally, it can rely on
different analysis tools to meet the requirements of other system components.

• Database. This component provides a database management system that
allows storing the gathered data coming from the different Mobile Sensing
Clients (MSCs). In the scope of the SDM, it is mandatory since it is a basic
system requirement. It should be noted, though, that the database itself
is not necessarily contained in a single server, and so distributed storage
environments are contemplated as well. Common database management
systems include MySQL and PostgreSQL, among others.

Server Communications Manager (SCM)

The Server Communications Manager is responsible for interacting with the differ-
ent clients, having characteristics similar to the Client Communications Manager.
The interaction with clients is bidirectional: we have transmission toward the
client when pushing new tasks, and we have transmissions from clients when re-
ceiving sensed data. The SCM has two main components, the Communications
Controller, and the Native networking API, both of which we now detail:

• Communications Controller. It offers the services necessary to establish com-
munication between the MSC and the CDCS, usually as listeners for data
gathering, or starting connections when task pushing is required. Addition-
ally, it can rely on high-level communication services like SOAP, and can
also have adapters for any specific protocol or method of communication
used by different server components. An example can be a REST-SOAP
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2. Smartphone-based CrowdSensing: Existing Solutions

Adapter, which receives a SOAP request and adapts it to a REST-service
format.

• Native networking API. This component is the one responsible for actually
communicating with client devices through the establishment of end-to-end
connections. Typically, reliable Transmission Control Protocol (TCP) con-
nections are established.

2.3 Analysis of existing CrowdSensing proposals

In this section, we provide an analysis of the different solutions available in the
literature, using the architecture proposed in section 2.2 as a reference for our clas-
sification. For our study, we focused on research works published in the crowdsens-
ing field during the past five years, with a special emphasis on smartphone-based
crowdsensing solutions.

For the sake of clearness and completeness, our analysis was split into four
well-defined parts: (1) general analysis, (2) client-side analysis, (3) server-side
analysis, and (4) data delivery approaches. The first part presents a general anal-
ysis of an extensive set of the various proposals and performs a synthesis of the
different contributions in the scope of our architecture. In the second part we have
addressed in more detail those proposals detailing a client-side architecture, that
is, describing the Client User Interface (CUI), CDM, and MSC components, while
for the third one we detail server-side architectures, describing the SIM, STM, and
SDM components. Also, we have assessed to what degree the different solutions
can provide all the functionalities envisioned in our proposed architecture. It is
worth highlighting that both client and server analysis include not only propos-
als specific to client/server sides but also global solutions whenever they provide
details about all the elements involved in the end-to-end interaction.

Finally, we have classified those solutions by providing details about the com-
munications system defined for clients to server interactions, and also about sup-
ported topology, selected technology, and other relevant features. Again, for this
data delivery analysis, any proposal providing enough details was included, no
matter how broad or how specific was the proposal itself.

2.3.1 General analysis

In our general analysis of the different crowdsensing solutions, we have classified
information based on three parts. In the first one we provide generic information
about the different proposals, in the second one we describe aspects related to
security/privacy and energy consumption, and finally we provide a summary of
contributions for each proposed architecture. This classification and characteriza-
tion is presented in Table 2.2.
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General features

With regard to the general features, we found that the vast majority of solutions
propose an integral solution to the sensing tasks at both client and server sides.
Other solutions propose a specific middleware to help in the tasks of data collection
and processing.

Concerning the strategy adopted for data collection, most proposals opted for
a participatory approach for data sensing where users are fully aware of the data
collection process, and they actively participate in that process. Other approaches,
however, prefer using opportunistic systems that operate in a more autonomous
manner, gathering information in the background at appropriate times; finally, a
few proposals combine these two approaches to achieve a more complete function-
ality.

Regarding the target applications addressed in the different works, we found
that the majority of the proposals are flexible enough to embrace heterogeneous
applications, i.e., they can adapt to generic sensing tasks, although we can also
find proposals that are specific to transportation and urban sensing environments,
and to a lesser extent to health, social, and other environments.

Finally, with respect to the number of differentiated elements defined for each
proposed architecture, we found that there are significant differences among au-
thors. For instance, [128, 55, 84] split their proposed functionality into four dif-
ferent levels, similarly to our proposal. In particular, NoizCrowd [128] defines an
architecture based on four components which are: Data Gathering, Data Storage,
Noise Modeling, and Data analytics/visualization. SmartCity [55] also defines a
four-element architecture composed of Social Networks, Ubiquitous Sensors, a Mo-
bile Context-Aware Platform, and the Cloud Platform. MCSaaS [84] defines four
core sub-modules, namely Cloud Broker, Orchestrator, Customization Service, and
Deployment Manager. In general, most proposed architectures only defined two
or three levels, as is the case of [117], which defines a generic publish-subscribe
communication with three roles (producers, services providers, and consumers),
along with Analytics Components.

Privacy and Energy issues

In general, the success of mobile crowdsensing applications is dependent on how
each solution addresses user concerns about their his/her own privacy. In the
context of mobile solutions for measuring environmental noise, an example could
be a solution where noise is captured raw, and forwarded to a server. Another
problem is the personal information when reading any sensor, damaging the user’s
privacy in the same action. The users’ mobile energy consumption is another
critical issue, as most users will reject applications draining a significant amount
of battery power. So, both energy and privacy issues are relevant in the scope of
crowdsensing solutions, a reason why different researchers have addressed them.
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2. Smartphone-based CrowdSensing: Existing Solutions

Our analysis has shown that most studied proposals have addressed energy
efficiency issues, while only some of them have introduced mechanisms to mitigate
security and privacy concerns. In fact, we find that only a few solutions [38, 113,
2, 83, 134] actually account for both privacy and energy efficiency issues. We now
proceed to discuss these prominent solutions in more detail.

PRISM [38] supports privacy through a registration process on a PRISM server
for each enabled terminal. The registration is maintained by software and it expires
within a given period of time. When the registration period expires, terminals wait
for a random time and proceed to register again. Concerning energy consumption,
PRISM maintains a control of energy consumption on mobile phones through its
prism sandbox, which is able to perform coarse-grain power monitoring.

Anonysense [113] uses a server that is responsible for registering and autho-
rizing mobile phones. During registration, Anonysense installs its software along
with the Internet Protocols (IP) addresses and certificates for its task service and
report service. Concerning energy consumption, the tasks can be divided into two
sub-operations: sensing and signing. In the first, the RogueFinder application is
used to detect rogue Access Points (APs) in a given area, while the ObjectFinder
application attempts to find a specific Bluetooth Media Access Control (MAC)
address. The second group addresses whether a data report contains sensitive
data. Additionally, it estimates the energy cost associated to these operations.

Usense [2] includes a component for securing communications. Additionally,
it manages user preferences in terms of resource and privacy restrictions. These
features are processed through the sensing agent, which is an application deployed
on the device itself. In addition, Usense’s middleware is able to save energy using
a mechanism that avoids taking measurements in those areas where it already has
enough data, or when the phenomenon is mostly invariant.

SenSocial [83] has a module for privacy management control which allows man-
aging policies regarding the type and level of granularity of sensed data, deciding
what will be stored and made available to the different middleware components.
SenSocial uses filtering rules for maintaining energy efficiency, thereby restricting
transmissions only to those cases passing the set of defined rules. Also, SenSocial
discriminates the energy consumption associated to the accelerometer sensors, mi-
crophone, GPS, Bluetooth, and WiFi. Similar works [120, 91, 150] authors propose
to reduce energy consumption by focusing on optimizing the use of GPS.

The last proposal in this group is Anonymity [134], which proposes an anony-
mous data reporting protocol for participatory applications. The idea is that the
protocol avoids including identification information that can be vulnerable. The
anonymous data protocol is divided into two stages: the first is a slot reservation
stage (scheme based on public key encryption), while the second one is a data sub-
mission stage (scheme based on an XOR operation). Through comparison against
a similar study, authors show how it is able to improve data submission perfor-
mance. With regard to energy consumption, the smartphone’s battery values are
measured using a multimeter. It also presents an analysis of the energy overhead
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2.3. Analysis of existing CrowdSensing proposals

associated to data submission.

Overview of the contributions for each proposal

The main goal of this section is to assess the actual contributions made by the
different authors taking as reference the architecture proposed in section 2.2. So,
the last part of table 2.2 (columns MSC, Transmit (Tx), and CDCS) provides a
first insight into the actual contribution made by the different components at the
client (MSC) and server (CDCS) sides, in addition to the end-to-end transmission
process itself (Tx).

We provide a three-level classification of proposals, where a dark star means
that the particular solution fulfills the expected functionality for that component,
while a white star means that the solution only provides a partial fulfillment of the
selected characteristics. The non-fulfillment of the characteristics of a component
is represented by the absence of any star.

Overall, we can observe that the majority of the proposals are quite representa-
tive in the scope of our architecture, providing most of the expected functionalities.
Nevertheless, we can also find solutions such as MOSDEM [97] and SenseDroid
[109] that focus mostly on MSC-related functionality. Similarly, we can find solu-
tions such as MCSaaS [84] that focus on the CDCS instead.
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2. Smartphone-based CrowdSensing: Existing Solutions

2.3.2 Client-side analysis

In this section, we focus on the specific contributions to the MSC, which is the
client side of our proposed architecture. To achieve it, in Table 2.3 we describe the
features of the different proposals regarding the Client Interface Manager (CIM),
the Client Data Manager (CDM), and Client Sensor Manager (CSM). Notice that
we excluded the Client Communications Manager (CCM) from this section, as it
will be addressed separately in section 2.3.4. Also notice that the table is split into
two sections, being that proposals in the upper section are client-specific, meaning
that the publication only describes the client side of the crowdsensing architecture,
while proposals in the bottom section describe both client and server sides.

Concerning the CIM, we found that most of the solutions provide a graphical
user interface designed for the Android operating system, thus typically adopting
the Java language for development. In fact, only a few solutions such as LineKing
[21], TYT [100], and DAM4GSN [96] focused on other operating systems. Also,
most of the proposals allow the user to have access to an administrative interface
in order to have control over sensing tasks.

With regard to the CDM, we observe that, in general, most available solutions
resort to plugins or external libraries in order to simplify their processing, query
and storage task on the device by reusing existing software. In particular, differ-
ent techniques and algorithms are adopted mostly to support the data collection
procedure including spatiotemporal area calculation and programming algorithms,
among others. The spatiotemporal coverage of an area refers to the amount of
time and space needed to properly sensorize that area according to the target
task, being Usense [2] one of the most used. Also, we found that, although several
solutions provide data analytics within the mobile device itself, such functionality
is seldom combined with the use of plugins.

Among solutions integrating plugins, we would like to highlight solutions such
as DAM4GSN [96], MOSDEN [97], and CAROM [146], that use open source GSN
technologies for Internet of Things (IoT). In particular, CAROM [146] uses a plug-
in where, among other functionalities, it incorporates Open Mobile Miner (WMO),
which is an open-source solution that allows performing data analysis on the mobile
terminal. Similarly, SenSocial [83] uses a plugin providing an agent able to retrieve
data from both Facebook and Twitter, and its process is based on joining Online
Social Networks (OSNs) that provide a physical context data stream. In addition,
we found that few solutions include a broker functionality. We also found that
there is a balance between the approaches preferring pushing contents onto the
servers, and solutions that prefer the server to pull contents instead.

With regard to data processing, we find that few solutions perform aggregation-
fusion on the mobile device, as opposed to data filtering, whose support is quite
common. Finally, with regard to the Client Sensor Manager, in general the differ-
ent proposals available make use of generic sensors that are internal to the mobile
devices, offering in few cases support for external sensors. There is also evidence of
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2.3. Analysis of existing CrowdSensing proposals

applications using external sensors or multimedia stream processing before sending
the streams to the server (see, e.g., StressSense [78], and REPSense [75]).

Finally, regarding the adoption of virtual sensors, only a minority of the propos-
als studied do so. In particular, options such as DAM4GSN [96], MOSDEN [97],
and CAROM [146] relied on an adapted version of GSN [71], while other pro-
posals like SenseDroid [109], CUPUS [11], and SmartRoad [53] provide their own
virtualization solutions.
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2.3. Analysis of existing CrowdSensing proposals

2.3.3 Server-side analysis

In this section, we will focus instead on the server side, which in the scope of our
proposed architecture takes the name Cloud Data Colletion Server (CDCS).

Table 2.4 describes the features of server-related proposals. Similarly to the
previous section, the table is split into two parts, being that proposals in the
upper part are server-specific (the publication only describes the server side of the
crowdsensing architecture), while proposals at the bottom section are complete
ones, describing both client and server sides; obviously, since client-related details
were already presented above, in this section we only focus on server-related issues.

In general, we observe that most of the proposals provide a web interface
for management and result presentation purposes, and most of them also provide
data management and data sharing functionalities. The technologies used in these
proposals are generally open-source solutions such as Apache, Java, and Hypertext
Pre-Processor (PHP), among others, and many of them use a database manager
such as MySql and PostgreSQL. Also, there is evidence that many proposals rely
on a cloud infrastructure provided by Amazon [35] or Google [36].

With respect to the Server Task Manager, we find that most proposals present
mechanisms to manage and deploy sensing tasks. In particular, in terms of task
deployment, we find that the number of proposals adopting a push-based approach
is similar to those adopting a pull-based approach.

Regarding to the language used for task definition, some solutions describe
tasks using specific algorithms, while others prefer using a programming language,
as is the case of Pogo [20], AnonySense [113], and Medusa [103].

With respect to Data Management at the server, most solutions perform data
aggregation similarly to client-side solutions. Some of them use intelligent data
analysis techniques such as Big data [145][117][84], decision making (acMCDM)
[85], and three-dimensional analysis Poker Flat Incoherent Scatter Radar (PFISR)
[92], and various other statistical tools. Recent research works [124, 125, 133] take
advantage of the space and the time correlation between the discovered data of
different sub-areas with the aim of reducing the number of tasks required for the
target purposes. Wang et al. [124, 125] present a solution called sparse MCS
framework that uses inference algorithms to ensure the quality of the data after
being collected. Instead, Xu et al. [133] describe a framework that uses four
states (data structure conversion, base training, sampling, and reconstruction). It
relies on programming algorithms to create a baseline dataset using the K-SVD
algorithm, while for the reconstruction the Orthogonal Matching Pursuit recovery
algorithm is adopted. In both cases, the intention is to produce a global saving on
detection costs (power consumption, and network resources) while ensuring the
overall data quality.

As output, data can be presented in different formats, being the use of HeatMaps
a representative example when sensing information is geolocated.
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2.3.4 Data communications issues

We conclude our analysis of the current crowdsensing literature by focusing on
client-server communication solutions. Notice that, since communications simul-
taneously involve clients and servers, we address communication issues jointly in
this section.

Table 2.5 summarizes the main communication characteristics associated to
the different proposals. We have also surveyed the metrics used by each proposal
for performance analysis, and classified them according to their scope as: generic,
Quality of Service (QoS), and scalability. As generic performance metrics we refer
to those proposals addressing network performance in terms of packet delivery
ratio, end-to-end delay, and transmission overhead, among others. QoS issues are
associated to data acquisition, and they attempt to avoid that the delivery of mas-
sive data (data without processing) directly from the source negatively impacts
network traffic and the energy consumption of mobile devices. Concerning scala-
bility, authors assess the capability of the infrastructure in terms of adaptability
to an increasing number of sensing tasks and terminals to determine if it is able to
adapt to both small and large deployments. Under the scalability concept we have
also considered the elasticity of these services (middleware) to manage changes.

Notice that Table 2.5 is clustered into four different parts according to the
scope of the proposal: T refers to those proposals only addressing transmission
issues, C refers to proposals centered on the client side, S refers to proposals
centered on the server side, and G refers to global solutions.

Concerning communication technologies used, a large number of proposals re-
lied on WiFi and Cellular communications, although we can also find proposals
that rely instead on Bluetooth due to its flexibility and low consumption features.
Additionally, we find that most solutions opted for either a centralized topology
or a distributed topology, with only a reduced number of proposals choosing a hy-
brid approach. Regarding the networking approach, most solutions adopt RESTful
services based on Hypertext Transfer Protocol (HTTP), or make use of the XML
format.

Focusing now on the performance metrics addressed by each proposal, most
solutions made a generic performance analysis (delivery delay, data rate, etc.).
However, very few solutions addressed QoS and scalability issues. For instance,
we can find solutions such as Google Cloud Messaging (GCM) [6] that address
scalable services in the cloud, others that address scalability in the context of
the Publish/Subscriber paradigm [145], and yet others that relate it to broker
collaboration [109], but none of these actually assess performance in the scalability
context.

Regarding proposals evaluating Quality of Service performance, they typically
perform such evaluation in terms of task allocation and coverage optimization
in the target area. For instance, proposals such as JoinPolices [10] evaluate the
impact and the performance of task execution based on incentive policies, while

38



2.3. Analysis of existing CrowdSensing proposals

QoSMCS [41] defines an ad-hoc method for the evaluation of QoS in the context
of mobile crowdsensing services based on Petri networks.

Finally, regarding scalability, solutions such as PRISM [38] assess the per-
formance achieved through comparison against other solutions. Neighbor [51]
measures message diffusion performance between the mobile nodes and the data
collection server. Lastly, Medusa [103] proposes a prototype able to measure, at
runtime, the time taken to perform several individual steps associated to task
executions, both on the cloud and the smartphone.
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2.4 Open research issues

Based on the analysis presented in the previous sections, it becomes clear that, de-
spite the many advancements introduced in the mobile crowdsensing field in recent
years, there are still several issues that should be properly addressed for solutions
to become more effective, and therefore gain more widespread acceptance.

At the user side, it becomes clear that the sensing tasks should not become a
burden. Thus, any external sensors, if required at all, should be small, lightweight,
have a low power consumption, and have an elegant and stylish look. Ideally, ad-
ditional sensors should be progressively integrated into new smartphones either
directly from the manufacturer or as pluggable modules. Power and network re-
source consumption are also an issue, and so smart algorithms able to correctly
determine the best sampling times while avoiding intensive CPU usage are re-
quired; in terms of network resources, peer-to-peer data delivery combined with
smart network selection can help at avoiding to deplete radio resources and having
a negative impact in terms of traffic quotas.

From a more global perspective, further studies are required in order to as-
sess the scalability and the QoS support of the different proposals. In particular,
their impact on the end-to-end communications infrastructures should be thor-
oughly studied. Additionally, new algorithms should be developed to improve the
processes of data collection and analysis.

2.5 Summary

The results of our analysis evidence that there is still much heterogeneity in terms
of technologies adopted and deployment approaches, although modular designs at
both client and server elements seem to be dominant. Also, the preferred client
platform is Android, while server platforms are typically web-based, and client-
server communications mostly rely on XML or JSON over HTTP.

Crowdsensing solutions that benefit from smartphones are proliferating due
to the multiple advantages they offer. Thus, it becomes important to provide
a unified view of the different author contributions to detect the major areas
of improvement. In this chapter, we addressed this challenge by providing the
reader with an extensive review of existing smartphone-based solutions in the
field of Mobile Crowdsensing. We start by presenting a novel reference architecture
where we identify the major components at the client side, server side, and at the
communications level. Based on our proposed architecture, we then proceed to
classify the different proposals, focusing separately on the client, the server, and
the communications part of each solution.

Our extensive literature analysis has shown that most proposals provide some
degree of adaptability to different work environments. Also, we found that tech-
nologies and algorithms applicable at both client and server sides have evolved sig-
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nificantly, and are often available in a modular format, allowing other researchers
to include them in their proposed solutions. Concerning improvements in the data
capture process itself, we found that the main issues are i) the software adapt-
ability to different types of sensors, and ii) reducing power consumption. At the
server side, the most critical improvements include i) task generation language and
procedures, ii) the analysis and storage of data, and iii) providing an adequate
interface for task management by administrators. The communication between
client and server usually makes use of technologies like SOAP and RESTful, and
most solutions support Publish/Subscriber models.

Overall, we consider that mobile crowdsensing is now achieving its maturity,
being a widespread adoption of crowdsensing solutions expectable in the next few
years.
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Chapter 3

Environmental Pollution: an
Overview

In this chapter, we focus on two different types of environmental pollution affecting
the life quality of citizens in urban areas: air pollution and acoustic pollution.
We start by introducing these topics and motivating why they are so relevant
nowadays. Then we present a review of state of the art, where we describe the
efforts and projects related to these two topics that have emerged in the last few
years from a technical and research point of view, and where mobile sensing is the
dominant approach. Finally, we present the main conclusions derived from our
analysis.

3.1 Introduction

In recent decades, air pollution monitoring has gained worldwide relevance due
to the influence of air quality on our lives. Air pollution consists of the emission

of gases or particles into the atmosphere, producing changes in its composition.
Air pollution levels are a critical aspect to consider nowadays since it is associated
to several problems affecting people’s life quality, such as health issues (mainly
in the respiratory tracts), climate changes, and reduced agriculture production,
among others.

Many research works study the effects of pollution on our health. Among them,
we can find the contributions of Chen at al. [28, 29], who analyzed the effects of
ozone and related particle on human health. Brook et al. [19] also contributed to
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Figure 3.1: Examples of health problems caused by environmental pollution
(poor air quality and noise).

this field by studying the relationship between the exposure to air pollution and
cardiovascular effects.

On the other hand, noise is considered a particular type of environmental
pollutant since, at certain levels, it can affect people both physiologically and psy-
chologically and, more important, it can also interfere with basic activities, such
as sleep, rest, study, communication and socializing [3, 90]. In fact, different stud-
ies [62, 144] have highlighted the importance of noise control in highly-populated
areas. Similarly, the European Environment Agency has been enacting new reg-
ulations for the evaluation and control of environmental noise [93, 94], and all
major cities have their own regulation. Figure 3.1 shows some of the main health
problems associated to both types of pollutants.
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3.2. Pollution measurement

Figure 3.2: Example of an air monitoring station, and the location of the 5
stations available in Valencia, Spain.

3.2 Pollution measurement

3.2.1 Measuring air pollution

In Europe, about one thousand five hundred air monitoring stations have been
deployed to control air pollution on a large scale, providing coarse-granularity
pollution levels for most relevant cities. Despite this number may seem large, when
focusing on a specific city, we find that these stations are quite scarce, failing to
provide detailed pollution levels on a per-neighborhood basis [70]. For instance,
in Valencia, the third largest city in Spain, there are only five monitoring stations,
as shown in Figure 3.2. These can provide pollution levels on a large scale but, for
better data granularity, and to study spatial variability with more detail, it would
be necessary to have many of these stations, which becomes unfeasible due to the
high costs associated.
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3. Environmental Pollution: an Overview

Figure 3.3: Relationship between Air Quality and health.

Even a small and low-cost mobile station must be endowed with several sen-
sors able to measure different types of air pollutants. Such pollutants can be of
two types: (i) primary air pollutants, which are gases or particles emitted directly
into the atmosphere; in this category we have Carbon Monoxide (CO), Carbon
Dioxide (CO2), particulate matter PM smaller than 10 microns (PM10), or partic-
ulate matter smaller than 2.5 microns (PM2.5); and (ii) secondary air pollutants,
which are gases produced by a chemical reaction between primary pollutants and
some environment element; in this second category we have Ozone (O3), which is
produced by the combination of Nitrogen Oxides (NOx), Oxygen (O2), Volatile
Organic Compounds (VOC), and sunlight [43].

Monitoring stations rely on sophisticated sensors, which are very accurate and
introduce minimum uncertainty levels in the data capture process (e.g. Dobson
spectrophotometers are used for monitoring ozone levels [14]). However, they are
very expensive and hard to manage. Due to their size, they must be installed
on a specific location, and the monitored value is only representative in a small
surrounding area.

Concerning the different pollution levels, the Environmental Protection Agency
(EPA) has defined the hazard associated to different pollutant levels in the atmo-
sphere through the Air Quality Index (AQI) [4], which varies from safe to danger-
ous, as shown in Figure 3.3.

To detect air pollution, we can find a wide variety of technologies able to detect
the most common pollutants (CO2, CO, O3, PM2.5 or PM10) at a low cost. Each
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3.2. Pollution measurement

Figure 3.4: Different types of Air Pollution sensors.

technology has different properties, calibration processes, and costs, among other
characteristics, and a comparison between these different technologies is required.
In figure 3.4 we show examples of different air pollutant sensors. Specifically, it
is worth mentioning that the Libelium Smart Environment solution (depicted in
figure 3.4) is designed to monitor environmental parameters such as temperature,
humidity, atmospheric pressure and some other types of gases through a set of
sensors that can be incorporated (CO, O3, among others.). Additionally, this
solution has multiple radio options to communicate with other sensors such as
ZigBee, 802.15.4, WiFi, RF at 868Mhz and 900Mhz, 3 Generation (3G), General
Packet Radio Service (GPRS), and Bluetooth Low Energy at 2.4 GHz. Also, this
equipment uses the MICS model 2610 as a resistive sensor that allows measuring
the variation of ozone concentration between 10 and 1000 Particle per billion (ppb)
[42].

An alternative for measuring environmental pollution is relying on mobile sens-
ing. Specifically, small low-cost devices can be installed in various types of vehicles
to monitor different parts of the city at different times. The main problem of low-
end mobile sensors is that they have less accuracy than sophisticated sensors, and
so they need to be regularly calibrated; besides, measurements are also weather-
dependent.

3.2.2 Measuring noise pollution

The traditional approach for measuring acoustic pollution relies on professional
sound level meters, which are of considerable cost and size, having high accuracy
and sensitivity. Usually, these measurements are taken at a limited number of
places and are then processed using different statistical techniques to generate
acoustic pollution maps for well-defined target areas, thereby providing a fine
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Figure 3.5: Different types of Sound Level Meter.

spatial granularity.
The International Electrotechnical Commission (IEC) 61672:2002 [69] defined

two categories, namely Class I and Class 2, for Sound Level Meter (SLM) equip-
ments, defining progressively loose tolerance levels of ±1.1 and ±1.4 decibel (dB),
respectively. Thus, Class I devices are highly accurate, whereas Class II encom-
passes general purpose devices. Usually, based on this standard, the measured
noise values are adjusted using filters. All SLM devices apply frequency weight-
ings of Type A, B, C, D or Z [69]. In particular, A-weighting is regularly used
because it offers a good correlation with the subjective human perception. In
particular, the filter can be applied both in the time and frequency domains.

The basic element supporting noise level estimations is the microphone. Nowa-
days, smartphones incorporate one or more internal microphones, and their level
of sensitivity varies according to the smartphones’ brand and model. In addition,
the quality of the readings they provide is directly related to characteristics such
as the type of filter used (i.e., MaxRF, Enhanced Radio Frequency (RF)), and it
is impedance.

In general, once the microphone is activated, it responds to vibrations in the
air (sensitivity), converting them into electrical current fluctuations (sound pres-
sure). Afterward, these electrical signals can be evaluated as a signal in the time
domain or in the frequency domain. The first approach is a common one, rep-
resenting the value of the signal as a function of time. The second requires a
previous mathematical transformation procedure to switch to the frequency do-
main, thus introducing additional overhead. In both methods, the sound signal
can be processed, and its loudness computed over long time intervals.
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Figure 3.6: Typical Sound Levels (dBA).

Noise is measured in units of sound pressure called decibel (dB). The deci-
bel notation is suggested any time a "sound pressure level" or "sound level" is
mentioned. Decibels are measured on a logarithmic scale: a small change in the
number of decibels indicates a large difference in the amount of noise and the
potential damage to a person’s hearing. The decibel scale is convenient because
it compresses sound pressures relevant to the human hearing into a manageable
scale. Figure 3.6 shows the levels that are relevant from the perspective of human
hearing.

3.3 Studies addressing air pollution

In the literature, we can find several works related to crowdsensing systems applied
to air monitoring.

Zualkernan et at [5] it uses a microcontroller, several air pollution sensors, a
GPRS modem and a GPS integrated into the smartphone, which uses the public
telephone network to transmit the data to the Server.

Hasenfratz et al. [50] show a mobile solution connected to a sensor through
an RS232 interface. This application presents ozone pollution values in real time,
and it relies on the Android operating system.
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3. Environmental Pollution: an Overview

Mead et al. [82] analyze the behavior of electrochemical sensors to monitor
air pollution in urban scenarios. They design two types of sensors (static and
mobile) based on the PIC18F67J10 microchip, and they show how to deal with
electrochemical sensors.

Zheng et al. [154] show how to analyze the data obtained from different sources,
such as traffic levels, weather conditions, and pollution, using different Big Data
techniques, and evidence how these techniques allow inferring environmental pol-
lution levels with better granularity.

Cheng et al. [30] propose a system to monitor the concentrations of PM2.5 par-
ticles using crowdsourcing, which is an alternative to using mobile sensors. They
focus on the analysis of the mechanical sensor design to optimize the air recep-
tion, as well as on data fusion techniques to analyze the data. Sensor calibration
is achieved by analyzing data produced in the laboratory using neural networks.

Manna et al. [80] propose a sensor to monitor air pollution on roads, and
to track vehicles which cause pollution, by using a sensor based on Arduino, an
electrochemical CO gas sensor, and RFID technology.

Determining the pollution distribution in a city based on a few samples requires
adopting spatial interpolation techniques for estimating it, and mobile sensing
is the best option to achieve it. In the literature, we can find several works
adopting this approach. For instance, Brković et al. [18] propose a system to
monitor environmental pollution in the city of Belgrade using Waspmote sensors
[74] installed in the public transport system. Hu et al. [39] use a vehicular sensor
network for air pollution monitoring. In particular, they propose to use taxis for
deploying the system and mainly analyze the communication between them.

In this regard, studies such as [1] and [76] have relied on kriging interpolation
techniques to predict pollution. These studies were made in the cities of Quebec
and Toronto, respectively. More recently, Calafate et al. [24] combined mobile
sampling techniques with kriging-based interpolation to determine the achievable
accuracy when estimating the ozone distribution in a city, relying on the public
transportation system for data gathering.

Additionally, some mobile applications have been developed that show infor-
mation on air quality, as well as other applications (app) that serve as educational
information on environmental pollution, among others. Concerning the above, in
Figure 3.7 some free access mobile applications are shown through the Google Play
platform. These applications are connected to one or several ground stations, and
in some of these applications, the information available is not always presented in
real time. Also, none of these applications allows interacting with external sensors
that can be incorporated into smartphones.
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(a) (b)

(c)

Figure 3.7: Available apps for air measurement. (a) OzoneMap.; (b) BeijingAir.;
(c) Caliope.
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3.4 Studies addressing noise pollution

In the literature, we can find several solutions where smartphones are used as
mobile sensing devices to make noise pollution measurements. For instance, works
such as [79, 62] propose noise sensing solutions where the developed applications
include a real-time (only smartphone) sound-level data logger that also includes
GPS data to generate a map. However, these works fail to provide details about
the sensing task itself.

NoizCrowd [128], and Ear-Phone [105, 104] study noise levels using different
spatial and temporal interpolation techniques. In particular, Ear-Phone [104]
proposes an algorithm that attempts to optimize noise sampling by detecting
when the phone is placed in the trouser’s pocket, or in a bag. NoizCrowd [128]
uses GPS to determine the users’ locations, but it fails to determine when and
how the collection task is performed.

SoundOfTheCity [108] is a proposal that uses several sensors to provide context-
awareness. This context-awareness allows distinguishing between situations where
the user is located outdoors, indoors, moving, or if the smartphone is in the user’
pocket (using GPS, WiFi, and proximity) in order to determine the right instant
to trigger the measurement. Later, NoiseSense [101] proposed a semi-supervised
sensor completion algorithm for inferring noise levels for locations in an urban area
where smartphone users are unable to provide measurements. Their work does not
present details on the data collection process, focusing solely on the sending of raw
data to a server.

Alternatively, Usense [2] presents a generic middleware for developing and de-
ploying crowdsensing applications. Also, it adds a module that evaluates the
precise moment of capture based on rules. This solution does not detail the noise
calibration process, nor does it describe or evaluate the size of the collection win-
dow.

Not only are there solutions that study the level of noise to interpret them
into an urban pollution map, but there are also proposals, such as Pryss et al.
[100], that offer a crowdsourcing platform where the microphone of mobile devices
is used as an aid for the medical aspects of tinnitus and its treatment. Similarly,
Ren et al. [107] use fine-grained techniques to capture the behavior of breathing
during sleep through smartphones. In [86], Monge-Alvarez et al. propose an
automatic system for the detection of a cough based on the standard audio signal
of smartphones. They use a local database of sounds of coughing for comparison,
and their processing uses emotion recognition algorithms.

Recently, works such as [63, 88] evaluated the quality of noise level measure-
ments of different mobile applications for both the Android and the iPhone Op-
erating System (iOS) operating systems. In [63], the authors selected noise levels
from 65 to 95 dB in 5-dB increments and generated pink noise within a 20 Hz
to 20 kHz frequency range. The results showed that specific sound-measurement
applications are inaccurate, thus being unreliable when assessing noise levels via
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smartphones, especially if the Android operating system is used. In [88], five
different applications have been evaluated using an Apple iPhone 4s, where the
authors evaluated different frequency ranges up to 8 kHz, showing that a large
number of applications report wrong levels for loud sounds.

In [64], the authors added external calibrated microphones to the ones provided
in smartphones and compared the obtained values against reference measurements.
This study evidenced that values retrieved using smartphones’ microphones were
considerably different, inaccurate than those obtained using professional devices.

In [157] authors use two components (node-based, and crowdsourcing-based) to
calibrate smartphones. The node-based component uses a lightweight algorithm to
determine the offset using a linear model, doing offline calibration autonomously.
Regarding the crowdsourcing-based component, it provides specific calibration
parameters for different smartphone models, thereby maintaining a list of the
required calibration parameters for each of them.

In Table 3.1 we show the characteristics of the main solutions found in the
literature offering crowdsensing-based noise assessment. Our analysis focuses on
the smartphone, transmission and task specification components.

Finally, some freely available applications (Apps) allowing environmental noise
to be measured using either Android-based or iOS-based mobile phones were an-
alyzed. Some of these applications allow to visualize the measured noise in real
time, and they also provide a history of the noise to be shown, including heat
maps. However, most of them are not integrated into a crowdsensing solution. In
Figure 3.8 we illustrate the most relevant applications studied.
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(a) (b)

(c)

Figure 3.8: Available apps for noise measurement. (a) OpenNoise.; (b) Noise
Capture.; (c) Ambiciti.
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3. Environmental Pollution: an Overview

Finally, activity recognition is also a topic closely related to smartphone-based
noise assessment, as the relevance of samples taken will greatly depend on the
correct understanding of the user activities, and the interaction with their smart-
phones. Likewise, battery depletion may become a problem for crowdsensing so-
lutions if resource consumption is not optimized. In this context, the authors of
[34] introduce a crowdsensing framework for location recognition. Specifically, they
use Hidden Markov Models algorithms and Gaussian models for speech recognition
and sound classification, respectively. Works such as [73] shows how classification
algorithms can be used for human activity recognition systems using wearable sen-
sors. Shoaib et al. [114] present a review of the works using recognition systems
on smartphones based on their onboard sensors. The works surveyed presented
some considerations when designing applications were having sensor-based activ-
ity recognition. In particular, it emphasized that, from the 30 reviewed papers,
60% of them did not address battery consumption in their analysis, and only 27%
of them performed a Central Processor Unit (CPU) usage analysis.

3.5 Summary

In this chapter, we have focused on two environmental pollutants that are very
relevant in the context of smart cities, clearly affecting the life quality of citizens
in urban areas. In particular, we have dealt with air pollution and noise pollu-
tion. In both cases, the traditional way of measuring them (fixed infrastructure)
was evidenced. Then, we introduced the most relevant research works that have
contributed to the state of the art in the mobile crowdsensing context. Concern-
ing air pollution solutions, the adoption of different interpolation techniques for
processing the information gathered is indicated. Also, it was found that, in gen-
eral, mobile detection solutions require adopting an external air particle detection
device. Concerning noise pollution, we have found a set of works that use the
microphone of smartphones for different purposes, including noise detection. In
general, the solutions adopting smartphones to measure noise fail to provide de-
tails about the results of their measurements. Additionally, solutions have been
found that use statistical techniques and classification algorithms to optimize noise
sampling. Finally, we have found that none of the works analyzed in this context
actually provides a complete mobile sensing architecture.
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Chapter 4

Ecosensor: a mobile sensing
architecture to monitor air quality

Mobile sensing is becoming the best option to monitor our environment due to
its ease of use, high flexibility, and low price [18, 24, 30, 154]. Chapter 3 has

shown that different authors have proposed several mobile monitoring solutions,
but most of them merely provide an isolated analysis, failing to provide a full
mobile sensing architecture.

In this chapter, we present a mobile sensing architecture able to monitor dif-
ferent air pollutants using low-end sensors. Although the proposed solution can
be deployed anywhere, it becomes especially meaningful in crowded cities where
pollution values are often high, being of great concern to both the population and
authorities. Our architecture includes two modules: a mobile sensor for monitoring
environmental pollutants that integrated a Android-based device for transferring
the gathered data to a central server, and a central processing server for analyzing
the pollution distribution using the collected data through spatial interpolation
techniques.

We will start by providing an overview of the proposed architecture. Then,
we will detail the procedure followed in order to obtain reliable measurements
from low-cost sensing devices, and we discuss the optimal strategy for performing
mobile measurements. In particular, we will focus on how to properly calibrate the
sensor, and how to reduce time variability. Also, we will study the best strategy to
use mobile sensors by first determining the influence of sensor orientation on the
captured values, and then analyzing the influence of time and space sampling in
the interpolation process. Finally, we validate the proposed architecture through
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4. Ecosensor: a mobile sensing architecture to monitor air quality

comparison against infrastructure-based data.

4.1 Mobile sensing architecture overview

Our proposed architecture defines a set of elements that allow monitoring of air
pollution cheaply and easily, being specially useful in very crowded cities. It com-
bines data coming from existing air quality monitoring stations with data collected
by mobile sensors to generate fine-grained reports about pollution levels. Mobile
sensors can be installed in bicycles or along the public transportation system to
monitor the city simply and effectively. All collected information is stored on a
central cloud server for data processing, generating detailed reports afterward.
The architecture of the proposed system integrates several hardware and software
components. These components can be classified as mobile sensing elements or
cloud elements, being the latter a set of services running on a server that ana-
lyze collected data and present detailed information. Mobile sensing elements are
composed by three different components: (i) a Waspmote sensor for measuring
pollution data, (ii) a Raspberry Pi [106] that acts as a gateway between the sen-
sor and the Android-based device, and (iii) an Android-based device for showing
real-time pollution status, storing the data, and transferring it to the Cloud server
when network connectivity is available.

This architecture is shown in Figure 4.1. The Waspmote sensor [74] is based
on an Arduino platform [12], and it measures air quality through various sensors
(Ozone, CO2, Air Pollution, and temperature). Moreover, it has has a GPS inter-
face that allows determining the exact location of each measurement. Once data
is ready, it is transferred to the Raspberry Pi via Zigbee [158]. The Raspberry Pi
acts as a gateway between the Waspmote sensor and the Android-based device.
It has a Raspbian operating system, and it is programmed in Python. It has two
communication interfaces: ZigBee for connecting to the Arduino platform, and
Bluetooth [16] for transferring data to the Android device. The Android-based
device shows, in real time, the pollution level registered at a certain location and
allows transferring the gathered data to the Cloud server. In particular, it uses
the Bluetooth interface to receive data from the Raspberry Pi, and the Wifi or
cellular network interface to transfer data to the Cloud server. The Cloud server
has a web system that handles the information received from the Android device.
The received data is stored in a database, which is then processed through the R
Graph tool [102]. Finally, a detailed report is made available to the administrator
of the web server.

4.1.1 Ecosensor applications

Ecosensor is a platform composed of two integrated modules based on our archi-
tecture proposal, (i) mobile elements responsible for capturing pollution values,
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4.1. Mobile sensing architecture overview
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Figure 4.1: Overview of the proposed mobile sensing architecture including the
main hardware components and the technologies used.

and (ii) a cloud server responsible for storing and processing the collected data.
The mobile element is controlled via an Android-based application, and a Cloud
Application manages the server. Below we provide a detailed overview of both
applications.
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4. Ecosensor: a mobile sensing architecture to monitor air quality

Android application

The Android application was developed using the Android Studio IDE. This ap-
plication allows starting or stopping a trace, viewing captured data in real-time,
uploading data to the server, and performing other management tasks. Internally,
the application has two parts: (i) a service that continually receives (via Blue-
tooth) the data sent by the sensor, and that stores it in an internal database; and
(ii) a user interface that allows starting or stopping a trace data capture from the
sensor. It also provides real-time feedback about pollution levels at the current lo-
cation according to the AQI index [4]. Moreover, the full trace can be represented
on a map showing pollution variations through different color identifiers. Once
the trace is completed, the data can be sent to the server via an HTTP POST
message using the JSON format. The application is shown in Figure 4.2)

Server applicationn

The cloud server provides a web interface based on Word-press, which allows
the administrator to have full access to the information gathered regarding trace
handling, processing, and visualization. Once logged, the administrator views all
uploaded traces, being able to perform different statistical analyses on the different
datasets (CO2, Ozone, Air Pollution, and Temperature). For statistical analysis
and report generation, we relied on the R Graph tool, which offers us a way to
generate graphics concerning:

• Pollution level.- It shows detailed pollution levels for a specific area.

• Kriging analysis.- It presents the kriging output: (i) interpolation result, (ii)
kriging error, and (iii) variogram analysis.

• Captured data filtering.- It presents the adjustment/calibration process,
showing the relationship between the original data and the resulting data.

• Data variation.- It provides a boxplot showing the overall data distribution.

The site is available at http://www.ecosensor.net, and its design is shown in
Figure 4.3.

4.2 Monitoring Process

After defining the proposed architecture, we now focus on the most relevant issues
regarding the reliability of the pollution monitoring process. Our target pollutant
was ozone due to its well known negative impact on health, and also because
it is more complicated to measure accurately than other pollutants due to its
dependency on temperature and time of day.
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4.2. Monitoring Process

Figure 4.2: Android-based application deployed monitoring screen (back) and
path of a monitoring session (front).

The issues that should be taken into account to perform accurate ozone mea-
surements are the following:

• Sensor output data measurements are highly variable in ranges close to the
real values, and so such variability should be reduced.

• The sensor outputs should be transformed into the respective units for each
pollutant. In most cases, the measured resistance value must be converted
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4. Ecosensor: a mobile sensing architecture to monitor air quality

Figure 4.3: Example of the cloud application web page showing some monitoring
sessions, and the analysis output for two air pollutants.

into particles per billion (ppb).

• In order to use mobile sensors, time-dependent variability must be removed
since different samples are obtained at different times.

• Using the adjusted measurements, the next phase is to apply spatial inter-
polation techniques for creating detailed pollution maps.

Figure 4.4 shows the different steps taken when transforming the raw sensor
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4.2. Monitoring Process

Figure 4.4: Monitoring process overview showing the different tasks associated to
each step in the process.

readings in detailed air pollution maps. Also, below we discuss how each of these
issues has been addressed.

4.2.1 Data reading

Low-end sensors introduce significant variability between consecutive measure-
ments (absolute values for inter-sample differences are x̄=6.15, σ=5.73), so data
retrieval processes should eliminate these oscillations associated to noise in the
sensor readings. For this purpose, we performed the following steps: first, we
calculated the average value of 25 samples (n = 25), with an interval of 10ms
between each consecutive sample, as shown in equation 4.1:

Os =

n∑
i=1

Oi

n
(4.1)

In this equation Os represents the estimated ozone level, Oi represents the
ozone level sample i obtained from the sensor, and n represents the number of
measurements. In this step, we slightly reduce the absolute variability (x̄=5.39,
σ=5.01). Afterward, and taking into account that the variability was still very
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Figure 4.5: Relationship between captured data and filtered data (left), and
relationship between captured data variation and the filtered data variation

(right).

high, we used a low-pass filter for the data analysis process with α equal to 0.95
to further reduce this variability, as shown in equation 4.2:

Oi = Or + α· (Oi−1 −Or) (4.2)

Oi represents the current ozone level, Oi−1 represents the ozone level in the
previous measurement, Or represents the filtered ozone value, and α represents
the filter coefficient. In this step, we drastically reduce the absolute variability
(x̄=0.32, σ=0.30).

Figure 4.5 (a) shows the difference between the values of captured ozone levels
and the values of ozone levels after applying the low-pass filter, and figure 4.5 (b)
shows the variability after applying the mean and the low-pass filter. It shows
that data variability is significantly reduced while maintaining the correct trend.

At the end of this process, we have measurements without the variability as-
sociated to noisy sampling.

4.2.2 Unit conversion

Sensors provide an electrical signal output, which needs to be transformed to a
pollution level value. Specifically, the Ozone sensor probe (MiC-2610) has an
internal resistance that varies proportionally to ozone concentration. The sensor
can measure ozone variations between 10ppb and 1000ppb, being that the resistance
varies between 11kΩ and 2MΩ with a quasi-linear behavior.

Sensor specifications were made at a constant temperature of 25 degrees centi-
grade, and vary depending on weather conditions.
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4.2. Monitoring Process

For calibrating the sensor we have done several measurements at different days,
and under different weather conditions, to get a broad range of values. These data
have been compared against the data obtained from the official monitoring station
located at the Universitat Politècnica de València (UPV), Spain. Data obtained
are shown in Table 4.1. Considering that the measurements have a dependency
on both ozone levels and temperature, we obtained through regression a second-
degree polynomial (see equation 4.3) that takes the temperature and the resistance
obtained by the sensor into account to determine the actual ozone values.

Table 4.1: Relationship between sensor readings and monitoring station readings.

Resistance
[Ohm]

Temperature
[◦C]

Station
Ozone [ppb]

Calculate
Ozone [ppb]

25.0 19.0 80 63.55
31.0 16.0 65 73.10
28.0 15.5 52 55.22
35.0 13.0 83 79.72
28.0 28.0 120 117.46
23.3 23.0 70 77.58
23.5 22.0 70 73.35

O = α+ β1t+ β2r + β3r
2 (4.3)

In this equation α is a regression coefficient, β1 is a temperature coefficient,
β2 is a sensor reading coefficient, β3 is the reading coefficient squared, t is the
measured temperature, and r is the sensor reading (measured as Resistance). The
output O is the ozone level measured. The final regression obtained is shown in
equation 4.4:

O = −29.19 + 4.79t− 3.09r − 0.13r2 (4.4)

The error obtained for the regression was R2 = 0.85. Compared against a
1st order regression (R2 = 0.83) the obtained result is better in terms of R2.
Compared against a 3rd order regression (R2 = 0.86), the improvement in R2 is
minimum and the differences minor.

4.2.3 Time variability reduction

To cover large areas of land with a fine spatial granularity, we use mobile sensors,
which can capture data at various points although at different time instants. So,
the difference between measurements O has both times 4Ot, and spatial 4Oe
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Figure 4.6: Ozone evolution in June (left) and throughout the year (right).

dependencies. Since our main goal is to determine the differences between ozone
levels in a particular area, it is necessary to eliminate the time variation.

4O = 4Ot +4Oe (4.5)

4Oe = 4O −4Ot (4.6)

For the calculation of the ozone time variations, we analyzed data from a
monitoring station located at the UPV, focusing on historical data between 2008
and 2014. In the historical data analysis, we analyzed the ozone evolution focusing
on average monthly measurements between 2008 and 2014. It is noted that the
values are higher from April to September, and lower for the remaining months.
Figure 4.6a shows the mean values and standard deviation in the shaded area, and
maximum values with the top line. The variation in ozone levels during a typical
day of June was also analyzed. As shown in Figure 4.6b, ozone levels reach their
lowest value at the end of the night, at about 6 am, and rise to reach maximum
values at 2 or 3 pm, beginning to decline gradually afterward. The behavior for
the other months of the year is analogous to the month shown.

As a result of the analysis of these data, we observe that ozone has different
behavior in summer (specifically from April to September) compared to the rest of
the year. During daytime, the behavior is very similar to the parabolic logarithmic
distribution, with an onset of rapid growth followed by a less pronounced decline.

Based on the previous data regarding monthly average values between 2008
and 2014, taken at the monitoring station of the Technical University of Valencia,
ozone level prediction relies on a parabolic logarithmic regression influenced by
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4.2. Monitoring Process

temperature and season of the year, one for summer, and one for winter. The
expression used (in linear format) was the following:

ln(Ot) = α+ β1s+ β2t+ β3 ln(h) + β4 ln(h)2 (4.7)

where h is time of day, s is the season, t is the temperature, and the remaining
α and βi values are regression coefficients (β1- season coefficient, β2- temperature
coefficient, β3- coefficient for the logarithm of the time of day, β4- coefficient for
the logarithm of the time of day squared).

ln(Ot) = −7.70 + 0.03s− 0.01t+ 9.23 ln(h)− 1.77 ln(h)2 (4.8)

ln(Ot) = −15.43 + 0.12s+ 0.03t+ 14.42 ln(h)− 2.83 ln(h)2 (4.9)

The values of
∥∥R2

∥∥ are 0.91 and 0.82 for summer and winter, respectively,
showing a behavior very similar to the actual one.

The procedure followed to correct time-dependent variability was: (i) ozone
values are calculated at two-time instants using equation 4.7; (ii) the difference
between the values is obtained; (iii) the actual readings are reduced according to
the calculated variation.

4.2.4 Interpolation data

The adjusted data is the input for creating detailed pollution maps. In the scope
of this work, this is achieved by using the R graph tool. Specifically, we rely on
spatial interpolation techniques known as ordinary kriging. First, a semivariogram
is calculated for a specific area, and kriging parameters are determined. Next, a
detailed pollution distribution is created using the obtained parameters. To easily
visualize the pollution levels distribution in space, different maps are created, as
shown in Figure 4.7.

The semivariogram defines the variance of the differences between two points.
It determines the parameters required for the kriging interpolation, which have an
influence on the distribution form.

• Sill: determines the total variance of the values.

• Nugget: determines the variance at the origin.

• Range: determines the range of influence of the model.

• Model: determines the distribution function. It can be Gaussian, Spheric,
Exponential, Circular or Linear.

Figure 4.8 shows a sample semivariogram as an example.
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Figure 4.7: Example of an ozone distribution heatmap for the UPV using the
proposed architecture.
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4.3. Finding the optimal measurement strategy

4.3 Finding the optimal measurement strategy

After defining the architecture and the monitoring process, we now proceed to de-
termine the optimal strategy for air pollution data collection using mobile sensors.

With this purpose, we first analyzed the impact of mobility on sensor readings
by comparing static against mobile measurements. Also, we determined the in-
fluence of sensor orientation in the mobile sensing process. Our next step was to
analyze the impact of reducing the sampling frequency on the kriging process ac-
curacy under mobile scenarios. Similarly, we analyzed the impact of reducing the
number of spatial samples on the kriging process accuracy. This was achieved by
skipping selected streets when capturing data, progressively reducing the overall
path.

4.3.1 Optimal sensor positioning

To analyze the impact of mobility on the data capture process we performed dif-
ferent tests, collecting ozone levels in a specific area either statically, or using a
bike moving at a speed of about 20km/h. For mobility tests, we collected measure-
ments with different sensor orientations: (i) facing forward, (ii) facing backward,
and (ii) facing up. Statistics for the "mobile" case combine measurements with
different sensor orientations.

Table 4.2: Statistical summary of the sensor position analysis.

Period Mean Std.
Dev. p-value

Static 27.39 0.85 -
Movement 27.34 1.03 0.25
Facing Forward 27.41 1.04 0.77
Facing Backwards 27.44 1.02 0.38
Facing Upwards 26.85 0.95 0.06

To have further insight on how these results are distributed, Figure 4.9 shows
that mobility, at least at speed used for testing, does not have a significant impact
on sensor measurements.

The results for the t-test analysis are shown in Table 4.2, revealing that we can-
not find a statistically relevant difference between the static sensor (x̄= 27.39, σ =
0.85) and the mobile sensor (x̄= 27.34, σ = 1.03), obtaining a p-value = 0.25 and
α = 0.05, neither for the facing forward orientation (x̄= 24.41, σ = 1.04, p-value
= 0.77) nor for the facing backwards orientation (x̄= 27.44, σ = 1.02, p-value
= 0.38).
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Figure 4.9: Analysis of the variability of mobile sensor readings: static vs.
mobile sensor.

Figure 4.10 shows that the actual sensor orientation has little impact on the
data capture process, being the differences between different orientations minimal.
Anyway, the backward orientation option exhibited greater resemblance with the
static measurements and was adopted for the tests that follow.

4.3.2 Impact of time sampling on geostatistical predictions

In this section, we analyze the impact of time sampling on the predicted pollution
map. In particular, we want to determine if reducing the number of samples allows
making similar predictions or if, on the contrary, there is a significant prediction
error when generating the pollution map. For this purpose, we monitored the
Technical University of Valencia campus with a mobile ozone sensor installed on
a bike.

To obtain an accurate distribution of ozone levels, we monitored the entire
campus by setting the sampling period to the lowest value allowed by the sensor
(5 seconds). Next, we reduced the sampling frequency by setting the inter-sample
period to 10, 20, 30, 40 and 80 seconds respectively. This was achieved by filtering
the full trace, and retrieving datasets with 1/2, 1/4, 1/6, 1/8, and 1/16 of the
data, respectively.

Next, we performed spatial interpolation through kriging for each trace, ob-
taining a detailed pollution distribution. We used the full trace (samples every
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Figure 4.10: Analysis of the variability of mobile sensing for different sensor
orientations.

5 seconds) as a reference and compared it against the results obtained using the
other datasets.

Table 4.3: Statistical summary of the time sampling analysis.

Period Mean Std.
Dev.

Similarity
(si)

5 sec. 60.31251 1.140371 1
10 sec. 60.31928 1.158987 0.9734
20 sec. 60.37815 1.131514 0.9579
30 sec. 60.48890 1.118012 0.9411
40 sec. 60.36123 1.131782 0.9225
80 sec. 60.45629 1.126616 0.9181

Table 4.3 summarizes the statistical analysis for the different datasets in terms
of mean, standard deviation, and relative prediction error, being the latter cal-
culated using the initial trace (5s sampling) as a reference, as shown in equation
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Figure 4.11: Analysis of the output similarity with respect to reference sampling
period (5 s).

4.10.

si = 1− 1

m · n

m∑
x=0

n∑
y=0

|
kixy − k0xy

4k0
| (4.10)

In this equation, si represents the similarity index of dataset i with respect to
the reference dataset, m and n represent the width and length of the target area
under analysis, kixy

represents the value calculated through kriging interpolation
for dataset i at position xy, k0xy

represents the value calculated through kriging
interpolation for the reference dataset at position xy, and 4k0 represents the total
variation of the predicted values for the reference dataset.

By analyzing Table 4.3 we can see that the mean and the standard deviation
values are nearly the same in all cases, although the similarity index si varies more
significantly. This information is also shown in Figure 4.11 for the sake of clarity.
Notice that, despite the distribution of values is similar, the mean similarity shows
an almost linear decrease. Nevertheless, the similarity values are still relatively
high since the kriging interpolation process also acts as an error filter, helping to
approximate the mean value when lacking enough reference values.

Detailed heat maps for some relevant traces (5 seconds, 20 seconds, and 80
seconds) are shown in Figure 4.12. By taking a look at these heat maps, built
through the kriging interpolation process, we can clearly see that the level of detail
experiences a degradation. In particular, we find that, although the pollution maps
for inter-sample times of 5 seconds and 20 seconds are quite similar, significant
differences are observed when the sampling period grows to 80 seconds; for the
latter case, the ozone distribution achieved is quite different from the one used as
a reference (5 seconds). Based on these maps, it becomes quite clear that little
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Figure 4.12: Heatmaps for the ozone distribution using different sampling
periods (5, 20, and 80 seconds).

differences in terms of basic statistical analysis can represent huge differences in
terms of the spatial distribution of those values.

4.3.3 Impact of spatial sampling on geostatistical predictions

In this section, we analyze the impact of spatial sampling on the predicted pollu-
tion map. In particular, we want to determine to which degree taking a shorter,
less exhaustive path throughout the target area (reducing the trip time and the
number of samples, accordingly) affects the accuracy of the predictions made.

To find the optimal spatial sampling strategy we produce different datasets by
deleting path fragments from the first trace. In detail, starting from the full trace
(100% of the data), we deleted selected paths so as to produce shorter but yet
valid trips, maintaining start and end locations. As a result, we obtained traces
with 72%, 54%, 50%, 46%, and 42% of the data.

Similarly to the previous section, we perform, for each dataset, a statistical
analysis of the resulting data, also obtaining the pollution heatmap generated
through kriging interpolation, and calculating the similarity index using equation
4.10.

Table 4.4 presents the statistical analysis results showing the mean, the stan-
dard deviation, and the similarity, being the latter calculated using the initial
dataset as a reference.

Based on Table 4.4, we find that the mean value is close to the reference one
(60.31) in all cases, although being in general slightly higher. This occurs because
the first eliminated path showed the lowest values.

Figure 4.13 shows the decreasing trend when spatial sampling decreases. Com-
pared to the time sampling results shown in Figure 4.11, we find that, now, the
similarity values degrade much faster, meaning that reducing the route taken along
the target area is prone to eliminate relevant samples, resulting in a less detailed
pollution map.
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Table 4.4: Statistical summary of the spatial sampling analysis.

Dataset size Mean Std.
Dev.

Similarity
(si)

100% 60.31251 1.140371 1
72% 60.49253 1.000335 0.9336
54% 60.62813 1.112316 0.9084
50% 60.66518 1.137273 0.8820
46% 60.66079 1.137295 0.8872
42% 60.51269 1.082692 0.8530
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Figure 4.13: Analysis of the similarity with respect to the reference trace (100%
of the data used.

Figure 4.14 shows detailed maps for datasets representing 100%, 72%, 50%, and
42% of the data. Based on these heat maps, we can indeed observe how spatial
subsampling causes distortion on the spatial distribution of pollution throughout
the target area.

Overall, we can conclude that the spatial sampling granularity is the most
relevant factor to take into account, being time sampling granularity less but
yet somehow important, and sensor orientation the factor having less impact on
results.

4.4 Validation of the proposed approach

As stated at the beginning of the chapter, the current infrastructure elements
allow measuring pollution levels in cities with high accuracy, although with a
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Figure 4.14: Heatmaps for the ozone distribution using different fraction of the
original trace (100%, 72%, and 42%).

low spatial resolution. On the contrary, our proposed mobile sensing approach
is able to achieve a much higher spatial resolution using cheap sensors. Thus, in
this section, we validate our approach by first comparing captured values with
the range of typical values obtained for this time of year by fixed monitoring
stations, and then by comparing the ozone maps generated when relying on either
infrastructure-based or mobile-based sensing.

We started by gathering data from different areas of Valencia using the pro-
posed mobile sensors platform. Different experiments have been conducted at
different times, allowing us to compare the data captured with the data from the
existing public infrastructure. In particular, for each route taken, we first reduced
the data variability using the proposed low-pass filter (see Equation 4.2). Next,
the measurements were adjusted through Equation 4.3. Finally, the temporal
dependencies of data were reduced according to Equation 4.7.

Figure 4.15 shows data for a particular route, and the common values at the
date of the capture (February 16, 2015). We can see that the measured ozone
levels are within the range of historical values for the monitored time, being quite
close to the expected value (mean). This indicates that, using our methodology,
we are able to obtain reliable data despite using low-cost sensors, allowing to focus
our analysis on the spatial distribution of pollutants.

We now proceed to compare the actual heat maps for a specific date and time of
day using only infrastructure data, and using only data obtained by our sensors.
We can see that, by relying on our proposed architecture (see Figure 4.17) it
becomes possible to observe in detail even small pollution variations, while using
only infrastructure-based data (see Figure 4.16), the observed variations are much
smoother, experiencing a linear increase or decay from one air quality station to
the other.

Overall, it becomes clear that, despite having up to 5 different stationary air
quality stations in the city of Valencia, they fail to capture significant details
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Figure 4.16: Ozone levels in the target region using infrastructure data.
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Figure 4.17: Ozone level in the target region using mobile sensing data.

that are related to areas with more traffic congestion (high pollution values) or
green/windy spaces (low pollution values), thereby leading to some wrong con-
clusions. In contrast, our approach is able to provide a greater richness since all
small variations can be perceived with great detail, thereby meeting the proposed
goal.

4.5 Summary

Nowadays, environment pollution monitoring has become a fundamental require-
ment for cities worldwide, and there are many studies related to it. Nevertheless,
only a few of them explore all sides of this problem.

In this chapter, we proposed a complete architecture for environmental moni-
toring that combines low-end sensors, smartphones, and cloud services to measure
pollution levels with a high spatial granularity. In detail, we used a mobile sensor
to provide pollution measurements, a smartphone providing real-time feedback
about air quality conditions, and also acting as a gateway by uploading gathered
data to the cloud server, in addition to the cloud server itself, required for data
processing and visualization.
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Once the architecture has been defined, we analyzed different issues related
to the monitoring process: (i) Filtering captured data to reduce the variability
of consecutive measurements; (ii) Converting the sensor output to actual pollu-
tion levels; (iii) Reducing the temporal variations produced by the mobile sensing
process; and (iv) Applying interpolation techniques for creating detailed pollution
maps.

To address the challenges associated with taking mobile measurements in a
target area, we analyzed the influence of the sensor orientation in the data capture
process, as well as the impact of time and spatial sampling. In particular, we varied
the sampling period and the overall path length to determine the most effective
monitoring strategy. Experimental results show that the sensor orientation and
the sampling period, within certain bounds, have very little influence on the data
captured, while the actual path taken has a greater impact on results, especially
when estimating the distribution of pollutants throughout the target area.

Finally, we validated our proposal by comparing the values obtained by our
mobile sensor with typical values from monitoring stations at the same dates and
location. Furthermore, we compared the resulting heat maps generated using data
from monitoring stations against ours, showing that our mobile-sensing approach
is able to provide a much higher data granularity.
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Chapter 5

GRC-Sensing: An Architecture to
Measure Acoustic Pollution Based
on CrowdSensing

Noise pollution is an emerging and challenging problem for all large metropoli-
tan areas, affecting the health of citizens in multiple ways. Thereby, obtaining

a detailed and real-time map of noise in cities becomes of utmost importance for
authorities to take preventive measures. Until now, noise measurements were lim-
ited to occasional sampling made by specialized companies and focusing mainly
on major roads, and near airports.

In addition to the current solutions for measuring noise pollution, the perva-
siveness of smartphones, together with the increasing integration of new sensors
(e.g. ambient light, accelerometer, proximity, among others), has paved the way
for a new paradigm called mobile crowdsensing [44, 47]. The concept of crowd-
sensing is that users of mobile devices participate by contributing with some en-
vironmental data obtained through their devices, being these measurements then
stored and subsequently handled using data fusion and data analysis techniques.
Allowing data potential with high granularity in space and time.

In the literature, we find initial solutions that use smartphones to measure
ambient noise in urban areas [79, 62, 105, 128, 108]. Many of these solutions
rely on a participatory sensing [72, 40] approach, detailing their architecture and
integration with real-time collection solutions.

In view of the previous research studies, it is clear that, in spite of the many ad-
vances in the field of mobile crowdsensing in recent years, there are still a number
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of issues that must be addressed adequately for solutions to become more effec-
tive and, from the user perspective, it is clear that these tasks should not become
a burden. Therefore, it is necessary to consider new crowdsensing architectures
that include: (i) retrieval of accurate noise samples using smartphones; (ii) the
management of context assessment to accelerate the discarding of unwanted sam-
ples; (iii) automated task management on the client side for seamless, transparent
participation; and (iv) a fully-fledged server solution allowing to easily define and
disseminate tasks, collect data, and visualize the resulting pollution levels. Our
proposed architecture achieves these goals, empowering participating citizens by
allowing them to seamlessly, and based on their context, sample the noise in their
surrounding environment. This allows us to provide a global and detailed view of
noise levels around the city, including places traditionally not monitored due to
poor accessibility even while using their vehicles.

The main contributions of the chapter are: first, we propose an integrated
architecture to measure noise pollution based on crowdsensing. Second, we detail
the main characteristics of our proposed architecture. Finally, we present some
implementation details of our solution for the server and client side. Our solutions
differ from previous proposals because it includes minimal user intervention and
allows displaying pollution data using real-time heat maps.

5.1 Crowdsensing Architecture Overview

In this section, we propose a unique crowdsensing architecture for reading ambient
noise. In particular, our proposed architecture defines a set of elements that al-
low monitoring of the environmental noise in real time. Our design includes both
the Mobile Noise-Sensing Client (MNSC), and the Cloud Data Colletion (CDC).
Those two elements are connected to each other through a Data Transmission Net-
work. The data transmission network works on the full scope of our architecture,
and it provides support for iterative CDC and MNSC. In general, the MNSC is
composed of smartphones that will provide sound sensing operations by capturing
noise data, which will be delivered in real time to the CDC. Also, the CDC can
be a single server or a server farm that allows receiving, processing, analyzing
and sharing the sensed data. In Figure 5.1, the proposed architecture for noise
analysis through crowdsensing is shown. In particular, we will focus on ensuring
the quality of the measurements taken, and on the representativeness of samples
taken by smartphones, respectively.

5.1.1 Mobile Noise-Sensing Client (MNSC)

In this section, we detail the client-side solution. Our solution allows the ambient
noise to be sampled with little user intervention. Once activated, the mobile
application autonomously performs noise sampling through a service running in
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Figure 5.1: General architecture for noise assessment based on crowdsensing.

the background. Besides, once the smartphone is in the desired context, the
noise value retrieved is forwarded to the server for further processing. Figure 5.2
shows the main components of the MNSC. These are the Client User Interface
(CUI), Client Sensor Task Manager (CSTM), the Client Data Manager (CDM),
and the Client Communications Manager (CCM). Each of these four components
has a controller responsible for supporting either bidirectional or unidirectional
interactions between the different system elements. We now proceed to describe
each of the client components in detail.

Client User Interface (CUI)

This component allows applications to interact with the user, and allows us to
configure the different permissions associated with the operating system, such as:
storage, audio, and location. Once the application startup processing ends, the
splash screen closes and the main service is activated. Then, when the service has
been activated and the necessary permissions have been granted, the application
switches to background, and the graphical interface is cleared from memory.
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Figure 5.2: Proposed crowdsensing architecture for mobile noise analysis.

Client Sensor Task Manager (CSTM)

The CSTM is the main component responsible for the noise sensing task. In gen-
eral, the process is the following: once the CSTM is activated, and the server
provides a new task, the CSTM is responsible for validating the different envi-
ronments where the smartphone is located. Once this is done, the noise value is
read and then sent to the server. The CSTM has three sub-components: Sensor
Controller, Context Validate, and Software Event Detector. Below we describe
each of its sub-components.

• Sensor Controller.- This component implements the access to the different
sensors proposed in our architecture, thus providing access to gyroscope,
accelerometer, microphone, and GPS. Also, this component allows data to
be preprocessed before interacting with Validate Context. In particular, we
process raw sound data in dB(A). In chapter 6 we show the details and
strategies to obtain a correct and calibrated measurement.

• Context Validate.- This sub-component aims at determining the optimal
strategy for collecting noise pollution data through smartphones. In general,
it integrates an algorithm-based decision tree that interacts synchronously
with the Sensor Sensor Controller (SC) and the Software Event Detec-
tor (SED). The purpose of the interaction with the CDM is to read the
data of the task that is stored in the local database (SQLite). Regarding
the interaction with SC and SED, its function is to obtain the previously
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processed values of the sensors (i.e. GPS, Orientation, etc.), and to perform
calls to the operating system (i.e., determine whether the phone has the
music player active), respectively. Once the answer is true for all cases, the
algorithm proceeds to sample the noise. Also, the Context Validate has an
algorithm that balances the use of tasks that are in the same range of date
and time. Besides, to minimize energy consumption, Context Validate en-
forces a minimum time between trial and collected samples. Those times are
given in the task from the CDC. In chapter 7, we show the implementation
details of our collection strategy.

• Sensor Event Detector.- This component allows us to determine the differ-
ent states of smartphones (i.e., playing music, speaker on, and smartphone
performing active call) through a call to the operating system.

Client Data Manager (CDM)

The CDM performs two functions: (i) it allows us to store the tasks provided
by the server; and (ii) it supports SQL queries to the CSTM. In particular, the
tasks are received in one direction by the CCM. Also, to avoid data redundancy,
the tasks are previously consulted and, if they do not exist, then they should be
stored. Once the tasks are registered, they are available through a query based on
the starting date and time and the final date and time for the CSTM.

Client Communications Manager (CCM)

The main purposes of this component are interaction with the server, such as
receiving the tasks and forwarding the captured noise data to the server CDC. In
the first task, once the listener service is activated, the tasks on the Front-End
Server (Interactive real-time database) are replicated for each mobile device that
is registered in the Front-End Server. Each new task is verified for later storage
in the local storage. In the second case, the Front-End Server automatically offers
the synchronization option between Mobile Noise-Sensing Client and Back-End
Server. Figure 5.2 shows the direction of the communications that the proposed
architecture components use.

5.1.2 Cloud Data Colletion (CDC)

The Cloud Data Colletion (CDC) is our server-side solution. The server provides
a web interface that allows the administrator to control the tasks, and it also
allows to have complete access to the information regarding trace management,
processing, and visualization. Once logged in, the administrator can create a new
collection task, or display the noise data provided by smartphone clients using
heat maps. The architecture is composed of two servers: (i) Front-End Server,
and (ii) Back-End Server, as shown in Figure 5.2. In general, the Front-End Server
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acts as an intermediary between the Back-End Server and the MNSC, while the
Back-End Server provides the processing and delivery of collection tasks. Below,
we provide more details about the specified components.

Front-End Server

The Front-End Server is responsible for carrying out the communications for send-
ing/receiving data between the mobile devices and the Back-End Server. In gen-
eral, it performs the intermediary functions between the proposed components.
In particular, once the Back-End Server provides the task, it is replicated to all
client devices that have the application activated. In contrast, once the clients
supply the noise data, they are automatically sent to the Back-End Server. In our
architecture, the Front-End Server includes three components: (i) Web-Based Ad-
ministration, (ii) Interactive Real-Time Database, and (iii) Communication; these
components are described below.

• Web Based Administration.- It is the administration console provided by
Firebase [98]. Firebase is a Google solution that is integrated with our ar-
chitecture in a simple and transparent manner through its API. Among other
options (i.e., hosting, analytic, etc.), it allows us to manage the database in
real time.

• Interactive Real-Time Database.- It is our real-time (NoSQL) database, whose
format is JSON. In general, it is a gateway responsible for automatically
sending / receiving sensing tasks towards smartphones. The tasks are previ-
ously defined in the Back-End Server, and are sent to this database whenever
the administrator user requires it. The data sent and received are temporar-
ily saved for the duration of the date range defined in each task. In par-
ticular, we maintain two “DataNoise” and “DataTask ” objects within our
JSON object. The first one stores the values of the task, and the second one
stores the values of the captured noise. Figure 5.3 shows the attributes of
our JSON objects.

• Communications.- Firebase uses a push communications model for sending
data to specific recipients registered in its database. Generally, Firebase
maintains a two-way open socket-based communications channel between
the CDC and the MNSC.

Back-End Server

The Back-End Server provides a web interface which allows the administrator to
have full access to the information gathered concerning trace handling, processing,
and visualization. Additionally, it allows to define, schedule, and store the noise
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Figure 5.3: Format of a JSON data message.

sensing task. The Back-End Server has four components: Web-Based Adminis-
tration, Server Task Manager (STM), Server Data Manager (SDM), and Server
Communications Manager (SCM). Below we describe in more detail the different
components on the server side.

• Web-Based Administration.- This component allows the user to manage
and schedule noise sensing tasks interactively. It also supports the vi-
sualization of charts (heat-map) relative to the sensed data. Both func-
tionalities are performed using a web-based graphical interface, meaning
that the system manager can operate remotely. The site is available at
http://www.grcsensing.net, and its design is shown in Figure Figure 5.4.
, where the administrator (among other users) can create sensing tasks in
specific areas, as shown in Figure 5.4.

• Server Task Manager (STM).- Task Management is one of the main compo-
nents of the Back-End Server according to our proposed architecture, being
responsible for scheduling planning, and pushing crowdsensing noise tasks.
For the definition of the tasks, we have created two attributes: one for
the waiting time between attempts, and another one for the time between
samples. The purpose of these features is to minimize the consumption of
resources in the tasks handled by smartphones. Also, we have enabled three
types of geographic area selection procedures (polygons of n sides, rectangle,
and circle) for the capture of environmental noise. Finally, once created, the
tasks are stored by the SDM, and they can be forwarded to the Front-End
Server when the user administrator considers it necessary. Figure 5.4 shows
an example where a noise gathering task is created, including area selection
i.e., using a circle in the figure.
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Figure 5.4: GRCSensing Web-based application.

• Server Data Manager (SDM).- This component is responsible for the pro-
cessing, storage, query, and analysis of the noise sensing task.

• Server Communications Manager (SCM).- The SCM is the Rest API that al-
lows communication between the Back-End Server and the Front-End Server.
In our architecture, we used an unidirectional interaction between SCM and
STM, and a bidirectional one between SCM and SDM. The interaction with
STM is unidirectional as we have transmission towards the Front-End Server
when pushing new noise sensing tasks. The communication with the SDM
is bidirectional since, when the API is notified of the existence of a new
registry (data capture), it is first consulted before being inserted. Once the
record has been inserted into the database, the SCM proceeds to delete the
record in the Front-End Server. In particular, we have used Pyrebase [33],
which is an API written in Python. Figure 5.2 shows the communication
between these components.

88



5.1. Crowdsensing Architecture Overview

Table 5.1: Size of the message with different selection areas and captured noise
samples.

Data JSON Description type Message size (bytes)
DataNoise Normal data 236

DataTask

With a polygon of 5 points 363
With a polygon of 10 points 404
With a polygon of 20 points 411
With a circle (unencoded) 461

With a rectangle (unencoded) 509

5.1.3 Data Transmission Network

This is the element responsible for the actual communication between the Cloud
Data Colletion (CDC) and the Mobile Noise-Sensing Client (MNSC) devices through
the establishment of end-to-end connections. Typically, reliable TCP connections
are established. In particular, we use the Firebase API, which supports high-level
communications, by automatically opening sockets. At the client side, Firebase
establishes its communication through generic sockets, so that it guarantees com-
patibility with all smartphones, while at the server the connection relies on a REST
service, which specifically uses the "Pyrebase" library, a simple Python wrapper
for the Firebase API. Additionally, Firebase includes in its API the persistence
option on disk, which means that, if the mobile device loses the network connec-
tion, Firebase will cache the captured noise values and, when the connection is
available, it synchronizes the data that was previously cached with the server.
Table 5.1 shows the size of the message when the clients send data (DataNoise),
and when the server sends the task (DataTask).

5.1.4 Implementation

Our MNSC app, called GRCSensing, was developed using Android Studio 6.01.
Besides, a set of Google dependencies (i.e. maps, Firebase) have been used for the
coding and decoding details of GPS positions and Firebase APIs. Once the mobile
application is installed, and the required permissions are granted, it automatically
starts capturing data regarding the ambient noise. Those samples are sent in real
time to the CDC. We use SQLite as the local data structure for storage.

Regarding the Server solution, specifically the Back-End Server, it is designed
following the Model View Controller (MVC) pattern, and using the Django plat-
form [99]. Also, we make use of JavaScript to add several functionalities, like
those using Google maps, and to draw the different types of areas required. The
database used is MariaDB [81], and the Pyrebase API [33] is used for communica-
tions. For statistical analysis and reporting, we use the R Graph tool [102], which
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includes the generation of heat maps for captured noise.

5.2 Summary

Currently, crowdsensing solutions have become an enabling technology for Smart
Cities by empowering users to participate in the monitoring process of their en-
vironment through their mobile devices. Studies of noise pollution over densely
populated areas is no an exception, with different works pointing out in this di-
rection.

In this chapter, we proposed a complete architecture for environmental noise
monitoring that combines smartphones and cloud services to measure noise pollu-
tion levels with high spatial granularity. In detail, we proposed using smartphones
as mobile sensors to provide noise pollution measurements, and relying on Firebase
as a gateway technology, allowing the interaction between the sending of sensing
tasks at back-end servers, and the noise capture (by smartphones) at client de-
vices. Once the task is delivered, the smartphone decides the optimum time for
capturing data, and it provides real-time feedback on the given noise quality con-
ditions; finally, the back-end server provides services for storage, processing, and
data visualization. In the following chapters, we will analyze different issues re-
lated to the quality of the measurements gathered, and to the sampling process
itself.
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Chapter 6

Accurate Ambient Noise Assessment
Using Smartphones

Nowadays, smartphones have become ubiquitous, and one of the main com-
munication resources for human beings. Their widespread adoption is due to

the huge technological progress, and to the development of multiple useful appli-
cations. Their characteristics have also experienced a substantial improvement as
they now integrate multiple sensors able to convert the smartphone into a flexi-
ble and multi-purpose sensing unit. The combined use of multiple smartphones
endowed with several types of sensors offers the possibility to monitor a certain
area with fine spatial and temporal granularity, a procedure typically known as
crowdsensing, and that was introduced in chapter 2.

In this chapter, we propose using smartphones as environmental noise-sensing
units. In chapter 3, some related works on this topic were described. In particular,
participatory solutions such as NoiseTube [79], Ear-Phone [104], and NoiseSPY
[62] use smartphones to measure environmental noise levels in urban areas, gener-
ating pollution maps that use internal sensors for geo-localization. Other options
are available in the Android and iOS application markets. However, these appli-
cations always introduce some error margin regarding their measurements, and
many of them are not freely available for download and testing [63, 88]. The main
causes of these errors are two-fold: first, the obvious hardware differences between
the smartphones’ microphones and the professional sound level meters; second,
the specific algorithms, filters and the sound API that are used to process the
sensed values. Thus, a thorough study and comparison of the noise measurement
performance when using smartphones becomes necessary.
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Our work differs from the previous ones since our goal is to study noise mea-
surement accuracy when only smartphones are used. We developed our own noise
measurement application considering current solutions, as well as different algo-
rithms proposed in the literature. Then we determine the best configuration option
for each of the algorithms in terms of sampling rate and block size. In addition, our
study also analyzes which approach provides the best trade-off between accuracy
and computational requirements, allowing one to determine the most adequate al-
gorithm for application deployment, along with the time sampling period defined
for sensing. For this purpose, we focus on the main characteristics influencing
the design and implementation of reliable systems for the assessment of noise pol-
lution levels using smartphones. We have taken our proposed architecture for
crowdsensing-based noise measurements that were presented in chapter 5 as a
starting point, proposing a mobile noise sensing solution based on off-the-shelf
smartphones that can offer performance comparable to the one achieved with pro-
fessional devices. In general, we will focus on the Noise Capture module of the
Mobile Noise-Sensing Client (MNSC).

The main contributions of this chapter are as follows: first, we analyze the
behavior of three different algorithms for noise measurement, determining the
best approach when taking as reference a professional and fully-calibrated Class
II sound level meter [77]. Second, for each algorithm, we evaluate the impact
of different sampling rates and sample block sizes. Third, after selecting our
candidate algorithm, we make a performance analysis using different types of
smartphones, improving the results based on linear regression techniques, and then
evaluating the optimal time-sampling period. Finally, we validate our proposal in
typical outdoor environments.

6.1 Measuring Noise Level

In this section, we focus on a procedure that leads to accurate noise level mea-
surements using Android-based smartphones. Such a procedure gains particular
relevance within the framework of our reference crowdsensing architecture for noise
data gathering. It is also important to note that, in this chapter and the following
one, we will only focus on the Mobile Noise-Sensing Client (MNSC). In particular,
we will focus on ensuring the quality of the measurements taken, and on the rep-
resentativeness of samples taken by smartphones, respectively. This characteristic
is in the "Noise capture" of the Client Sensor Task Manager (CSTM) analyzed in
the previous chapter.

6.1.1 Measuring Background Noise Levels

In chapter 3 we analyzed the basic elements used to measure environmental noise.
We now proceed to describe the applicable formulas. Thus, the measured value is
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expressed in decibels, and the equation used to derive the noise value is defined
as follows:

LAp = 10 log10

p2rms · 4filter
p2ref

(6.1)

where pref is the reference sound pressure, and prms is the root-mean-square sound
pressure at a point during a given time interval. In addition, 4filter refers to
frequency-specific A-weighting coefficients [116].

In Equation (6.2), LAeqp
is the average sound level-equivalent for A-weighting

applicable to a specific sample block of size BS.

LAeqp = 10 log10

1

BS

BS−1∑
i=0

[
10

LApi
10

]
(6.2)

The Sampling Rate (SR) or sampling frequency is the number of samples cap-
tured per unit of time, being an important factor when calculating environmental
noise levels. The higher the sampling rate, the more accurate the voltage fluc-
tuations, and, therefore, its shape more accurately resembles the original sound
wave. Concerning the Block Size (BS), it is the total number of samples stored
for processing in a single capture.

6.1.2 Android-Specific Issues

In the Android platform, there are two classes for managing sound resources,
i.e., the AudioRecord and the MediaRecorder class. AudioRecord allows data
analysis to be performed while recordings are still in progress. Such analysis is
dependent on the minimal internal buffer provided by the read object. These
raw data are then converted to standard noise levels. On the other hand, when
the MediaRecorder is used, data are instead copied to a file, and it provides a
method that returns the maximum absolute amplitude that was sampled since
the last call. Both classes allow us to configure audio characteristics including
sample rate, block size, input and output channels, etc. For our tests, we selected
the AudioRecord class because it offers the possibility of reading directly from the
buffer.

6.2 Noise Calculation Algorithms

As mentioned earlier, we can find a few free smartphone applications able to
measure noise levels, although the majority suffers from large measurement errors.
Some of these applications have used a method to calibrate the sampled values.
A part of these algorithms also defined a fixed block size and sampling rate.

In this section, we study three different algorithms that allow measuring noise
levels, with an emphasis on smartphones. In particular, we have considered three
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algorithms. The first one operates in the frequency domain, and the second and
third algorithms operate in the time domain. All of these algorithms allow adjust-
ing both the sampling rate and the block size, and they have been implemented
in our Android-based application described later on.

Algorithm 1: dB(A) calculating using Fourier transform.
Data: BufferRawData, AudioRecord
Input: SR(SampleRate);BS(BlockSize);T (Totaltime)

1 k = SR
BS

2 for c = 1 to T do
3 dat = 0
4 for z = 1 to k do
5 Read current AudioRecord with Block Size BS
6 for i = 0 to BS do
7 w = 1

2 (1− cos( 2πi
BS−1 ))

8 sample(i) = NormalizedRawData(i) · w
9 end

10 FFT (Array sample)
11 for i = 0, j = 0; i < BS/2; i+ +, j+ = 2 do
12 mag(i) =

√
FFT (j)2 + FFT (j + 1)2

13 dat = dat+ 10
Lpmag(i)

10

14 end
15 end
16 ToLogFile(10 · log10

dat
k )

17 end

6.2.1 Fourier-Based Algorithm

This first solution, which is described in Algorithm 1, follows a procedure that
consists of retrieving the raw noise measurements and transforming these values
from the time to the frequency domain. Specifically, we used the Fourier trans-
form with data previously standardized and processed using a Hamming window.
Once the Fourier transform is applied, the data are evaluated and processed using
Equation (6.2), applying the corresponding A-weighting coefficients for the differ-
ent frequencies. Finally, after a cycle, the noise value is calculated using Equation
(6.2).

6.2.2 Time Domain-Based Algorithm

This second solution, which is described in Algorithm 2, is one of the most widely
known and adopted. It processes the noise levels in the time domain as follows:
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values are read from a set of raw data and are then processed using Equation (6.1).
In this equation, the value of the reference pressure (pref ) is set to one. Once the
cycle is completed, it calculates the average noise value.

Algorithm 2: dB(A) calculation using time series and non-normalized data.
Data: BufferRawData, AudioRecord
Input: SR(SampleRate);BS(BlockSize);T (Totaltime)

1 k = SR
BS

2 for c = 1 to T do
3 dat = 0
4 for z = 1 to k do
5 Read_AudioRecord(BS);
6 Apply equation for row data in buffer array;

7 dat = dat+ (
1

N

BS−1∑
i=0

10
Lpi
10 )

8 end
9 ToLogFile(10 · log10

dat
k )

10 end

6.2.3 Normalized Time Domain Algorithm

This third algorithm shares the same basic characteristics as Algorithm 2. The
main difference lies in the fact that samples are normalized before the noise es-
timation is made, so that the referential pressure of Equation (6.1) now becomes
pref = 20 Pa (0.00002 N/m2), which is the standard reference value for sound
pressure.

6.3 Calibration Procedure

Our experimental scenario analyzes the accuracy of the three algorithms mentioned
above in actual smartphones, comparing them with the measurements obtained
by a professional sound level meter. Correctly, we used the PCE-322A sound level
meter [77] for smartphone calibration. This device has a condenser microphone,
and it presents a response to sound pressure in the range between 20 Hz and
20 kHz. It achieves a precision level of ±1.4 dB, complying with the IEC61672-1
standard for Class 2 devices. Concerning the smartphone used for the testing,
we selected a Samsung Galaxy S7 Edge (Model SM-G935F) running the Android
6.0.1 operating system. This smartphone incorporates two microphones on the top
and the bottom, respectively. The main microphone is of good quality, integrating
a low-noise input buffer and active noise cancellation [59]. It is worth pointing
out that the microphones included in both professional sound level meters and
smartphones are omnidirectional.
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Figure 6.1: Noise calibration using professional devices. Location: reverberant
acoustic chamber, at the Universitat Politècnica de València.

This PCE-322A sound level meter was calibrated using a Class 1 sound level
meter in a reverberant acoustic chamber to guarantee the highest measurement
accuracy, both of which are institutional resources with limited access and avail-
ability. Our purpose was to make sure that both sound level meters provide similar
readings, as shown in Figure 6.1.

In our experiments, the sound source was aligned opposite to the smartphone
and the sound level meters. A Creative Lab T30 2.0 speaker generated the noise.
In particular, we injected pink noise generated by the Audacity software package
in the range from 35 to 85 dB (A) in 10-dB steps, which is the typical dynamic
range of microphones embedded in smartphones. The sound levels injected were
calibrated using the PCE-322A device. Then, in our study, we implemented and
tested the three algorithms defined in the previous section using different sampling
rates (8 kS/s, 11 kS/s, 16 kS/s, 22 kS/s, and 44 kS/s), as well as different block
sizes.

For each noise level being evaluated, we took a total of 30 short samples lasting
1 s each, and prior to each sampling procedure, there was an initial warm-up period
of 15 s to achieve a stable measurement level.

Finally, it is worth mentioning that the algorithms were developed in Android
Studio 2.1.3 using the AudioRecord class, and the 16-bit audio format was the one
used by default.
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6.4 Experimental Results

Once the algorithms were implemented and tested from a functional point of view,
our next goal was to determine the impact of the sampling rate and the block size
in the noise estimation accuracy. It should be noted that the sampling rate and the
block size affect the accuracy of noise calculations due to two factors: frequency
resolution, and filtering. The frequency resolution improves as the acquisition time
increases. If the acquisition time is fixed, as in our case, a higher sampling rate
will allow, according to the Nyquist theorem, to capture the behavior at higher
frequencies, being that the maximum measurable frequency is half the sampling
rate. This means that frequencies above this threshold are filtered out. However,
if the sampling rate is increased, but the block size (number of samples acquired)
is maintained, it will correspond to an overall lower acquisition time, and so the
representativeness of measurements will be reduced, again resulting in a lower
spectral resolution.

It is also worth pointing out that, in our case, we are not targeting at a very
high spectral resolution, nor at encompassing very high frequencies; instead, our
goal is to achieve representative noise measurements that mimic the sound level
meter results with high accuracy, meaning that lower frequencies are the most
representative in terms of noise assessment from the human ear perception system,
and so this becomes our ultimate goal.

With this purpose in mind, we analyzed the results obtained by the different
algorithms against the values stored by the PCE-322A device. In parallel, we an-
alyzed the computation time associated with each algorithm to allow determining
the best trade-off between estimated error and processing overhead. Also, once the
candidate algorithm was obtained, we studied the variability when using different
types of smartphones, and optimized results using linear regression techniques. Fi-
nally, we studied the sampling period that offers the best trade-off between sample
length and accuracy.

6.4.1 Sampling Rate Analysis

In this section, we analyze the impact of the SR on each of the tested algorithms.
In particular, we want to determine whether the actual sampling rate significantly
affects the noise estimation. For this purpose, we carried out different tests where
noise levels were collected from readings using slightly different block sizes (BS ),
where the block size refers to the number of samples gathered so that, combined,
the ratio between SR and BS returns an integer value. As a result, BS values are
in the range between 1500 and 2500 samples. Then, for each sampling rate and
each block size combination, we determined the average noise value for all of the
sampling periods, in dBA.

Figure 6.2 shows the impact of the selected sampling rates on each algorithm.
In general, the three tested algorithms show a linear increase as the input noise
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Figure 6.2: Sampling rate analysis. (a) Algorithm #1.; (b) Algorithm #2.; (c)
Algorithm #3.

level varies. This is desirable, as a non-linear curve within the dynamic microphone
range will mean that its quality is poor, possibly being unsuitable for this task.

Concerning the impact of the SR on noise estimations, we find that, in general,
values tend to increase when increasing the SR. Moreover, we find that Algorithms
#2, and #3 show values close to the reference ones when SR = 22 kS/s and SR =
44 kS/s, respectively, while Algorithm #1 shows better results for SR = 11 kS/s.
In particular, it can be clearly observed that Algorithm #1 exhibits a significant
difference concerning the reference value when SR > 16 kS/s. Overall, we find that
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Algorithm #3 is the one showing the best match towards the reference values.

6.4.2 Block Size Analysis

In this section, we determine the impact of the BS on noise estimations. To this
end, we fixed the sampling rate at 22 kS/s and made several tests with character-
istics similar to the previous ones. Specifically, we used six different block sizes to
evaluate each algorithm.

Figure 6.3 shows the behavior achieved for the noise range under test using
different block sizes. In general, the three algorithms mostly present a linear
behavior when the injected noise values increase. We find that Algorithm #3 best
fits the reference value when BS = 882 samples. Regarding Algorithm #1, we find
that the best result achieves for BS = 450 samples. Also, Algorithm #1 is the
only algorithm that experiences a direct relationship between the block size and the
estimated noise values (dBA). For Algorithms #2, and #3, this relationship was
not so clear, although the lowest BS size still provides the lowest noise estimations.

6.4.3 Algorithms Comparison when Fixing the Block Size

In this section, we want to extend our evaluation to the analysis of the impact
of using different sampling rates when a same block size is adopted for all cases.
In particular, we have assigned a default block size of 2012 samples to all mea-
surement setups, which approximately corresponds to the mean size of the blocks
evaluated in the previous section. In addition, we have discarded Algorithm #2
since the values it returned in the previous section were the most distant ones to
our reference SLM values.

We consider that it is interesting to compare the behavior of Algorithms #1 and
#3 due to their different noise calculation approaches, that is Fourier transform
vs. time domain analysis, respectively. The samples were obtained with the same
smartphone used for the previous tests, and the average value corresponding to 30-
second periods was calculated for each noise level (35 to 95 dB) injected. Figure 6.4
shows the impact of the sampling rate on the noise estimation accuracy. We find
that, in general, there is an increasing behavior with SR, meaning that increasing
SR values causes the measured noise values to increase as well. We also noticed
that for Algorithm #1, a nearly optimal curve adjustment achieved when using
a sampling rate of SR = 11 kS/s, whereas for Algorithm #3, all of the returned
values are slightly below the reference line provided by the professional sound
meter.

6.4.4 Estimation Error (εs) vs. Computational Overhead

We now proceed to analyze which algorithm exhibits the lowest error with regard
to the reference value, as well as their impact on the computational overhead. To
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Figure 6.3: Block size analysis. (a) Algorithm #1.; (b) Algorithm #2.; (c)
Algorithm #3.

100



6.4. Experimental Results

40 50 60 70 80 90

Injected (db) 

30

40

50

60

70

80

90

100

M
ea

su
re

d 
(d

bA
) 

Sonometer
SR=8kS/s,   BS=2012
SR=11kS/s, BS=2012
SR=16kS/s, BS=2012
SR=22kS/s, BS=2012
SR=44kS/s, BS=2012

(a)

40 50 60 70 80 90

Injected (db) 

30

40

50

60

70

80

90

100

M
ea

su
re

d 
(d

bA
) 

Sonometer
SR=8kS/s,   BS=2012
SR=11kS/s, BS=2012
SR=16kS/s, BS=2012
SR=22kS/s, BS=2012
SR=44kS/s, BS=2012

(b)

Figure 6.4: Sampling rate analysis when fixing the block size. (a) Algorithm #1;
(b) Algorithm #3.

calculate the error, we used a total period T = 30 s, with SR
BS sample blocks per

second, adopting the same characteristics as in the experiments detailed above.
Concerning the error value, it was calculated using Equation (6.3):

εs =| is −Rs
Rs

| (6.3)

In this equation, εs represents the relative average error for the sample s with
regard to the set of reference data; is represents the value calculated by the algo-
rithm for sample s; and Rs represents the reference value of the sound level meter
for sample s.

Concerning the calculation of the computation time, we obtained the average
value corresponding to 1000 independent executions for each particular algorithm
under the sampling rate and block size defined.

Table 6.1 presents a summary of the mean and maximum estimation errors
achieved, along with the corresponding computational overhead. This table is
completed based on the results obtained in the previous evaluations for different
sampling rates and block sizes, but we have filtered this table showing the three
best results obtained in each algorithm. Notice that Algorithms #1 and #3 have
a mean error value of about 1 to 4%, and that they introduce a similar overhead.
On the other hand, the computational overhead for Algorithm #1 is higher due
to the fact that they need to perform the Fourier transform prior to determining
the error. Additionally, we find that the maximum error for Algorithms #3 and
#2 is higher (10%) when compared to the first algorithm.
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Table 6.1: Estimation error and computational overhead achieved with the differ-
ent algorithms (best overall configurations).

Sampling Block Algorithm ε̄s max(εs) Overhead
Rate (kS/s) Size (ms)

11 2012 1 0.01931 0.07796 25.1533
11 2205 1 0.02420 0.04589 25.3667
16 1600 1 0.03236 0.09625 25.7133
44 2205 3 0.03146 0.11664 25.4101
22 2450 3 0.03154 0.11048 16.0122
44 2012 3 0.04579 0.12980 25.0178
44 2205 2 0.09326 0.21741 25.3252
22 2450 2 0.09334 0.21124 16.1289
11 2205 2 0.12582 0.22328 11.1083

To have a greater insight into the different trade-offs faced, Table 6.1 shows
the SR/BS combinations returning the lowest average error concerning the sam-
ple rates evaluated, along with the respective computation overhead. There is
evidence that Algorithm #3 offers the smallest error margins, achieved for SR =
44 kS/s and SR = 22 kS/s, when having BS = 2205 and BS = 2450, respectively,
achieving an error of less than approximately 4%. Algorithm #2 presented errors
more than 4%. Finally, regarding Algorithm #1, it is indeed the one offering
the best combination by achieving both low error values and low computational
overhead, and so it is considered as the best candidate solution.

6.4.5 Analysis Using Different Smartphone Models

Once Algorithm 1 was found to be the best option, the next task was to evaluate
the effectiveness of the selected algorithm when obtaining samples using different
smartphone models. Figure 6.5 shows the smartphone models evaluated. All
smartphones run the Android 6.0 operating system, and all them are able to run
the developed application correctly.

In the experiment, we performed a procedure similar to that followed in pre-
vious tests. In particular, we injected pink noise in the range from 35 to 95 dB,
and each test lasted 30 s.

Figure 6.6a shows the obtained results. In general, we find that, except for
smartphone model BQ Aquaris (AQ), all other smartphones models (S4, J5, and
S7) present a linear behavior. Regarding result accuracy, though, we find that only
the results for the Samsung S7 device are near to the reference values. Such near-
optimal accuracy is expected since the experiments performed earlier on relied
on this same device. Thus, we find that the results achieved using the proposed
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Figure 6.5: Smartphone models used for testing. From left to right: BQ Aquaris,
Samsung J5, Samsung S4 and Samsung S7 Edge.

algorithm show model-specific variations, which are in general expected due to
hardware differences.

To solve the problem detected, our next step was to apply linear regression
techniques with respect to the reference dataset. Our goal was to adjust the
results achieved with the different smartphone models so that they resemble the
reference ones as much as possible. The results of this curve adjustment process
are shown in Figure 6.6b. It quickly becomes evident that the output results for
most of the models fully agree with the reference value, with more pronounced
differences for the BQ Aquaris smartphone case in the range from 65 to 75 dB
(A). Finally, Figure 6.6c shows that, after the adjustment procedure, the error is
less than 2% in Samsung phones, the BQ Aquaris model being the one showing
the highest error values. Anyway, this error is always less than 8%, which is a
reasonable value.

6.4.6 Analysis for the Same Smartphone Model

In this section, we compared the differences between smartphones of the same
model/provider to determine the differences between them. Notice that differences
between smartphones of the same model are expected, especially for low-range
market devices, where cheaper hardware is used. For our tests, we picked four BQ
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Figure 6.6: Estimation accuracy for the different smartphone models with and
without linear regression. (a) Algorithm #1: default sampling; (b) Algorithm

#1: values adjusted using linear regression; (c) Algorithm #1: estimation error.
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Figure 6.7: Smartphones of a same model used for testing.

Aquaris smartphones since these are the cheapest ones used. Figure 6.7 shows the
smartphones of a same model being evaluated.

Figure 6.5a shows the results for our noise sensing tests before applying any
curve adjustment. The experiment was performed under the same conditions used
before. We can see that there are some differences between smartphones, although
the shape of the curve is similar in all cases, with a loss of linearity for values above
75 dB.

Figure 6.8b shows the output after performing the linear regression procedure.
We can now see how values tend to resemble the reference values better, showing
differences for inputs of 85 dB and above due to the non-linearity detected earlier.
Finally, Figure 6.8c shows the value of the estimation errors, which are below 8%
in most of the cases.

6.4.7 Impact of Reducing the Sampling Period

Our next goal was to determine the optimal duration of the data collection process.
This is a critical issue when aiming at minimizing the resource usage of smart-
phones. With this purpose, we have evaluated the impact of the sampling time
for two smartphone models: the low-end BQ Aquaris, and the high-end Samsung
S7 Edge. For both devices, we have obtained 30 samples for each sampling period
tested. In all cases, the block size used is 2012, and the sampling rate is 11 kS/s,
as defined in previous sections. The injected noise was fixed at the intermediate
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Figure 6.8: Estimation error analysis when using similar smartphones. (a)
Before regression; (b) after regression; (c) estimation error.
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value of 65 dB for all the tests. Figure 6.9 shows the sample estimations achieved
with both smartphones when varying the sampling period, along with the asso-
ciated error values. In particular, Figure 6.9 shows that the Samsung S7 edge
smartphone introduces a measurement bias detectable when the interval is very
low, meaning that a filter is introduced that causes values to converge to the final
value slowly. This effect is not noticeable in the BQ Aquaris smartphone, as shown
in Figure 6.9, which is much more linear. In both cases, we find that, as expected,
higher sampling periods are associated with a lower result variability, although
the margin of variation typically remains below ±0.5 dB in all cases. Figure 6.9
shows the error towards the reference values for the two smartphones under test.
Clearly, the S7 smartphone introduces an error that only becomes negligible when
the overall sampling period is greater than 10 s. Therefore, it is important to
determine the required stabilization time for the different smartphone models.

Based on the prior analysis, we decided to broaden our study to gain further
insight into the sound capture process for the initial samples taken during the first
second and thereby determine the duration of the transient period detected above.
This procedure was repeated 30 times.

Figure 6.10 shows that, during this initial second of sampling, sample values
gradually tend to increase, initially taking values below the reference value (65 dB),
and then becoming slightly higher. The main problem detected occurs for the first
sample taken with the Samsung S7 smartphone, where the values registered are
more than 40 dBs below the reference value, thus causing a substantial bias when
averaging these different samples. Given these circumstances, at least the first
sample taken should be discarded in order to increase the reliability of the results
and to achieve meaningful measurements in a short period.

Figure 6.11a, b shows the new results when varying the sampling rate and
discarding the first sample during this initial second. We find that there is a
substantial prediction improvement, especially for the Samsung S7 device, which
was the one experiencing the problem. We also find that the readings do not
depend significantly on the period of time chosen.

Figure 6.11c now shows that the margin of error is below one percent for most of
the cases. The causes of these results varies according to each specific smartphone;
in particular, the microphone of the Samsung S7 device presents a filtering at the
time of being activated, reason why we consider appropriate to discard the first
samples. The worst result takes place when using a sampling time of one second
using the BQ Aquaris model; anyway, the average error remains below 2%, which
is considered acceptable for these types of measurements.

Overall, based on the results obtained, we can conclude that Algorithm #1 is
an optimal candidate when used together with the following conditions: discard
the first sample; adopt a sampling rate of 11 kS/s; select a block size of 2012
(evaluated); and apply a curve adjustment (linear regression) specific to each
smartphone model. This strategy allows reducing the sampling error below 1% in
most cases, even when limiting the sampling period to a very short interval of 1
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Figure 6.9: Sampling period analysis. (a) S7 edge; (b) BQ Aquaris; (c)
estimation error.
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Figure 6.10: Analysis sampling S7 and Aquaris for 1 s.

Table 6.2: Sampling period analysis (when removing the first sample).

Smartphone Sampling Mean ε̄s Std.
Type Period (s) (dBA) Dev.

Samsung S7 Edge

1 65.1229 0.0052 0.2355
2 65.7344 0.0056 0.1382
3 65.8856 0.0078 0.0979
5 65.9405 0.0097 0.0890

BQ Aquaris

1 66.5757 0.0172 0.2270
2 65.9599 0.0091 0.2128
3 65.7659 0.0059 0.1880
5 65.6615 0.0054 0.1506

to 2 s. Finally, by analyzing Table 6.2, we show that the mean value obtained is
close to the reference value generated for testing (65.5 dBA). We also find that, on
both smartphones, the standard deviation experienced a moderate decrease when
increasing the sampling time.

6.5 Validation in Real Outdoor Environments

All of the results mentioned above were obtained in a controlled noise environment.
However, field noise measurement results may experience significant differences
due to environmental effects, such as humidity, temperature, and the stability of
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Figure 6.11: Sampling period and error analysis when removing the first sample.
(a) S7 Edge; (b) Aquaris; (c) error analysis.
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Figure 6.12: Analysis for the mobile scenario.

the device, among others. Therefore, to complete our study, our next goal was to
validate the behavior of the candidate algorithm in real environments, comparing
the results obtained with those of our professional noise level meter.

We decided to perform our study in three different outdoor conditions: the first
experimental results were obtained under mobility with the support of a vehicle;
the second set of results was obtained when statically positioned near the main
avenue; finally, the third set of results was obtained at a crowded outdoor coffee
shop. Figure 6.12 shows the locations associated with the three scenarios we used
for validation.

In detail, the first set of results was obtained by having the noise level meter
and the Smartphone S7 in a car with the windows down, both devices being
statically positioned with an appropriate holding arm. We then followed the path
shown in Figure 6.12 at an average speed of 20 km/h, the obtained results being
shown in color in Figure 6.12, and graphically in Figure 6.13a. The latter results
showed a behavior close to the ones obtained with the sound level meter, with a
margin error of 0.0308 percent (see Table 6.3).

Regarding the second set of tests, we installed the equipment (noise level meter
and smartphones) on one side of the main avenue (Avenida Tarongers nearly at
the Universitat Politècnica de València), and in such a way that it remained static
for the whole test duration. The measurements were taken at 17:00, a time when
the traffic density was moderate. The results are shown in Figure 6.13b and Table

111



6. Accurate Ambient Noise Assessment Using Smartphones

100 200 300 400 500 600 700 800

Time (s)

40

50

60

70

80

90

100

M
ea

su
re

d 
(d

bA
)

Sonometer
S7

(a)

20 40 60 80 100 120

Time (s)

40

50

60

70

80

90

100

M
ea

su
re

d 
(d

bA
)

Sonometer
S7

(b)

20 40 60 80 100 120

Time (s)

40

50

60

70

80

90

100

M
ea

su
re

d 
(d

bA
)

Sonometer
S7

(c)

Figure 6.13: Analysis of noise pollution for three outdoor scenarios. (a) Mobile
scenario; (b) main avenue; (c) outdoor coffee shop.
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Table 6.3: Error in the three outdoor scenarios.

Scenario ε̄s max(εs)

(a) Mobile scenario 0.0308 0.2275
(b) Main avenue 0.0260 0.1989

(c) Outdoor coffee shop 0.0258 0.1151

6.3. Again, we can find a high resemblance when compared to the results produced
by the professional sound level meter.

Concerning the third set of tests, the test equipment was installed on the
table of an outdoor coffee shop within our university campus following a similar
procedure. The results are shown in Figure 6.13c and Table 6.3. In particular, we
find that the error margin was even lower compared to the previous results, with
an error value of only 0.0257 percent.

Overall, we consider that the results obtained are quite satisfactory, and they
evidence the adequateness of the proposed solution, as well as of the methodology
adopted.

6.6 Summary

The widespread adoption of smartphones and the various sensors they integrate
offers unlimited potential waiting to be unleashed. In particular, the combination
of multiple smartphones acting as mobile sensing devices allows achieving massive
monitoring, a process known as mobile crowdsensing.

In this chapter, we proposed using the microphones of smartphones as sensors
to create noise level maps for metropolitan areas. In particular, we address the
issue of measurement accuracy and representativeness when using the microphones
of commercial smartphones. To this aim, we implemented and compared different
algorithms typically used to obtain Type A noise levels, assessing the impact
of the sampling rate and the buffer size on noise measurement accuracy. We
also evaluated the impact that different issues could have over the measurement
process: (i) the impact of testing with different smartphones models in the same
conditions; (ii) the impact of same testing devices in the same conditions; (iii)
the model-specific tuning by applying linear regression techniques; and (iv) the
analysis of the trade-off between sampling period duration and noise estimation
error.

Experimental results showed that both the sampling rate and the selected
buffer size can have a significant impact on the accuracy of noise level estima-
tions, being that estimation errors can vary from 1% to 12% in the best cases.
However, although statistically representative, we consider that errors between 1
and 2 dB are acceptable for noise measurements in the majority of the scenarios.
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More important, we find that, if an adequate selection is made, it is possible to
combine low noise-level errors with a low computational overhead, a situation that
is ideal in crowdsensing contexts. In addition, we show that low-end smartphones
are prone to introduce a higher error than high-end smartphones on average, al-
though the additional filters included in the latter may require some of the initial
measurements to be discarded. Overall, we were able to demonstrate that it is
possible to accurately assess noise levels by taking relatively short samples (from
1 to 3 s), while introducing a minimal estimation error.

We consider that it is important to take into account the differences between
mobile phones from different manufacturers, which are mainly noticeable in terms
of microphone quality and the presence of filters; the latter can cause unwanted
effects, such as initial transient periods in the measurements obtained. Similarly,
the choice of a specific configuration in terms of sampling rate and block size will
have an effect on the noise measurements made, and should also be taken into
account. Finally, the algorithms developed should try to compensate for non-
linearities in noise measurement over the different frequency ranges.

In the next chapter, we integrate this algorithm in our proposed client-side
application. Additionally, we evaluate how other smartphones sensors (i.e., gyro-
scope, accelerometer, orientation, GPS) can help us to determine the ideal time
to capture environmental noise in urban areas.
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Chapter 7

Determining the Right Time to
Obtain Noise Samples

In the previous chapter we studied the viability of using commercial smartphones
to determine noise levels, showing that, if a suitable calibration procedure is

adopted, such an option is feasible.
In addition, some of the works reviewed in chapter 2 highlight that determining

the sampling rate used and the right time to gather samples (by accounting for
the context of smartphones) are both critical issues to consider when aiming at a
widespread user adoption, as an excessive resource usage would make any applica-
tion worthless. In fact, the sampling rate directly affects the use of the hardware
resources in the smartphone, while smartphone context awareness is critical to
determine the right time and place to capture the noise, avoiding samples with
little or no representativeness. For example, it would be incorrect to measure noise
when the smartphone user is playing music using the loudspeakers, or when the
user is talking on the phone.

Also, another factor to consider in the design of smartphone applications is
battery consumption. By avoiding taking noise samples at times where conditions
are inadequate, it is possible to achieve significant energy savings, thereby ex-
tending the battery lifetime. Considering the aforementioned issues, crowdsensing
solutions for ambient noise assessment require new approaches to data collection
that can reduce user intervention and maximize energy efficiency.

In view of the previous research studies, it is clear that, in spite of the many
advances in the field of mobile crowdsensing in recent years, there are still a
number of issues that must be addressed adequately for solutions to become more
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effective and, from the user perspective, it is clear that these tasks should not
become a burden. Therefore, it is necessary to consider the management of context
assessment to accelerate the discarding of unwanted samples. The consumption
of energy and network resources is also a problem, and so there is a need for
intelligent algorithms capable of correctly determining the best sampling times,
while simultaneously avoiding CPU-intensive tasks.

In this chapter, we focus on application design issues; specifically, we attempt
to detect which is the most appropriate time and context to obtain these noise
samples, while simultaneously minimizing power consumption. To this purpose,
we define different contexts to determine whether adequate environment sampling
conditions are met, and we then apply classification algorithms to generate the
most accurate decisions trees automatically. An analysis of resource consump-
tion requirements associated with the different decision trees [66] obtained shows
that, despite their high accuracy, the resource consumption levels were prohibitive
for this kind of applications. Thus, we propose an alternative decision tree that
maintains the accuracy levels of automatically generated trees, while significantly
reducing the resource consumption introduced by the latter.

7.1 Classification Techniques

During the mobile app design process, the developer defines different procedures to
determine, e.g., when the sensors should be activated. Besides, certain conditions
should be considered when using smartphones as a noise measurement tool. For
instance, several situations make it inadequate to sense environmental noise, as
user intervention is affecting the overall result. Examples of such situations include
talking on the phone, listening to music using the loudspeaker, or keeping the
smartphone in a pocket/purse.

In this chapter, we continue by optimizing the process taking place at the
Mobile Noise-Sensing Client (MNSC). In particular, we will focus on how to
determine the right time and context to capture meaningful noise samples, while
avoiding excessive resource usage. This architecture is shown in Figure 5.2. In
our architecture, we define a module (Context Validation) that is responsible for
analyzing the right time to undertake the sensing task. So, once a task notification
is received from the server, it will evaluate the user context to determine if the
required conditions are met and if so then proceed with the sensing task. In our
proposed architecture, this module belongs to a set of modules that is responsible
for managing smartphone sensors, and that is part of our general proposal, detailed
in chapter 5.

In this section, we define a series of context analysis and actions undertaken
at the smartphone at the time of assessing whether the moment and context are
adequate for noise-capturing. Also, we define the algorithms used for classification,
and then we present the obtained results.
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7.1.1 Attribute context classification

Table 7.1: Attribute candidate by categories.

Categories Attribute
Task TaskDate, TaskArea
Sound Speaker, Music, ActiveCall, MicroPhone, ActiveApplication
Status PhoneStatus, Blocked, Camera, Keyboard, Location

In this section, we seek to assess the adequacy of a particular situation to take
environmental noise samples. Specifically, we want to optimize the sequence fol-
lowed to access the different built-in states and sensors (i.e., GPS, accelerometer)
for such an assessment to be made. We define a series of attributes that contribute
to determining whether the ideal conditions for environmental noise sampling are
met. These attributes are shown in Table 7.1, and were classified according to the
conditions and characteristics of the smartphone. For the first category, we con-
sider the tasks as a set of actions to be taken by the smartphone at a specific time
and location with the aim of measuring noise pollution (e.g., measure the noise
level in the downtown area of Valencia, on Sunday the 11th of October, from 12:00
to 13:00). In particular, it defines the sensing task. Regarding the second category,
it refers to the attributes that produce a sound phenomenon, and that can cause
the noise readings to be inaccurate. The third category refers to the conditions
of the smartphones (e.g. the smartphone can be active or idle). These last two
categories refer to the optimal instant to perform the noise measurement. In Ta-
ble 7.1 we present the different attributes considered. The proposed task-related
attributes are the following:

• TaskDate. This attribute allows you to validate the existence of a new
sensing task pushed by the server, and to check the range of dates and times
associated with a particular task.

• TaskArea. This attribute allows determining whether the smartphone is
within any of the target areas considered of interest to the task. In this
study, we have defined the target area as a general polygon of n sides, or as
a circle.

The proposed sound-related attributes are the following:

• Speaker. This attribute allows checking whether the smartphone’s built-in
speakers are on or off. We make use of a call to the system audio adminis-
trator to obtain this state information.
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• Music. This attribute allows determining when the smartphone is playing
music. This information is made available through a call to the operating
system. Such playback can be triggered by an event produced by WhatsApp,
Spotify, Youtube, or similar applications.

• ActiveCall. This attribute allows determining whether the smartphone has
an active call through the telephony management API, which allows deter-
mining the specific state of the device.

• PhoneStatus. This attribute refers to the four main states of a smartphone:
on the hand, on a flat surface facing upwards/downwards, in a pocket, and
in a bag. If the smartphone is being held, or if the smartphone is on a
flat surface facing upwards, this is considered a favorable context. We have
discarded the options where the smartphone is inside a bag, in a pocket, and
over a flat surface facing downwards.

• ActiveApplication. This context allows determining whether the smartphone
is making use of some type of social network application or similar (i.e.,
WhatsApp, Instagram, Facebook, etc.).

The proposed status-related attributes are the following:

• Blocked. This attribute allows determining whether the smartphone’s screen
is locked or unlocked.

• Microphone. This attribute allows determining whether the microphone
integrated into the smartphone is activated or not.

• KeyBoard. This attribute allows determining whether the screen keyboard
is activated or not. In general, this can be an indicator that the user is
actively using an application, and it can be a good moment to obtain a noise
sample.

• Camera. This attribute allows determining whether the smartphone’s cam-
era is activated or not.

• Location. This attribute allows determining whether the smartphone is in-
doors or outdoors, as only outdoor measurements are targeted. This is as-
sessed by accounting for the satellite visibility, which is quite reduced when
indoors.

Overall, a smart combination of the attributes mentioned above should allow
an adequate assessment of the adequacy of sampling conditions. Also, notice that
the first two attributes (TaskDate, and TaskArea) are in fact defined by system
managers themselves using the cloud server application. So, each time a user
is notified about a new crowdsensing task, the application should collect these
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Figure 7.1: Visualization of the automatically generated trees.

attributes, validating and processing them. Based on these 12 nominal attributes
defined above, we have created a list of all possible combinations (16384 cases),
being all of them tagged as admissible or not from the perspective of environmental
noise assessment.

7.1.2 Weka-based automatic classification

Using as input the 16384 cases referred above, we relied on the Weka tool [121]
to provide an automatic classification of these different cases. As output, Weka
generated two decision trees, one using the J48 algorithm [95], and another one
using the RandomTree algorithm [17].

Figure 7.1 shows the obtained decision trees. Regarding their accuracy, the J48
algorithm achieves a 100% accuracy, while for the RandomTree algorithm, the ac-
curacy achieved is slightly reduced (99.89%), with an absolute error of 0.001. Over-
all, it is worth mentioning that attributes ActiveApplication, Block, Microphone,
Keyboard, and Camera have been discarded, as they are considered unnecessary
by both algorithms.

From a resource consumption perspective, we can observe that the location-
related attributes are positioned in the fourth node of both trees, as signalled by
the biege arrows. This leads us to think that the resource consumption associated
with these decision trees can be excessively high. Additionally, for our study,
the “TaskDate” attribute should be considered at the beginning of each tree since
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this is a basic requirement to check for the existence of a new task. In short,
these two proposed decision trees offer a viable theoretical solution, but they are
not optimal from a software design perspective, and they are not at all optimal
regarding time and energy consumption. So, in the next section, we will analyze
the different issues involved to optimize the decision process properly; in particular,
we will propose an alternative decision tree that is more resource efficient than its
automatically generated counterparts (see Figure 7.4).

7.2 Task sequencing optimization

Once the candidate trees were obtained, our next objective was to determine
the optimal strategy for collecting noise pollution data through smartphones. To
achieve this purpose, in this section we will analyze the computation time asso-
ciated with each tree element, as well as its level of accuracy. Secondly, we will
analyze the energy consumption required. Finally, we will present our proposal
for a balanced tree in terms of computation time and energy savings.

7.2.1 Computation Time

A specific application was developed to analyze the computation time associated
with each particular task. This application allows us to evaluate each attribute
individually, and follows a repeatable and reliable procedure. In general, 100 in-
dependent readings were obtained for each attribute to be measured, and we took
their average value. A Samsung S7 Edge model running the Android 7.0.2 oper-
ating system was used for testing. Below we detail some relevant characteristics
of the most critical attributes:

For the TaskDate, and TaskArea attributes, the developed application reads
the data from an internal database (i.e., SQLite), and then these values were in-
stantiated in a class for later use. We assume that the server application had
previously sent these tasks to the smartphone, and so they are available for pro-
cessing. In particular, the TaskArea attribute was implemented as a class that
compares a polygon of n sides with the current position given by the GPS sensor.
This class returns true if the smartphone is located inside such a polygon.

Regarding the Speaker, Music, and ActiveCall attributes, the developed appli-
cation works by making calls to the corresponding API offered by the operating
system. The implementation of the PhoneStatus attribute was carried out through
a service that reads the proximity, light, and accelerometer sensors. In particular,
this service ends when the results are obtained.

The location attribute is considered a critical factor because of its high con-
sumption and processing time. To evaluate this attribute, we implemented a
service where we read the latitude and longitude of the GPS sensor embedded
in the smartphone. Also, we recorded the prediction accuracy to have greater
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Figure 7.2: GPS analysis.

control of the positions obtained. A time-stamp was recorded when the GPS
obtained the first coordinate. In particular, the design of our solutions aims at
outdoor locations alone, meaning that we will also use the GPS to discriminate
between both cases (indoor vs. outdoor). To assess the ability of the GPS sensor
to differentiate between both environments, we first analyzed the accuracy results
achieved inside a building (near to a window to get worst-case conditions), as well
as outdoors, in an open environment. For each case, 30 records were taken at two
different times: mid-morning, and mid-afternoon. Our goal is checking whether
the obtained readings through our application show differentiating features for
these environments.

Figure 7.2 (a) shows that, in outdoor environments, 99% of the location mea-
surements were obtained in less than 4000 ms, with just sporadic values found in
the four to six second’s duration range. Besides, to ensure that the smartphone
is indeed in an outdoor environment, Figure 7.2 (b) shows that a GPS accuracy
of 40 meters or less is typically only obtainable outdoors, while indoors the accu-
racy is typically much more reduced, thus allowing to discriminate between both
context scenarios clearly. Hence, based on these results, we can validate the at-
tribute location in the scope of our tree, and we will set its duration to 4000 ms,
as it provides the necessary trade-off between consumption and accuracy. Finally,
Figure 7.3 shows the computation times associated with each key element of the
tree (excluding the Location parameter). In this figure, it is noticeable that the
PhoneStatus attribute is the one consuming more resources in our tree, i.e., lasting
for 185 ms, followed by the ActiveCall attribute, that needs about 9 ms.
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7.2.2 PhoneStatus

Regarding the PhoneStatus attribute, our goal was to determine, with a certain
level of accuracy, whether the phone is on the user’s hand (phone either in the
normal vertical position, or with the left or right turn), or in a desk, but with
the front facing upwards. As we said earlier, we have considered these options
as the ideal moment to capture environmental noise. The idea of the different
states is that there are particular user preferences when used in those positions.
The capture of our training dataset was produced as shown in Table 7.2, and our
main goal was to determine which was the phone position: on the hand, or at a
desk facing upwards. We have developed an application to capture the different
proposed states in a supervised way. The application reads the sensors: calibrated
gyroscope, proximity sensor, linear acceleration, and light sensor. The capture
frequency was of three samples per second for one minute. After completing our
learning set, the data were extracted, and we used Matlab as the tool for the
treatment and validation of the data.

In particular, we proceeded with the following methodology: (i) we used the
K-means algorithm to classify the output from the linear acceleration sensor and
the light sensor into three groups. For the linear acceleration, a single value was
taken for its three axes. (ii) Once the previous classifications were obtained, a
single matrix was made along with the gyroscope values in "x", "y", "z", and the
proximity sensor; (iii) Finally, our resulting set was processed using three different
classification algorithms and using the k-fold cross-validation on ten observations.
Regarding their accuracy, MatLab shows that the Decision Tree achieves a 99.70%
accuracy, while for the linear support vector machines algorithm, the accuracy
achieved is slightly reduced (86.20%). The same performance occurs when using
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the algorithm of discrimination with a 67.90% accuracy. Table 7.3 shows the
confusion matrix when using the Decision Tree. We can clearly recognize that the
different states that we want to validate using our tree are clearly differentiated.

Table 7.2: Details of the training dataset.

Label Status Orientation Movement Response Total
dataset

Hand(1) Left, Vertical,
Right

North, South,
West, East

Static/
Walking x 4320

Pocket and
bag(2)

Up/Down;
Vertical/Horizontal North Satic /

Walking 1440

Desk up (3) Up North, South,
West, East Static x 720

Desk down (4) Down North, South,
West, East Static 720

Table 7.3: Confusion matrix associated to phone status recognition.

Label Recognized value
(1) (2) (3) (4)

Hand(1) 4310 9 1 -
Pocket and bag(2) 5 1434 - 1
Desk up (3) 2 - 718 719
Desk down(4) - 2 - 718

7.2.3 Energy consumption

After determining the computation times associated with each decision attribute,
we now proceed to analyze the energy consumption of the different decisions trees.
Our methodology relies on Event-based models [52]. Specifically, a background ser-
vice was implemented on the smartphone that is periodically reading the different
attributes of the proposed tree; for all cases, we set the sampling period to 4 sec-
onds. Before each test, we checked that the smartphone’s battery is at 100%, and
that Internet access is disabled. To obtain representative results, the evaluation
lasted for 1 hour. The smartphone used for testing is the Samsung S7 Edge, having
a battery capacity of 3600 mAh. In general, three different types of readings were
made for comparison, all of them having the smartphone in the suspended mode.
The situations under comparison were: i) without the application installed; ii)
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with the developed application running and testing the different attributes (but
without activating the location attribute), and iii) with the application running,
but only the attribute that activates the GPS (location) is enabled. The idea of
separating the location attribute from the rest one is to have a better insight about
the values associated with the different elements. Notice that the high amount of
time and resources associated with the location attribute would blur the values
related to the other attributes (typically lasting less than 200 ms), thus making
such measurements less reliable and representative.

Experimental results show that the one-hour consumption estimation without
the application running is of 36 Milliampere-hour (mAh). Then, when turning
on our developed application and running it in the background, energy consump-
tion increases to 108 mAh. Finally, if the GPS value is obtained through the
location attribute, energy consumption further raises to 180 mAh. Based on the
measurements made, it was possible to assess the energy consumed (µAh) by each
attribute in our tree. The equation used for this purpose is the following:

Ec =
tl∑
tl
.
Er − Eo

N
(7.1)

In this equation, Ec represents the energy consumed during 1 second, tl rep-
resents the time overhead associated with each tree attribute, and Er and Eo
represent the reference value for the energy consumed with and without the ap-
plication, respectively. N is the total number of occurrences recorded in an hour.
Table 7.4 presents a summary of the energy consumption estimation associated
with each attribute on the tree. In particular, we can observe that the attributes
corresponding to the GPS and PhoneStatus present the highest energy consump-
tion values.

Table 7.4: Energy consumption estimation for each leaf of the tree.

Tree Random J48
element Tree (µAh) (µAh)

1 0.0354 5.2761
2 0.0076 0.0354
3 160.00 160.00
4 0.0168 0.0076
5 5.2761 0.2479
6 0.2479 0.0176
7 0.0176 0.0168
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Figure 7.4: Proposed resource-efficient decision tree.

7.2.4 Proposed tree and performance improvement

Once we obtained the computation time overhead and the energy consumption
associated with each attribute, our next goal was to propose an alternative deci-
sion tree that is more resource efficient. For this purpose, we designed a tree in
such a way that its elements are organized and balanced according to the desired
objective of reducing time and energy overhead. In particular, for the TaskDate,
Speaker, Music, ActiveCall, PhoneStatus, and Location attributes, we followed a
sequential order by considering the computation time calculated earlier. Figure
7.4 shows the proposed decision tree which, similarly to the J48 algorithm, can
achieve a decision accuracy of 100%. Notice that, in this alternative tree, the
location attribute is located near the tree bottom, thereby optimizing the overall
system resources whenever a previous attribute allows discarding the noise sam-
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Figure 7.5: Time and energy consumption corresponding to the different tree
levels.

pling procedure by not meeting the required conditions. Besides, we can observe
that the area attribute remains just below the location attribute due to its direct
dependency, being this an attribute with a lower computation time, but neverthe-
less highly relevant in terms of the final decision.

To gain further insight into the performance gains achieved, Figure 7.5 shows
a comparison of the accumulative computation time and energy consumption for
both our proposed tree and the automatically generated trees. Increasing tree
element Ids correspond to progressing along the tree, from top to bottom. In
particular, Figure 7.5 (a) shows that our proposal presents a much lower time
overhead compared to the two previous candidate trees, being that high periods
of activity only take place whenever it becomes indispensable (near the bottom
of the tree); specifically, the first tree elements introduce a lower time overhead
compared to the others. In Figure 7.5 (b) we find a behavior that is similar to the
previous one, although it now represents the overall energy consumption associated
with the proposed and automatically generated trees.

Finally, Table 7.5 summarizes the performance benefits introduced by our al-
ternative decision tree. In particular, it shows both the accumulated and average
values for the time overhead and energy consumption associated with the three
decision trees being compared. We find that our tree is 57.81% and 58.70% lower
than the RandomTree algorithm regarding computation time and average energy
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consumption, respectively. For the J48 tree, improvements are further boosted by
60%, while maintaining the same decision accuracy.

Table 7.5: Estimation of computational requirements and energy consumption for
the different decision trees.

Total Algorithm CPU time (ms) Energy(µAh)
# elements

∑ ∑̄ ∑ ∑̄
7 Proposed tree 3483.89 897.72 165.60 42.16
7 RandomTree 3483.89 2127.84 165.60 102.09
7 J48 3483.89 2244.44 165.60 105.41

Overall, we consider that the process followed in this paper to achieve a tree
that is both precise and resource efficient is critical to enable the development of a
crowdsensing application aiming at a widespread adoption and usage, a problem
to be discussed in the next research steps.

7.3 Summary

In this chapter, we proposed to use smartphones as environmental noise sensors,
as part of our complete crowdsensing architecture. In particular, we addressed the
issue of optimizing the decision process that precedes actual noise sampling by de-
termining whether the required conditions are met or not. With this purpose, we
first defined a set of smartphone contexts, and then, through different algorithms,
we automatically generated two decision trees able to meet the decision require-
ments. However, we found that a theoretical classification does not necessarily
provide a balanced tree in terms of computation overhead and energy consump-
tion. Through a detailed analysis of these two performance factors, we determined
which attributes had the most negative impact on resources, and then proposed a
tree redesign so as to improve resource consumption as much as possible.

Experimental results show that our proposal obtained a relative saving of
nearly 60% in terms of both energy consumption and computational overhead,
while maintaining the same accuracy as the best decision tree obtained through
automated systems (J48).

In the next chapter, we integrate the proposed client-side solution in our ar-
chitecture, and we will proceed to validate our architecture in different scenarios
to achieve distributed noise measurements.

127





Chapter 8

Validation of the Proposed
Architecture

The current noise-sensing infrastructure, based on professional sonometers, al-
lows measuring noise pollution levels in cities with high accuracy, although

with a very low time and spatial resolution due to the limited number of devices
available. In contrast, when adopting a crowdsensing approach, we can achieve
much higher time and spatial resolution by relying on the microphones of com-
mercial off-the-shelf smartphones.

The main contribution of this thesis was a complete architecture for envi-
ronmental noise analysis based on the crowdsensing paradigm. To this goal, in
chapter 5 we presented our full architecture, and in chapters 6 and 7 we detailed
how to achieve meaningful and accurate noise measurements using commercial
smartphones. In this chapter, we proceed to validate the effectiveness of our com-
plete proposal in two representative scenarios: (i) a shopping mall, and (ii) our
university campus. The idea of the first scenario is to show that our solution can
be used in an environment that is far from the nearest city, and for which there
is in general no data regarding noise levels. Concerning the second test scenario,
we want to demonstrate that the noise values obtained within our UPV campus,
in Valencia, Spain, may differ from those delivered by the Valencia City council,
which takes no actual measurements inside the campus.
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8. Validation of the Proposed Architecture

Figure 8.1: Task specification at the back-end server for noise distribution
analysis at the Bonaire shopping mall.

8.1 Evaluation of our proposal in an isolated shopping area

In the first scenario, we evaluated our proposal in a shopping mall characterized
by having free pedestrian circulation and open aisles. To perform this test, we first
defined the task on the server, and set it so that the noise-capturing takes place
during the weekend, specifically on a Saturday from 12:30 to 13:00 PM. The defi-
nition of the task is shown in Figure 8.1. Figure 8.2 (a) shows the coverage area for
our first test scenario. Concerning users, this first validation was made with four
people who took a random and simultaneous tour on the interior facilities (hall-
way) and outside of the shopping mall. Each of them used different smartphones
with the application installed and activated. Figure 8.2 (b) shows the obtained
values of processing the results at the server to obtain a heat map. We can see
that the places where the highest noise values are detected correspond to vehicu-
lar parking areas, while in interiors much lower values are measured. Such results
are expectable since combustion-based vehicles are known to introduce more noise
compared to people walking around and talking.

8.2 Evaluation of our proposal in an urban area

In the second scenario, we evaluated the noise at the UPV campus. The idea of
this evaluation is to compare the results achieved using our proposed architecture
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Figure 8.2: Analysis of the environmental noise in a shopping mall. (a) Task
specification at the back-end server; (b) Noise distribution of the shopping mall

(Bonaire).
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Figure 8.3: Specification of task at the back-end server for analysis noise
distribution of the campus UPV.

against the noise analysis provided on the website of the City Hall of Valencia [37].
In Figure 8.4 (a) we show the noise map for the area surrounding the campus, as
provided by the City Hall. In general, it is noticeable that high noise levels are
located in places of high traffic, like main avenues. We can also see that this Figure
represents with white color (<50 dBA) the facilities of our University. Also, the
static noise monitoring systems available, which provide constant measurements,
are depicted in the figure. As we can see, they are scarce and located at strategic
places only.

In view of the above, we proceed to generate a sensing task on the server
covering an hour during which many students gather to take a break or coffee
(between 17:15 and 17:45). Figure 8.3 shows the task created for this purpose.
Specifically, we define a target area sized 800 x 600 square meters. In particular,
this test was performed with two people simultaneously walking, one at each end of
the map, allowing to cover the interior parts of the campus. The smartphones used
were Samsung S7 devices. Figure 8.4(b) shows the results obtained. In general,
when compared with Figure 8.4 (a), there is a very noticeable difference concerning
the noise values obtained during that hour of the day, especially regarding data
within the campus. Also, the heat map is shown in Figure 8.4(b) indicates a
high-level noise zone in areas near the coffee shop and restaurants around the
campus. Regarding the actual amount of data read on smartphones, the Samsung
G930F had a 99.94% effectiveness regarding noise sampling opportunities, while
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Universitat Politécnica de Valencia

(a) Analysis of the noise distribution by the city council.
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(b) Analysis of the noise distribution by our proposed

Figure 8.4: Comparison of the distribution of environmental noise according to
official data, and using our architecture.
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the Samsung G935F device had an effectiveness of 94.5%. In the latter, the value
varied because in a small part of his test the user walked through areas covered
with a ceiling, thereby failing GPS accuracy tests. Overall, the total number of
samples was 382.

Finally, these results show that our crowdsensing solution for environmental
noise analysis can benefit different to both public or private institutions by pro-
viding a real-time data with high spatial and temporal granularity. Based on the
information obtained, authorities can detect locations where noise limits are not
within the bounds regulated by local laws, and better plan the development in ar-
eas of high environmental risk, including the distribution of bus lines, the location
of leisure areas, among others. Also, our solution provides an easy interface for
the administrator to define tasks, and visualize the outcome of such tasks in the
form of heat maps, allowing to see how noise evolves throughout time, and thus
assess if any corrective measures taken were effective, and to which extent.

8.3 Summary

Crowdsensing solutions have become an enabling technology for Smart Cities by
empowering users to participate in the monitoring process of their environment
through their mobile devices. In this scope, studies of noise pollution over densely
populated areas are no an exception, with different works pointing in this direction.

In this chapter, we evaluated our complete architecture for environmental noise
monitoring that combines smartphones and cloud services to measure noise pollu-
tion levels with high spatial granularity. In detail, we used smartphones as mobile
sensors to provide noise pollution measurements, and relied on Firebase as a gate-
way technology, allowing the interaction between the sending of sensing tasks at
back-end servers, and the noise capture (by smartphones) at client devices. Once
the task is delivered, the smartphone decides the optimum time for capturing data,
and it provides real-time feedback on the given noise quality conditions; finally, the
back-end server provides services for storage, processing, and data visualization.

Experimental results evidence that, compared to static solutions for environ-
mental noise monitoring, our solution can provide a much higher time and spatial
granularity.
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Chapter 9

Conclusions, Publications and
Future Work

Crowdsensing is a novel sensing paradigm with unlimited potential waiting
to be unleashed. In particular, the combination of multiple smartphones

acting as mobile sensing devices allows extensive monitoring of a target area with
minimal costs regarding both sensors and infrastructure. Besides, added-value
services can be provided to users to promote their participation following data
aggregation and data fusion processes in the cloud, where data intelligence can
extract relevant information for these users. In this scope, studies of noise and air
pollution over densely populated areas are no an exception, with different works
pointing in this direction.

Below we briefly summarize the most relevant contributions of this thesis.

• We studied state of the art to determine the most relevant contributions in
the crowdsensing area. We addressed this challenge by providing the reader
with an extensive review of existing smartphone-based solutions in the field
of Mobile Crowdsensing. Our analysis showed that most of the proposals
offer some degree of adaptability to different work environments, being that
contributions focus on the three main elements: client side (smartphone),
server side, and transmission. For each of them, we showed the evolution
of the technologies and algorithms used. Also, the main problems described
regarding the data capture process, the task generation procedures, and the
energy consumption issues.

• Based on an extensive analysis of crowdsensing proposals, we propose a
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generic crowdsensing architecture based on a client-server approach, and we
then classify the different proposals by focusing on the client, the server,
and communications components separately. Our proposed classification
allows, to a certain degree, match the different proposals analyzed to different
categories. It is also evidenced that the adoption of crowdsensing solutions
will be generalized in the coming years.

• We proposed a complete solution for environmental monitoring (specifically,
ozone levels) that combines low-end sensors, smartphones, and cloud services
to measure pollution levels with a high spatial granularity. Our approach
was based on using a mobile sensor to provide pollution measurements, a
smartphone to provide real-time feedback about air quality conditions, also
acting as a gateway to upload gathered data to the cloud server. Addition-
ally, we also provide a cloud server for data processing and visualization.
Experimental results show that the sensor orientation and the sampling pe-
riod, within certain bounds, have very little influence on the data captured.
On the contrary, the actual path taken has a significant impact on results,
especially when estimating the distribution of pollutants throughout the tar-
get area.

• We have studied the feasibility of using commercial smartphones as noise
level measurement units by determining their accuracy when compared to a
professional noise measurement unit. For this purpose, we focused our study
on analyzing the behavior of three different algorithms for noise measure-
ment, determining the best approach when taking as reference a professional
and fully-calibrated Class II sound level meter [14].

• We have determined the best sampling strategy and algorithm used to re-
trieve noise level samples using different types of smartphones. For this
purpose, we evaluated, for each algorithm, the impact of different sampling
rates and sample block sizes. Then, by selecting our candidate algorithm, we
make a performance analysis using different types of smartphones, improv-
ing the results based on linear regression techniques, and then evaluating the
optimal time-sampling period. Overall, we were able to demonstrate that it
is possible to accurately assess noise levels by taking relatively short samples
(from 1 to 3 s) while introducing a minimal estimation error. Finally, we
validated our proposal in typical outdoor environments.

• We have determined an adequate strategy for capturing environmental noise
using smartphones by accounting for their context while minimizing energy
consumption. With this purpose, we first defined a set of contexts for the
smartphones, and then, through different algorithms, we automatically gen-
erated two decision trees able to meet the decision requirements. How-
ever, we found that a theoretical classification does not necessarily provide
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a balanced tree in terms of computation overhead and energy consump-
tion. Through a detailed analysis of these two performance factors, we de-
termined which attributes had the most negative impact on resources and
then proposed a tree redesign to improve resource consumption as much as
possible. Experimental results showed that our proposal obtained relative
savings of nearly 60% in terms of both energy consumption and comput-
ing overhead while maintaining the same accuracy as the best decision tree
obtained through automated systems (J48).

• We developed an Android application for noise sensing offering reliable and
meaningful measurements. Our solution adopts the best sampling strategy,
as well as the proposed decision algorithm. Also, our solution uses Fire-
base technology, which allows real-time communication between servers and
smartphones. Besides, we develop a data center for central management
of crowdsensing tasks accounting for spatial and temporal restrictions and
offering transparent task dissemination to the system users.

• Finally, we validated the proposed noise sensing architecture in real environ-
ments. We have shown that, compared to static solutions for environmental
noise monitoring, it can provide a much higher time and spatial granularity.
In general, we also show that our solution can be adopted in any place, easily
reaching those areas where traditional approaches fail or are too expensive.

Overall, we consider that the objectives defined for this thesis have been satis-
fied by proposing and developing a full crowdsensing solution for the monitoring of
noise pollution. Also, its correct functioning was verified by performing different
tests taking place in the city of Valencia and nearby areas.

9.1 Publications

This section lists the publications that have been produced as a result of this
thesis, as well as some other collaborations and non-directly related publications
we published during this time.

9.1.1 International Journals

• O. Alvear, W. Zamora, C. Calafate, J.-C. Cano, and P. Manzoni. “An
Architecture Offering Mobile Pollution Sensing with High Spatial Resolu-
tion”. In: Journal of Sensors 2016.i (2016), pp. 1–13. issn: 1687-725X. doi:
10.1155/2016/1458147. Impact Factor: 1.704 (JCR Q2).

In this paper, we proposed a mobile sensing architecture able to monitor dif-
ferent pollutants using low-end sensors. Although the proposed solution can
be deployed everywhere, it becomes especially meaningful in crowded cities

137

https://doi.org/10.1155/2016/1458147


9. Conclusions, Publications and Future Work

where pollution values are often high, being of great concern to both popu-
lation and authorities. Our architecture is composed of three different mod-
ules: a mobile sensor for monitoring environment pollutants, an Android-
based device for transferring the gathered data to a central server, and a
central processing server for analyzing the pollution distribution. Moreover,
we analyze different issues related to the monitoring process: (i) filtering
captured data to reduce the variability of consecutive measurements; (ii)
converting the sensor output to actual pollution levels; (iii) reducing tem-
poral variations produced by the mobile sensing process; and (iv) applying
interpolation techniques for creating detailed pollution maps. In addition,
we study the best strategy to use mobile sensors by first determining the
influence of sensor orientation on the captured values, and then analyzing
the influence of time and space sampling in the interpolation process.

• W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “A Survey on
Smartphone-Based Crowdsensing Solutions”. In: Mobile Information Sys-
tems 2016 (2016), pp. 1–26. issn: 1574-017X. doi: 10.1155/2016/9681842.
Impact Factor: 1.462 (JCR Q2).

In this paper, we provided a survey of smartphone-based crowdsensing solu-
tions that have emerged in the past few years, focusing on 64 works published
in top-ranked journals and conferences. To properly analyze these previous
works, we first define a reference framework based on which we classify the
different proposals under study. The results of our survey evidence that there
is still much heterogeneity in terms of technologies adopted and deployment
approaches, although modular designs at both client and server elements
seem to be dominant. Also, the preferred client platform is Android, while
server platforms are typically web-based, and client-server communications
mostly rely on XML or JSON over HTTP. The main detected pitfall concerns
to the performance evaluation of the different proposals, which typically fail
to make a scalability analysis despite this being a critical issue when target-
ing very large communities of users.

• W. Zamora, C. Calafate, J.-C. Cano, and P. Manzoni. “Accurate Ambient
Noise Assessment Using Smartphones”. In: Sensors 17.4 (Apr. 2017), p. 917.
issn: 1424-8220. doi: 10.3390/s17040917. Impact Factor: 2.677 (JCR
Q1).

In this paper, we proposed using smartphones as environmental noise-sensing
units. For this purpose, we focus our study on the sound capture and process-
ing procedure, analyzing the impact of different noise calculation algorithms,
as well as in determining their accuracy when compared to a professional
noise measurement unit. We analyze different candidate algorithms using
different types of smartphones, and we study the most adequate time period
and sampling strategy to optimize the data-gathering process. In addition,
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we perform an experimental study comparing our approach with the results
obtained using a professional device.

• W. Zamora, E. Vera, C. T. Calafate, J.-C. Cano, and P. Manzoni. “GRC-
Sensing: An Architecture to Measure Acoustic Pollution Based on Crowd-
sensing”. In: Sensors 18.8 (2018). issn: 1424-8220. doi: 10 . 3390 /
s18082596. Impact Factor: 2.475 (JCR Q1).

In this paper, we proposed an alternative approach to this problem based on
crowdsensing. Our proposed architecture empowers participating citizens by
allowing them to seamlessly and based on their context, sample the noise in
their surrounding environment. This allows us to provide a global and de-
tailed view of noise levels around the city, including places traditionally not
monitored due to poor accessibility, even while using their vehicles. Also, we
detail how the different relevant issues in our architecture, i.e., smartphone
calibration, measurement adequacy, server design, and client-server interac-
tion, were solved, and we have validated them in real scenarios to illustrate
the potential of the solution achieved.

9.1.2 International Conferences

• O. Alvear, W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “EcoSen-
sor: Monitoring environmental pollution using mobile sensors”. In: 2016
IEEE 17th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). IEEE, June 2016, pp. 1–6. doi: 10.
1109/wowmom.2016.7523519. (CORE A)

In this paper we have developed EcoSensor, a solution to monitor air pollu-
tion through mobile sensors. It is deployed with off-the-shelf hardware such
as Waspmote (based on the Arduino platform), low-end sensors, and Rasp-
berry Pi devices. EcoSensor collects air pollution using embedded sensors
and transfers the captured data to an Android-based device, which displays
to the user the air pollution levels in real time. EcoSensor also stores the
different pollution traces in a Cloud-based server to analyze the pollution
distribution. The cloud server uses the uploaded data, together with highly-
accurate data made available by the existing air monitoring infrastructure,
to create detailed pollution distribution maps using kriging-based spatial
prediction techniques. To optimize the usage of our system, we analyze the
impact of sensor orientation in the presence of mobility. Also, we analyze the
best time and space sampling strategies to determine the most effective data
capturing strategy. Experimental results show that the sensor orientation
and the sampling period have a lot less impact on created maps than the
actual path taken.
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• W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “Smartphone
tuning for accurate ambient noise assessment”. In: Proceedings of the 15th
International Conference on Advances in Mobile Computing & Multimedia -
MoMM2017. ACM Press, Dec. 2017, pp. 115–122. doi: 10.1145/3151848.
3151854. (CORE B)
In this paper we show how to tune smartphones so that they become ac-
curate noise-sensing units. In particular, our focus is on the processes of
sound capture and sound processing, determining the impact of different
noise calculation approaches on the noise estimation accuracy; the latter is
determined through comparison against a professional noise sensing device.
Through real experiments we find that, with a proper tuning, it is possi-
ble to obtain noise measurements in the entire dynamic range of typical
smartphones (35 to 95 dB SPL) with an accuracy comparable to that of
professional devices.

• W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “Noise-Sensing
Using Smartphones: Determining the Right Time to Sample”. In: Proceed-
ings of the 15th International Conference on Advances in Mobile Computing
& Multimedia - MoMM2017. ACM Press, Dec. 2017, pp. 196–200. doi:
10.1145/3151848.3151868. (CORE B)
In this paper we determine the precise context for the capture of environ-
mental noise through smartphones. We perform an analysis of the impact
that the sensing task collection will have on energy consumption. To this
purpose, we defined different contexts to determine whether adequate en-
vironment sampling conditions are met, and we then apply classification
algorithms to generate the most accurate decisions trees automatically. An
analysis of resource consumption requirements associated with the different
trees obtained shows that, despite their high accuracy, the resource consump-
tion levels were prohibitive for this kind of applications. Thus, we proposed
an alternative decision tree that maintains the accuracy levels of automati-
cally generated trees, while significantly reducing the resource consumption.
Experimental results show that our proposed decision tree can reduce the
energetic impact of our target application by about 60% when compared
to the optimum theoretical tree generated through automatic classification
procedures.

9.1.3 National Conferences

• W. Zamora, O. Alvear-Alvear, C. T. Calafate, J.-C. Cano, and P. Man-
zoni. “Monitorización de la Contaminación Ambiental Mediante Sensores
Móviles”. In: Actas Jornadas Sartecto 2016. Salamanca, Spain: Ediciones
Universidad de Salamanca, Sept. 2016, pp. 645–651. isbn: 978-84-9012-626-
4.
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• W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “Evaluación del
Ruido Ambiental Utilizando Teléfonos Inteligentes”. In: Actas Jornadas
Sartecto 2017. Málaga, Spain: Ediciones Universidad de Málaga, Sept. 2017,
pp. 651–657. isbn: 978-84-697-4835-0.

• W. Zamora, O. E. Vera, C. T. Calafate, J.-C. Cano, and P. Manzoni. “Detec-
ción del Ruido Mediante Teléfonos Inteligentes: Determinación del Momento
Adecuado para el Muestreo”. In: Actas Jornadas Sartecto 2018. Teruel,
Spain: Ediciones Sarteco 2018, Sept. 2018, pp. 583–589. isbn: 978-84-09-
04334-7.

• E. Vera, W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni. “Arqui-
tectura Servidora para la Gestión deSoluciones Basadas en Crowdsensing”.
In: Actas Jornadas Sartecto 2018. Teruel, Spain: Ediciones Sarteco 2018,
Sept. 2018, pp. 591–596. isbn: 978-84-09-04334-7.

9.2 Future work

The results accomplished in this doctoral thesis represent an advance in the state
of the art of research in the area of crowdsensing solutions and architectures for
environmental monitoring. We consider that the contributions made offer a new
starting point that opens a wide range of possibilities regarding research work. In
detail, we believe that this thesis can be extended through the following lines of
work:

• Integrate algorithm and service proposed in this thesis to platforms of Smartc-
ity is currently available in cities around the world.

• In the mobile application, enhance the proposed algorithms used for the
optimization and adaptability of the data collection process.

• Regarding communications, new mechanisms could be exploited to optimize
task assignments for different collection scenarios.

• Concerning the server, design new functionality that includes minimizing
the number of users required to cover specific areas and as well as exploiting
Firebase or other technology for real-time communications.

• Add a new type of task planner that simplifies the generation of tasks and
provides warning about tasks about to expire.

• Finally, use our platform for other types of applications, such as measuring or
collecting data from other sensors, including temperature and light sensors
among others.
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Acronyms

ITU International Telecommunication Union. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

WiFi Wireless Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3G 3 Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

4G 4 Generation Telecommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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BS Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

MNSC Mobile Noise-Sensing Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CUI Client User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CSTM Client Sensor Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

CDCS Cloud Data Colletion Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CDC Cloud Data Colletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

SIM Server Interface Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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MVC Model View Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

UPV Universitat Politècnica de València . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

EPA Environmental Protection Agency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IEC International Electrotechnical Commission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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IP Internet Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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