
Department of Information Systems and Computation

Master in Software Engineering, Formal Methods and

Information Systems

Master thesis

OpenUP/MDRE: A Model-Driven

Requirements Engineering Approach for

Health-Care Systems

Grzegorz Loniewski

Supervisor: prof. Emilio Insfran

Valencia 2010

This document was created in system LATEX.

Contents

Chapter 1. Introduction . 1

1.1. Motivation . 1

1.2. Thesis objectives . 2

1.3. Research context . 3

1.4. Structure of the document . 4

Chapter 2. Research Background . 5

2.1. Requirements Engineering . 6

2.2. Model-Driven Engineering . 8

2.2.1. Model-Driven Architecture . 8

2.2.1.1. Computation-Independent Model 9

2.2.1.2. Platform-Independent Model 10

2.2.1.3. Platform-Specific Model . 10

2.2.1.4. MDA development lifecycle 10

2.2.2. Model-Driven Development . 12

2.3. Health-care . 13

2.4. Service-Oriented Architecture . 15

2.5. Rational Unified Process . 17

2.5.1. Lifecycle . 19

2.5.2. Requirements discipline . 21

2.5.2.1. Roles . 21

2.5.2.2. Artifacts . 22

2.5.2.3. Process - activities workflow 23

2.5.3. Environment discipline . 24

2.5.3.1. Roles . 25

2.5.3.2. Artifacts . 26

2.5.3.3. Process - activities workflow 26

iii

2.6. OpenUP . 28

2.6.1. Methodology generals . 28

2.6.2. Main characteristics . 29

2.6.3. Process lifecycle . 29

2.6.3.1. Inception . 30

2.6.3.2. Elaboration . 30

2.6.3.3. Construction . 31

2.6.3.4. Transition . 31

2.6.4. Disciplines . 31

2.6.5. Roles . 33

2.6.6. Artifacts . 33

2.7. Methods Engineering . 35

2.7.1. Software Process Engineering . 35

2.7.2. Tool support . 37

Chapter 3. Related work . 38

3.1. Requirements Engineering in Model-Driven Development 39

3.1.1. Research method . 39

3.1.1.1. Research question . 40

3.1.1.2. Sources selection . 41

3.1.1.3. Identifying and selecting primary studies 41

3.1.1.4. Inclusion criteria and procedures 41

3.1.1.5. Data extraction strategy . 42

3.1.1.6. Conducting the review . 44

3.1.2. Results . 45

3.1.3. Threats to validity . 52

3.1.4. SLR conclusions . 53

3.2. SOA-focused methodological approaches . 53

3.2.1. SOA-focused methodologies . 53

3.2.2. SOA-focused techniques . 57

3.3. Agile methodologies . 58

3.4. Requirements engineering in the health-care 58

3.5. Related work summary . 61

Chapter 4. OpenUP/MDRE methodology . 62

4.1. Introduction . 63

4.2. Methodology overview . 64

4.2.1. Disciplines . 65

4.2.2. OpenUP implementation structure . 66

4.3. Requirements Engineering in the OpenUP/MDRE 67

4.3.1. Roles . 68

4.3.2. Artifacts . 71

4.3.3. Process - activities workflow . 73

iv

4.4. Methodology configuration . 77

4.4.1. Roles . 77

4.4.2. Artifacts . 79

4.4.3. Process workflow . 80

4.5. OpenUP/MDRE lifecycle . 81

4.5.1. Inception phase . 81

4.5.2. Elaboration phase . 82

Chapter 5. Case study . 84

5.1. Case study context . 84

5.2. Case study description (Actor Management) 85

5.3. Applying the MPOWER approach to the case study 87

5.4. Applying the OpenUP/MDRE approach to the case study 90

5.5. Case study conclusions . 97

5.5.1. Process comparison . 97

5.5.2. Lessons learned . 98

Chapter 6. Conclusions . 100

6.1. Future work . 103

6.2. Related publications . 104

List of Figures . 106

List of Tables . 108

Abbreviations . 109

Bibliography . 111

Appendices . 119

Appendix A. Definitions . 119

A.1. Methodology . 119

A.2. Requirements Engineering . 121

A.3. Model-driven techniques . 122

Appendix B. OpenUP/MDRE extension summary 123

Appendix C. OpenUP/MDRE definition as EPF plug-in 126

Appendix D. Papers included in the Systematic Literature Review 129

v

Abstract

The domains and problems for which it would be desirable to introduce infor-

mation systems are currently very complex and the software development process

is thus of the same complexity. One of these domains is health-care. Model-Driven

Development (MDD) and Service-Oriented Architecture (SOA) are software devel-

opment approaches that raise to deal with complexity, to reduce time and cost

of development, augmenting flexibility and interoperability. However, many tech-

niques and approaches that have been introduced are of little use when not provided

under a formalized and well-documented methodological umbrella. A methodology

gives the process a well-defined structure that helps in fast and efficient analysis

and design, trouble-free implementation, and finally results in the software product

improved quality.

While MDD and SOA are gaining their momentum toward the adoption in the

software industry, there is one critical issue yet to be addressed before its power is

fully realized. It is beyond dispute that requirements engineering (RE) has become

a critical task within the software development process. Errors made during this

process may have negative effects on subsequent development steps, and on the

quality of the resulting software. For this reason, the MDD and SOA development

approaches should not only be taken into consideration during design and imple-

mentation as usually occurs, but also during the RE process.

The contribution of this dissertation aims at improving the development pro-

cess of health-care applications by proposing OpenUP/MDRE methodology. The

main goal of this methodology is to enrich the development process of SOA-based

health-care systems by focusing on the requirements engineering processes in the

model-driven context. I believe that the integration of those two highly important

areas of software engineering, gathered in one consistent process, will provide prac-

titioners with many benefits. It is noteworthy that the approach presented here was

designed for SOA-based health-care applications, however, it also provides means

to adapt it to other architectural paradigms or domains. The OpenUP/MDRE

approach is an extension of the lightweight OpenUP methodology for iterative,

architecture-oriented and model-driven software development.

The motivation for this research comes from the experience I gained as a com-

puter science professional working on the health-care systems. This thesis also

presents a comprehensive study about: i) the requirements engineering methods

and techniques that are being used in the context of the model-driven development,

ii) known generic but flexible and extensible methodologies, as well as approaches

for service-oriented systems development, iii) requirements engineering techniques

used in the health-care industry.

Finally, OpenUP/MDRE was applied to a concrete industrial health-care project

in order to show the feasibility and accuracy of this methodological approach.

vi

Resumen

Los dominios y problemas en los cuales es necesario introducir un sistema de

información son actualmente muy complejos, siendo su proceso de desarrollo de

software, a su vez, de la misma complejidad. Uno de estos dominios es la atención

sanitaria (Health-care). Model-Driven Development (MDD) y Service-Oriented Ar-

chitecture (SOA) son enfoques de desarrollo de software que han surgido de cara

a tratar dicha complejidad, reducir tiempo y coste de desarrollo, y aumentar la

flexibilidad y la interoperabilidad. Sin embargo, muchas técnicas y enfoques que se

han introducido son de poca utilidad cuando las mismas no están previstas de un

marco metodológico formalizado y bien documentado. Una metodoloǵıa provee una

estructura bien definida al proceso de desarrollo software facilitando de esta forma

un análisis y diseno rápido y eficiente, una implementación sin errores, obteniendo

aśı, un producto software de mejor calidad.

Mientras MDD y SOA están siendo impulsadas de cara a su adopción en la

industria del software, hay una cuestión cŕıtica la cual aún no se ha abordado

antes de que sus ventajas se hagan plenamente efectivas. No cabe duda de que la

ingenieŕıa de requisitos (RE) se ha convertido en una tarea cŕıtica dentro del pro-

ceso de desarrollo de software. Los errores cometidos durante este proceso pueden

tener efectos negativos sobre las posteriores fases del desarrollo, y en la calidad del

software resultante. Por esta razón, los enfoques basados en MDD y SOA no sólo

deben tenerse en cuenta durante el diseno e implementación, como normalmente se

consideran, sino también durante el proceso de ingenieŕıa de requisitos.

La contribución de esta tesina tiene como objetivo mejorar el proceso de de-

sarrollo de aplicaciones health-care, proponiendo la metodoloǵıa OpenUP/MDRE.

El objetivo principal de esta metodoloǵıa es enriquecer el proceso de desarrollo de

los sistemas health-care basados en SOA, centrándose en los procesos de ingenieŕıa

de requisitos en el contexto del desarrollo dirigido por modelos. La integración de

estas dos áreas tan importantes de la ingenieŕıa de software, unificadas en un pro-

ceso consistente, proporcionará ciertas ventajas a los profesionales de la industria.

Cabe senalar que el enfoque que aqúı se presenta ha sido disenado para aplica-

ciones health-care basadas en SOA, sin embargo, también proporciona los medios

necesarios para adaptarse a otros paradigmas arquitectónicos u otros dominios. El

enfoque OpenUP/MDRE es una extensión de la metodoloǵıa ágil OpenUP para el

desarrollo de software iterativo, orientado a la arquitectura y dirigido por modelos.

La motivación de esta investigación proviene de la experiencia adquirida como

ingeniero informático profesional en sistemas health-care. Esta tesina también pre-

senta un estudio completo acerca de: i) los métodos de ingenieŕıa de requerimientos

y las técnicas que se utilizan en el contexto del desarrollo dirigido por modelos, ii)

metodoloǵıas conocidas y genéricas de carácter flexible y extensible, aśı como los

enfoques para el desarrollo de sistemas orientados a servicios, iii) las técnicas de

ingenieŕıa de requisitos utilizadas en la industria health-care.

Por último, OpenUP/MDRE se aplicó a un proyecto industrial concreto de

health-care a fin de demostrar la viabilidad y precisión de esta metodoloǵıa.

vii

Resum

Els dominis i problemes en els quals és necessari introduir un sistema

d’informació són actualment molt complexos, i el seu procés de desenvolupa-

ment de programari, es considera de la mateixa complexitat. Un d’aquests do-

minis és l’atenció sanitaria (Health-care). Model-Driven Development (MDD) i

Service-Oriented Architecture (SOA) són enfocaments de desenvolupament de pro-

gramari que han sorgit per a tractar aquesta complexitat, reduir temps i cost de

desenvolupament, i augmentar la flexibilitat i la interoperabilitat. No obstant aixo,

moltes tecniques i enfocaments que s’han introduit són de poca utilitat quan les

mateixes no estan previstes d’un marc metodologic formalitzat i ben documentat.

Una metodologia proveeix una estructura ben definida al procés de desenvolupa-

ment programari facilitant d’aquesta manera una analisi i disseny rapid i eficient,

una implementació sense errors, obtenint aix́ı, un programari de millor qualitat.

Mentre MDD i SOA estan sent impulsades amb vista a la seva adopció en la

indústria del programari, hi ha una qüestió cŕıtica la qual encara no s’ha abor-

dat abans que els seus avantatges sigan plenament efectives. No hi ha dubte que

l’enginyeria de requeriments (RE) s’ha convertit en una tasca cŕıtica dins del procés

de desenvolupament de programari. Els errors comesos durant aquest procés poden

tenir efectes negatius sobre les posteriors fases del desenvolupament, i en la qualitat

del programari resultant. Per aquesta raó, la perspectiva basada en MDD i SOA no

només s’han de tenir en compte durant el disseny i implementació, com normalment

es consideren, sinó també durant el procés d’enginyeria de requisits.

La contribució d’aquesta tesina té com a objectiu millorar el procés de desen-

volupament d’aplicacions health-care, proposant la metodologia OpenUP/MDRE.

L’objectiu principal d’aquesta metodologia és enriqueixer el procés de desenvolu-

pament dels sistemes health-care basats en SOA, centrant-se en els processos

d’enginyeria de requisits en el context del desenvolupament dirigit per models.

La integració d’aquestes dues arees tan importants de l’enginyeria de programari,

unificades en un procés consistent, proporcionara certs avantatges als professionals

de la indústria. Cal assenyalar que l’enfocament que aqúı es presenta ha estat

dissenyat per a aplicacions health-care basades en SOA, pero, també proporciona

els mitjans necessaris per adaptar-se a altres paradigmes arquitectonics o altres

dominis. L’enfocament OpenUP / MDRE és una extensió de la metodologia agil

OpenUP per al desenvolupament de programari iteratiu, orientat a l’arquitectura i

dirigit per models.

La motivació d’aquesta investigació prové de l’experiencia adquirida com a en-

ginyer informatic professional en sistemes health-care. Aquesta tesina també pre-

senta un estudi complet sobre: i) els metodes d’enginyeria de requeriments i les

tecniques que s’utilitzen en el context del desenvolupament dirigit per models, ii)

metodologies conegudes i generiques de caracter flexible i extensible, aix́ı com els

enfocaments per el desenvolupament de sistemes orientats a serveis, iii) les tecniques

d’enginyeria de requisits utilitzades en la indústria health-care.

Finalment, OpenUP/MDRE es va aplicar a un projecte industrial concret de

health-care per tal de demostrar la viabilitat i precisió d’aquesta metodologia.

viii

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervisor

prof. Emilio Insfran for his encouragement, patience, expert advices and without whose

invaluable help this master thesis could not have been completed.

I also acknowledge my gratitude to prof. Silvia Abrahão and Ausiás Armesto for

their valuable assistance, comments and suggestions.

I would like to extend my sincere thanks to my bosses and friends from Indra Sis-

temas: Damian Vidal Segui and Juanjo Cubillos Esteve who helped me in my efforts

with their comprehension and advices. Without them, I would not have gained so

many valuable experiences.

At this moment, I am particularly grateful to my mom and dad, who from the

distant Poland always have supported me with their thoughts and prayers.

Special thanks to all members of the ISSI research group for their helpful hand

which they never refused. I thank them also for creating a friendly atmosphere that I

have been noticing during my master studies.

I would also like to thank all my friends from Valencia, in particular my best friends

Rodrigo and Primi, who supported me everytime their support was needed.

I am very grateful to them all.

Chapter 1

Introduction

Software systems are becoming more and more complex, and the success of their de-

velopment no longer depends on individual effort and heroics. Successful software

development can only be accomplished by using a well-defined software development

process. Many software development approaches have been introduced to deal with

problems complexity, reducing the time and the cost of development. However, these

techniques are of little use if well-defined guidelines are not provided to assist software

engineers in the software development process. The goal of the present master thesis is

to define a methodology which incorporates the requirements engineering techniques to

a well-specified model-driven process, which should facilitate the process of developing

a complex software.

This chapter is organized as follows. Section 1.1 presentes the motivation of the

research. Section 1.2 identifies the principal goals of this master thesis, pointing which

are the associated tasks to reach the objectives and the expected result. Section 1.3

places this research in a particular context of its development. Finally, Section 1.4

describes the structure of the present thesis.

1.1. Motivation

The great motivation of this research is the application of the Model-Driven Develop-

ment principles at all possible software development process stages. Recent investiga-

tions of the industry and also academia have as their objective to provide: methods,

tools, and standards, that could improve the software development process in the terms

of its quality, simplicity of use, flexibility of adapting to different technologies, as also

speeding up the time-to-market of its products. For this reason the Object Management

Group (OMG) came up with the concept of Model-Driven Architecture (MDA). How-

Chapter 1. Introduction 2

ever, the focus of MDA is on standardization of notations and on tool interoperability.

The OMG offers little in terms of methodological support for model-driven software

development. Thus, tool vendors define their own approaches, typically addressed to

some specific tools rather than providing comprehensive support for an end-to-end

software development process.

It is beyond dispute that a well-defined software development process is essential

for the final project success of each project and the requirements engineering is the

critical task within this process. Errors made during this process may have negative

effects on subsequent development steps, and on the quality of the resulting software.

However, software development engineers creating software with which to support

many complext domains, such as health-care, do not pay enough attention to the re-

quirements engineering tasks. These tasks demand a carefull and cautious management

within the development process. Health-care is domain where the supporting software

has to be perfectly designed in order to provide systems interoperability, integrate

various devices and distributed software systems, execute complex automated or inter-

active business processes, while fully satisfying all the stakeholders requirements and

keeping the software understandable and user-friendly. Health-care is today one of the

fastest growing economic sectors, where on the other hand huge amounts of money are

wasted because of the errors at the requirements engineering stage. This is where the

Software Process Engineering (SPE) has an important role to play.

The methodological approach which is the subject of this thesis is a solution that

facilitates the work of software engineers developing health-care middleware platforms,

as my main experience comes from this field. Several years of experience in the domain

allow me to identify the poor points of the health-care software engineering and propose

an approach with which to improve the development process in the domain.

The methodological approach presented in this thesis defines innovative software de-

velopment process in which the requirements engineering is placed in the model-driven

context. I believe that the integration of those two highly important areas of software

engineering, gathered in one consistent process, will provide practitioners with many

benefits.

1.2. Thesis objectives

The principal objective of this master thesis is to propose a requirements engineering

model-driven approach for the development of complex systems in the health-care

domain. To reach this goal, the work has been decomposed into tasks to be performed

within this research. These tasks are the following:

1. to perform a systematic literature review (SLR) with which to analyze current use

of the model-driven approaches which cover the requirements engineering activi-

ties; this SLR has to give an answer to the following research questions: ”what

Chapter 1. Introduction 3

requirements engineering techniques have been employed in model-driven devel-

opment approaches and what is their actual level of automation”;

2. to investigate on the current approaches of requirements engineering field in the

health-care domain;

3. to define a generic methodology that builds upon the model-driven development

principles, and facilitate the requirements engineering discipline;

4. to adapt the proposed methodology for the purposes of the SOA-based health-care

middleware;

5. to implement the methodology in a process engineering tool with which to provide

the process definition easily accessible by developers;

6. to develop an industrial case study with which to demonstrate the feasibility of

the approach;

1.3. Research context

The present master thesis has been developed based on the experience gained as a

computer science professional.

• I+D developer at Dimension Informatica (Valencia, Spain) with the main re-

sponsibility of improving the software development methodology of the organiza-

tion as a member of the Methodologies and Technological Innovation Department.

• senior developer position at Indra Sistemas (Valencia, Spain) with the main re-

sponsibility of providing a methodological support for I+D research projects, such

as: MPOWER, Tratamiento 2.0, with the focus on the requirements engineering

and architectures development.

This investigation project started in 2008 being a part of a larger research on the

health-care systems development methodologies. It constitutes a contribution to the

following investigation projects:

• MPOWER Project: Middleware platform for empowering cognitive disabled and

elderly (October 2006 - September 2009). Project (with ref. 034707) funded by

the European Union under 6th FWP (Sixth Framework Programme).

• TRATAMIENTO 2.0 Project: Generic middleware platform for tele-management

of intelligent medical treatment (January 2008 - December 2010). Project funded

by the European Commission (European Regional Development Fund), ”The Min-

istry of Industry, Tourism and Trade (Spain)”, ”Plan Avanza2”, ”Plan Nacional

de I+D+i 2008 - 2011”

• Collaboration as invited researcher in the Multi-modeling Approach for Quality-Aware

Software Product Lines (MULTIPLE) Project with ref. TIN2009-13838 (October

2009 - September 2013) funded by the Ministry of Science and Innovation (Spain)

Chapter 1. Introduction 4

1.4. Structure of the document

Chapter 2 gives an overview of the background concepts of this work. It includes

a short description of the basic software engineering approaches which are gathered

into one joined approach in created new methodology. Moreover, it describes two

methodologies (RUP, OpenUP), which form the basis for the present work. Also the

health-care domain is introduced as it is a target domain for the methodology to

apply. Chapter 3 presents an investigation with which to conclude the existing works

in the field of model-driven development, requirements engineering, service-oriented

approaches, and health-care domain information systems. In particular a systematic

literature review is presented on the use of the requirements engineering techniques

within the model-driven processes. Chapter 4 describes the methods employed in this

work in order to meet the established research goals. Chapter 5 constitutes the main

part of this work describing the new methodology OpenUP/MDRE. It includes the

description of all important elements of a methodology definition, such as: artifacts,

roles, tasks, activities, and their workflows. Chapter 6 contains a case study with which

to show the accuracy and simplicity of the methodology use. The case study shows

the OpenUP/MDRE application in the health-care domain by its flexible adaptation

to the specific project architecture (SOA). The example provided is based on a real

industry project from the health-care domain. Finally, the last chapter concludes this

master thesis prviding some final remarks on what has been achieved and identifying

directions of some further works.

In addition, Appendix A provides definitions of all concepts which are necessary to

understand the subject of this work. It includes terms, mostly related to elements of

the methodology definition, but also concepts commonly used to describe model-based

or model-driven software engineering approaches.

Chapter 2

Research Background

In the recent decade, computer science investigation bodies introduced many software

development approaches intending to help developers in producing software. One of

such approaches is Model-Driven Engineering (MDE). MDE is a software development

methodology which focuses on creating models, or abstractions, closer to some par-

ticular domain concepts rather than computing concepts. Model-Driven Architecture

(MDA) is a standard realization of the MDE by the Object Management Group (OMG)

which specifies three modeling abstraction levels for the development lifecycle. In this

context, the Model-Driven Development (MDD), also called Model-Driven Software

Development (MDSD), is a new software development paradigm for creating working

software taking the advantage of models and model transformations. The MDD priority

is to provide scalability and also to facilitate the software validation by end users and

stakeholders as early as possible. According to the MDA framework and the MDD

approach, a solid and complete development process was defined.

The proposed methodological solution was created on the basis of a real industrial

project of a health-care middleware platform development. This project was based

on another important approach called Service-Oriented Architecture (SOA), which

provides a flexible set of service-based design principles for distributed, interoperable,

secure, etc., applications. SOA is currently very frequently used especially in the

health-care. With the purpose of joining the best software development approaches,

such as: MDD, RE techniques, and SOA, a new methodology, that finds its application

in highly complex domains (such as health-care), was created. To date, the health-care

is still lacking in a complete methodology which would effectively support the software

development.

However, defining a methodology from the scratch is very laborious and difficult

task. That is why many methodologies are built with reusable elements and structured

Chapter 2. Research Background 6

building blocks, additionaly providing extensions mechanisms. Two methodologies

with aforementioned characteristics are used in this work to construct the final re-

search result. The Rational Unified Process (RUP) which possess well-defined process

to treat requirements during the development process and the OpenUP methodology

which emphasizes the importace of an architecture in the development process.

This chapter is organized as follows. Section 2.1 introduces the requirements en-

gineering (RE) as a essential part of the software development process. Section 2.2

introduces the MDE, in particular the Model-Driven Architecture, its principles, ab-

straction levels that the architecture defines with its framework structure. Section 2.3

characterizes the health-care domain, its uniqueness and complexity, to justify why

this particular domain was chosen for this new requirements engineering approach in

the model-driven context. The following section 2.4 presents some basic principles

of the Service-Oriented Architecture (SOA), which currently is the most popular ap-

proach for creating health-care systems. Finally, section 2.5 gives an overview of the

Rational Unified Process with its main building blocks, such as: iterations, phases,

and disciplines. Moreover, a more detailed description of the requirements discipline,

which includes: roles, work products, activities, and workflows, is provided as its work-

flow constitutes the base of the new model-driven requirements approach. Section 2.6

describes the OpenUP methodology. It being built as a part of the Eclipse Process

Framework Project, perfectly matches with the goals of the new agile methodology.

Finally, the last section introduces the methods engineering principles by discussing

known standards and tools that help in effective generic methodologies adaptation.

2.1. Requirements Engineering

Requirements Engineering (RE) is a specific discipline of the software engineering. The

RE process is recognized as being the most critical process in software development.

Errors made during this process may have negative effects on subsequent development

steps, and on the quality of the resulting software. In the RE we can distinguish

two groups of activities as shown on the Figure 2.1. The first group is related to the

requirements development and the second group gathers activities classified as require-

ments management activities. The former group contains activities for requirements

elicitation, analysis, specification, and validation. On the other hand, requirements

management covers establishing and maintaining an agreement with stakeholders on

the requirements, controling the baselined requirements and their changes, and finally

keeping requirements consistent with plans and work products.

Westfall in [75] describes the requirements engineering principles answering the

following 5 questions:

• What?

The answer to this question describes the various types of requirements to be

Chapter 2. Research Background 7

Figure 2.1. Requirements Engineering subdisciplines

defined. What the software must be, what it should be like and what kind of

limitations there are regarding its furthere implementation. Giving an answer to

these questions you describe functional and non-functional requirements as also

the external interface definitions and constraints. Figure 2.2 presents a taxonomy

of the possible types of the requirements specification.

• Why?

The ”Why” question emphasizes the importance of the requirements engineering

tasks with regard to the entire software development process. The simple answer is

that requirements engineering provides means to describe correctly the stakehold-

ers needs. Even a perfect development process will not help if you are developing

the wrong product.

• Who?

The requirements engineering gives the opportunity to involve the stakeholders

in the development process. The lack of user involvment is a frequent reason of

developing a wrong product.

• When?

Requirements activities should be performed throughout the entire software devel-

opment lifecycle. RE is an iterative process. It starts with the elicitation of a set

of consistent and complete requirements. But of equal importance is their refining

and managing changes to these requirements once the development process has

been launched.

• How?

In last decades, many approaches have been introduced for eliciting, analyzing,

specifying and validating software requirements. One of such approaches is the

Model-Based Requirements Engineering (MBRE) which promotes the use of mod-

els as a primary artifacts of the requirements engineering.

Chapter 2. Research Background 8

Figure 2.2. A taxonomy of the requirements specification types

2.2. Model-Driven Engineering

Model-Driven Engineering (MDE) is a software development methodology which fo-

cuses on creating models as a primary form of expression and primary artifacts of

software specifications. This kind of specification is closer to the particular domain

concepts than the specifications focused on algorithmic solutions. The abstraction of

concepts leads to increased productivity by maximizing compatibility between systems,

simplifying the process of design, and promoting communication between individuals

and teams working on the system.

Models can be used a means to better understand the problem domain, but can also

be a part of a more complex process of automated code generation. Depending on

the level of detail, the code can be generated from the models, ranging from system

skeletons to complete, deployable products.

MDE technologies with a greater focus on architecture and corresponding automation

bring higher levels of abstraction in software development. This abstraction promotes

simpler models with a greater focus on problem space. Combined with executable

semantics this elevates the total level of automation possible.

In this context, the Object Management Group (OMG) has developed an advanced

architecture-focused approach calledf the Model-Driven Architecture (MDA), which to

date is the best know MDE approach. This kind of initiatives that promote models,

modeling, and model transformations form a set of software development approaches

known as Model-Driven Development (MDD) approaches.

2.2.1. Model-Driven Architecture

The Model-Driven Architecture (MDA) is an approach to IT systems specification de-

fined by the Object Management Group (OMG). MDA consists of a set of guidelines

Chapter 2. Research Background 9

which support Model-Driven Engineering (MDE). These guidelines mainly concern the

structure of software specifications in the terms of models and their transformations.

OMG has also defined a standard language for model transformation called Query View

Transformation (QVT).

MDA separates the system functionality specification and its further implemen-

tation on a specific platform. MDA distinguishes three abstraction levels of models,

which are described in the following sections. This specification is based on the concept

of a model that is considered to be the basic and most important specification structure

unit.

Through such separation of the specification from the implementation technology plat-

form, the specification can be reused for different technologies and multiple platforms.

This provides a flexibility on changes in the implementation technologies or adopting

the system functionality to the current standards. Different applications can be inte-

grated with prepared models through applying mappings to specific platforms. Figure

2.3 shows how the MDA approach fits in the general image of software development

lifecycle and its adaptation to any kind of technologies in different domains. The figure

shows how the process spreads from the core implementation of models to the specific

implementations using different technologies, programming languages and platforms.

Figure 2.3. MDA lifecycle

2.2.1.1. Computation-Independent Model

Computation-Independent Model (CIM) is a business model specification which usu-

ally describes a system from the organizational point of view. It specifies business

processes, organizational structure of the company or stakeholders participating in the

processes. Information about the software systems is usually not included that is why

the computational independence is emphasized. The CIM if specified is normally the

starting model of the projects specification. The requirements for a software systems

are derived from CIM based on the business models it provides. Each business model

Chapter 2. Research Background 10

from the CIM has associated its specific technical, software model where the software

model is a description of the software system from the functional point of view.

CIM represents business context for the IT Solutions, expressed in terms of business

processes and business concepts. It constitues the basis for creating more specific

analysis models, closer to the technical development process. However, performing

automatic CIM transforations is often a very difficult or even impossible, becuase of

the lack of formality of its representation. CIM-level model transformations usually

demand a human to be involved in this manual or semi-automatic transformation

process.

2.2.1.2. Platform-Independent Model

Platform-Independent Model (PIM) describes business functionality and behavior in

automated way, but undistorted by technology details. PIM uses an appropriate do-

main specific language for system functionality definition.

The specification of PIM usually consists of diagrams of different types (frequently

used is the Unified Modeling Language (UML)), to model the functional requirements

in a technology independent manner. PIM is a description of a system that realizes

some business defined at the CIM level. The technological solutions are not important

at this stage of the MDA-based modeling. PIM is the most important level of models

in the model-driven architecture as it provides models to be later transformed for a

particular technology.

To PIM can be applied various transformations which create new models either at the

same abstraction level or passing to the next PSM level. The former transformations

from PIM to PIM are called endogenous transformations, meanwhile the latter are

called exogenous. PIM to PIM transformations allow to generate different models

considering the same functionalities specification from different point of views and also

focusing on different aspects of that specification. Depending on the transformations to

be applied to the PIM models, the required/recommended model types can be different.

2.2.1.3. Platform-Specific Model

Platform-Specific Model (PSM) is the functional specification of a system according

to the specific implementation technology and its constructs and limitations. PSM is

produced from PIM models after applying a number of different types of transforma-

tions. A PIM can be transformed into one or more PSMs. For each specific technology

platform a separate PSM is generated. PSM facilitates the work of developers in the

implementation phase when PSMs offer the possibility of automatic code generation

out of the specification considering platform and technology design details.

2.2.1.4. MDA development lifecycle

Aforementioned modeling abstraction levels introduced by MDA standard can be ap-

plied on different software development stages to describe different development areas,

Chapter 2. Research Background 11

such as: user requirements specification, business processes, or functional detailed spec-

ification.

The MDA proposes the following lifecycle of aforementioned models. The software

development starts with the CIM which also sometimes is considered as not necessary

and skipped by the developers. CIM usually lacks in formality and is very often rep-

resented by natural language specifications or different kind of graphs, what makes it

more difficult to introduce an automated process of the CIM transformations. Next

the PIM for an application’s business functionality and behavior is constructed using

a modeling language based on OMG’s Meta Object Facility (MOF) [62]. The idea is

to use stable models meanwhile technologies may evolve and change. Later the PIM

is converted to the PSM. It means that a new model at the PSM-level is constructed

which will be used with a specific technology platform. The key point of the MDA

framework is that for one PIM, many PSMs, for different user environments and tech-

nological platforms, can be created. One functional model can be transformed to match

with different platforms and generate adequate implementation, such as: Web Services,

XML/SOAP, EJB, .Net, CORBA, etc., for a corresponding platform. The Figure 2.4

shows the relation between abstraction levels described in the previous sections and

graphically demonstrates discussed here MDA framework lifecycle.

Figure 2.4. MDA framework schema

The interoperability in the MDA is guaranteed by the usage of industry standards

for modeling specifications. These standards are: MOF, UML v2.0., the Common

Warehouse Metamodel (CWM), XML Metadata Interchange (XMI). MDA assumes

that the PIM representing the conceptual design through different models will stay the

same independently on realization technologies and architectures. Such decoupling of

these two domains provides developers with the possibility of changing the realization

technology as the world of technology gets more reach with time. Also some particular

models can be chosen for a specific domains that fits better the modeling one.

Chapter 2. Research Background 12

Currently there are many tools called ”MDA tools” that support described here

lifecycle by providing means to develop, interpret, compare, align, measure, verify,

transform, etc. models or meta-models. MDA tools work with two types of models:

initial models created by analysts in a modeling language and derived models gener-

ated by applying different transformations. The latter can be helpful in further code

generation.

2.2.2. Model-Driven Development

Model-Driven Development (MDD) is a paradigm for writing and implementing com-

puter programs quickly, effectively and at minimum cost. It describes a family of

approaches that use models and model transformations to create software products.

MDD is the next step of abstraction in writing software applications. However, MDD

does not always prove popular with developers which prefer to code rather than build

models. The modeling activity can be more frequently found in large scale projects of

large enterprises of highly complex domains, such as: defence, aerospace, or health-care.

In the MDD code is automatically or semiautomatically generated from more ab-

stract models, and which employs standard specification languages for describing those

models and the transformations between them. It also supports model-to-model trans-

formations. Brown et al. in [11] argue that models and the transformations that relate

different models are of equal importance for the productivity of the software devel-

opment. The MDD process and its difference between the traditional development

process shows the Figure 2.5. This MDD is built on the basis of the MDA principles

making use of models and model transformations.

Figure 2.5. Traditional and MDA-based processes comparison

Chapter 2. Research Background 13

2.3. Health-care

Highly complex processes, huge number of multi-stakeholder dynamic requirements,

great role of non-funcional requirements, such as: usability, interoperability, security,

political and legal issues, these are only few characteristics describing the health care

domain. Software quality is especially important in this domain where it is possible

that badly designed software systems can significantly harm patients, causing even

patient’s death. Producing quality software demands also the development process to

be of high quality. That is why this domain was chosen to evaluate the methodological

approach presented in this work.

This section presents the health care domain, its main characteristics and unique-

ness in the context of the complexity of its requirements in software development

process. Requirements in health care are critical because produced software involves

peoples life and thus is every sensitive to every error and mistake commited in devel-

opment process, especially in the requirements phase.

As comment Garde and Knaup in [28] errorless software is a must in health care where

requirements engineering is an extremely time-consuming and complex process which

needs specialized methods and approaches. They also identify some main characteris-

tics of the domain.

• The domain complexity (clinical knowledge, data to be stored, care

conditions, care relationships) is very high.

Building health care systems require a great specialized knowledge of the domain.

At the same time this knowledge is very dynamic and constantly changes. Data

on which operate health care systems are complext and of different kinds. Also

the conditions of care are complex what means that many care decisions depend

on many different conditions for different users and contexts.

• The stakeholders are very complex.

In the patient’s care many different stakeholders are involved, each of which has

different requirements and priorities. The majority of them are non-technical

professionals. There are many challenges in performing RE activities for multiple

stakeholders, such as: different perspectives on the health care system, variety of

different: objectives, goals, needs, expectations, perspectives, priority of require-

ments of each stakeholder, stakeholders can be of different backgrounds which can

cause communication problems. In addition, not only care providers are the stake-

holders involved in the care process, but also people from the patient environment

and social network, they maight be also considered as the health care system users.

That is why it is very important to properly elicit requirements which would not

be possible without the stakeholders participation in the health care requirements

elicitation process. There are approaches focused on including stakeholders in the

design of e.g. home care systems such as the approach presented by McGee-Lennon

and Gray in [54].

Chapter 2. Research Background 14

• The variability of health care requirements, contexts and relations be-

tween them.

Each patient has an unlimitted set of characteristics, moreover these character-

istics constantly change. Health care systems have to deal with situations which

are sometimes not well known and predicted. Many characteristics are strongly

related to other characteristics creating a unique for the situation context. These

interactions beetween requirements and contexts influence the domain complexity

and make that the variability factor is very high.

• The relevance of health information over time is very important.

The health care systems should be able to cope with dynamically changing require-

ments of different stakeholders. Patient-centric character of such systems requires

adopting the system performance to changing contexts. The health care informa-

tion that changes over time should be systematically collected and updated.

• Requirements come from different distributed sources.

In health care the information may come from a variety of sources. The conjunction

of that information can be used to describe complext correlated requirements.

For example in home care information has to be taken from the patient’s home

environment and health care centers building together the picture of the home

care process.

• Patient safety is the crutial factor to have in mind.

Health care is one of these domains where errors, misunderstandings, system fail-

ures are not allowed as we treat with patients lifes. Al medical systems are required

to be error-free and medical devices to run flawlessly. In health care many con-

ditions have to be fulfulled simultaneously and each of these conditions is very

complex. That is why the health care systems development process should be

focues to produce harmless software taking into account all physical and psyco-

logical aspects.

In health care many non-functional requirements (NFR) play an essential role in

the patient care process, they are not only important but also numerous. Mairiza et

al. in [49] presented a systematic literature review on NFRs and their use. One of

research questions used for the review was: ”Which types of NFRs are of concern in

various application domains” giving as a result, among other domains, crutial NFRs

for medical/health care domain. These NFRs are the following: communicativeness,

confidentiality, integrity, performance, privacy, reliability, safety, security, traceability,

and usability. There are works emphasizing the role of non-funcional requirements in

the health care like Cysneiros in [15] focusing especially on safety, security, privacy,

reliability, availability and usability.

Within the RE process, unknown or not completely understood requirements are

the main problem. That is why there are many approaches to the elicitation of require-

Chapter 2. Research Background 15

ments in the health care. For example Cysneiros in [15] discusses various elicitation

techniques in health care. He also points that requirements are very often conflicting

among them and these conflicts should be carefully searched in the elicitation phase.

One specific part of the health care domain is home care. Many current researches in

the health care field are related to home care, as large number of people (e.g. elderly or

cognitively disabled) prefer to stay at home to receive care. This is socially beneficial,

as they can stay at their familiar environments and also economically beneficial. The

challenge in this case is to provide complete and professional care outside the health

centers. McGee-Lennon in [53] suggests features which should be provided by require-

ments engineering approaches in the home care requirements elicitation and analysis.

However, these good practicies can be also applied in general to the health care domain

RE approaches. Regarding these suggestions the elicitation of health care requirements

should be an interative process, balancing and validating requirements. This process

should also include active participation of interested identified stakeholders to elicit

high quality requirements. Next, prioritisation of requirements as well as identifica-

tion and categorisation are considered to be good practices. Requirements traceability

should be also provided as well as resolution of requirements conflicts.

The complexity of the domain and its unique character nicely summarizes Jones

in his paper: ”Computers can land people on Mars, why can’t they get them to work

in a hospital?” [35]. That is why McGee-Lennon [53] argues that novel, health care

dedicated RE approaches are required in order to improve the quality of patient’s care.

2.4. Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style that emphasizes loosely

coupled, course-grained, sharable, secure, network based services to enable flexibility

in an interoperable technology agnostic manner [22]. As a flexible and extensible

architectural framework, SOA has the following unique capabilities:

• Reduced cost - the cost of developing SOA-based applications is minimized as

only necessary functionalities demanded by users are implemented; functionality

decoupling into services and services management are the means to avoid main-

taining redundant and obsolete functionalities;

• Increased flexibility - applications based on loosely coupled services facilitate

the rapid restructuring and reconfiguration of the business processes and applica-

tions that consume these services.

• Increased interoperability - web services (WS) are the most frequently used

services implementation; the use of standard protocols makes these implementa-

tions interoperable with many existing business applications and thus provides the

opportunity to enter into new markets offering new business services;

Chapter 2. Research Background 16

• Added agility - speeds up the time-to-market of business applications as they

are constructed as orchestrations of loosely coupled services;

• Increased consolidation - integrates systems across many geographically dis-

tributed organizations;

The SOA framework is build of many important concepts, which have been gathered

into a reference architecture by the IBM Service-Oriented Architecture experts. They

defined an SOA reference architecture based on their experience from multiple projects

in various industries.

The reference architecture defines the layers, architectural building blocks, architectural

and design decisions, patterns, options, and the separation of concerns that are helpful

in implementing SOA. The Figure 2.6 shows a simplified version of the IBM SOA

reference architecture. It consists of layers, which facilitate separation of concerns

and assist the process of creating an SOA applying different kind of service-oriented

techniques, such as the Service-Oriented Modeling and Architecture (SOMA) method.

Figure 2.6. IBM SOA reference architecture

The SOA reference architecture consists of the following layers:

• Physical/Operational Layer - This layer is made up of existing application soft-

ware systems. A number of existing software systems are part of this layer. Those

systems include: monolithic custom built applications (J2EETM and Microsoft R©
.NET R©), legacy applications and systems, transaction processing systems, databases,

and packaged applications and solutions (including ERPs and CRM packages,

such as: SAP or Oracle solutions), as well as business intelligence applications.

The composite layered architecture of an SOA can leverage existing systems and

integrate them using service-oriented integration techniques.

• Service component Layer - This layer contains software components, each of

which provide the implementation for, realization of, or operation on a service.

Chapter 2. Research Background 17

Service components reflect the definition of a service, both in its functionality and

its quality of service. This layer typically uses container-based technologies such

as application servers to implement the components, workload management, and

its high-availability.

• Services Layer - This layer consists of all the services defined within the SOA. A

service is considered to be an abstract specification of a set of functions that satisfy

some business requirements. The specification provides consumers with sufficient

detail to invoke the business functions exposed by a provider of the services, which

can be discovered or statically bound, to be later invoked or choreographed into a

composite service. The information about the service functionality can be specified

in a Web Services Definition Language (WSDL).

• Business process Layer - also called composition or choreography layer. Com-

positions and choreographies of services exposed in the Services Layer are defined

here. Groups of services can be combined into flows establishing the performance

of an application. The entire use cases and business processes can be implemented

by orchestrating services into flows. To do this, visual flow composition tools can

be used for design of application flows.

• Consumers/presentation Layer - This layer consists of SOA-based applications

which make use of all previously commented layers. It provides the capability to

quickly create the front end of business processes and composite applications from

loosely coupled services and their orchestrations.

• Integration Layer - This layer enables the integration of services through the

introduction of a reliable set of capabilities, such as intelligent routing, protocol

mediation, and other transformation mechanisms, often described as the Enter-

prise Service Bus (ESB). WSDL specifies a binding, which implies a location where

the service is provided. On the other hand, an ESB provides a location independent

mechanism for integration.

• Quality of service Layer - This layer provides the capabilities required to mon-

itor, manage, and maintain QoS, such as: security, performance, and availability.

This is a background process through sense-and-respond mechanisms and tools

that monitor the health of SOA applications.

2.5. Rational Unified Process

Rational Unified Process (RUP) is a methodology focused on creating a high quality

software projects which have to be done in some predefined period of time, by the

means of certain amount of money and have to be compatible with the specified user

requirements. RUP exactly defines who is responsible for what, when and how differ-

ent activities should be done. It also provides well specified structure of the project

development lifecycle. This methodology suggests to follow some practices of project’s

Chapter 2. Research Background 18

documentation. As a result a huge amount of documentation is created, but such well

documented process helps in projects management and leading of an unexperienced

team. The basic characteristics that describe the Rational Unified Process are listed

below.

• It is architecture oriented. Architecture is the basic element of the process based

on RUP. This process is analyzed, constructed and managed. Planning and team

management is a frequent activity as the constructing system is divided into sub-

systems and layers, and all those parts demand their separate control. The archi-

tecture also points which elements of the developing system are reusable or which

are third party elements.

• RUP defines an iterative development process what means it is divided into series

of iterations. During each iteration, activities belonging to many disciplines are

executed. The scope of those activities depends on the project development phase

and the project’s current stage. Iterativity has many advantages in front of the

classical development process.

◦ The final product quality is high because of executing different types of tests at

the end of each iteration. Also the iterative process gives the possibility to cap-

ture new requirements more precisely and validate implemented functionality

against those already existing.

◦ Relatively quick problems detection gives the possibility to take some prevent-

ing actions in case of those emergency situations.

◦ Constant integration helps to avoid time consuming integration process which

regarding the classical model is executed at the end of system development.

Here the integration process takes place at the end of each iteration integrating

newly created components with those previously implemented.

◦ Thanks to iterativity the reusable elements can be easily identificated because

of taking advantage of already captured requirements and already implemented

functionality from the previous iterations.

• RUP is use case driven. Use cases describe the system functionality from the

user’s point of view. Their description is understandable as well for the team of

developers, as for the client side. Use cases are easily traceable in different kind

of models, user requirements and artifacts such as system prototype or tests. Use

cases establish the base for the development process.

RUP is a complete methodology, that means it defines the complete development

process from user requirements elicitation to the product deployment end-user envi-

ronment. RUP divides the work to activities which constitute the development process

workflows. These activities are thematically classified to disciplines. Activities from

different disciplines can be performed simultaneously. In addition, to structure the

Chapter 2. Research Background 19

work, RUP introduces such concepts as an iteration and a phase. Moreover, it defines

roles to which the particular activities are assigned. Finally, RUP indicates which are

the process input and output artifacts. The following subsections describe in more de-

tail the RUP work breakdown structure, in particular two disciplines which are crutial

for this research.

2.5.1. Lifecycle

The RUP methodology defines an iterative model of software development. These

iterations are classified into four phases: Inception, Elaboration, Construction, and

Transition, which constitute the principal stages of the software development. The

Figure 2.7 shows these phases and the relation between them in the software develop-

ment lifecycle. Each phase is supported by the product generated in the previous phase.

Phase’s result can be either a document, a piece of code of implementation or other

artifact important for the software project development process. A short description

of each of the phases is presented next.

• Inception - this phase focuses on the description of the project scope and under-

standing of the general project’s goal and requirements.

• Elaboration - focuses on the requirements, its understanding and use as a techni-

cal specification. Architectural solution is designed and implemented in the form

of a prototype. This phase also covers tasks of technologies and tools investigation

for the project’s purpose.

• Construction - focuses on the implementation and testing of all the components

and features described in the specification. One of the most important manage-

ment tasks in this phase is the control of resources, costs, schedules and the quality

of produced software.

• Transition - focuses on applying created software in the real life environment by

the end users. This phase considers that the created software moves by parts to

the user waiting for the acceptance, and giving feedback to developers about found

problems and errors which leads to releasing new software versions.

Figure 2.7. Phases of RUP methodology

Chapter 2. Research Background 20

As mentioned before, RUP organizes its thematically related activities into disci-

plines. A discipline describes an area of concern within the methodology. RUP defines

9 disciplines which are divided into 2 groups of core and supporting disciplines. The

Figure 2.8 presents a hump chart of these two groups of disciplines in the context of the

process structure (iterations and phases). In each phase tasks from different disciplines

are executed. The hump chart also demonstrates each discipline with the intensity of

use of the activities from each discipline during different development phases. It is

important to notice, that the workload and the time spent on particular activities is

different for each discipline in each of the four phases.

Figure 2.8. Core and supporting RUP disciplines

Two RUP disciplines that will be the subject of this work in further sections are:

the Requirements and the Environment discipline. A short characteristic of the main

purposes of these two disciplines is presented below.

Requirements

• to establish and maintain agreement with the customers ajd other stakeholders on

what the system should do;

• to provide system developers with a better understanding of the system require-

ments and stakeholders needs;

• to define the scope of the system;

• to provide a basis for project management tasks, such as: planning the technical

contents of iterations, estimating cost and time of the system development;

• to define user interface for the system, focusing on the users needs;

• to manage requirements by eliciting, documenting, and maintaining of require-

ments through the entire development process;

• to trace requirements by verifying that all requirements of the system are fulfilled,

and that the application does only what it was intended to do;

Chapter 2. Research Background 21

Environment

• to configure the process by its adaptation to the needs of the organization by

altering the process defined by RUP;

• to implement the process by changing the organization’s practice so it uses the

RUP in a part or in whole;

• to select and acquire tools that fit the particular needs of an organization, based

primarily on specific activities or artifacts necessary for the process. Aforemen-

tioned tools can be tools for modeling, requirements management, code develop-

ment, testing, etc.;

• to develop tools, sometimes special tools must be developed internally to support

special needs providing additional automation of tedious or error-prone tasks;

• to support the development providing different technical services, such as: main-

taining the hardware and software development environment, system administra-

tion, upgrades, etc.;

• to perform training, depending on the complexity of the organization’s software

development process, special training may be necessary to educate developers on

the process, tools and techniques;

2.5.2. Requirements discipline

The main objective of this discipline is the stakeholders’ acceptation on the captured

requirements which have to be fulfilled in the software to be created. The description

of requirements makes system developers understand better what the system should do

and how exactly it should work. The project limitations are defined and agreed. More-

over artifacts created within this discipline provide information for further planning of

work schedule, estimation of project costs and the more important thing that provide a

basis for analysis and design phase and their technical content. This section describes

the requirements discipline with its workflow of activities. Moreover, it discusses related

elements, such as: activities, roles, and artifacts, that form the description of the RUP

methodology.

Artifacts of this discipline describe functional and also non-functional requirements.

The latter include a description of the environment in which the future system will

be used. This description is mainly focused on some considerable parameters such as

scalability, security, backup and recovery of the system, etc.

2.5.2.1. Roles

There are two roles taking part in the requirements discipline the System Analyst

and the Requirements Specifier. The System Analyst leads and coordinates re-

quirements elicitation and use-case modeling by outlining the system’s functionality

and delimiting the system. The Requirements Specifier details all or part of the sys-

Chapter 2. Research Background 22

tem’s functionality by describing the requirements aspect of one or several use cases.

The Figure 2.9 shows the relation between these roles and associated artifacts.

2.5.2.2. Artifacts

The Requirements discipline defines the following artifacts:

• Requirements Management Plan - describes which are the requirements arti-

facts, their types and attributes. It contains a plan of requirements to be collected

and how they will be later managed by the means of control mechanisms for

measuring, reporting and controlling changes.

• Stakeholder Requests - gives an overview of what each of different stakeholders

expect from the system and how each stakeholder wishes the system to be look

like.

• Vision - one of the most important artifacts not only of the requirements disci-

pline, but rather of the entire software development process. The Vision document

describes the main system features and requisites. To describe details of the sys-

tem functionalities additional documents with specification are provided. The

Vision Document is focused on the customers’ perspective, discussing the essen-

tial features of the system and its acceptance levels. The document clearly defines

the scope of features to be implemented. This document should also describe

system users and their operational capacities. At the end the Vision Document

stands as a base of requirements’ documents, understandable and acceptable by

the stakeholders and the system developers.

• Requirements Attributes - provides a repository of a requirement text, with its

attributes and requirement traceability relations. It is a very important artifact

in the requirements change management.

• Use-Case Model - gives the first functional specification overview, giving to de-

velopers the first functionality description as models. Contains identified use cases

and actors, providing a complete specification of each particular use case. Use-Case

Model is shared between many disciplines as a basic document of analysis, design,

implementation and testing.

• Supplementary Specification - is the complement to the Use-Case Model for

the complete specification.

• Storyboards - allowing User-Interface Prototype construction

• Glossary - which defines a common terminology of concepts used in the project

or organization.

• Software Requirements Specification (SRS) - includes the complete defini-

tion of the system requirements, gathering in one document the use cases models

and supplementary specifications. This document is an optional document which

may be created on a different scope levels such as a project, a feature or a group

of features.

Chapter 2. Research Background 23

• Software Requirement - is a documentation of a capability of the software to

solve a problem.

Figure 2.9. Roles and artifacts of the RUP’s Requirements discipline

2.5.2.3. Process - activities workflow

In the requirements discipline activities workflow we can distinguish the following ac-

tions to be taken:

• Analyze the problem - focuses on definition of the project bases by identification

of the problem, stakeholders, boundaries of the project and its constraints.

• Understand stakeholders needs - requests of various stakeholders and the

system’s end-users have to be captured and clearly defined for the understanding

of the project developers.

• Define the system - this action focuses on identification of the system features

basing on the information gathered from the stakeholders and users. These features

are given a priority and the overall planning of the system’s features delivery is

made. It also includes the identification of actors and use cases to realize specified

features.

• Manage the scope of the system - in the domain of the requirements discipline,

this action considers taking into account the stakeholders needs in order to manage

the requirements definition according to the planned budget and time of delivery

of the project. When assigning a priority to a feature its important to be aware

of the project scope and available resources and circumstances of its development

process.

• Refine the system definition - the customer has to accept the requirements

captured and specified in a use-case model in order to start the design on the

agreed functionalities.

Chapter 2. Research Background 24

• Manage changing requirements - refers to applying some changes to require-

ments: some new important requirements were discovered, nonfunctional limita-

tion arrised, etc. The agreement with the customer has to be maintained as the

requirements change. The customer has to be also aware of the realistic possibili-

ties for delivering the functionalities desired.

The following diagram (Figure 2.10) shows described above activities ordered logi-

cally in the requirements discipline workflow.

Figure 2.10. RUP requirements discipline workflow

2.5.3. Environment discipline

It is essential to choose a process which fits to the type of product you are developing.

Even after a standard process from some existing methodology is chosen, it must not

be followed blindly - common sense and experience must be applied to configure the

process and tools to meet the needs of the organization and the project. Adapting the

RUP methodology and its processes for a project development, taking into account the

specific purposes is the key part of the Environment discipline of RUP.

Chapter 2. Research Background 25

Figure 2.11. Environment Discipline as a RUP core supporting disciplines

The main goal of the environment workflow is to provide adequate support in

software development processes, supporting the use of different development tools or

methods. A software development organization usually creates a Configuration of the

Rational Unified Process, tailored to its context, its need, the size and type of a project.

For a specific software development methodologies many steps or activities can be au-

tomated in this way facilitating the developer’s work and avoiding error-prone aspects

of software development processes. This discipline can be also applied to incorporate

to one solid development process: aspects, practices or guidelines from different types

of architectures or methodologies. The environment discipline consists of the basic

process tailoring as well as the process improvment.

The Figure 2.11 presents the RUP supporting disciplines hump chart. A crutial

discipline belonging to this group is the Environment discipline, of which a huge part

of the work load intensity is condensed in the Inception phase. This section describes

in details roles, activities and artifacts that defines this powerfull discipline for devel-

opment process customization and adaptation.

2.5.3.1. Roles

The RUP defines four roles within the Environment discipline. This section describes

these roles and associated to them responsibilities. The Figure 2.12 shows the relation

between these roles and artifacts which are responsible for.

• Process Engineer - the main goal of this role is to establish an appropriate

development process for a project which facilitates the work of developers. For

this purpose the Process Engineer tailors the process to specific needs of the or-

ganization and project. In addition, the person in this role helps the Project

Manager in planning the project. The Process Engineer is resposbible for prepar-

ing a series of artifacts, such as: Development Case, Project-Specific Templates,

and Project-Specific Guidelines.

• System Administrator - the person in this role is responsible for maintaining

Chapter 2. Research Background 26

the development infrastructure, including hardware and software configuration,

required software installation, performing system backup, etc.

• Tool Specialist - the main goal of this role is to select and acquire tools, config-

uring, setting them up, and verify their proper work. Sometimes new tools have

to be designed and implemented to automate the process defined by the Process

Engineer.

• Technical Wrtier - a person in this role is responsible for preparing a technical

documentation for end user, such as: user handbook, guides, release notes, etc.

2.5.3.2. Artifacts

The key artifacts of the Environment discipline are the following:

• Development Process - is a configuration of the underlying RUP framework

that meets the specific needs of the project. The process describes the artifacts

to be produced as a result of each activity, the roles responsible for them and the

timeframe in which they will be produced. It contains such artifacts as: Develop-

ment Case, Project-Specific Guidelines, and Project-Specific Templates.

• Development Case - described the actual process used by the project. The

Development Case includes phases and milestones, roles and associated artifacts,

guidelines on how to use these artifacts and when they should be produced. It also

describes obligatory and optional activities to be performed. Many activities and

steps of the Rational Unified Process can be automated through the use of tools,

thereby removing the most tedious, human-intensive, and error-prone aspects of

software development.

• Project-Specific Guidelines - is an artifact which provides guidance on how to

perform the tasks defined in the development process. It is an important artifact

for maintaining standrads use and producing a quality uniform software.

• Project-Specific Templates - defines templates to be used in the project when

creating required artifacts. These templates are useful when they are tailored to

fit the needs of the particular project.

• Development Infrastructure - includes the hardware and software installations.

• Development Organization Assessment - describes the current status of the

software organization in terms of current process, tools, team members capabil-

ities, etc. It guides the Process Engineer in preparing a process tailored for an

organization or a particular project. It is an optional artifact.

• Manual Styleguide - supports the uniform creation of user support material to

ensure its consistency.

2.5.3.3. Process - activities workflow

The Figure 2.13 shows the Environment discipline workflow, which contains the fol-

lowing typical activities:

Chapter 2. Research Background 27

Figure 2.12. Roles and artifacts of the RUP’s Environment discipline

• Prepare environment for project - an activity of the Inception phase. It

ensures that an appropriate process and tools were chosen for the project. The

preparation of the environment involves the tailoring of the development process

to apply a particular technology, modeling approache, architecture, or any other

specific need. The purposes of preparing the environment for a project are:

◦ Assess the current development organization.

◦ Assess the current tools support.

◦ Develop a first draft of the development case.

◦ Produce a list of candidate tools to use for development

◦ Produce a list of candidate project-specific templates for key artifacts.

◦ Prepare Environment for an Iteration

• Prepare environment for an iteration - as the RUP defines iterative process,

iterations serve to improve the process in further iterations. It leads to refinement

of the development environment. This is done by developing or modifying artifacts,

such as: Development Case, Manual Styleguides, Project-Specific Guidelines, or

Project-Specific Templates. The purposes of preparing the environment for an

iteration include the following:

◦ Complete the development case to be ready for the iteration.

◦ Prepare and if necessary customize tools to use within an iteration.

◦ Verify that the tools have been configured and installed correctly.

◦ Produce a set of project-specific templates to use within the iteration.

◦ Train people to use and understand the tools and the development case.

• Support environment during an iteration - an activity that as the main goal

has ensuring that an appropriate environment is available for developers to work

efficiently and effectively. In involves intalling required software and also solving

hardware or network issues.

Chapter 2. Research Background 28

Figure 2.13. Environment discipline workflow in RUP

2.6. OpenUP

Different domains and software projects have different process needs. Depending on

the team size, architecture complexity, technology novelty, conformance to standards,

etc., more or less formal process is suitable. For this reason a minimally sufficient but

complete, agile and extensible development process was developed by the IBM Rational

employees. This section is to give an overview of the OpenUP methodology, its origin

and definition of its strategic elements such as phases, disciplines, roles, work products,

activities and workflows.

2.6.1. Methodology generals

OpenUP methodology, created as a part of the Eclipse Process Framework (EPF)

Project, is a simplified version of the RUP. It is minimally sfficient software develop-

ment process providing only fundamental content for small or medium size projects

that deliver software as a main product, but do not require high level of formality.

In addition, it suits well to projects where stakeholders are involved in the project

significantly and define requirements incrementaly. RUP disciplines such as business

modeling, environment or deployment are not included as they were considered as

Chapter 2. Research Background 29

suitable parts of the development process only for a large projects. Moreover, OpenUP

might not be a suitable process for projects which require high level of formality, do

not include stakeholders as active roles in the process and deliver other artifacts than

software.

OpenUP adapts from RUP some basic elements, such as: definition of the method-

ology structure (i.e. phases, roles, artifacts, tasks), iterativeness, principles of an incre-

mental and architecture-centric approach. It also considers risk managemenet through

the entire process.

OpenUP joins many practicies that help teams to be more effective in developing

software, such as: agile philosophy that focuses on the collaborative nature of software

development, extensibility which allows the process to be extended or tailored for spe-

cific needs of a project or organization through identified reusable content and process

elements. It is also tools-agnostic and low-ceremony process that has application in a

broad variety of project types.

2.6.2. Main characteristics

OpenUP is driven by four core principles with which to capture the general intentions

behind a process and to interpret roles, work products, and tasks. These principles are

as follows:

• Collaborate to align interests and share understanding. This principle promotes

practices that foster a healthy team environment, enable collaboration and develop

a shared understanding of the project.

• Balance competing priorities to maximize stakeholder value. This principle pro-

motes practices that allow project participants and stakeholders to develop a solu-

tion that maximizes stakeholder benefits, and is compliant with constraints placed

on the project.

• Focus on the architecture early to minimize risks and organize development. This

principle promotes practices that allow the team to focus on architecture to min-

imize risks and organize development.

• Evolve to continuously obtain feedback and improve. This principle promotes prac-

tices that allow the team to get early and continuous feedback from stakeholders,

and demonstrate incremental value to them.

2.6.3. Process lifecycle

OpenUP is an iterative methodological approach what means that the software devel-

opment process is split into iterations [ref def]. Typical iteration in OpenUP lasts from

1 week to 6 weeks. Software it this approach is produced incrementally, i.e. the results

of one iteration serve as a base for the next iteration.

OpenUP organizes iterations into a set of phases applying the RUP phases: Inception,

Elaboration, Construction, and Transition. The following Figure 2.14 shows the deliv-

Chapter 2. Research Background 30

ery process based on the mentioned here phases in a end-to-end software development

lifecycle.

Figure 2.14. OpenUP delivery process (extracted from the OpenUP methodology)

2.6.3.1. Inception

The first phase of the development process, where stakeholders and team members

collaborate to determine the project scope and objectives. The purpose in this phase

is to take the decision whether or not the project should proceed. In this phase the

project scope has to be clarified as well as project objectives and the feasibility of

the intended solution. After this phase it should be clear who is interested in this

system and why, what are the key system functionalities and which of them are the

most critical. Also a possible solution should be identified together with a candidate

architecture. All mentioned here activities help the project manager to estimate the

project cost, plan its schedule and understand the associated with the project risks.

2.6.3.2. Elaboration

The second phase in the project lifecycle, when architecturally significant risks are

addressed. The main purpose of the phase is to get a more detailed understanding

of the requirements, in particular the critical requirements should be well studied to

be calidated by the architecture. This phase should give us an answer to the ques-

tion about the executable architecture adequacy for developing the application. Also

technical and non-technical risks are evaluated. Many technical risks are addressed

as a result of detailing the requirements and of designing, implementing, and testing

the architecture. Non-technical risks take into consideration the legal and financial

issues related to usage of open source or commercial components. Identifying these

essential risks alllow producing accurate schedule of a high-level project plan and cost

estimations.

Chapter 2. Research Background 31

2.6.3.3. Construction

This is the third phase of the process, which focuses on detailing requirements, design-

ing, implementing, and testing the bulk of the software. The purpose in this phase is

to cost-effectively develop a feature-complete product (an operational version of your

system) that can be deployed in the user environment. The product is developed iter-

atively, where the completeness of the product to be released determines the number

of iterations in the phase.

2.6.3.4. Transition

This is the last phase of the process, which focuses on transitioning the software into

the customer’s environment and achieving stakeholder concurrence that product devel-

opment is complete and ready for delivery to users.

2.6.4. Disciplines

OpenUP within the method content defines a set of 6 disciplines: Requirements, Archi-

tecture, Development, Test, Project Management, and Configuration & Change Man-

agement. These disciplines are considered essential, necessary and sufficient for small

projects in an agile approach. The Figure 2.15 shows a hump chart presenting all

disciplines and the intensity of the work in each of them. Comparing to the RUP, such

disciplines as Business Modeling or Environment are considered unnecessary and thus

were removed. The purposes for each discipline are listed below.

Figure 2.15. OpenUP disciplines hump chart

Requirements

• to understand the problem to be solved;

• to understand stakeholder needs (what users want);

• to define the requirements for the solution (what the system must do);

Chapter 2. Research Background 32

• to define the boundaries (scope) of the system;

• to identify external interfaces for the system;

• to identify technical constraints on the solution;

• to provide the basis for planning iterations;

• to provide the initial basis for estimating cost and schedule;

Architecture

• to provide guidelines on how to create an architecture from architecturally signif-

icant requirements;

• to evolve a robust architecture for the system;

• to define the representation of the architecture (either formal or informal docu-

ments);

Development

• to transform the requirements into a design of the system-to-be;

• to adapt the design to match the implementation environment;

• to build the system incrementally;

• to verify that the technical units used to build the system work as specified;

Test

• to provide early and frequent feedback that the system satisfies the requirements;

• to objectively measure progress in small increments;

• to identify issues with the solution;

• to provide assurance that changes to the system do not introduce new defects;

• to improve velocity by facilitating the discovery of issues with requirements, de-

signs, and implementations as early as possible;

Configuration and change management

• to maintain a consistent set of work products as they evolve;

• to maintain consistent builds of the software;

• to provide an efficient means to adapt to changes and issues, and re-plan work

accordingly;

• to provide data for measuring progress;

Project management

• to encourage stakeholder consensus on prioritizing the sequence of work;

• to stimulate team collaboration on creating long term and short term plans for

the project;

• to focus the team on continually delivering tested software for stakeholder evalu-

ation;

Chapter 2. Research Background 33

• to help create an effective working environment to maximize team productivity;

• to keep stakeholders and the team informed on project progress;

• to provide a framework to manage project risk and continually adapt to change;

2.6.5. Roles

OpenUP methodology defines 7 different roles, but depending on the project dimensions

this number can vary. Division by roles can not only be applied to the activities classi-

fication that should be executed by a particular role, but also to define the capabilities

that have to own a praticular person. This is also helpful when selecting appropriate

project team members. Every role is responsable for creation or changing of a particular

artifact. The list below presents the roles defined by the OpenUP methodology.

• Stakeholder - represents interest groups whose needs must be satisfied by the

project. It is a role that may be played by anyone who is (or potentially will be)

materially affected by the outcome of the project.

• Project Manager - leads the planning of the project in collaboration with stake-

holders and team, coordinates interactions with the stakeholders, and keeps the

project team focused on meeting the project objectives.

• Analyst - represents customer and end-user concerns by gathering input from

stakeholders to understand the problem to be solved and by capturing and setting

priorities for requirements.

• Architect - is responsible for designing the software architecture, which includes

making the key technical decisions that constrain the overall design and imple-

mentation of the project.

• Developer - is responsible for developing a part of the system, including designing

it to fit into the architecture, and then implementing, unit-testing, and integrating

the components that are part of the solution.

• Tester - is responsible for the core activities of the test effort, such as identifying,

defining, implementing, and conducting the necessary tests, as well as logging the

outcomes of the testing and analyzing the results.

• Any Role - represents anyone on the team that can perform general tasks.

2.6.6. Artifacts

OpenUP defines 17 artifacts which are considered as essential artifacts of the soft-

ware development. These artifacts, classified by the discipline of application, are the

following:

• Architecture

◦ Architecture Notebook - describes the context for software development; it

contains the decisions, rationale, assumptions, explanations and implications

of forming the architecture;

Chapter 2. Research Background 34

• Requirements

◦ Vision - contains the definition of the stakeholders’ view of the product to be

developed, specified in terms of the stakeholders’ key needs and features;

◦ Supporting Requirements Specification - captures system-wide requirements

not captured in scenarios or use cases, including requirements on quality at-

tributes and global functional requirements;

◦ Use Case - captures the sequence of actions a system performs that yields an

observable result of value to those interacting with the system;

◦ Use Case Model - contains defined use cases emphasizing the relations between

them;

◦ Glossary - defines important terms used by the project;

• Development

◦ Desing - describes the realization of required system functionality in terms of

components and serves as an abstraction of the source code;

◦ Implementation - represents software code files, data files, and supporting files

such as online help files that represent the raw parts of a system that can be

built;

◦ Developer Test - the instructions that validate individual software components

perform as specified;

• Test

◦ Test Case - is the specification of a set of test inputs, execution conditions, and

expected results, identified for the purpose of making an evaluation of some

particular aspect of a scenario;

◦ Test Log - collects raw output captured during a unique execution of one or

more tests for a single test cycle run;

◦ Test Script - contains the step-by-step instructions that realize a test;

• Project management

◦ Project Plan - gathers all information required to manage the project; contains

a description of project phases and milestones;

◦ Iteration Plan - contains plan describing the objectives, work assignments, and

evaluation criteria for the iteration;

◦ Risk List - is a list of known and open risks to the project, sorted in order of

importance and associated with specific mitigation or contingency actions;

◦ Work Items List - contains a list of all scheduled work to be done within the

project, as well as proposed work that may affect the product in this or future

projects; it is frequently used for project estimations;

• Configuration management

◦ Build - is an operational version of a system or part of a system that demon-

strates a subset of the capabilities to be provided in the final product;

Chapter 2. Research Background 35

2.7. Methods Engineering

The correct use of software development process is a chalange in many projects where

only some generic methods are given for the project team members. The process

implementation is no an easy task. The processes are complex, highly iterative, with

parallelisms and several relationships among tasks. Moreover, the process itself is

frequently not well defined and the environment in which the process to be applied faces

the problem of constantly changing business requirements. It is very important to

provide a project with easy to understand development process, adaptable for specific

organizations or even particular project needs. Methods engineering is a discipline

that emerged as a response to the increasing complexity and diversity of information

systems developments. It help in situational and domain-specific methods construction

as an alternative for the use of ad-hoc methods. This section describes standards

and tools that help in effective generic methodologies adaptation, being a solution to

a recent common problem of ”one method fits all”. In particular it provides a detailed

description of one architecture of software process engineering - the Unified Method

Architecture (UMA), and one supporting tool - Eclipse Process Framework (EPF).

2.7.1. Software Process Engineering

When methodologies first emerged in the 1990s, each software development process

used its own concepts and notations to define the contents of the methodology. The

need to unify all these concepts and notations therefore emerged. The OMG thus in-

troduced the Software Process Engineering Metamodel (SPEM) [63] standard. SPEM

provides a complete metamodel based on the Meta Object Facility (MOF) [62] to

formally express and maintain development method content and processes.

In this master thesis, the Unified Method Architecture (UMA) [30] is used for mod-

eling of software process engineering. UMA is an architecture that clearly separates

Method Content definitions from their application in delivery processes. UMA is an

evolution of SPEM v1.1 [2], but IBM and OMG have worked on UMA to make it part

of SPEM 2.0.

UMA defines the schema and terminology used to represent methods consisting

of method content and processes. Its basic elements are shown on the Figure 2.16.

According to the UMA structure elements defined, UMA is made of reusable core

Method Content in the form of a general content descriptions and also project-specific

process descriptions.

Chapter 2. Research Background 36

Figure 2.16. The basic elements of UMA

Unified Method Architecture

As depicted on the Figure 2.16, UMA consists of content elements and process elements.

The former describe the schema elements for the static aspects of a process, while the

latter describe the process organazing specified content elements into activities and

workflows. The basic content elements are the following:

• role - is a set of related skills, competencies, and responsibilities; a person in a

specific role is responsible for performing associated tasks and producing related

work products;

• work product - is a result of a specific task; UMA distinguishes three types of work

products: artifacts, outcomes, and deliverables;

• task - is an action performed by roles, associated with input and output work

products;

• step - represents the most granular unit of work to be performed; it is a means of

breaking down tasks into more atomic work units;

• guidance - is a detailed description of a task, work product, or process element;

some types of guidance defined by the UMA are the following: checklist, example,

guideline, report, supporting material, etc.;

The basic elements that allow a precise process definition are the following:

• activity - is a process element that boundles method content elements (specifically

tasks); it is a work breakdown element that groups a unit of work;

• iteration - allows process engineers to group activities that are planned to be

repeated more than once; it is a special form of activity;

• phase - groups process elements into a significant period in a project; phases are

not expected to be repeathed as activities or iterations;

• capability pattern - is a reusable process fragment that can contain activities and

milestones; a delivery process is frequently a composition of different capability

patterns;

• delivery process - represents end-to-end project lifecycle that includes phases, it-

erations, capability patterns and milestones;

Chapter 2. Research Background 37

• milestone - is a decision point which compares the products of an activity, an

interation or a phase with expected results for these process elements;

• process package - groups process elements into folders for organizational purposes,

this feature is optional;

2.7.2. Tool support

The most challenging task of a process engineer is to deploy a methodology in an

organization or adapt an existing methodology and processes for a particular project.

This task includes configuring and customizing the base methodology.

To address this issue, various tools have been introduced that support aforemen-

tioned standards for method engineering. One of these tools is the IBM Rational

Method Composer (RMC) [30]. RMC is a UMA-based comprehensive process author-

ing tool which provides extensive method authoring and publishing capabilities [72].

RMC uses the concept of a plug-in library to allow process engineers to define and

extend methodologies.

Another tool that supports the UMA standard for methods engineering is the

Eclipse Process Framework (EPF) [2]. In the present work the EPF tool is used to

extend OpenUP by incorporating a model-driven requirements engineering approach.

Proposed within this thesis approach is based on the OpenUP methodology, as will

be described in Chapter 4. The fact that OpenUP is itself a plug-in library of the EPF

tool, it permits to define new processes or extend the existing one based on the OpenUP.

EPF Composer has two main purposes, which are the following:

• To provide for development practitioners a knowledge base that allows them to

browse, manage, and deploy content. This content can accommodates your own

content consisting of method definitions, whitepapers, guide-lines, templates, prin-

ciples, best practices, internal procedures and regulations, training material, and

any other general descriptions of how to develop software. This knowledge forms

the basis for developing processes.

• To provide process engineering capabilities by supporting process engineers and

project managers in selecting, tailoring, and rapidly assembling processes for their

concrete development projects. EPF Composer provides catalogs of pre-defined

processes for typical project situations that can be adapted to individual needs. It

also provides process building blocks called capability patterns that represent best

development practices for specific disciplines, technologies, or development styles.

EPF Composer also allows you to set-up your own organization-specific capability

pattern libraries. Finally, the documented processes created with EPF Composer

can be published and deployed as Web sites.

Chapter 3

Related work

This chapter presents studies realized with the objective to gather current knowledge

about the requirements engineering methods and techniques that are being used in the

context of the model-driven development. Also requirements engineering tasks within

the health-care domain were investigated, as well as the SOA-based methodological

approaches. This knowledge served to define the objectives of the present master

thesis.

Section 3.1 presents a research on the RE techniques in the model-driven devel-

opment processes and their actual level of automation. In order to investigate this

issue in greater depth, a systematic literature review has been performed. Also in this

section a well-defined method for systematic revisions is briefly discussed describing

the steps performed in the revision process. Related approaches were analyzed from

different points of view, such as: requirement types used, requirements structure, use

of transformations and their automation, possibility of requirements traceability and

its automation, tool support provided, or validation method. In addition, an analysis

of the principal findings and this systematic revision limitations are described.

Section 3.2 includes a brief analysis of the principal commonly known approaches

to service-oriented systems development. A short characteristic of each one is provided

focusing on requirements modeling in these approaches.

Section 3.4 contains a nutshell description of the requirements engineering processes

in the health-care domain. A short summary of found in the literature approaches are

discussed, it being a motivation for the methodological proposal developed within this

master thesis.

The last section of this chapter concludes the existing research on the requirements

engineering techniques for the SOA-based health-care systems in the model-driven

context described in the literature.

Chapter 3. Related work 39

3.1. Requirements Engineering in Model-Driven Development

Software engineering experiences show that in recent decades model-based develop-

ment of systems has become an essential factor in reducing costs and development

time. Furthermore, properly managed, well-documented and easily understandable

software requirements definitions have a great impact on final product quality [16].

However, requirements engineering (RE) is one of the software engineering disciplines

in which model-based approaches are still not widespread. Requirements are generally

regarded as text fragments that are structured to a greater or lesser extent and which

are interpreted by stakeholders and developers, who manually manage the requirement

interrelationships [50].

A variety of methods and model-driven techniques have been published in litera-

ture. However, only a few of them explicitly include the requirements discipline in

the Model-Driven Development (MDD) process. This section presents a review of

scientific papers published in the last decade which include the use of RE techniques in

the context of an MDD process. In order to provide a balanced and objective summary

of research evidence, a systematic literature review (SLR) process is considered as an

appropriate method to carry out such a review in software engineering [10].

The section contains a description of the protocol followed in this review, presents

the results obtained and a discussion on the threats to the validity of the results.

Finally, some conclusions on the requirements engineering techniques applied in the

model-driven context are drawn. This section outlines the issue for researchers, which

is how to improve the current practices of the use of MDD techniques at the require-

ments stage.

3.1.1. Research method

The approach proposed by Kitchenham [38] has been followed for systematic literature

review. A systematic review is a means of evaluating and interpreting all the available

research that is relevant to a particular research question, topic area, or phenomenon

of interest. It aims at presenting a fair evaluation of a research topic by using a

trustworthy, rigorous, and auditable methodology. A systematic review involves several

stages and activities (see Figure 3.1), which are briefly explained below.

• Planning the review: the need for the review is identified, the research questions

are specified and the review protocol is defined.

• Conducting the review: the primary studies are selected, the quality assessment

used to include studies is defined, the data extraction and monitoring is performed

and the obtained data is synthesized. In this stage we added a new activity to

test the reliability of the review protocol.

• Reporting the review: dissemination mechanisms are specified and a review

Chapter 3. Related work 40

report is presented.

The activities concerning the planning and conducting phases of this systematic review

are described in the next sections.

Figure 3.1. Phases and activities of the systematic literature review

3.1.1.1. Research question

According to the methodology for systematic reviews, the first step is to establish the

research question. In order to examine the current use of requirements engineering

techniques in model-driven development and their actual level of automation, we for-

mulated the following research question: ”What requirements engineering techniques

have been employed in model-driven development approaches and what is their actual

level of automation?”. The intention of this research question was to enable us to de-

fine a process with which to collect current knowledge about requirements engineering

techniques in MDD and to identify gaps in research in order to suggest areas for further

investigation. The review has been structured by following the PICOC criteria [65]:

• Population: Research papers presenting MDD processes and techniques,

• Intervention: Requirements engineering methods and techniques,

• Comparison: Analysis of all approaches based on the specified criteria,

• Outcome: Not focused on achieving any specific result,

• Context: Research papers based on RE techniques used in MDD.

Our review is more limited than a full systematic review, such as that suggested in [38],

since we did not follow up the references in papers. In addition, we did not include

other references such as technical reports, working papers and PhD thesis documents.

This strategy has been used in another systematic review conducted in the software

engineering field [55].

Chapter 3. Related work 41

3.1.1.2. Sources selection

Two types of search methods were used to select appropriate and representative papers

in the field of requirements and model-driven engineering. The first type, automatic

searching, was based on four main sources of scientific paper databases: IEEE Xplore

(IE), ACM Digital Library (ACM), Science Direct (SD), and SpringerLink (SL). A

manual search was also carried out in the following representative conferences and

journals: Requirements Engineering conference (RE), the Conference on Model Driven

Engineering Languages and Systems (MODELS), and Requirements Engineering Jour-

nal (REJ).

This manual search method was applied in order to verify the correctness of the

automatic review and to carry out a more in-depth study of those works published in

these sources that explore new trends and approaches.

3.1.1.3. Identifying and selecting primary studies

The research goal, was used as a basis for the creation of a search string with which

to identify primary studies. The search string consisted of three parts: the first part

linked those works that describe requirements engineering techniques using models, the

second part was related to model-driven engineering concepts, and finally the third part

described the relation between requirements and other models in the MDD process.

We experimented with several search strings and the following retrieved the greatest

amount of relevant papers:

(requirements engineering OR requirements-based OR requirements-driven OR

requirements model OR business model OR CIM OR Computation Independent Model)

AND

(MDA OR MDE OR model-driven OR model-based OR model*)

AND

(transform* OR traceability)

The concrete syntax of this search string was adapted to each digital library we used.

3.1.1.4. Inclusion criteria and procedures

The searching configuration included limitations to the type of papers and con-

tent. Papers that had been taken into consideration were only those that are research

papers presenting approaches to MDD-based requirements engineering or software de-

velopment process with requirements traceability. Moreover, only papers published in

conferences/workshops proceedings and scientific journals between January, 1998 and

January, 2010 were considered as significant for the research. The following types of

papers were excluded:

• papers describing model-driven principles without describing a concrete require-

ments engineering technique,

Chapter 3. Related work 42

• papers presenting requirements engineering techniques that are not related to

model-driven principles,

• books, tutorials, standards definitions, poster publications,

• short papers (papers with less than 4 pages),

• papers not written in English.

3.1.1.5. Data extraction strategy

The data extracted were compared according to the research question stated, which

is here decomposed into more specific questions and resulting in establishing criteria

that are described further in this section. These questions are presented in the following

list, where the possible answers are given in the round brackets.

1. What is the type of level for requirements specification? (Software, Business)

2. How the requirements specification is organized/structured? (Models or Diagrams,

Templates, Structured natural language, Natural language, Other)

If models are provided, are they specified using standards? (Yes, No)

3. If models are used to represent the requirements, what is the type of these models?

(Structural, Behavioral, Functional, Other)

4. Does the approach provide model transformations from the Requirements Engi-

neering phase to the analysis and/or design phases? (Yes, No)

5. What is the type of requirements transformations regarding the abstraction level

of source and target models? (Endogenous, Exogenous)

6. If model transformations are provided, are these transformations specified using

standard languages? (Yes, No)

7. What is the level of automation of these transformations? (Automatic, Interactive,

Manual)

8. Is there backwards requirements traceability information? (Yes, No)

If yes, which phase product can be traced to requirements? (Analysis, Design,

Implementation)

9. If traceability is provided, what is the level of automation of the traceability?

(Automatic, Manual)

10. Does the approach have a tool support? (Yes, No)

If yes, what is the purpose of such tool? (Traceability only, Transformations only,

Transformations and traceability)

11. Was the requirements engineering technique validated? (Yes, No)

If yes, what type of validation was conducted? (Survey, Case study, Experiment)

12. What is the actual usage of the approach? (Academic, Industry)

On the basis of these questions, the following criteria has been defined:

Chapter 3. Related work 43

• Type of requirements (criterion 1). This can be of two types: software require-

ments which are requirements that describe only the functionalities of software

under development, and business requirements which include information that is

related not only to the functionality of the future system, but also to the business

context, organizational structure of the enterprise, processes, etc. which will not

necessarily be a part of the system to be developed.

• The information concerning the type of requirements structure (criterion 2) is

then collected. Requirements can be represented as models (two types of models

are distinguished: standard models expressed in the only modeling language that

is considered as a standard (UML from OMG) and other non-standard types of

models). Requirements can also be expressed in natural language or other types

of textual or graphical representation.

• In the case of using models for requirements specification, the information concern-

ing the type of models (criterion 3) is gathered. These models can be: structural,

behavioral, functional or of another type.

• Model transformations provided (criterion 4). This is an interesting topic

which concentrates on an important amount of research work.

• Level of transformations (criterion 5), as proposed in Mens et al. [56]. For

transformations we can also analyze the languages in which both source and target

models and their abstraction levels are expressed. In this case transformations are

classified as endogenous when the source and target model are expressed in the

same language and in the same abstraction level, and exogenous when different

modeling languages and abstraction levels are used to express source and target

models (e.g. in UML language: a source model can be expressed as a use case

model and the target model as an activity diagram).

• Use of transformation languages (criterion 6) is also analyzed. Transfor-

mations can be defined with standard languages such as QVT or ATL1 or with

non-standard transformation languages.

• Transformation automation level (criterion 7). We consider a transforma-

tion to be automatic if the entire process of obtaining the target model can be

carried out without the transformation user’s participation. We then distinguish

interactive (semi-automatic) or manual approaches.

• Requirements traceability (criterion 8). Requirements traceability refers to

the ability to describe and follow the life of a requirement, in both a forwards and

backwards direction. We focus on the post-requirements specification (post-RS).

Post-RS refers to those aspects of a requirement’s life that result from inclusion in

a requirements specification as defined by Gotel and Finkelstein [29]. The papers

1. ATL is included in the standard category since it is widely used in academia and can be considered

as a de facto standard.

Chapter 3. Related work 44

reviewed were analyzed to study the traceability to and from analysis, design, and

implementation artifacts.

• Traceability automation (criterion 9). This is investigated to provide us with

some conclusions regarding the effort needed to manage the traceability within the

MDD process.

• Tool support (criterion 10). We analyzed whether there is a tool that performs

the MD transformations on requirements and generates model(s), and also whether

it provides support for requirements traceability and its monitoring during the

entire software development process.

• Type of validation (criterion 11) conducted. Three different types of strategies

can be carried out depending on the purpose of the validation and the conditions

for empirical investigation [26]: survey, case study, and experiment. A survey is

an investigation performed in retrospect, when the method has been in use for a

certain period of time. A case study is an observational study in which data is

collected for a specific purpose throughout the study. An experiment is a formal,

rigorous, controlled investigation. The set of validation methods does not include

theoretical examples of proof-of-concepts.

• Finally, the actual usage (criterion 12) of the requirements engineering technique

is analyzed. The paper is classified as being industrial if it presents a requirements

engineering technique which was proposed for (and is being used in) the context

of a company. Otherwise, it is classified as academic if the paper describes an

academic environment and no evidence of its current usage is provided.

3.1.1.6. Conducting the review

The stage in which the review is conducted consists of the following activities: selec-

tion of primary studies, data extraction, and data synthesis. The previous sections

describe how and from which sources the primary studies were selected. Based on this

information, the automatic search based on the search string performed in selected

digital bibliographic libraries resulted in 867 potentially related papers which might be

significant for the research topic.

In addition, a manual search (MS) was also conducted in order to find any relevant

papers that might exist and had not been discovered with the automatic search (AS).

The MS sources include the RE and MODELS conferences and the REJ journal, and

resulted in 17 possibly relevant papers related to the research topic which are additional

to those selected by the AS.

Table 3.1 presents the results of the final set of relevant papers selected for each of

the sources. Search results row shows the number of papers obtained from each source

that resulted from the search string and the manual search, the finally selected row

indicates the number of papers that remained for review after the rejection of papers

that satisfied at least one of the exclusion criteria or whose topic was not suitable for

Chapter 3. Related work 45

Table 3.1. Number of the review results

Automatic search Manual search (MS)

Source IE ACM SD SL RE/MODELS/REJ Total

Search results 163 641 24 39 17 884

Finally selected 21 25 9 7 10 72

the purpose of the systematic review. Duplicated papers were discarded by taking into

consideration the first digital library in which they appear, along with the most recent

or the most complete publication.

72 papers were consequently chosen for the final review. The research was first

carried out in December 2009 and was then updated by January, 31, 2010. A com-

plete list of the papers reviewed can be found in Appendix D (also available at:

www.dsic.upv.es/~einsfran/review-remdd.htm).

3.1.2. Results

This section discusses the results of the review, in which each criterion is commented

on. Table 3.2 shows a summary of the number of papers obtained as a result of the

review. This table is organized into groups regarding the selection criteria and the

publication sources.

The results for the requirements type (criterion 1) show that the majority of

works (60%) focus on software requirements (e.g., Insfran et al. in [33], in which

requirements are represented through the use of the Techniques for Requirements and

Architecture Design (TRADE) such as mission statement, function refinement tree,

and use cases). In this context, the Service Oriented Architecture (SOA) has gained

a significant amount of popularity in recent years. Various works describe automation

methods for services specification, e.g., Jamshidi [34] proposes a new method called

ASSM (Automated Service Specification Method) with which to automatically specify

the architecturally significant elements of the service model work product from the

requirements. Only 40% of the papers reviewed use business requirements as a basis

for further development. At this point it is worth mentioning that many approaches

use the i* notation to describe these business requirements. For example, Mazón et al.

[52] introduce the use of the i* framework to define goal models for data warehouses

and automatic conceptual modeling. Other approaches for generating UML models

from business requirements also exist, such as that of Raj et al. [66]. This approach

presents an automated transformation of business designs from SBVR Business Design

(Semantics of Business Vocabulary and Rules) to UML models which bridges the gap

between business people and IT people. These results are shown in Figure 3.2.

www.dsic.upv.es/~einsfran/review-remdd.htm

Chapter 3. Related work 46

Table 3.2. Systematic review results

Selection criteria Sources Total %

IE ACM SD SL MS

1 Requirements type Software 14 13 5 6 5 43 60
Business 7 12 3 2 5 29 40

2 Requirements structure Standard model 5 9 4 1 6 25 32
Non-standard model 9 9 2 1 4 25 32
Template 0 1 0 0 0 1 1
Structured natural language 6 7 2 0 2 17 22
Natural language 2 2 1 3 0 8 10
Other 0 0 1 1 0 2 3

3 Type of models Structural 3 4 1 1 0 9 15
Behavioral 8 15 5 2 9 39 69
Functional 2 2 0 0 2 6 10
Other 2 1 2 0 0 5 8

4 Transformations provided Yes 19 19 8 4 8 58 81
No 2 6 1 3 2 14 19

5 Transformations level Endogenous 4 4 0 1 0 9 15
Exogenous 16 17 8 3 8 52 85

6 Standard transformations Yes 1 4 0 0 2 7 13
No 16 14 6 4 6 46 87

7 Transformations automation Automatic 7 11 3 0 6 27 45
Interactive 4 3 2 1 1 11 18
Manual 9 8 2 2 1 22 37

8 Traceability requirements To analysis 8 4 2 5 1 20 24
To design 3 7 1 1 0 12 14
To implementation 4 6 1 0 1 12 14
None 12 14 5 2 8 41 48

9 Traceability automation Automatic 5 5 3 2 2 17 59
Manual 4 6 0 2 0 12 41

10 Tool support Traceability only 1 3 1 3 1 9 13
Transformation only 5 6 4 2 6 23 32
Traceability&transformation 1 0 1 0 0 2 3
None 14 15 3 2 3 37 52

11 Type of validation Survey 0 0 0 0 0 0 0
Case study 11 10 2 2 7 32 45
Experiment 0 1 0 2 0 3 4
None 10 14 7 3 3 37 51

12 Approach scope Academic 14 19 7 5 8 53 73
Industry 7 6 2 3 2 20 27

The results for the requirements structure (criterion 2) show that of the papers

reviewed, 64% of those that apply some RE techniques in the MDD approach used mod-

els as a means to represent the requirements. The two types of models are distinguished

as follows: UML standard models (32%) (the most frequently used are class, use cases,

activity, and sequence diagrams) and non-standard models (32%) such as goal, aspect,

feature, or task-based requirements models. Other alternatives with which to represent

the requirements are: i) structured natural language (22%) in which requirements are

described in an easy to analyze manner. For example, Mauco et al. [51] use a natural

language oriented model which models the vocabulary of a domain by means of the

Language Extended Lexicon (LEL); ii) natural language (10%), for example, Fliedl et

al. in [27] in which the use of sophisticated tagging in the requirements lexical analysis

Chapter 3. Related work 47

Figure 3.2. Results for criterion 1 (type of requirements)

is proposed; iii) templates (1%) (e.g. the requirements traceability approach presented

by Cleland-Huang et al. in [14]) and finally, iv) other types of specifications which are

mostly proprietary domain specific (3%). These results are shown in Figure 3.3.

Figure 3.3. Results for criterion 2 (requirements structure)

The results for the type of models (criterion 3) show that of those approaches

that use models for requirements specification the most frequently used type of model

is the behavioral model (69%). In many works, this type of model is used as use case

specifications (e.g. [45], [31] and [69]) or, very often, as goal models (e.g. in [44], [43] or

[42]). Other less frequently used alternatives are: structural (15%), functional (10%)

(e.g. activity or sequence UML diagrams), and other types of models (8%) such as the

Requirements-Design Coupling (RDC) model proposed by Ozkaya et al. [64] or the

Stakeholder Quality Requirement Models described with semantic web technology in

[8]. A summary of these results is shown in Figure 3.4.

The results for the transformations from requirements phase (criterion 4)

show that a total of 81% of the papers reviewed describe different types of transforma-

tions from requirements specifications. We can distinguish different types of transfor-

mations such as mappings, transformations using patterns and templates, transforma-

tions implemented in transformation languages (QVT, ATL), linguistic operations on

textual requirements or graph transformations, etc. On the other hand 19% of papers

do not provide such transformations (see Figure 3.5(A)), and the approach is focused

on other aspects of MDD such as the traceability of requirements, e.g. Cleland-Huang

et al. [14].

Chapter 3. Related work 48

Figure 3.4. Results for criterion 3 (type of models)

The results for the level of model transformations (criterion 5) give an outcome

concerning the abstraction level of source and target models in the transformation

process (see Figure 3.5(B)) according to the aforementioned classification presented

by Mens et al. in [56]. The vast majority of approaches (85%) transform a source

model into a different type of model (exogenous transformations). The alteration of

the target model specification language or abstraction level in relation to the source

models (principally goal models or natural language scenario descriptions) mostly takes

place in works that apply UML models as a target model. For example, in [17], Deb-

nath et al. describe a natural language requirements transformation to a UML class

model. Also, many approaches that start the MDD process from business requirements

specifications propose exogenous transformations, as can be seen in [66] in which the

business requirements that are specified with the Semantics of Business Vocabulary

and Rules (SBVR) are transformed into UML models (other examples might be [37]

and [76]). Some works provide transformations of models within the same modeling

language, but in a different abstraction level, e.g. transforming UML use case diagrams

into UML activity diagrams. Endogenous transformations are applied in 15% of the

approaches reviewed. For example, this type of transformations is used by Laguna

and Gonzalez-Baixauli in [42], in which endogenous transformations are considered as

requirements configurations used to validate the completeness and consistency of the

initial requirements configurations represented as a set of goal and feature models. An-

other approach with this kind of transformations was used in a validation of scenarios

presented by Shin et al. in [71].

The results for the use of transformation languages (criterion 6) show that

87% of transformations included in this systematic review use different kinds of spe-

cific mappings, refinements or pattern based transformations or languages other than

standardized transformation languages (see Figure 3.5(C)), e.g. Raj et al. [66] define

some specific mapping rules with which to transform business design to UML models.

Only 13% of the works use one of the two considered in this work as standard languages:

QVT and ATL. For example, in [40] Koch et al. propose transformations based on QVT

as a transformation language for Web system design.

Chapter 3. Related work 49

Figure 3.5. Results for criterion 6 (standard transformations)

The results for the transformations automation level (criterion 7) show the

current state of automation for the transformations defined in the MDD process.

45% of the approaches perform fully automatic transitions from requirements speci-

fications to analysis and design models. For example, Zhang and Jiang in [76] propose

a well-defined mapping of requirements defined in the Visual Process Modeling lan-

guage (VPML) at the CIM level to the Business Process Execution Language (BPEL)

description at the PIM level. 18% of the papers describe interactive or semi-automatic

transformation methods, e.g. [43] or [48]; 37% of the papers discuss manual transfor-

mations, e.g. [42]. Figure 3.6 shows a summary of the results for this criterion.

Figure 3.6. Results for criterion 7 (transformations automation)

The results for the traceability requirements (criterion 8) show support for

requirements traceability in the papers reviewed. With regard to the classification of

traceability presented in [29], this work focuses on post-RS traceability, which is the

relationship between requirements specification (RS) artifacts and analysis, along with

design artifacts. This traceability can be forward and backward traceability. Since this

work deals with the model-driven environment, the majority of approaches that possess

model transformations assume that forward traceability exists, although not all of these

approaches have explicit mechanisms for that traceability support. 48% of works do not

provide backwards traceability, although forward traceability is possible. This situation

arises in the approach described by Insfran in [33], in which the forward traceability is

implicitly assumed by the transformation rules provided, yet there is no reference to

the backward traceability. Moreover, 24% of works provide backward traceability from

Chapter 3. Related work 50

the analysis phase (e.g. in [43], in which goal models are transformed into statecharts

and the backward traceability is recorded); 14% of works provide traceability from

design and implementation phases mainly from user interface prototypes and test case

implementations (e.g., Sousa et al. in [73] present an approach for requirements tracing

from user interface implementation). In addition, some authors, such as Naslavsky et

al. in [59], describe complete solutions for tracing products from different phases to

requirements (specified as scenarios). These results are shown in Figure 3.7.

Figure 3.7. Results for criterion 8 (requirements traceability)

The results for the traceability automation (criterion 9) show that more than

half of the methods (59%) that have some traceability support provide an automated

tool for traceability management, e.g. [59]. This signifies that in these approaches the

effort needed to manage the requirements traces within the MDD process is quite low,

or is none-existent. The number of manual traceability approaches is also significant:

41%. For example, in the work of Sousa et al. [73] user interfaces can be logically

linked to the business processes defined at the requirements level. These results are

shown in Figure 3.8.

Figure 3.8. Results for criterion 9 (traceability automation)

The results for the tool support (criterion 10) for the MDD approach show that

of the papers reviewed, as was expected, not even half of them have tool support.

With regard to those approaches that have some type of process automation tool, the

following categories are distinguished: 32% of approaches have tool support for model

transformations, e.g. [76], in which a tool for automatic BPEL models creation is

supported based on the source model; 13% of works only support traceability, e.g., in

[14] Cleland-Huang et al. propose a traceability of requirements specification without

Chapter 3. Related work 51

any previous model transformations; and finally, only 3% of the papers describe tech-

nological solutions including both transformations and traceability support. One of the

works of Rash et al. [68] could serve as a good example here since it provides R2D2C

transormations in addition to including traceability support. Retrieving models and

formal specifications from existing code is also possible.

On the other hand, 52% of works do not offer any tool support. However, most

of them emphasize this necessity and state that it will be a part of their future work.

These results are shown in Figure 3.9.

Figure 3.9. Results for criterion 10 (tool support)

The results for the type of validation (criterion 11) give an overview of the evalu-

ation methods used in the papers selected. Three validation methods were considered

in order to classify the results: survey, case study, and experiment. 52% of the papers

reviewed do not present any sort of validation, and a more or less detailed example

is the only mean provided to ilustrate the feasibility of the approach. More or less

well-defined case studies were used in 44% of the cases. The majority of the papers,

particularly those describing academic research, use theoretical examples (e.g. [46]),

whereas industrial research, were very often evaluated with a case study (e.g. [70]

where analysis models (use cases) are generated from textual requirements of a Mobile

Media system), although this also ocurred in the other types of research. It is also

worth noting that controlled experiments were used in only 4% of the works (e.g. [71]

or [39]), and validation via surveys were never used in the reviewed papers. These

results are shown in Figure 3.10.

Figure 3.10. Results for criterion 11 (type of validation)

Chapter 3. Related work 52

Finally, the results for the actual usage (criterion 12) show that 73% of the

selected papers were defined in an academic context and 27% were defined in an in-

dustrial setting. The predominance of the academic proposals found in this review

shows that new approaches to deal with techniques for modeling, transformations, and

processes, that include RE as a part of the MDD process in industrial contexts, are

still needed. Some representative attempts from industry to apply model-driven RE

in the development process is the AQUA project [24] and [9], where Boulanger et al.

describe the use of the automotive architecture description (EAST-ADL) and SysML

for requirements modeling, traceability and transformation. These results are shown

in Figure 3.11.

Figure 3.11. Results for criterion 12 (actual usage)

3.1.3. Threats to validity

This section discusses the threats to validity that might have affected the results of

the systematic review. The review protocol used has been validated to ensure that the

research was as correct, complete, and objective as possible. With regard to the source

selection I have selected four digital libraries (IEEEXplore, ACM, Science Direct, and

Springerlink) containing a very large set of publications in the Software Engineering

field. The search string was defined by attempting different combinations of terms

extracted from papers concerning Requirements Engineering and model-driven tech-

niques. Also patterns were applied for search terms and adapted the search string to

advanced methods of source searching in each digital library selected. This made the

reproducibility of the automatic search for results possible.

Possible limitations of this study concern publication bias, publication selection,

inaccuracy in data extraction, and misclassification. Publication bias refers to the

problem that positive results are more likely to be published than negative results

[38]. I have attempted to alleviate this threat, at least to some extent, by scanning

relevant conference proceedings and journals. In addition, the digital libraries contain

many relevant journal articles and conference proceedings. With regard to publication

selection, the sources in which RE and MDE works were normally published has been

chosen. However, the review did not consider grey literature (e.g. industrial reports,

PhD thesis) or unpublished results.

Chapter 3. Related work 53

With regard to the search string, we attempted to collect all the strings that are

representative of the research question. The search string was refined several times in

order to obtain the maximum number of papers related to the systematic review. Also

synonyms were considered and have been included the lexeme of words. To alleviate

the threats to inaccuracy in data extraction and misclassification by conducting the

classifications of the papers was done by two reviewers. The discrepancies among the

evaluations were discussed and a consensus was reached.

3.1.4. SLR conclusions

Research in the last decade has shown increasing progress with regard to the precision

and automatic support that can be applied to requirements engineering specifications.

However, a complete solution which includes requirements models as part of MDD pro-

cesses is still lacking. In addition, little tool support with which to manage requirements

models and to make further use of them in an automatic manner is currently provided.

Many MDD methodologies include some requirements engineering activities but these

are hardly ever included in the mainstream of automated model transformation and

code generation activities. Moreover, this systematic review verifies that models are

not exclusively used to describe requirements in the MDD context to serve as the input

for model-driven transformations, but that templates, structured and non-structured

natural language are also used. To date, automated model transformations appear to

be poorly used since the majority of them are designed as different kinds of mappings

and graph transformations that use non-standard transformation languages.

After analyzing the results of our systematic review we can draw the conclusion

that models are not as frequently used as we expected in the requirements phase of

a MDD envirnoment (only 64%). Natural language specifications are also very im-

portant. Furthermore, post requirements specification traceability is not well-defined.

In addition, there are no complete proposals that are well-documented and evaluated,

particularly in the industrial setting. Moreover, there is a lack of more empirical studies

in MDD environments to show the benefits of the use of RE techniques as a part of

the automated transformation processes.

3.2. SOA-focused methodological approaches

3.2.1. SOA-focused methodologies

Service-Oriented Architecture is a powerful software engineering approach which how-

ever, demands support of many underlying technologies, such as: WS, BPEL, UDDI,

WSDL. All these technologies are important and necessary to achieve SOA and get

Chapter 3. Related work 54

expected benefits, such as business alignment, components flexibility, loose coupling,

and reusability. However, these technologies are not sufficient on their own without

a well-defined end-to-end service delivery methodology and a set of supporting the

methodology tools. Such a systematic and comprehensive approach is of critical im-

portance in SOA.

To address this issue, a variety of modeling techniques and methodological approaches

for service-oriented development process guidance have been published in literature.

However, with regard to the main concern of this master thesis, only a few of these

approaches focus on the requirements specifications and aim to automate the generation

of the analysis (PIM-level) models from the requirements (CIM-level) artifacts. [47].

This section, describing various service-oriented methodological approaches, is par-

tially based on a state-of-the-art survey presented by Ramollari et al. in [67]. It

is a comparative study of actual approaches and methodologies of service-oriented

development which defines several criteria and characteristics that are used for the

methodologies comparison.

IBM Service-Oriented Analysis and Design (SOAD) [77]

SOAD is an abstract framework proposing elements that should be part of a service-oriented

analysis and design methodology. SOAD builds upon existing, proven techniques, such

as OOAD, CBD, and BPM. It also introduces SOA-specific techniques, such as service

conceptualization, service categorization, aggregation, discovery, policies and aspects.

IBM Service Oriented Modeling and Architecture (SOMA) [4]

In the service-oriented modeling context, IBM offers a well-defined approach called

SOMA which is a method for developing a service-oriented solutions. SOMA takes a

top-down approach to analyze business domains and decompose them in to business

processes, sub-processes and use cases, and also a bottom up approach to services

architecture. It provides the software engineers with a set of well-defined activities and

work products to model functional requirements as services. It consists of three steps:

identification, specification, and realization of services, flows (business processes), and

components realizing services. The process is highly iterative and incremental. How-

ever, because SOMA is proprietary to IBM, its full specification is not available.

Service Oriented Unified Process (SOUP) [58]

Owing to the extensibility and adaptability capabilities of Rational Unified Process

(RUP), few approaches use this methodology as a base. One of these methodologies is

SOUP [58]. SOUP is a lightweight instance of RUP with SOA specific deliverables for

business services and for business processes models and rules. However, this methodol-

ogy is rather model-based than model-driven. It describes the requirements elicitation

and modeling techniques for service-oriented development, but does not provide any

Chapter 3. Related work 55

information on the transformation techniques between models. This approach by K.

Mittal consists of six phases: incept, define, design, construct, deploy, and support.

However, SOUP lacks detailed documentation and leaves room for adaptation. It is

used in two slightly different variations: one adopting RUP for initial SOA development

and the other adopting a mix of RUP and XP for the maintenance of existing SOA

projects.

MINERVA framework [18]

Delgado et al. [18] introduce MINERVA framework which applies model-based de-

velopment and SOC paradigms to service-oriented development methodology. This

approach is RUP independent. However, the first proposal of this approach was defined

upon a base process adapted from RUP. It focuses on modeling business processes and

sub-processes, indicating how to derive the services from them. The methodological

approach presented in this work provides a set of disciplines, activities, roles and work

products, which are compatible with the three service modeling steps defined in SOMA:

identification, specification and realization. This methodology is still under develop-

ment and does not include the automatic support to derive services from business

processes yet.

Method Development Kit for Service-Oriented Architecture (SOA-MDK)

SOA-MDK [7] is a method for service-oriented development based on an adaptation

and enhancement of component based techniques. This approach proposes the appli-

cation of model driven architecture principles withing the context of reference models

with which to provide a methodology framework for developing systems based on SOA

and Component Based Development. Barn et al. in [7] argue that many approaches

focus only on the technical issues and software development practices required for SOA,

however, to little efforts can be found in the earlier parts of the software lifecycle for

SOA, especially in the analysis phase using model based approaches.

The SOA-MDK describes a functional viewpoint of the SOAs development, i.e. the

capturing the functional requirements of the system from business process through to

services specification. This approach defines a series of activities and tasks, such as

develop process models, develop information models, factor process models, partition

information model into services, allocate activities to services, specify service and gen-

erate WSDL specifications. The key element of the approach is to focus on models,

however, the nature of the model-driven based of this approach remains unclear.

Service Centric System Engineering (SeCSE) [74]

SeCSE is a European Integrated Project that aims to create methods, tools and tech-

niques for system integrators and service providers and to support the cost-effective

development and use of dependable services and service-centric applications. The

Chapter 3. Related work 56

main goals of this approach is to extend existing approaches to service and system

specification to include: requirements modeling, quality of service, and dependability

specifications, with which to be used for service discovery and binding mechanisms.

Within this project free and open source instruments enabling the engineering of a

service-centric system are provided. These instruments are: tools, methods and tech-

niques supporting the cost-effective development and use of dynamic, customizable,

adaptable and dependable services and service-centric applications. It describes an ap-

proach to service-oriented systems development lifecycle, however, does not comment

on the use of the model-driven development paradigm.

SOA Repeatable Quality (RQ)

SOA RQ is a proprietary methodology by Sun Microsystems that is based on a RUP-like

iterative and incremental process consisting of five phases: inception, elaboration, con-

struction, transition, and conception. UML compliant artifacts are used for document-

ing various deliverables of these phases.

Service Oriented Architecture Framework (SOAF) [23]

SOAF consists of five main phases: information elicitation, service identification, ser-

vice definition, service realization, and roadmap and planning. It is concurrently based

on two types of modeling activities: ”To-be” modeling, which is the top-down business

oriented approach describing the required business processes, and ”As-is” modeling,

which is the bottom-up approach describing current business processes as they are

shaped by the existing applications.

Thomas Erl’s [22]

The service oriented analysis and design methodology is a step by step guide through

the two main phases: analysis and design. The activities in the analysis phase take a

top-down business view where service candidates are identified. These serve as input

for the next phase, service oriented design, where the service candidates are specified

in detail and later realized as Web services.

Steve Jones’ Methodology for Service Architectures [36]

The scope of this top-down methodology consists of the first steps in a project nec-

essary to ensure that true SOA properties are satisfied in the final delivery. It is

technology agnostic and takes a top-down business view reaching up to the point of

service candidate discovery (i.e. identification). The methodology adopts a broadly

four-step process (What, Who, Why, and How), of which the first three are covered in

preparation for the fourth step.

Chapter 3. Related work 57

3.2.2. SOA-focused techniques

Although, to the best of my knowledge, methodologies covering a complete development

process with requirements automated transformations do not exist, various techniques

and methods for SOA-based software modeling and transformations especially at the

PIM level can be found in the literature.

Delgado et al. [19] propose an approach which relates BPMN models with Service

Oriented Architecture Modeling Language (SoaML) models, offering automated trans-

formations between these two models implemented in a QVT (Query View Transfor-

mation) standard transformation language.

Ali et al. [3] present an approach for automatic transformations from the SoaML

to a design model in the form of OSGi (Open Services Gateway initiative) Declarative

Services Model.

In the service-oriented modeling context, another approach was presented by Cao

et al. in [13]. In this proposal, authors define a service-oriented way to model the

requirement and also a model refinement mechanism with a set of refinement rules.

The refinement mechanism and rules can transform the requirement model to a set of

loosely coupled services.

Jamshidi et al. [34] propose an innovative method called the Automated Service

Specification Method (ASSM) which automatically generates the service model from

service-oriented specifications. It consists of several tasks and steps which guide devel-

opers in performing the method. In order to accomplish the ASSM tasks, the Automatic

Service Identification Method (ASIM) has to be performed on the CIM-level artifacts in

order to execute further transformations from the business model to the service model.

Since business processes are an important elemet of the SOA, the automation of

these business workflows has become an issue in software engineering. Zhang and Jiang

in [76] describe a method for automated Business Process Execution Language (BPEL)

generation from the business process specifications. This method consists of a number

of well-defined mapping rules to describe a strategy for model transformation from

business logic to BPEL.

Another approach of BPMN to BPEL transformations is presented in [21]. Within

this approach the business process is expressed in an abstract model (Business Process

Modeling Notation or BPMN) and according to transformation rules it is automatically

mapped to an execution language (Business Process Execution Language or BPEL)

that can be executed by a process engine. The authors of this work introduce the term

business process oriented programming to refer to an evolutionary step in software

engineering where programming power is given to the business analyst.

Chapter 3. Related work 58

3.3. Agile methodologies

OpenUP/MDD

A more general-purpose software development process, still under development, is the

OpenUP/MDD plug-in of the OpenUP methodology. OpenUP is a very simplified

RUP version intended for small teams and which defines the minimal set of roles, tasks

and artifacts. The OpenUP/MDD approach models the process conforming to the

OMG’s MDA [61]. It provides 6 role definitions, 57 different work products, and 90

standard task descriptions. Since it is consistent with the MDA, it focuses only on the

transformations from the PIM to PSM level of the architecture and does not define

a model-driven means of creating the PIM level requirements specifications. In this

context, our proposal for the RUP extension and the OpenUP/MDD approach are

complementary. The methodological approach presented in this work focuses on the

CIM level transformations, generating a desired model at the PIM level. Specifying the

CIM to PIM transformations reduces the system analysts’ workload and responsibilities

by including domain experts and stakeholders in the system modeling.

The Agile Unified Process (AUP)

AUP is a simplified version of the RUP which applies agile techniques to Agile Model

Driven Development (AMMD), change management, and particularly focuses on Test

Driven Development (TDD). It has a new Model discipline which encompasses the

RUP’s Business Modeling, Requirements, and Analysis & Design disciplines, and con-

siders the model as the principal artifact of the requirements specifications. Change

management activities have alo been moved from Configuration & Change Manage-

ment to the Model discipline. However, this methodological approach does not provide

well-specified activities and workflows for the model-driven development process, in an

attempt to keep the process as agile as possible.

3.4. Requirements engineering in the health-care

Health-care is a domain characterized by highly complex processes and data. Its pe-

culiaritis, such as complex stakeholders, the variability of health-care requirements,

contexts and relations between them, dynamic requirements adaptable to changing

over time care conditions and care relationships, or requirements from a distributed

sources, describes in more detail Chapter 2. These characteristics make the require-

ments engineering in the health-care domain even more important than it usually is.

Moreover, it becomes a very complex process. Possible errors at the RE stage can lead

not only to badly designed systems, but also can significantly harm patientes. This

section presents different particular techniques and more complex approaches to the

Chapter 3. Related work 59

requirements engineering in the health-care domain.

Requirements elicitation

Health-care organizations demand a lot of effort to be put on developing health-care

systems. Most of these software are critical and sensitive to mistakes because they

involve people’s lifes. If these mistakes come from the elicitation of requirements the

harm that the system causes may be even greater. Several requirements elicitation

techniques have been introduced in the literature having their background in the real

projects development. Some on these elicitation techniques are the following:

• Document reading - this technique assumes that analysts read existing documents,

job descriptions, tasks descriptions, quality assurance manuals, to get familiar with

the domain vocabulary;

• Questionnaire - a questionnaire is a set of questions that different stakeholders

have to respond;

• Interviews - requirements elicitation technique by conversation between software

engineers, stakeholders, and future system users;

• JAD sections - is used more likely to solve conflicts than to gather knowledge

about the domain; it assums a collaborative description of requirements to jointly

produce the its final version;

• Protocol analysis and observation - protocol analysis consists on asking the stake-

holders to talk about what they are doing while performing the task, while an

observation of performed activities is a frequently used technique to confirm the

understanding of the activity or process, described by the use of some other tech-

nique;

• Use cases and scenarios - wery frequently used during functional requirements

elicitation; While use cases give an abstract view of the system to be created,

scenarios are easier to be validated by stakeholders, who feel more comfortable

with natural language scenarios descriptions;

Document reading, interviews, use cases and scenarios are the most frequently used.

But neither of these techniques is sufficient to be applied individually. Many different

elicitation techniques should be used to understand the requirements for projects in

this complex health-care domain. In the context of requirements elicitation, Cysneiros

in [15] comments on the importance of the understanding of the vocabulary used in

the domain. To avoid misunderstandings caused by different concepts understand-

ing, the use of some kind of vocabulary control, such as Language Extended Lexicon

(LEL), is suggested. In the same work, Cysneiros argues for a special attention for

non-functional requirements (NFR), which are not only important but also numerous.

The most commonly described non-functional requirements of the domain are: safety,

security, privacy, reliability, availability, and usability. Some of these NFRs can be

Chapter 3. Related work 60

conflicting among them, so it is especially important to seach for such conflicts and

solve them.

Requirements specification

Garde and Knaup in [28] present an approach to analyze and describe requirements for

a given branch in the health-care domain. Their approach to requirements engineering

combines a grounded theory approach with evolutionary prototyping based on the

constant development and refinement of a generic domain model. They present the

use of this approach on the example of chemotherapy planning in paediatric oncology.

It is a part of the health-care domain, where chemotherapy planning tasks are very

complex and time consuming, thus error at the requirements engineering stage must

be avoided.

Grounded theory supports the inductive development of theories which are grounded

in data, but also very complex and thus difficult to explain the theory phenomenon.

A theory in this approach is developed by systematically recording and analysing data

related to the phenomenon. This process is called constant comparison. The relevant

for a theory data is gathered from different sources of evidence in order to develop

a valid theory. That data is then compare to the previously collected data. If new

aspects are uncovered during analysis in the particular field, the researcher stops the

comparison and adds the new aspect to the initial data set. The process stops when

new aspects of the studied phenomenon are not expected to appear. At this point it is

worth noticing, that the theory created in this way is flexible for possible modifications

if new apsects to the researched theory appears.

The requirements engineering approach for health-care proposed by Garde and Knaup

in [28] bases on the grounded theory. As chemotherapy is characterized by many profes-

sionals and inidividuals involved, each one having particular requirements, the software

system they use should be flexible enough to be adapted to these particular needs. The

approach consideres creation of a generic domain model for specific knowledge of the

domain (in this case chemotherapy planning in paediatric oncology). The main goal of

the use of grounded theory in this approach is to support the process of requirements

engineering by providing basis for a comprehensive domain model creation. To address

this issue, the UML model has been used with which to perform the continuous require-

ments analysis, the specification prototyping, and the grounded theory refinement.

McGee-Lennon in [53] describes features that should be taken into consideration

while describing requirements in the health-care domain. These features are the fol-

lowing:

• participatory elicitation and negotiation;

• distributed elicitation and negotiation;

Chapter 3. Related work 61

• iteration affording rounds of eliciting, balancing and validating requirements;

• identification of and engagement with appropriate stakeholders to elicit high qual-

ity requirements;

• prioritisation or weighting of requirements;

• retention and traceability of requirements over time;

• identification and categorisation of requirements conflict;

• resolution of requirements conflict;

• annotation of requirements to enable both negotiation and traceability;

• correlation with other processes and work practices such as care assessment;

3.5. Related work summary

This chapter joins few important areas significant for the methodological appraoch of

the present thesis: requirements engineering techniques and their use in the model-driven

context, methodologies and methods for service-oriented development, and finally es-

sential requirements engineering techniques of the health-care domain.

Cabot and Yu [12] argue that it is necessary to extend Model-Driven Engineer-

ing (MDE) methods with improved requirements techniques. To gather the current

knowledge on the last decade research of the RE techniques in the MDD context, a

systematic literature review was performed. Systematic literature review is the type

of investigation, which is considered as one of the most accurate techniques to review

the current state of researches in an objective and repeatable way. Research in the

last decade has shown increasing progress with regard to the precision and automatic

support that can be applied to requirements engineering specifications. However, a

complete solution which includes requirements models as part of MDD processes is still

lacking. Greater benefits could be obtained by applying model-driven transformations

at the requirements level [57]. In addition, currently few tool support is provided with

which to manage requirements models and to make further use of them in an automatic

manner.

As the OpenUP/MDRE approach introduced in this thesis focuses on creating

SOAs for the health-care systems, an overview on the most common service-oriented

approaches is provided. Finally, requirements engineering techniques frequently used

in the health-care domain are discussed. However, these researches mainly focus on

elicitating understandable and non-conflicting requirements rather than their modeling

and further use in the model-driven context.

Chapter 4

OpenUP/MDRE methodology

The OpenUP/MDRE presented in this work is an extension of the OpenUP software

development methodology. It extends the agile OpenUP approach by putting it in the

model-driven development context, to provide a development process that covers the

requirements engineering tasks. It also emphasizes the importance of an architecture

in the software development process. While all projects from different domains have

different process needs, the OpenUP/MDRE provides a means to adapt the method-

ology to those needs in architecture-driven process engineering.

It has been developed as a plug-in library for Eclipse Process Framework (EPF) [2].

OpenUp/MDRE includes new content elements, such as: artifacts, roles, tasks, and

processes elements, i.e., activities and capability patterns, to guide software engineers

who attempt to follow an MDD approach in their software projects.

This chapter is organized as follows. The methodology main ideas are presented in

the Introduction section, describing the new process in the context of the structure of

the MDA framework and the MDA principles. Following sections introduce the build-

ing blocks of the OpenUP extension to incorporate the RE techniques in the complete

MDD process. Moreover, the model-driven requirements discipline which constitute

the main extension of the OpenUP methodology, with which to treat the requirements

models is described in details. Finally, the environment discipline from the classic

RUP is presented, as it is introduced in the OpenUP/MDRE as a necessary means

of supporting the methodology adaptation to various architecture-driven development

processes.

Chapter 4. OpenUP/MDRE methodology 63

4.1. Introduction

As described in the previous chapters model-driven guidelines bring different point of

view in the approaches for software development. The MDA differs basically from the

traditional model of development process. The methodological approach for software

production developed in this research has as a goal applying the MDA guidelines at the

very beginning of the development process. Differences between the classic MDA-based

approach and the one proposed in this work shows the Figure 4.1. In the classic process

(Figure 4.1.A) the MDA-based process covers the software development starting from

the analysis. Introduced here methodology extends the use of MDA framework lifecycle

to include the requirements explicitly in the development process taking advantage of

the CIM-level models (Figure 4.1.B).

Figure 4.1. Traditional and extended MDA-based approaches comparison

Creating the CIM-level models allows an automatic transformation of the require-

ments with which to create the PIM-level specifications. To date the task of PIM

creation was performed manually (Figure 2.4), thus very often causing inconsistencies

in the PIM regarding to previously captured requirements. Including the CIM-level

specification as a part of the complete MDA-based process is not the only novelty of the

approach. In addition, the new methodology focuses on a very important element of the

software development process which is the software architecture. On the basis of the

identified for the project architecture, the CIM and the PIM representation is defined.

Creating the most important artifacts of the requirements engineering applying the

architecture-driven approach is an essential idea of this new methodological proposal.

For this purpose a specific CIM-level model is created by qualified technicians. The

Chapter 4. OpenUP/MDRE methodology 64

CIM later is transformed applying transformation rules to the PIM. Depending on the

architecture chosen, one project can possess many corresponding PIMs, and not only

one. All further steps of the MDA framework lifecycle remain without changes: the

PSM is created on the base of the PIM, to finally generate the code for desired spe-

cific technological platform. The Figure 4.2 shows the schema of the OpenUP/MDRE

methodological approach in terms of the MDA abstraction levels.

Figure 4.2. Extended schema of the MDA framework for OpenUP/MDRE

4.2. Methodology overview

The methodology describes a complete process of a software development as an instance

of the OpenUP. It focuses on the requirements engineering as it is the software devel-

opment critical process. In this approach, requirements are managed in an iterative

process of their specification and further management. This process consists of activi-

ties workflow which initially lead to the user acceptance of collected requirements and

stakeholder visions. Moreover, it includes activities with which to perform a generation

of project specification in the model-driven context.

Within each iteration a specific activities belonging to different disciplines are executed.

These iterations are organized into phases, offering a well-defined process workflow for

each particular phase. The methodology was created as a EPF plug-in for the OpenUP.

Some screenshots from this tool can be found in the Appendix C.

Two new disciplines, for requirements engineering activities and process configuration,

are provided in comparison to the classic OpenUP. These disciplines add the agility to

the development, making it adaptable to SOA-based development process and taking

the advantage of the benefits which bring the model-driven development principles.

Chapter 4. OpenUP/MDRE methodology 65

The Model-Driven Requirements discipline allows a smooth transition from the CIM-level

model to the PIM-level specification. This transition is driven by the architecture

identified, which conditionates the artifacts to be used and the transformation process

to be followed. This architecture-oriented methodology has been defined to increase

the efficiency of use of SOA-based systems in the health-care domain. However, the

Environment discipline provided, makes it flexible enough to adapt this methodology to

be used with other architectures and in different domains. The Environment discipline

is a means of describing the configuration of artifacts which derive the model-driven

development process to be followed. Commented here development process is com-

pleted with the OpenUP standard disciplines, such as: Architecture, Development,

Test, Configuration and Change Management, and Project Management.

4.2.1. Disciplines

Figure 4.3 illustrates the extended version of the OpenUP hump chart. It shows the

expected workload for each of the defined disciplines during iterations and phases

that constitutes the project lifecycle. As depicted in Figure 4.3, the new discipline

Model-Driven Requirements is the principal discipline, tasks of which are performed

in the Inception phase. As a result of this discipline the product vision is created

and the stakeholder requests are documented. The information collected within this

discipline is crucial for the rest of activities of this stage from the Project Management

and Architecture disciplines. Moreover, since we concentrate on model use in the

MDD context, the workload in the Development discipline in the Elaboration phase

decreases depending on the degree of automation of model transformations. A perfect

MDD process decreases to minimum the necessity of coding in the Development tasks.

The Architecture discipline (marked by a star) is a discipline that is not always used

during the OpenUP/MDRE lifecycle. When a necessity of a new architecture develop-

ment arises, then the Architecture discipline is used to develop adequate architectural

elements, models, or patterns. However, as the methodology is intended directly for

the SOA, the Architecture discipline is optional and may be narrowed to refine the ref-

erence architecture provided. Architecture may depend on the domain of application or

organization which reuse architectures developed in the previous projects. Health-care

is one of those domains where systems architecture is mostly limited to SOA, as it

is interoperable, reusable and flexible as the domain demands. For this reason the

Architecture discipline in this work will not be used, however it is not excluded from

the methodology standard disciplines.

Finally, as showed on the Figure 4.3, the Environment discipline is a concern from

the Inception phase to the Transition. However, as the hump chart emphasizes, the

workload within this discipline is especially important during the Inception phase, in

which the software development process is configured and the environment for the

project is established.

Chapter 4. OpenUP/MDRE methodology 66

Figure 4.3. OpenUP/MDRE disciplines

4.2.2. OpenUP implementation structure

As mentioned in the previous chapters, OpenUP has been defined as a plug-in of the

EPF [2]. It distinguish two essential elements of its structure: ”Method Content”

and ”Processes”. The former includes the definition of the necessary elements of the

methodology (roles, artifacts, tasks, and relations between these elements), while the

latter describes the process built from reusable capability patterns previously defined.

The structure of the ”Method Content” of the OpenUP/MDRE is the following.

The Method Content includes two main building blocks which are the Content

Packages and Standard Categories. While the Content Packages describe in detail the

elements of the methodology, the Standards Categories section gives an overview on

the disciplines, work product kinds, role sets, and tools. As shown on the Figure 4.4,

the content of the OpenUP methodology is classified into the following blocks:

• collaboration - method package which contains the foundation elements for OpenUP,

reflecting the collaborative nature of the process;

• intent - method package which contains elements that deal with how to channel the

intent of stakeholders to the rest of the development team, to ensure that validated

builds with incremental capabilities reflect stakeholder intents; the model-driven

requirements content forms a part of the intent package;

• management - method package which contains elements that deal with manage-

ment of the project, including project planning, iteration planning, day-to-day

management of the work within the iteration, and iteration assessments;

• solution - method package which contains elements that describe all aspects of

creating the architecture, designing, implementing, and testing the application, as

well as preparing the environment configuration for the specific project needs;

Chapter 4. OpenUP/MDRE methodology 67

• templates - content package which contains templates documents with which to

facilitate the artifacts creation in the entire project;

Figure 4.4. Content structure of the OpenUP/MDRE

4.3. Requirements Engineering in the OpenUP/MDRE

Requirements engineering is critical to successful software projects. Tasks performed

at this stage of development process affect the entire development cycle. Many RE

techniques have been introduced to increase the efficiency of this domain. However,

approaches to automate the RE processes have not been defined. One of the ways

in which to improve the development process is to focus on requirements engineering

based on models in the model-driven context.

In order to address this issue, we propose the new discipline of OpenUP for Model

Driven Requirements. The purpose of this discipline is to improve the effectiveness

of the requirements discipline and eliminate all misunderstandings between customers,

analysts and developers at both the essential requirements stage of software develop-

ment and at all further development stages. In OpenUP, the original Requirements

Chapter 4. OpenUP/MDRE methodology 68

discipline serves to establish the agreement with customers with regard to what the

system should do and define boundaries of the system. It is a basis for planning and

estimating the time and cost of the project. However, it should also provide a means

for developers to better understand the requirements, it being like a bridge between

the domain experts, stakeholders and the IT people.

The OpenUP extension for model-driven requirements engineering defines the new

discipline within which to describe roles, work products, tasks and processes to capture,

organize, model, transform and manage requirements. It includes: 2 additional roles,

7 new work products and a set of 15 tasks, from which 13 are new comparing to the

classic OpenUP Requirements discipline. The following subsection describe in detail

introduced here elements of the OpenUP/MDRE.

4.3.1. Roles

Model-Driven Requirements disciplines declares three roles in its Method Content : An-

alyst, Model Analyst, and Transformation Specifier. The Analyst is one of the principal

roles originally defined in OpenUP, two remaining roles are new and constitute the

main extension part. This section describes these roles that take part in the processes

of model-driven requirements. The Table 4.1 gives an overview of roles, assigned to

them tasks and work products for which they are responsible.

Analyst

The person in this role represents customer and end-user concerns by gathering input

from stakeholders to understand the problem to be solved and by capturing and setting

priorities for requirements. An Analyst needs the following knowledge, skills, and

abilities:

• expertise in identifying and understanding problems and opportunities;

• ability to articulate the needs that are associated with the key problem to be

solved or opportunity to be realized;

• ability to collaborate effectively with the extended team through collaborative

working sessions, workshops, etc.;

• good communication skills, verbally and in writing;

• knowledge of the business and technology domains or the ability to quickly absorb

and understand such information;

• knowledge of modeling languages and techniques;

An Analyst is responsible for the following artifacts: Glossary, Supporting Re-

quirements Specification, Use Cases, and the Vision document. The main tasks that

performs an Analyst are requirements elicitation tasks belonging to the inception phase

and requirements analyzing tasks from the elaboration phase. However, the participa-

tion of an Analyst during all phases of development process is crucial is (s)he manages

Chapter 4. OpenUP/MDRE methodology 69

changes in requirements and maintains traceability links performing the ongoing tasks.

The tasks to which the Analyst role is assigned are the following: Capture Common

Vocabulary, Elicit Stakeholders Requests, Find and Outline Requirements, Define Vi-

sion, Develop Requirements Models, Develop Supplementary Specifications, Manage

Dependencies, and Manage Model Dependencies. As additional performer, an Analyst

helps in architecture identification. A complete list of tasks and artifacts for which the

Analyst is responsible is presented in Figure 4.5.

Figure 4.5. List of key artifacts and tasks to be performed by the Analyst

Model Analyst

During the Model-Driven Requirements discipline, the Model Analyst leads the ac-

tivities of system modeling and transformation execution. The person in this role

participates in and coordinates a number of tasks related to: model generation, model

traceability (model dependency management) and model validation. The main artifact

for which the Model Analyst is responsible is the analysis model. Its type of content

depends on the architecture identified, while the model must suit the architectural pat-

tern considered. For this reason it is recommendable that the Model Analyst possesses

the following knowledge, skills, and abilities:

• expertise in meta-modeling and modeling languages, patterns, and tools;

• expertise in model-driven processes engineering;

• knowledge of model transformation techniques;

• knowledge of technology domains and the ability to quickly absorb and understand

such information;

• knowledge of software architectures;

• ability to collaborate effectively with the extended team through collaborative

working sessions, workshops, etc.;

• ability to articulate inconsistencies in the requirements documents;

Chapter 4. OpenUP/MDRE methodology 70

A complete list of tasks and artifacts for which the Model Analyst is responsible is

presented in Figure 4.6. This role also collaborates with the Analyst to accomplish a

number of requirements traceability tasks, such as: Manage Dependencies and Manage

Model Dependencies.

Figure 4.6. List of key artifacts and tasks to be performed by the Model Analyst

Transformation Specifier

This role is responsible for specifying the details of transformation rules to trans-

form particular elements of the source model into corresponding elements in the target

model. It is a good practice to establish such rules in the meta-models level, which

also simplifies the traceability and model dependency management. These transfor-

mation rules are defined in the Transformation Rules Catalog (TRC) artifact. The

Transformation Specifier is responsible for the artifacts related to the definition of

model-driven transformations, what shows the Figure 4.7. A Transformation Specifier

needs the following knowledge, skills, and abilities:

• expertise in meta-modeling and modeling languages, as also transformation lan-

guages, standards, and tools;

• expertise in model transformation techniques and implementation;

• knowledge of software architectures;

• ability to collaborate effectively with the extended team through collaborative

working sessions, workshops, etc.;

Collaborating roles

A person in the role of an architect is responsible for the main architecture artifact,

which also plays significant role in the process of requirements transformation. An

Architect collaborates with Model Analyst, Analyst, and Transformation Specifier to

accomplish the architecture identification for the project. S(he) also controls the Ar-

chitecture Notebook collaborative creation while being responsible for this artifact.

Chapter 4. OpenUP/MDRE methodology 71

Figure 4.7. List of key artifacts and tasks to be performed by the Transformation

Specifier

4.3.2. Artifacts

This section briefly describes the artifacts of the newly introduced Model-Driven Re-

quirements discipline. We can distinguish the artifacts defined by the original require-

ments discipline (such as: Vision, Glossary, Supporting Requirements Specification,

Use Cases, Work Items List) as also new artifacts with which to establish the neces-

sary elements of a model-driven development process. The summary of these new work

products can be found in Table 4.2.

Transformation Rules Catalog (TRC)

On the basis of the elements of the source and target models identified, the transfor-

mation rules are specified. This artifact should consist of a precise description of rules,

elements mappings, refinements, which also provides the basis for the requirements

traceability and model dependencies management. It should also provide some exam-

ples of use to facilitate its use by the Models Analyst.

Transformation Iteration Plan (TIP)

CIM to PIM transformations are usually quite complex and frequently are based on

generating some intermediate models at the CIM level. For this reason not a single

transformation, but a sequence of them is necessary. This artifact is created to plan a

logical order of transformation to be performed.

Requirements Model (RM)

This model is the CIM-level model of the approach. It is the initial artifact to which

the transformations apply and generate PIMs. The type of its content depends on the

architecture identified, while the model must suit the architectural pattern considered

and the process chosen to be followed.

Generated Analysis Model (GAM)

This model is the PIM-level model of the approach. It is the most important work

product of the discipline, it being a source for further transformations to generate

Chapter 4. OpenUP/MDRE methodology 72

Table 4.1. Roles of Model-Driven Requirements discipline

Role: Analyst

Tasks Work Products Principal objectives

• Capture Common Vo-

cabulary

• Define Vision

• Develop Requirements

Model

• Develop Supplementary

Specifications

• Elicit Stakeholder Re-

quests

• Find and Outline Re-

quirements

• Manage Dependencies

• Manage Model Depen-

dencies

• Glossary

• Supporting Require-

ments Specification

• Use-Case Model

• Vision

• to capture user requirements

• to refine requirements

• to establish common vocabu-

lary to communicate with vari-

ous stakeholders

• to understands particular users

needs

• to look for inconsistencies in re-

quirements

• to specify a clear definition of

the requirements model

• to manage requirements trace-

ability

Role: Model Analyst

Tasks Work Products Principal objectives

• Define Analysis Model

• Define Meta-Models

• Define Requirements

Model

• Develop Model Valida-

tion Plan

• Identify the System Ar-

chitecture

• Manage Model Depen-

dencies

• Perform Model Valida-

tion

• Run Transformations

• Architecture Notebook

• Generated Analysis

Model

• Model Dependencies

Specification

• Model Validation Plan

• Model Validation

Record

• Requirements Model

• to manage the model-driven RE

process

• to define an architecture that

suits the project (as reusable as

possible)

• to define transformation process

artifacts

• to manage model dependencies,

including traceability links be-

tween requirements and analysis

models

• to take the responsibility of

models correctness

• to perform model transforma-

tions

Role: Transformation Speci-

fier

Tasks Work Products Principal objectives

• Define Meta-Models

• Develop Transformation

Rules Catalog

• Develop Transformation

Iteration Plan

• Transformation Itera-

tion Plan

• Transformation Rules

Catalog

• to define clear transformation

rules

• to collaborate with Model Ana-

lyst with regard to meta-model

definitions

• to use standard transformation

languages (if possible)

• to define transformations of high

automation level

Chapter 4. OpenUP/MDRE methodology 73

PSMs. The type of its content depends on the architecture identified, while the model

must suit the architectural pattern considered.

Model Dependencies Specification (MDS)

The main purpose of this artifact is to specify dependencies between different types

of models. Such document facilitates the requirements traceability throughout the

entire development process, helping to maintain the specification consistent even when

requirements specification changes occur.

Model Validation Plan (MVP)

Together with the TIP artifact, the model validation is planned in order to detect

all inconsistencies in the specification of model transformations and failures in their

execution.

Model Validation Record (MVR)

This artifact is to store the result of the Validate the Requirements Model task. It may

be an interesting process management element, with which to discover the inaccuracies

in the model transformations.

An important artifact which is developed in this discipline is the Architecture Note-

book (initiated in the Architecture discipline) in which to store the information about

the architecture and the models and meta-models that this architecture implies.

Table 4.2. Work products of Model-Driven Requirements discipline

Work product Responsible

role

Modified by

Requirements Model Model Analyst Analyst

Generated Analysis Model Model Analyst

Transformation Rules Catalog Transformation

Specifier

Transformation Iteration Plan Transformation

Specifier

Model Dependencies Specification Model Analyst Transformation

Specifier

Model Validation Plan Model Analyst

Model Validation Record Model Analyst

4.3.3. Process - activities workflow

A set of new activities has been defined and a reference workflow has been designed

for the new discipline. Some activities of this workflow, such as: Analyze the Problem,

Chapter 4. OpenUP/MDRE methodology 74

Understand Stakeholders Needs, or Manage Changing Requirements, belong to the

Requirements discipline of the classic RUP. Moreover, new activities that describe the

new architecture-oriented model-driven approach were defined. This section presents

a detailed overview of each of the activities from the Model-Driven Requirements dis-

cipline, including the description their internal tasks. Figure 4.8 demonstrates the

Model-Driven Requirements discipline workflow represented through tailored version

of a UML activity diagram.

Figure 4.8. Model-Driven Requirements discipline workflow

Analyze the Problem

The purpose of this activity is to solve a new problem or to analyze a problem for

which a solution already exists but addresses incorrect problem. Within this activity

an agreement has to be made on a statement of the problem we are trying to solve, the

stakeholders have to be identified and the boundaries and constraints of the system

have to be clearly defined. To ensure the problem to be solved, the stakeholders have

to be carefully identified for the better understanding of the need of each particular

Chapter 4. OpenUP/MDRE methodology 75

stakeholder. The features which represent the high-level user or customer view of the

system are captured in the Vision document. To minimize the potential of possible

misunderstandings between the Analyst and the other different domains background

stakeholders, a common vocabulary has to be established and maintained in the Glos-

sary. To address this issues, the following tasks have been defined.

• Define Vision

• Capture Common Vocabulary

This activity belongs to the Inception phase of the project and is one of the principal

activities that help the Project Manager in estimating project costs, time schedule and

risks.

Understand Stakeholders Needs

The purpose of this activity is to capture all requests made on the project by different

stakeholders, as well as specifying all the supplementary requirements that does not

fit the functional specifications such as use cases. The stakeholder requests are usu-

ally captured during interviews, requirements elicitation workshops, change requests,

statement of work, problem statement, laws, regulations, etc. Developers must under-

stand the general vision on the requirements on which client (final user) agreed with

the organization’s representatives. After going through the stakeholder requests the

Vision document should be reviewed as the Analyst acquires some new knowledge and

some of the new stakeholder requests may have some impact those previously defined.

To address this issues, the following tasks have been defined.

• Elicit Stakeholder Requests

• Develop Supplementary Specifications

This activity, similarly to the Analyze the Problem, belongs to the Inception phase.

The artifacts that result from the performed tasks are the principal input for the system

modeling in the further process.

Identify a Candidate Architecture

This is the main activity with which to establish the architecture for the project and the

model-driven development process which this architecture implies. It is performed in

the early Elaboration phase and is essential activity for the software development pro-

cess in that it determine which artifacts need to be developed and the MDD process to

be followed. Within this activity, the main architectural elements are identified and the

type of model at the PIM-level is determined, these being the output of model-driven

transformations.

If a project of a certain type is to be developed for the first time within an organiza-

tion, this activity launches the Architecture discipline workflow with which to develop

the new architecture description. If the identified architecture description already ex-

ists, the modeling artifacts that are implied by this architecture are defined. These

Chapter 4. OpenUP/MDRE methodology 76

artifacts are: requirements model and a meta-model to which it conforms, as also the

analysis meta-model defining the appropriate analysis model type. The information

about the meta-models for further modeling and transformation purposes is stored in

the Architecture Notebook. To address this issues, the following tasks have been defined.

• Identify the System Architecture

• Define Meta-Models

Develop Artifacts

As mentioned before, the architecture identified for the project conditionates the arti-

fact types that will be used in the model-driven development process. These artifacts

are models from the CIM- and PIM-level. The meta-models describing the types of

these models at this stage is included in the Architecture Notebook document on the

basis of which to develop transformation rules between these meta-models. The map-

pings between particular elements from the source model and particular elements of the

target model are defined in the Transformation Rules Catalog. If these transformations

can be automated, this document includes their the ready to use implementation in

chosen transformations specification language (e.g. QVT, ATL). Depending on the

complexity of source and target model, the transformations may also be less or more

complex. Sometimes, several transformation steps may constitute the complete trans-

formation process. For this reason, Transformation Iteration Plan is created with which

to order the execution of transformation rules. In addition, on the basis of documents

gathered by the Analyst during the requirements elicitation process, the requirements

model is created conforming to the meta-model desired. This model is the source model

for further model transformations. Within this activity the plan of model validation is

optionally produced if such validation is planned. To address this issues, the following

tasks have been defined.

• Develop Transformation Rules Catalog

• Develop Transformation Iteration Plan

• Develop Requirements Model

• Develop Model Validation Plan

Generate and Validate Model

The main purpose of this activity is the generate the principal artifact of development

process which is the analysis model. On the basis of developed artifacts in the previous

tasks, the transformations are performed. This transformations may be manual, or

automated, depending on the level of their complexity. The transformation execution

may be supported by appropriate tools which allow the execution of desired transforma-

tions. After creating the PIM-level model, its validation can be performed according

to the model validation plan. To address this issues, the following tasks have been

defined.

Chapter 4. OpenUP/MDRE methodology 77

• Run Transformations

• Perform Model Validation

Manage Changing Requirements

This activity in the classic RUP is to ensure that the changes to the requirements are

managed in an effective and efficient manner. To address this issue the management of

the requirements traceability is necessary to evaluate the impact of each requirement

change on the rest of the requirements. Within this activity the relationships between

requirements are explicitly defined. Moreover, as the model-driven aspect of this ap-

proach implies the use of models to represent requirements, the traceability between

these models has to be also maintained. Therefore Manage Changing Requirements is

an activity which incorporates certain improvements with regard to the original one

taken from the classic RUP, adding the explicit traceability links definition between

models and particular model elements. To address this issues, the following tasks have

been defined.

• Manage Dependencies

• Manage Model Dependencies

The summary of this discipline, presenting roles, performed by them tasks with

associated to those tasks input and output artifacts, is shown in the Appendix B.

4.4. Methodology configuration

As mentioned in the introduction section of this chapter, the OpenUP/MDRE exten-

sion offers means to adapt the process to specific needs of a project or an organization.

In the context of the architecture-oriented model-driven approach, the process to be

followed during the software development can be adapted to the architecture identi-

fied. To address this issue, OpenUP/MDRE introduces the Environment discipline

with which to prepare the software development process tailoring, necessary roles and

artifacts selection, as well as the software and hardware environment configuration

for the purposes of the project. It is a simplified version of the RUP’s Environment

discipline providing roles, artifacts and activities which are described next.

4.4.1. Roles

This section presents roles which participate in the Environment discipline of the

OpenUP/MDRE approach. After a short characteristic of each role, associated ar-

tifacts and tasks are shown on the appropriate figure.

Process Engineer

The Process Engineer is the main role of this discipline. A person in this role is respon-

Chapter 4. OpenUP/MDRE methodology 78

sible for the software development process itself. This includes configuring the process

before project start-up and continuously improving the process during the development

effort.

The most challenging task of the Process Engineer is to deploy a methodology in an

organization or for a particular project. This includes configuring and customizing

the methodology, and also involves adopting the current organization processes and

standards. The most important artifact is the Development Case, which specifies the

tailored process for the individual project. A Development Case describes how the

project will apply the process within each of disciplines provided. For each process

discipline, (s)he decides which artifacts to use and how to use them. A Development

Case should be brief and refer to the process configuration for details. A complete

list of tasks and artifacts for which the Process Engineer is responsible is presented in

Figure 4.9.

Figure 4.9. List of key artifacts and tasks to be performed by the Process Engineer

Infrastructure Specialist

A person in this role is responsible for providing the infrastructure for the configured

process. It includes software installations and hardware configurations (work stations,

servers, networks) needed for the project development and testing. Small teams of

developers may not have a separate person with exclusive dedication to perform afore-

mentioned activities. It is more important in medium size and large industrial projects.

A complete list of tasks and artifacts for which the Infrastructure Specialist is respon-

sible is presented in Figure 4.10.

Chapter 4. OpenUP/MDRE methodology 79

Figure 4.10. Artifacts and tasks associated to the Infrastructure Specialist role

4.4.2. Artifacts

This section describes the artifacts of the Environment discipline. The origin of these

artifacts is the Environment discipline of the RUP [41] methodology.

Development Case

This is the principal artifact of the discipline used to describe the customizations made

to the original development process for a specific project. It describes elements from dif-

ferent disciplines to define the Development Process tailored for the particular project.

This artifact is initiated early in the inception phase and is later iteratively refined

taking advantage from the lessons learned. The Development Case includes phases

with associated milestones, artifacts to be used (how? who? when? level of detail?),

activities to be performed and some description of the iteration plan.

Development Process

It is a configuration of the underlying methodology that meets the specific needs on

the project. In the case of the OpenUP/MDRE methodology, development process

mainly depends on the architecture selected for the project. The Development Process

describes the process that a project must follow to produce the desired software as a re-

sult. It includes the definition of artifacts, responsible roles, and tasks to be performed.

In the OpenUP/MDRE, establishing an artifact type means establishing model type

as models are the primary artifacts of this model-driven approach. Requirements are

represented as models, and the workflow of the development process from the rough

vision document, through the requirements representation as models, analysis models,

to the design models and finally code, depends on the established type of these models.

Project-Specific Guidelines

This artifacts is to describe guidelines on how to perform a particular task or activity in

the context of the project. These guidelines may also include the use of standards and

good practices, which very frequently are reused rather than created from the scratch

for a particular project. In the case of the OpenUP/MRE methodology, such guide-

lines may concern the good practices of requirements model creation or the manner

Chapter 4. OpenUP/MDRE methodology 80

of performing the model transformations, which can be executed automatically by the

use of a specified tool, or can be performed manually by the appropriate specialist.

Project-Specific Templates

Templates are useful to create uniform documents by different people participating

in the project. It is a good practice to provide a template for each artifact of the

development process. In this way it will be easier to prepare and to understand by

others project team members. Some methodologies prepare a base-template for an

artifact, which is later tailored for the particular needs of the project.

User Support Material

An artifact that stands for the ease of the tailored process application and the use of

hardware and software. It provides instructions for project participants on how to use

the process, or tools.

Development Infrastructure

Includes the hardware and software on which the tools to run. Many project reuse

the infrastructure of an organization rather than create an individual infrastructure

for a specific project. Also Tools with which to perform the specific tasks of project

modeling, development, testing, have to be specified.

4.4.3. Process workflow

The Environment discipline explicitly declares the use of the development configuration

tasks at the beginning of the project and also at the beginning of each iteration. The

workflow for this discipline contains three activities, which are the following:

Prepare Environment for Project

This activity is executed only during the Inception phase. It ensures that the appro-

priate process and tools have been chosen for a particular project. It includes tailoring

the development process, developing artifacts for project-specific guidelines and tem-

plates, selecting and acquiring required tools, as well as preparing the development

infrastructure. To address this issues, the following tasks have been defined.

• Tailor the Development Process for the Project

• Develop Development Case

• Prepare Guidelines for the Project

• Prepare Templates for the Project

• Select and Acquire Tools

• Launch Development Process

Chapter 4. OpenUP/MDRE methodology 81

Prepare Environment for an Iteration

As the process as iterative, after each iterations the lessons learned should serve to refine

the Development Case leading to the final refinement of the development environment.

Moreover, in each iteration the responsible for the process person has to assure that

the project-specific guidelines and templates meet the iteration needs. To address this

issues, the Develop Development Case task has been defined.

Support Environment during an Iteration

Supporting the development environment is an activity that is performed until the

project ends. It is to ensure that an appropriate environment is in place and the makes

the developers job more efficient and effective. This activity might contain installing

required software and verifying that the hardware installations work correctly. To

address this issues, the following tasks have been defined.

• Set Up Tools

• Develop Support Materials

• Verify the Configuration and Installation

• Support Development

For the Evironment discipline workflow, that include described above activities,

please refer to Figure 2.13 from Section 2.5.3.

The summary of this discipline, presenting roles, performed by them tasks with

associated to those tasks input and output artifacts, is shown on the Figure B.4 in the

Appendix B.

4.5. OpenUP/MDRE lifecycle

This section shows how the new activities of the newly introduced disciplines affect the

entire process in particular phases of the project development. As tasks belonging to

the Model-Driven Requirements and the Environment disciplines are performed mainly

in the Inception and Elaboration phase, thus this section focuses on the workflows of

these two phases.

4.5.1. Inception phase

This phase is the initial phase of the project where performed to achieve common

agreements among the stakeholders on the project objectives. To goals of this phase

are the following:

• to establish the project’s scope and boundary conditions, including operational

vision, acceptance and refusal criteria;

Chapter 4. OpenUP/MDRE methodology 82

• to understand the critical functionalities of the system to be created;

• to identify the architecture to be applied in the project;

• to estimate the overall cost and schedule for the project;

• to identify potential risks;

• to configure the supporting environment, including process and tools, for the

project;

To address this issues, the workflow from the Figure 4.11 has been introduced.

Figure 4.11. Activity diagram of the OpenUP/MDRE Inception phase

4.5.2. Elaboration phase

The Elaboration phase is characterized by strong focus on the architecture of the

system. Most activities during a typical iteration in Elaboration phase happen in paral-

lel. Essentially, the main objectives for Elaboration are related to better understanding

the requirements, creating and establishing a baseline of the architecture for the system,

and mitigating top-priority risks. As depicted on the activity diagram from the Figure

4.12, the requirements identification and modeling is performed simultaneously with

the architecture development if such necessity exists.

Some of the main goals of this phase are the following:

• to establish a baselined architecture;

• to create the requirements model;

• to ensure that the architecture and requirements are consistent and stable;

Chapter 4. OpenUP/MDRE methodology 83

Figure 4.12. Activity diagram of the OpenUP/MDRE Elaboration phase

• to address all architecturally significant risks of the project;

• to establish the supporting environment;

Chapter 5

Case study

5.1. Case study context

This section provides a short description of the context of the case study with which

to validate the methodological approach from the present thesis.

The case study chosen is based on my professional experience from the Indra Sis-

temas company from Valencia, Spain, where the MPOWER project [1] was developed.

MPOWER is a user driven research and development project to create a middleware

platform supporting rapid development and deployment of services for cognitive dis-

abled and elderly. The platform definition process includes end-user requirements, de-

sign, platform development, development of proof-of-concept applications and end-user

trials.

This project was financed by the European Union as a part of the European Union

FP6 innovations research programme where a consortium of eight entities was led by

norwegian independent research foundation SINTEF. The consortium also included:

one of the world most important ICT companies (Ericsson Nicola Tesla), one large

multinational company with employees in 17 countries (Indra Sistemas S.A.), one re-

search center (Austrian Research Center), one university (University of Cyprus), and

a medium size company (Tb-Solutions). Two entities experienced in similar projects

provided real environments for the project testing and evaluation (Norwegian Center for

Dementia Research, Norway and Medical College from Jagiellonian University, Poland).

Indra Sistemas contributed to the project in many different fields taking advantage of

the experiences gained in similar investigation projects. Indra was the leader of works

related to design and implementation of the middleware for the integration of the

smart house and sensors. Moreover, Indra had a significant contribution in defining

the project architecture, business processes modeling and their configuration on the

Chapter 5. Case study 85

integration environment. Also the tool-chain and proposed model-driven methodology

evaluation was made by Indra’s developers while identifying, designing and implement-

ing the smart house and sensors related services.

The purpose of the MPOWER project was: firstly to define a development process

for middleware services creation and secondly to implement using specified methodol-

ogy a platform of reusable and interoperable services with which to facilitate the devel-

opment of health-care applications. To address these issues the specified methodology

used SOMA phases supported by some model-driven software development (MDSD)

techniques. In particular, the methodology applied was based on the MDA framework

and its guidelines which mainly concern the structure of software specifications in terms

of models and their transformations. Transformations were applied in generating the

platform-specific model and code generation. However, most of the work done on the

services specification was done manually by developers.

The SOA was chosen as a base architecture for the project, as it is highly scalable,

allows high reusability of the software components, as also is easily adaptable to new or

changing user requirements. Having a set of services implemented and deployed on an

environment supporting SOA, allows rapid and easy development process of health-care

applications where the software personalization degree regarding to the user needs is

very high.

Having prepared a set of middleware services, two proof-of-concept applications

were designed. The end-users scenarios previously captured were classified into two

groups: those containing social and information services, and those containing the

use of sensors and medical devices in the context of a SMART HOME residence for

cognitive disabled and elderly. Thus two proof-of-concept applications were designed

and implemented.

The present case study demonstrates the development process of the actor manage-

ment service, which is a base functionality in both of areas of interests of the MPOWER

platform users. Defined for the purposes of the project process included the entire

software development lifecycle: from the requirements elicitation to the applications

implementation and testing. However, I will focus only on the requirements engineer-

ing activities, as RE is the main concern of the new OpenUP/MDRE methodological

approach for the health-care systems.

5.2. Case study description (Actor Management)

This case study describes two different development approaches applied to a particular

case from the user requirements captured within the MPOWER project. First com-

mented development process example is an approach applied by developers within the

MPOWER project. The second one, describes the OpenUP/MDRE approach proposed

as a realization of the objective of the present thesis.

Chapter 5. Case study 86

This case study discusses only the part of the development process which focuses

on requirements engineering tasks with the final result of producing the analysis model

which is the principal artifact on the PIM-level regarding to the MDA framework.

Further development stages will not be commented as the principal concern of this

OpenUP extension are the RE activities. However, it is noteworthy that the approach

that was introduced to the MPOWER project follows the use of MDD processes in

analysis to design models automated transformation as well as in the code generation.

The main objective of this case study is to validate the OpenUP/MDRE approach

regarding its applicability and feasibility in a development process of health-care sys-

tems. To address this issue, differences between the original MPOWER approach and

the OpenUP/MDRE are identified.

In both approaches, the system specification is developed on the basis of user re-

quirements, which in the health-care are usually captured as user scenarios. These

scenarios are given in a particular context which in the case of the health-care domain

should describe actors participating in the particular scenario, their medical back-

ground and computer experience.

Scenarios of the present Actor Management case study, taken from the MPOWER

requirements specification documents, are described next.

Actors description

Annie (68) and her husband Joe has been an active couple both in sports management

and with following up their family. Annie has also been active in the board of the local

Red Cross and is still active participating in specific activities.

Actors medical background and computer experience

From a medical point of view Annie will perform best if she can keep doing her normal

daily activities. Annie does not have any software skills, but Joe often use the web and

writes e-mail.

Requirements given as user scenarios

Scenario 1 : Lately Annie has experienced problems with managing her everyday living

due to early dementia, and she finds this very frustrating and the rest of her family

does not feel comfortable with the situation. She forgets to take her medication, ap-

pointments, get anxious when is alone. For Annie and her family it is vital to create

an environment where Annie is able to cope with her daily activities and where the

family does not need to be afraid of her.

Scenario 2 : The family is introduced to the different service providers that are involved

in providing health and social services to Annie. The family starts using a secure,

role-based and shared information space service that is provided by a local service

provider. The shared information space makes all stakeholders able to share relevant

information with Annie. An individual plan is created for Annie. The most important

Chapter 5. Case study 87

activity that is added this week is Annie’s medication plan. This plan was atomically

added after the nurse had delivered the new medication. Every morning and evening

Annie gets a reminder on her mobile phone.

The following sections describe how these scenarios are analyzed and processed

applying both aforementioned approaches.

5.3. Applying the MPOWER approach to the case study

The development process in the MPOWER project, similarly to SOMA approach, has

been divided into three subsequent phases: requirements specification, service speci-

fication, and service implementation. The workflow of activities within this process,

emphasizing particular development phases, is shown in Figure 5.1 which will be de-

scribed later in this section.

Figure 5.1. MPOWER services development approach.

Chapter 5. Case study 88

Develop User Requirements

As mentioned in the previous chapters, requirements in the health-care domain are

expressed mainly as textual scenarios description. Also in the case of the MPOWER

project, health-care and home-care domain experts and the MPOWER proof-of-concept

applications users were comfortable with this technique of requirements description.

Thus, in the first phase of MPOWER development process, a set of user scenarios

has been collected in the requirements elicitation process. These scenarios included

description of health-care processes, actors identification, context of the occurrence of

each scenario.

Identify and Describe Services

On the basis of aforementioned captured scenarios, analysts identified primary ac-

tors and use cases of the system and gathered this information in a use case model

using UML standard notation. One of identified functionalities is stakeholders man-

agement. Figure 5.2.A shows an extract of the use case model created. This model

served to identify features (see Figure 5.2.B, which are requirements descriptions called

also higher-level expressions. A feature can be treated as a initial specification of a

service to be provided by the system that directly fulfills a user need. This kind

of specification was chosen to facilitate the process of services identification and their

further specification. Because it is easy to discuss these features in natural language, to

document and communicate them, they add an important context to the requirements

engineering. Moreover. features may serve not only to specify functional requirements,

but also non-functional constraints such as: risks, security limitations, reliability, etc.

Once the features are specified the process description assumes that services speci-

fication phase can be started. Identified services are traced from the features model. A

kind of a manual mapping between the features and service was performed. Features

were classified and grouped thematically. Finally, feature from the same group identi-

fied a service to be created. An example of such feature-service mapping is shown on

the Figure 5.2.C.

Specify Interfaces, Specify Operations, Specify Messages

Having identified services to cover a specific user requirement, these services have to

be specified. For this purpose, for each service, such elements as: interfaces, operations,

and messages, have to be defined. This was realized by performing the following tasks:

specify interfaces, specify operations, and specify messages, which resulted in creating

the service model. The service model creation was done manually, taking care of the

traceability links between features defined and services identified. An example of a

service specified in this manner is shown in Figure 5.2.D.

Chapter 5. Case study 89

Generate WSDL and Implement Web Service

The MPOWER approach defines these two tasks as it describes an end-to-end

process of services implementation. At the PSM-level, MPOWER takes advantage

of the model-driven transformations applied to the analysis model previously created.

However, this issue, as well as the services code generation, stay outside the scope of

this case study.

Figure 5.2. MPOWER service specification.

Chapter 5. Case study 90

5.4. Applying the OpenUP/MDRE approach to the case

study

In this section, the application of the OpenUP/MDRE methodology in the MPOWER

project is discussed. As the OpenUP/MDRE methodology focuses on the architectural

aspect of the system and the requirements engineering phase resulting in an analysis

model, I will focus in this case study on these two disciplines of the methodology.

The model-driven requirements discipline provides a description of activities asso-

ciated to them tasks with which to elicit, analyze and understand user requirements.

It is the requirements understanding and refinement process that results in providing

the process with an principal input in the form of textual specification and identified

use cases.

In this case study, I assume that the requirements scenarios defined in the Section

5.2 are correctly captured and documented in the Inception phase of the project. Also

use case model, similar to that from Figure 5.2.A, is created at this stage. These two

artifacts constitute the input to the model-driven process that is presented in Figure

5.3. This figure shows a simplified schema of the designed process, presenting the main

tasks, as well as their input and output artifacts. Tasks presented in this section cover

the system modeling and model transformations activities which are performed in the

Elaboration phase of the project.

Identify the System Architecture

This task is one of the most important tasks of the approach. Depending on its

results, further efforts of developers can be decreased or increased. The former case

occurs, when an architecture is identified that was previously used within an orga-

nization. In such situation the strategic elements (such as: meta-models, patterns,

etc.) of the architecture are already defined and this task can be omitted. On the

other hand, the developers’ workload increases, when a specific architecture will be

implemented for the first time within the development process of an organization. In

this case, ”Identify the System Architecture” task launches adequate procedure from

the Architecture discipline with which to develop the architecture model.

In this case study of software development for health-care domain, the SOA archi-

tecture was a requirement for the middleware platform project discussed in previous

sections. For this reason, the identification of a candidate architecture was limited

to gather the experience of creating SOAs on the basis of the IBM SOA reference

architecture [5]. To see some details about the SOA reference architecture please refer

to the section 2.4.

Chapter 5. Case study 91

Figure 5.3. OpenUP/MDRE development process simplified workflow.

Define Meta-models

The person in the role of the Model Analyst defines the meta-models, conforming

to which further requirements (CIM-level) and analysis (PIM-level) models will be

created. In the case of the health-care domain, where requirements are described in

natural language as user scenarios, the easiest way to describe requirements is the

feature model. Its concepts describe services to be provided by the system. Feature

meta-model is shown in Figure 5.4. It consists of service features described by a

set of properties, such as: name, description, type, which are related between them

using one of three refinement types: decomposition, specialization, and ’implement by’

refinement. Also a number of constraints can be associated with each service feature.

Chapter 5. Case study 92

Figure 5.4. Feature meta-model.

In the case of the SOA architecture chosen for the project, the SOA architecture

implies ’business process’-oriented and service-oriented models, to create the highly

flexible and configurable software processes. As SOA is an architecture made of layers,

it bases not only on the concept of a service, but also on an orchestration of services

defined in the business process layer.

In this case, a meta-model for the analysis model would be the business process and

the service model, conforming to the meta-models from Figures 5.5 and 5.6 respectively.

Figure 5.5. Business Process Modeling Notation meta-model.

Chapter 5. Case study 93

Figure 5.6. Service meta-model.

Develop TRC and Develop TIP

The next step of this development process is creation of an artifact called Trans-

formation Rules Catalog (TRC). In the case of choosing a feature model as a source

model and a business process model and a service model as target models, the person

in the transformation specifier role prepares a set of rules presented in this section.

These rules, which are basically mappings between elements of both meta-models, can

be executed automatically by the use of different kind of tools, but mainly they require

to be done manually.

To transform the elements of the feature model to a business process model, trans-

formation rules in the form of graphical elements mapping were defined. These rules

are shown in Figure 5.7. For each element of the feature model, corresponding notation

in both feature and BPMN models is presented.

Second work product to be obtained from the transformation process defined is

the service model. The challenge here is in transforming BPMN models to a service

model constructs. The approach that was chosen for this type of transformation is

described by Azevedo et al. in [6]. This approach follows the SOMA phases of service

development: identification, specification, and realization. During the identification

phase, a candidate services are identified. These candidate services can be of two

types: candidate data service and candidate business service. The former represents a

service that realizes typical CRUD (Create, Retrieve, Update and Delete) operations

Chapter 5. Case study 94

Figure 5.7. Mapping of feature model elements to BPMN.

on data objects that are stored in supporting data bases. The latter is a service that

performs some business rules not related to CRUD operations.

The process of the services identification starts with selecting a set of activities from

the business process models specification (BPMN). A process activity is selected if it

is either automatic (performed entirely by a system with no manual interference) or

partially supported by systems or automatable (manually executed, but expected to

be supported by a system). Activities that are not being considered for automation

are not selected, since it makes no sense to develop services for them.

Secondly, to the activities selected, several different rules (heuristics) can be applied

to identify further service. Some of these rules are the following:

Chapter 5. Case study 95

• A service must be identified from a business rule.

• A service must be identified from a business requirement.

• A service must be identified from a series of sequential activities.

• Operations must be identified from the interaction between two processes: one

service to pass the information to the other process, and another service to receive

the message.

For more detailed description of these heuristics please refer to [6].

At this point, it is worth to be mentioned that various transformations can be used

to obtain the target model. More or less complex, more or less automated transfor-

mations depend on the transformation specifier. For instance, Elvesaeter et al. in [20]

present a well-defined mapping between the BPMN and SoaML specification language,

that could be adapted in the transformation rules catalog of OpenUP/MDRE and

service-oriented health-care systems.

After defining all the rules to be used in the model transformation process, transfor-

mations order has to be set if the transformation process is not atomic and not straight

forward. In the case of example presented in this chapter, two types of transformations

have to be performed in order to obtain the final PIM-level analysis models. First,

the feature model is transformed into the business process model, and after that from

the business process model described in BPMN, services are identified and specified.

This order is the primary topic of the TIP document. However, TIP may also include

some information about the transformations supporting tools and the required models

format (e.g. XMI [60]) with which to interchange models between tools for various

transformations.

Develop Requirements Model

Requirements model creation process is a manual process of feature model creation

on the basis of: i) user scenarios captured and ii) use cases defined in the use case

model. This model is created in collaboration by the Analyst and the Model Analyst.

An example of a simple model for the StakeholderManagement use case is shown in

Figure 5.8.A.

Run Transformations

This task gets as its input the feature model created previously, and after performing

a series of manual mappings and transformations, two output models are generated.

From the CIM-level requirements model (Figure 5.8.A), first a business process model

is created (Figure 5.8.B), and then after performing a sequence of predefined steps,

the corresponding service model is obtained (Figure 5.8.C). Depending on the level

of automation of the transformation rules, this task can be manual, semi-automated

or automated. In the case of service model definition, services very often have to be

Chapter 5. Case study 96

primarily identified and secondly specified manually by the analyst. However, this

manual process can be given a set of precise guidelines, which make the process more

trustworthy and faultless.

Figure 5.8. OpenUP/MDRE process applied to StakeholderManagement use case.

Perform Model Validation

This task can be performed in two ways: manually and automatically. It is an op-

tional task in this process, however, a manual model validation is always recomended.

Also verification that the new model keeps satisfying the user requirements should

be performed by the Analyst and Model Analyst. In this case study the validation

task will not be detailed while the service model validation against the health-care

domain ontology standard HL7 [32] will be a part of the future improvements of the

OpenUP/MDRE for health-care.

Chapter 5. Case study 97

5.5. Case study conclusions

In this chapter, two processes of creating specifications for SOA are presented. The

first one, was defined and performed within the MPOWER project. The second one,

was the principal subject of this master thesis. This section comments on differences

between these two development processes and also discusses some experiences in the

lessons learned section.

5.5.1. Process comparison

Both processes described in this chapter were defined for the purpose of creation a

middleware platform of health-care services. In both approaches the initial set of re-

quirements are given as a set of user scenarios described in the natural language, which

is closer to the health-care domain experts than any other requirements modeling

language. Both software development approaches are based on the MDA framework

lifecycle and employ models in further development stages as a base of concepts repre-

sentation.

The main difference between these two approaches is the manner of creating mod-

els at the CIM and PIM level. The first approach neither provides any guidelines on

how these models should be created nor defines any relations between these models.

OpenUP/MDRE at this point is much more elaborated and controlled. It provides

a well-defined process for requirements model creation by analysts at the CIM-level,

and also defines further transformation steps to finally obtain the analysis model at the

PIM-level. The process is supported by a well-documented meta-model-based structure

definition for both requirements and analysis models.

Another important difference is that the service specification tasks in the MPOWER

approach are by no means connected to the requirements specification products. Ser-

vice candidates are identified and traceable to the user requirement documents, but

these documents are of little use in further services specification. What means, that

interfaces, services, but especially operations and their messages are developed at de-

velopers’ own will. At this point, OpenUP/MDRE clearly defines the relation between

requirements and analysis specifications.

Figure 5.9 illustrates a schema for both approaches, emphasizing the automation

level of subsequent stages in the development process. As depicted on this figure,

the business process design model (specified as BPEL) in the MPOWER process is

created manually by the developers, whereas the service design model (specified as

WSDL) is created by the use of an automated transformation. This may cause some

inconsistencies between models, especially when one model uses elements of the other

model at the implementation stage.

Chapter 5. Case study 98

Figure 5.9. Case study processes automation. Comparison of approaches.

5.5.2. Lessons learned

This section presents lessons learned i.e. the knowledge gathered during the project

realization. It was collected as one of the results of the project development, being a

valuable help in introducing some improvements for more efficient realization of similar

projects.

The main conclusion that can be drawn from realized MPOWER project and also

performed here case study is that model-driven transformations can be applied no only

at the PIM level, but also at the CIM level. Applying CIM to PIM transformations

allows to control the analysis model consistency and requirements traceability to a

larger degree than while creating the analysis model manually from the scratch. More-

over, the OpenUP/MDRE in relation to the MPOWER development process approach

provides the following improvements:

• The traceability links between requirements and services are easier to maintain,

while services identification and specification is done in controlled way, using iden-

tified rules.

• As the selected for the project architecture was SOA, MPOWER platform devel-

opment was focused on implementing the two principal layers of this architecture:

business process and service layers. However, MPOWER did not provide de-

velopers with a complete process of business processes modeling. That is why

there have been discovered many inconsistencies between the implementation of

these two layers, where services specification process was running in parallel to

the business processes design (as BPEL). At this point, OpenUP/MDRE defines

from the beginning of the development process two principal analysis artifacts

to be obtained, which are developed maintaining the relation between them. A

Chapter 5. Case study 99

top-down approach was proposed in this methodology, while only those services

are specified which find application in one of the business processes previously

defined.

◦ Many services that have been implemented during the MPOWER realization

remained unused.

◦ Some services implemented across the organization were redundant (similar or

the same), as some misclassification of the system functionalities occurred.

◦ Some services were discovered useful in the proof-of-concept applications im-

plementation stage, but have not been identified and implemented earlier.

• The MPOWER model-driven services development process was focused on code

generation tools, rather than model transformation techniques.

During the MPOWER project realization a survey on the use of proposed model-driven

process was performed. This study identifies factors that are important to developers

while applying the MDD approach. The MPOWER developers after using described

in this case study MPOWER development approach argue that the traceability feature

in the model-driven approaches is crucial. The findings also suggest that perceived

usefulness and ease of use are the most important factors for using a MDD development

approach, therefore a well-defined process with guidelines and templates should be

provided to developers.

Chapter 6

Conclusions

In this chapter the research held within the master thesis work is presented. In addition,

further investigations on the OpenUP/MDRE methodology are identified. Finally, this

chapter contains a summary of publications related to the present research.

Software systems are becoming more and more complex, and the success of their

development no longer depends on individual effort and heroics. Successful software

development can only be accomplished by using a well-defined software development

process. Software engineers need guidelines to assist them in the software development

process. These guidelines form a methodology that should help developers to facilitate

the process of developing a complex software.

The Requirements Engineering process is recognized as being the most critical pro-

cess in software development. Errors made during this process may have negative

effects on subsequent development steps, and on the quality of the resulting software.

However, many software development projects fail owing to a lack of well-defined meth-

ods and techniques describing the RE processes. For this reason, it is very important

to have a methodology that clearly and precisely defines the RE phase.

A variety of requirements representations that are currently being used can be

found in the literature. However, most approaches still use rather informal textual

descriptions than models or other formal specifications.

Several approaches have been introduced in order to facilitate the software devel-

opment process. One of these approaches is the Model-Driven Development. It is

another approach that improves the development process of complex applications. It

increases the productivity without augmenting the project management work load as

also allows building applications of high quality faster and cheaper. It promotes the

separation of concerns between the business specifications and their implementation.

This separation is obtained through the use of models that allow the level of abstraction

Chapter 6. Conclusions 101

to be elevated. However, the model-based foundation of this approach does not entail

its use in the requirements discipline. It rather finds its application in the analysis and

design phases, as well as in the implementation allowing code generation.

Menzies in his editorial [57] claims that models in MDD should be treated like a labo-

ratory where analysts can experiment with different options (at the requirements and

design level) of model design obtained automatically from requirements models. In

the same work, Menzies talks over the advantages that should bring us experimenting

with Model-Based Requirements Engineering (MBRE) which among others serve to

comment and assess of the RE model, reach a resolution that better satisfies feuding

stakeholders, ensure better decisions, etc. He also points some disadvantages of the

use of requirements artifacts as part of the MDD processes. He indicates that it often

takes too long to build the RE models so the process expenses increase and also that

even if early lifecycle models exist, then no effective conclusions can be drawn from

them since they are incomplete and full of contradictions and overlaps.

Many software development organizations producing highly complex software for

equally complex domains, face the problem of performing requirements engineering

tasks minimizing the number of failures in the requirements specification. One of

such a complex domains is the health-care domain for which various methodologi-

cal approaches have been introduced, but an ideal faultless process for requirements

engineering has not been defined yet. As reported in [25] by the European Public

Health Alliance, the recent problem of health-care domain is the limited accessibility

of health-care services for the citizens. The solution is introducing information systems

which will be highly interoperable and accessible. This requirements can be satisfied

by information systems based on the Service-Oriented Architecture which gains its

popularity in the health-care in the last decade. However, designing and implementing

SOA-based solution are not trivial tasks. There exist many approaches to develop

SOAs, but most of them focus only on services implementation, rather than provid-

ing adequate requirements traceability support or proposal for consistent modeling of

business processes and services specifications.

The issues discussed here constitute the starting point for the principal contribution

of this master thesis. This contribution is the OpenUP/MDRE approach: methodology

for SOA-based application in the health-care domain which integrates requirements

engineering techniques within a model-driven development process.

Within the research of this master thesis, the following tasks have been defined in

order to reach the principal objective.

• Task 1 : Analyze the use of requirements engineering techniques in the model-driven

development processes.

• Task 2 : Investigate on the current approaches of requirements engineering field in

the health-care domain.

Chapter 6. Conclusions 102

• Task 3 : Define a generic methodology that builds upon the model-driven devel-

opment principles, and facilitate the requirements engineering discipline.

• Task 4 : Adapt proposed methodology for the purposes of the SOA-based health-care

middleware.

• Task 5 : Implement the methodology in a process engineering tool with which to

provide the process definition easily accessible by developers.

• Task 6 : Validate the approach, its feasibility and accuracy to the addressed do-

main;

With regard to Task 1, a systematic literature review (SLR) with which to analyze

current use of the model-driven approaches which cover the requirements engineering

activities, was performed. Within this SLR the following research questions were de-

fined: ”what requirements engineering techniques have been employed in model-driven

development approaches and what is their actual level of automation?”. 72 papers were

chosen for the final review out of a set of 884 potentially related papers that have been

searched. These papers were analyzed and classified regarding 12 criteria identified,

such as: type of requirements used, type of requirements structure, transformations

provided, transformations automation level, use of a standard language for transfor-

mation implementation, traceability provided, traceability automation, tool support

provided, actual usage, evaluation method. After the review was performed, a series

of conclusions has been drawn summarizing the current state of researches related to

aforementioned topic. In addition, some research gaps have been identified.

With regard to Task 2, a comprehensive study about the current approaches of

requirements engineering field in the health-care domain was performed. This study,

that identified principal areas of interests of practitioners from the industry, confirmed

the principal problems of the RE in health-care to be identical with those that come

my personal professional experience in the domain. The conclusion drawn on the base

of this study was a valuable factor in this master thesis motivation.

With regard to Task 3, a generic methodology that incorporates requirements en-

gineering techniques in the context of model-driven development process was defined.

The first proposal of the methodology was defined upon a base process adapted from

the Rational Unified Process [41]. However, the agility which provides the OpenUP

methodology was later found desirable, and the proposal base changed from RUP

to OpenUP. OpenUP was found adequate methodology, providing extension mecha-

nisms and architecture-oriented development process. In order to define this extended

OpenUP methodology, the Unified Method Architecture (UMA) methods have been

used.

With regard to Task 4, mechanisms for the methodology adaptation to specific

needs of an organization or a project were defined. This mechanism is based on the

environment discipline from the RUP which was adapted to be used in a simplified

Chapter 6. Conclusions 103

form within the OpenUP extended methodology. The presence of the environment

discipline adds some flexibility to the process which apart of being model-driven, is

also architecture-oriented. This method was used to describe the discipline principal

artifact (development case) for the SOA-based system from the health-care domain.

With regard to Task 5, the OpenUP/MDRE (OpenUP for Model-Driven Require-

ments Engineering) methodology was implemented as a plug-in of the OpenUP library

from the Eclipse Process Framework [2]. In this way a configurable methodology de-

scription was prepared, which can be easily accessible as a web page for all project

development members. It is also a helpful means for project managers and developers

who attempt to follow an MDD approach in their software projects.

With regard to Task 6, defined methodology was validated by a case study taking

as an example a real industrial project previously implemented. By comparing the new

approach and the one used in the MPOWER project, I demonstrated the feasibility of

the approach. However, further validation studies of this proposal are planned and are

described in the next section.

6.1. Future work

The methodology definition presented in this master thesis is a first approximation

of the model-driven development process for the health-care domain middleware sys-

tems. Nonetheless, there exist a necessity of its further improvements and evaluation.

Some possible evolution direction for the OpenUP/MDRE methodology presents the

following list.

• It would be desirable to provide the methodology with a support of a tool with

which to easily create artifacts demanded for the model-driven development pro-

cess (transformation rules catalog, transformation iteration plan, model validation

plan, etc.). To address this issue, documents’ templates and artifacts creation with

wizards can be provided.

• Propose a health-care domain specific service models validation on the base of the

HL7 [32] standard for health-care services.

• Propose a method for the requirements model (CIM-level) validation against an

ontology of the health-care domain concepts.

• Validate the approach by measuring the effort involved in the methodology arti-

facts creation and the maintainability of requirements.

• Validate the approach by measuring the number of failures caused by errors

in preparing the requirements specification in comparison to other similar size

projects carried out with the use of classical methodologies.

• Collaborate with SINTEF in the investigation on the usability of the proposed

methodology in real health-care projects in Norway. The validation tasks (more

Chapter 6. Conclusions 104

case studies realization) may be also performed in cooperation with this research

organization.

• Collaborate with Technical University of Munich in defining an artifact-driven

approach for RE in MDD context.

• Investigate possible integration of the OpenUP/MDRE with the OpenUP/MDD

which is a complementary approach to the present one, that covers PIM to PSM

transformations.

• Extend this approximation for a development of software product lines in the

health-care domain.

6.2. Related publications

During the development of the present master thesis, different contributions have been

realized as publications. The following list gathers these publications which are placed

in the order of their importance. For each publication a corresponding thesis part is

indicated.

MODELS Conference 2010 (full paper)

Loniewski, G., Insfran, E., Abrahão, S.: A Systematic Review of the Use of Require-

ments Engineering Techniques in Model-Driven Development, Lecture Notes in Com-

puter Science, In: Proceedings of the MODELS 2010: ACM/IEEE 13th International

Conference on Model Driven Engineering Languages and Systems, Oslo, Norway, Lec-

ture Notes in Computer Science, vol. 6395, pp. 213–227. Springer (2010)

This conference is the most relevant conference in the area of Model-Driven Software

Development (MDSD). The MODELS ’10 Conference acceptance rating: 21% (54 ac-

cepted papers out of 253).

Proceedings of this conference appear on the CiteSeerX1 database [414/581] with the

estimated impact of 0.01 based on Garfield’s traditional impact factor.

This paper presents the systematic literature review, realized with the objective to

gather current knowledge about the requirements engineering methods and techniques

that are being used in the context of the model-driven development. This paper is

directly related to the content of Section 3.1.

Method Engineering Conference 2011 (accepted 6-pages short paper)

Loniewski, G., Armesto, A., Insfran, E.: Incorporating the Model-Driven Techniques

in the Requirements Engineering for Service-Oriented Development Process, In: Pro-

1. http://citeseerx.ist.psu.edu/stats/venues/

ceedings of the ME ’11: International Conference on Method Engineering 2011, Paris,

France

This conference is recognized as one of the principal conferences in the area of methods

engineering.

This paper presents a software development methodology which incorporates the

requirements engineering techniques for a service-oriented architectre in development of

health-care systems. This paper proposes the RUP extension as the principal method.

This paper is directly related to the content of Chapter 5.

EC-MDA 2008 Conference Workshop

Walderhaug, S., Mikalsen, M., Benc, I., Loniewski, G., Stav, E., Factors affecting

developers’ use of MDSD in the HealthCare Domain: Evaluation from the MPOWER

Project, In: 3rd Workshop ”From code centric to model centric software engineering:

Practices, Implications and ROI” (C2M 2008) accompanying the ECMDA 2008 Confer-

ence Workshop (4th European Conference on Model Driven Architecture Foundations

and Applications), Berlin, Germany (2008)

This paper presents experiences of the MPOWER developers from the use of MDD

process in a real project of the health-care domain. It investigates which factors are

important for developers to use MDSD in their work. This paper is directly related to

the content of Section 5.5.2 and also Section 3.1.1.5.

ECMFA 2011 Conference (sent full paper)

Loniewski, G., Armesto, A., Insfran, E.: RUP Extension for Model-Driven Require-

ments Engineering, Sent to: 7th European Conference on Modelling Foundations and

Applications, Birmingham, UK

This paper presents the idea of the RUP methodology extension for the model-driven

requirements engineering techniques. This paper is directly related to the content of

Chapter 5.

List of Figures

2.1 Requirements Engineering subdisciplines . 7

2.2 A taxonomy of the requirements specification types 8

2.3 MDA lifecycle . 9

2.4 MDA framework schema . 11

2.5 Traditional and MDA-based processes comparison 12

2.6 IBM SOA reference architecture . 16

2.7 Phases of RUP methodology . 19

2.8 Core and supporting RUP disciplines . 20

2.9 Roles and artifacts of the RUP’s Requirements discipline 23

2.10 RUP requirements discipline workflow . 24

2.11 Environment Discipline as a RUP core supporting disciplines 25

2.12 Roles and artifacts of the RUP’s Environment discipline 27

2.13 Environment discipline workflow in RUP . 28

2.14 OpenUP delivery process (extracted from the OpenUP methodology) 30

2.15 OpenUP disciplines hump chart . 31

2.16 The basic elements of UMA . 36

3.1 Phases and activities of the systematic literature review 40

3.2 Results for criterion 1 (type of requirements) . 47

3.3 Results for criterion 2 (requirements structure) 47

3.4 Results for criterion 3 (type of models) . 48

3.5 Results for criterion 6 (standard transformations) 49

3.6 Results for criterion 7 (transformations automation) 49

3.7 Results for criterion 8 (requirements traceability) 50

3.8 Results for criterion 9 (traceability automation) 50

3.9 Results for criterion 10 (tool support) . 51

3.10 Results for criterion 11 (type of validation) . 51

106

3.11 Results for criterion 12 (actual usage) . 52

4.1 Traditional and extended MDA-based approaches comparison 63

4.2 Extended schema of the MDA framework for OpenUP/MDRE 64

4.3 OpenUP/MDRE disciplines . 66

4.4 Content structure of the OpenUP/MDRE . 67

4.5 List of key artifacts and tasks to be performed by the Analyst 69

4.6 List of key artifacts and tasks to be performed by the Model Analyst 70

4.7 List of key artifacts and tasks to be performed by the Transformation Specifier . 71

4.8 Model-Driven Requirements discipline workflow 74

4.9 List of key artifacts and tasks to be performed by the Process Engineer 78

4.10 Artifacts and tasks associated to the Infrastructure Specialist role 79

4.11 Activity diagram of the OpenUP/MDRE Inception phase 82

4.12 Activity diagram of the OpenUP/MDRE Elaboration phase 83

5.1 MPOWER services development approach. 87

5.2 MPOWER service specification. 89

5.3 OpenUP/MDRE development process simplified workflow. 91

5.4 Feature meta-model. 92

5.5 Business Process Modeling Notation meta-model. 92

5.6 Service meta-model. 93

5.7 Mapping of feature model elements to BPMN. 94

5.8 OpenUP/MDRE process applied to StakeholderManagement use case. 96

5.9 Case study processes automation. Comparison of approaches. 98

B.1 Tasks and artifacts assigned to the Analyst role of the Model-Driven

Requirements discipline. 124

B.2 Tasks and artifacts assigned to the Model Analyst role of the Model-Driven

Requirements discipline. 124

B.3 Tasks and artifacts assigned to the Transformation Specifier role of the

Model-Driven Requirements discipline. 125

B.4 Roles, tasks and artifacts of the Environment discipline 125

C.1 EPF - Work breakdown structure for Identify and Model Requirements activity. 126

C.2 EPF - Capability pattern modeling for the Elaboration phase. 127

C.3 EPF - published OpenUP/MDRE delivery process. 127

C.4 EPF - published Model Analyst role summary. 128

C.5 EPF - Transformation Rules Catalog work product relationships. 128

List of Tables

3.1 Number of the review results . 45

3.2 Systematic review results . 46

4.1 Roles of Model-Driven Requirements discipline 72

4.2 Work products of Model-Driven Requirements discipline 73

108

Abbreviations

ACM ACM Digital Library

AUP Agile Unified Process

BPM Business Process Modeling

CBD Component Based Development

CIM Computation-Independent Model

CRM Customer Relationship Management

CWM Common Warehouse Metamodel

EPF Eclipse Process Framework

EPHA European Public Health Alliance

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

GAM Generated Analysis Model

IE IEEE Xplore (digital library)

ISSI Ingenieŕıa del Software y Sistemas de Información

J2EE Java 2 Platform Enterprise Edition

LEL Language Extended Lexicon

MBRE Model-Based Requirements Engineering

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDS Model Dependencies Specification

MDSD Model-Driven Software Development

MODELS Model Driven Engineering Languages and Systems (conference)

MOF Meta Object Facility

MVP Model Validation Plan

109

MVR Model Validation Record

NFR Non-Functional Requirements

OOAD Object-Oriented Analysis and Design

OSGi Open Services Gateway initiative

PIM Platform-Independent Model

PSM Plarform-Specific Model

QoS Quality of Service

QVT Query View Transformation

RE Requirements Engineering (conference)

RE Requirements Engineering

REJ Requirements Engineering Journal

RM Requirements Model

RMC Rational Method Composer

RUP Rational Unified Process

SD Science Direct (digital library)

SL SpringerLink (digital library)

SLR Systematic Literature Review

SOA Service-Oriented Architecture

SOAF Service-Oriented Architecture Framework

SoaML Service-Oriented Architecture Modeling Language

SOC Service-Oriented Computing

SOMA Service-Oriented Modeling and Architecture

SOUP Service-Oriented Unified Process

SPE Software Process Engineering

SPEM Software Process Engineering Metamodel

TIP Transformation Iteration Plan

TRC Transformation Rules Catalog

UMA Unified Method Architecture

WS Web Service

WSDL Web Services Definition Language

XMI XML Metadata Interchange

Bibliography

[1] MPOWER project official web site, www.mpower-project.eu

[2] The Eclipse Foundation web site, The Process Framework (EPF) Project, http://www.

eclipse.org/proposals/beacon/

[3] Ali, N., Nellipaiappan, R., Chandran, R., Babar, M.A.: Model driven support for the

service oriented architecture modeling language. In: PESOS ’10: Proceedings of the

2nd International Workshop on Principles of Engineering Service-Oriented Systems. pp.

8–14. ACM, New York, NY, USA (2010)

[4] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.: SOMA:

a method for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008),

http://www.cs.jyu.fi/el/tjtse54_09/Artikkelit/ArsanjaniEtAlIBMSsJ.pdf

[5] Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: Design an

SOA solution using a reference architecture (March 2007), http://www-128.ibm.com/

developerworks/library/ar-archtemp/index.html

[6] Azevedo, L.G., Santoro, F., BaiĂ Lo, F., Souza, J., Revoredo, K., Pereira, V., Herlain,

I.: A method for service identification from business process models in a soa approach.

In: Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C., Halpin, T.,

Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) Enter-

prise, Business-Process and Information Systems Modeling, Lecture Notes in Business

Information Processing, vol. 29, pp. 99–112. Springer Berlin Heidelberg (2009)

[7] Barn, B., Dexter, H., Oussena, S., Sparks, D.: Soa-mdk: Towards a method development

kit for service oriented system development. In: Magyar, G., Knapp, G., Wojtkowski,

W., Wojtkowski, W.G., Zupancic, J. (eds.) Advances in Information Systems Develop-

ment, pp. 191–201. Springer US (2008)

111

www.mpower-project.eu
http://www.eclipse.org/proposals/beacon/
http://www.eclipse.org/proposals/beacon/
http://www.cs.jyu.fi/el/tjtse54_09/Artikkelit/ArsanjaniEtAlIBMSsJ.pdf
http://www-128.ibm.com/developerworks/library/ar-archtemp/index.html
http://www-128.ibm.com/developerworks/library/ar-archtemp/index.html

[8] Biffl, S., Mordinyi, R., Schatten, A.: A model-driven architecture approach using explicit

stakeholder quality requirement models for building dependable information systems. In:

WoSQ ’07: Proceedings of the 5th International Workshop on Software Quality. p. 6.

IEEE Computer Society, Washington, DC, USA (2007)

[9] Boulanger, J.L., Dao, V.Q.: Requirements engineering in a model-based methodology

for embedded automotive software. pp. 263 –268 (july 2008)

[10] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from ap-

plying the systematic literature review process within the software engineering domain.

J. Syst. Softw. 80(4), 571–583 (2007)

[11] Brown, A.W., Iyengar, S., Johnston, S.: A rational approach to model-driven develop-

ment. IBM Syst. J. 45, 463–480 (July 2006)

[12] Cabot, J., Yu, E.: Improving requirements specifications in model-driven development

processes, http://jordicabot.com/papers/ChaMDE08Yu.pdf

[13] Cao, X.X., Miao, H.K., Xu, Q.G.: Modeling and refining the service-oriented require-

ment. In: TASE ’08: Proceedings of the 2008 2nd IFIP/IEEE International Symposium

on Theoretical Aspects of Software Engineering. pp. 159–165. IEEE Computer Society,

Washington, DC, USA (2008)

[14] Cleland-Huang, J., Hayes, J.H., Domel, J.M.: Model-based traceability. In: TEFSE ’09:

Proceedings of the 2009 ICSE Workshop on Traceability in Emerging Forms of Software

Engineering. pp. 6–10. IEEE Computer Society, Washington, DC, USA (2009)

[15] Cysneiros, L.M.: Requirements engineering in the health care domain. In: RE ’02: Pro-

ceedings of the 10th Anniversary IEEE Joint International Conference on Requirements

Engineering. pp. 350–356. IEEE Computer Society, Washington, DC, USA (2002)

[16] Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.M.: Effectiveness of require-

ments elicitation techniques: Empirical results derived from a systematic review. In: RE

’06: Proceedings of the 14th IEEE International Requirements Engineering Conference.

pp. 176–185. IEEE Computer Society, Washington, DC, USA (2006)

[17] Debnath, N., Leonardi, M., Mauco, M., Montejano, G., Riesco, D.: Improving model

driven architecture with requirements models. In: ITNG 2008: Fifth International Con-

ference on Information Technology: New Generations, 2008. pp. 21 –26 (april 2008)

[18] Delgado, A., Ruiz, F., de Guzmán, I.G.R., Piattin, M.: A Model-driven and

Service-oriented framework for the business process improvement. Journal of Systems

Integration vol. 1(3) (2010)

[19] Delgado, A., Ruiz, F., de Guzmán, I.G.R., Piattini, M.: MINERVA: Model drIveN and

sErvice oRiented Framework for the Continuous Business Process improVement and

relAted Tools. In: ICSOC/ServiceWave Workshops. pp. 456–466 (2009)

[20] Elvesaeter, B., Panfilenko, D., Jacobi, S., Hahn, C.: Aligning business and IT models

112

http://jordicabot.com/papers/ChaMDE08Yu.pdf

in service-oriented architectures using BPMN and SoaML. In: Proceedings of the First

International Workshop on Model-Driven Interoperability. pp. 61–68. MDI ’10, ACM,

New York, NY, USA (2010)

[21] Emig, C., Weisser, J., Abeck, S.: Development of soa-based software systems - an

evolutionary programming approach. Advanced International Conference on Telecom-

munications / Internet and Web Applications and Services, International Conference on

0, 182 (2006)

[22] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall

PTR, Upper Saddle River, NJ, USA (2005)

[23] Erradi, A., Anand, S., Kulkarni, N.: Soaf: An architectural framework for service defini-

tion and realization. Services Computing, IEEE International Conference on 0, 151–158

(2006)

[24] Escalona, M.J., Gutiérrez, J.J., Rodŕıguez-Catalán, L., Guevara, A.: Model-driven in

reverse: the practical experience of the aqua project. In: EATIS ’09: Proceedings of

the 2009 Euro American Conference on Telematics and Information Systems. pp. 1–6.

ACM, New York, NY, USA (2009)

[25] European Public Health Alliance: EU CITIZENSHIP REPORT 2010 (October 2010),

http://www.epha.org/

[26] Fenton, N.E., Pfleeger, S.L.: Software Metrics: a rigorous and practical approach. In-

ternational Thompson computer, 2nd edn. (1996)

[27] Fliedl, G., Kop, C., Mayr, H.C., Salbrechter, A., Vohringer, J., Weber, G., Winkler, C.:

Deriving static and dynamic concepts from software requirements using sophisticated

tagging. Data & Knowledge Engineering 61(3), 433 – 448 (2007), advances on Natural

Language Processing - NLDB 05

[28] Garde, S., Knaup, P.: Requirements engineering in health care: the example of

chemotherapy planning in paediatric oncology. Requir. Eng. 11(4), 265–278 (2006)

[29] Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem.

Proceedings of the First International Conference on Requirements Engineering pp.

94–101 (April 1994)

[30] Haumer, P.: IBM Rational Method Composer: Part 1: key concepts (December 2005),

http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/

[31] Hinchey, M.G., Rash, J.L., Rouff, C.A., Gracanin, D.: Achieving dependability in sensor

networks through automated requirements-based programming. Computer Communica-

tions 29(2), 246 – 256 (2006), dependable Wireless Sensor Networks

[32] HL7 International: HL7 Reference Information Model (2007), http://www.hl7.org/

113

http://www.epha.org/
http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/
http://www.hl7.org/

[33] Insfran, E., Pastor, O., Wieringa, R.: Requirements engineering-based conceptual mod-

eling. Requirements Engineering Journal 7, 61–72 (2002)

[34] Jamshidi, P., Khoshnevis, S., Teimourzadegan, R., Nikravesh, A., Shams, F.: Toward

automatic transformation of enterprise business model to service model. In: PESOS ’09:

Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented

Systems. pp. 70–74. IEEE Computer Society, Washington, DC, USA (2009)

[35] Jones, M.R.: Computers can land people on mars, why can’t they get them to work in

a hospital? implementation of an electronic patient record system in a uk hospital. In:

Methods of Information in Medicine. vol. 42, pp. 410–415 (2003)

[36] Jones, S., Morris, M.: A methodology for service architectures (Octobre 2005), http:

//www.oasis-open.org/committees/download.php/15071/

[37] Kherraf, S., Lefebvre, E., Suryn, W.: Transformation from cim to pim using patterns

and archetypes. Software Engineering, 2008. ASWEC 2008. 19th Australian Conference

on pp. 338 –346 (march 2008)

[38] Kitchenham, B.: Procedures for performing systematic reviews. Tech. rep., Keele Uni-

versity and NICTA (2004)

[39] Knethen, A.v.: A trace model for system requirements changes on embedded systems.

In: Proceedings of the 4th International Workshop on Principles of Software Evolution.

pp. 17–26. IWPSE ’01, ACM, New York, NY, USA (2001), http://doi.acm.org/10.

1145/602461.602465

[40] Koch, N., Zhang, G., Escalona, M.J.: Model transformations from requirements to web

system design. In: ICWE ’06: Proceedings of the 6th international conference on Web

engineering. pp. 281–288. ACM, New York, NY, USA (2006)

[41] Kruchten, P.: The Rational Unified Process. Addison Wesley (1999)

[42] Laguna, M.A., Gonzalez-Baixauli, B.: Requirements variability models: meta-model

based transformations. In: MIS ’05: Proceedings of the 2005 symposia on Metainfor-

matics. p. 9. ACM, New York, NY, USA (2005)

[43] Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design of

autonomic application software. In: CASCON ’06: Proceedings of the 2006 conference

of the Center for Advanced Studies on Collaborative research. p. 7. ACM, New York,

NY, USA (2006)

[44] Letier, E., van Lamsweerde, A.: Deriving operational software specifications from system

goals. In: SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium

on Foundations of software engineering. pp. 119–128. ACM, New York, NY, USA (2002)

[45] Li, X., Liu, Z.: Prototyping system requirements model. Electronic Notes in Theoretical

Computer Science 207, 17 – 32 (2008), proceedings of the 1st International Workshop

on Harnessing Theories for Tool Support in Software (TTSS 2007)

114

http://www.oasis-open.org/committees/download.php/15071/
http://www.oasis-open.org/committees/download.php/15071/
http://doi.acm.org/10.1145/602461.602465
http://doi.acm.org/10.1145/602461.602465

[46] Liew, P., Kontogiannis, K., Tong, T.: A framework for business model driven develop-

ment. In: Software Technology and Engineering Practice, 2004. STEP 2004. The 12th

International Workshop on. pp. 8 pp. –56 (sept 2004)

[47] Loniewski, G., Insfrán, E., Abrahão, S.: A systematic review of the use of requirements

engineering techniques in model-driven development. In: MoDELS (2). pp. 213–227

(2010)

[48] Machado, R., Fernandes, J., Monteiro, P., Rodrigues, H.: Transformation of uml mod-

els for service-oriented software architectures. In: ECBS ’05: 12th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems, 2005. pp.

173 – 182 (april 2005)

[49] Mairiza, D., Zowghi, D., Nurmuliani, N.: An investigation into the notion of

non-functional requirements. In: SAC. pp. 311–317 (2010)

[50] Marschall, F., Schoenmakers, M.: Towards model-based requirements engineering for

web-enabled b2b applications. In: ECBS’03: 10th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems. pp. 312–320. IEEE Com-

puter Society, Huntsville, AL, EUA (April 2003)

[51] Mauco, M., Leonard, M., Riesco, D., Montejano, G., Debnath, N.: Formalising a

derivation strategy for formal specifications from natural language requirements mod-

els. Proceedings of the Fifth IEEE International Symposium on Signal Processing and

Information Technology, 2005. pp. 646 –651 (dec 2005)

[52] Mazón, J.N., Trujillo, J., Lechtenborger, J.: Reconciling requirement-driven data ware-

houses with data sources via multidimensional normal forms. Data & Knowledge Engi-

neering 63(3), 725 – 751 (2007)

[53] McGee-Lennon, M.R.: Requirements engineering for home care technology. In: CHI

’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in

computing systems. pp. 1439–1442. ACM, New York, NY, USA (2008)

[54] McGee-Lennon, M.R., Gray, P.D.: Including stakeholders in the design of home care

systems: Identification and categorization of complex user requirements. In: INCLUDE

Conference. Royal College of Art, London, UK (April 2007)

[55] Mendes, E.: A systematic review of Web engineering research. In: ISESE’05: Interna-

tional Symposium on Empirical Software Engineering. pp. 498–507. IEEE (2005)

[56] Mens, T., Czarnecki, K., Gorp, P.V.: 04101 discussion – a taxonomy of model trans-

formations. In: Bezivin, J., Heckel, R. (eds.) Language Engineering for Model-Driven

Software Development. No. 04101 in Dagstuhl Seminar Proceedings, Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,

Dagstuhl, Germany (2005)

115

[57] Menzies, T.: Editorial: model-based requirements engineering. Requir. Eng. 8(4),

193–194 (2003)

[58] Mittal, K.: Service Oriented Unified Process (SOUP) (2006), http://www.

kunalmittal.com/html/soup.shtml

[59] Naslavsky, L., Alspaugh, T.A., Richardson, D.J., Ziv, H.: Using scenarios to support

traceability. In: TEFSE ’05: Proceedings of the 3rd international workshop on Trace-

ability in emerging forms of software engineering. pp. 25–30. ACM, New York, NY, USA

(2005)

[60] Object Management Group: MOF 2.0/XMI Mapping Specification, v2.1 (2005), www.

omg.org/docs/formal/05-09-01.pdf

[61] Object Management Group: Model Driven Architecture (July, 2001), http://www.omg.

org/mda/

[62] OMG (Object Management Group): Meta Object Facility (MOF) Core Specification

Version 2.0 (January 2006), http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[63] OMG (Object Management Group): Software Process Engineering Metamodel (SPEM)

(April 2008)

[64] Ozkaya, I., Akin, O.: Requirement-driven design: assistance for information traceability

in design computing. Design Studies 27(3), 381 – 398 (2006)

[65] Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences: A Practical

Guide. Blackwell Publishing (2006)

[66] Raj, A., Prabhakar, T.V., Hendryx, S.: Transformation of sbvr business design to uml

models. In: ISEC ’08: Proceedings of the 1st conference on India software engineering

conference. pp. 29–38. ACM, New York, NY, USA (2008)

[67] Ramollari, E., Dranidis, D., Simons, A.J.H.: A survey of service oriented

development methodologies, http://staffwww.dcs.shef.ac.uk/people/A.Simons/

research/papers/soasurvey.pdf

[68] Rash, J., Hinchey, M., Rouff, C.: Formal requirements-based programming for complex

systems. In: ICECCS 2005: Proceedings of the 10th IEEE International Conference on

Engineering of Complex Computer Systems, 2005. pp. 116 – 125 (june 2005)

[69] Regnell, B., Runeson, P., Wohlin, C.: Towards integration of use case modelling and

usage-based testing. Journal of Systems and Software 50(2), 117 – 130 (2000)

[70] Santos, J., Moreira, A., Araujo, J., Amaral, V., Alferez, M., Kulesza, U.: Generating

requirements analysis models from textual requirements. In: MARK ’08: First Interna-

tional Workshop on Managing Requirements Knowledge, 2008. pp. 32 –41 (sept 2008)

[71] Shin, J.E., Sutcliffe, A.G., Gregoriades, A.: Scenario advisor tool for requirements en-

gineering. Requirements Engineering 10, 2005 (2004)

116

http://www.kunalmittal.com/html/soup.shtml
http://www.kunalmittal.com/html/soup.shtml
www.omg.org/docs/formal/05-09-01.pdf
www.omg.org/docs/formal/05-09-01.pdf
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/soasurvey.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/soasurvey.pdf

[72] Shuja, A., Krebs, J.: IBM R©Rational Unified Process R©Reference and Certification

Guide: Solution Designer. IBM Press (2007)

[73] Sousa, K., Mendonça, H., Vanderdonckt, J., Pimenta, M.S.: Supporting requirements

in a traceability approach between business process and user interfaces. In: IHC ’08:

Proceedings of the VIII Brazilian Symposium on Human Factors in Computing Systems.

pp. 272–275. Sociedade Brasileira de Computaç ao, Porto Alegre, Brazil, Brazil (2008)

[74] The SeCSE Team: Towards Service-centric System Engineering, http://home.dei.

polimi.it/baresi/papers/eChallenges05.pdf

[75] Westfall, L.: Software Requirements Engineering: What, Why, Who, When, and How

(2005), http://www.westfallteam.com/

[76] Zhang, L., Jiang, W.: Transforming business requirements into bpel: A mda-based

approach to web application development. In: WSCS ’08: IEEE International Workshop

on Semantic Computing and Systems, 2008. pp. 61 –66 (july 2008)

[77] Zimmermann, O., Krogdahl, P., Gee, C.: Elements of service-oriented analysis and

design (June 2004), http://www.ibm.com/developerworks/webservices/library/

ws-soad1/

117

http://home.dei.polimi.it/baresi/papers/eChallenges05.pdf
http://home.dei.polimi.it/baresi/papers/eChallenges05.pdf
http://www.westfallteam.com/
http://www.ibm.com/developerworks/webservices/library/ws-soad1/
http://www.ibm.com/developerworks/webservices/library/ws-soad1/

Appendices

118

Appendix A

Definitions

This appendix includes general description of concepts which are strongly related with

described in this master thesis: methodology concept, necessary elements that have to

be defined when specifying a methodology, terms that are frequently used in require-

ments engineering, terms that are frequently used in model-driven context.

A.1. Methodology

Methodology

In software engineering is a set of rules, principles of methods, suggestions and postu-

lates which should be taken into account in the software development process. These

rules are derived on the basis of the systematic study and experience from different

types of software projects. It defines methods, procedures or set of them to be applied

within different disciplines.

We distinguish two groups of methodologies, classified by the number of rules and

their complexity, as well as by the expected effort which demands their use. These two

groups are: light (agile) and heavy methodologies.

Depending on the project scope an appropriate methodology should be chosen. Heavy

methodologies are not that flexible as the light ones, but serve to manage with huge

projects controlling its proper progress regarding to the tasks planning. Heavy method-

ologies also demand more extensive documentation than those that are light and agile.

There are also methodologies that stand in between aforementioned two types. They

possess some characteristics from both groups e.g. flexibility in tasks planning with a

requisite of a precise large documentation.

119

Artifact

An artifact is an information used or created during the software development process

(in this case it is very often called a Work Product). An artifact can be a formal doc-

ument, any kind of UML diagrams, implemented functionality or any other software

development process product.

Role

A role is a named, specific behavior of a particular unit in a given context.

Activity

An activity is a behavior (action or set of actions) which is done in a given context

taking into consideration some input information and which provides also an informa-

tion as its output.

Task

A unit of work that a role performs. An activity may be decomposed into steps. It is

associated with input and output. It is driven by a goal.

Process (workflow)

Process is a ordered sequence of activities also called workflow. Activities are ordered

in such a way that output information from one activity can be or even should be

reused as an input information for the next activity in the process. These workflows

are described by the means of the activity diagrams of UML language.

Discipline

A discipline is a collection of logically related activities and their workflows, artifacts,

roles and any other elements such as rules or principles that refer to the software

development process.

Iteration

An iteration is a set period of time within a project in which you produce a stable,

executable version of the product, together with any other supporting documentation,

install scripts, or similar artifacts necessary to use this release. The executable is

demonstrable, allowing the team to demonstrate true progress to stakeholders, and get

feedback on how they are doing so that they can improve their understanding of what

needs to be done and how to do it. Depending on the methodology, an iteration can

be longer or shorter, but the time should be regarded as fixed while its content should

be adequately managed to meet the schedule. For example in OpenUP it lasts from 1

to 6 weeks.

120

Phase

A phase is a period of time within the software development process where certain

activities from different disciplines should be executed. In the iterative approaches,

a phase is a set of iterations. It may consist of one or more iterations depending on

the project complexity. The goal of the phase, as a result of execution of the set of

activities, is reaching a particular milestone.

Milestone

A milestone is a control point of the project’s progress. It aims at providing oversight

by raising and answering a set of questions that are typically critical to stakeholders.

Stakeholder

A stakeholder is every person, which has an impact on the project and not belong to

the developers team.

A.2. Requirements Engineering

Requirement

A description of a condition or capability of a system; either derived directly from

user needs or stated in a contract, standard, specification, or other formally imposed

document.

Business requirement

A requirement type which includes information that is related not only to a condition

or capability of a system, but also to the business context, organizational structure of

the enterprise, processes, etc., which will not necessarily be a part of the system to be

developed.

Software requirement

A software requirement is a condition or capability to which a system must conform.

Some requirements concern the functionality of a system in the context of actions

that the system should be able to perform, these requirements are called functional

requirements. But there is another type which does not describe functionality of

the system, but all these factors that allow to deliver to the user a system to a good

quality. These requirements belong to the non-functional requirements group.

Feature

Can be treated as a service to be provided by the system that directly fulfills a user

need. Because it is easy to discuss these features in natural language and to document

121

and communicate them, they add important context to the requirements discipline.

Sometimes a feature is just another type of requirement.

A.3. Model-driven techniques

Model

A semantically closed abstraction of a system. In the Rational Unified Process, a

complete description of a system from a perspective—”complete” meaning that you

don’t need additional information to understand the system from that perspective; a

set of model elements.

Reference Model

It is a model that describe some common terms, a well-defined framework for existing

aspects of the specification, or a general overarching structure for a domain. It focuses

on interoperability and standardization. A reference model is based on a small number

of unifying concepts and is an abstraction of the key concepts, their relationships, and

their interfaces both to each other and to the external environment. A reference model

may be used as a basis for education and for explaining standards to a non-specialist

and can be viewed as a framework for comparing architectures and operations of ex-

isting and future systems.

Model Transformation

takes as input a model conforming to a given meta-model and produces as output

another model conforming to a given meta-model.

Requirements Traceability

Requirements traceability is concerned with documenting the life of a requirement

and to provide bi-directional traceability between various associated requirements. It

enables users to find the origin of each requirement and track every change which was

made to this requirement. For this purpose, every change made to the requirement

should be registered.

Appendix B

OpenUP/MDRE extension

summary

This appendix contains the following figures:

• Figure B.1 presents tasks performed by the Analyst (from Model-Driven Require-

ments discipline) together with related artifacts;

• Figure B.2 presents tasks performed by the Model Analyst (from Model-Driven

Requirements discipline) together with related artifacts;

• Figure B.3 presents tasks performed by the Transformation Specifier (from Model-Driven

Requirements discipline) together with related artifacts;

• Figure B.4 presents tasks performed by the Process Engineer and by the Infras-

tructure Specialist (from Environment discipline) together with related artifacts;

123

Figure B.1. Tasks and artifacts assigned to the Analyst role of the Model-Driven Re-

quirements discipline.

Figure B.2. Tasks and artifacts assigned to the Model Analyst role of the Model-Driven

Requirements discipline.

124

Figure B.3. Tasks and artifacts assigned to the Transformation Specifier role of the

Model-Driven Requirements discipline.

Figure B.4. Roles, tasks and artifacts of the Environment discipline

125

Appendix C

OpenUP/MDRE definition as EPF

plug-in

Figure C.1. EPF - Work breakdown structure for Identify and Model Requirements

activity.

126

Figure C.2. EPF - Capability pattern modeling for the Elaboration phase.

Figure C.3. EPF - published OpenUP/MDRE delivery process.

127

Figure C.4. EPF - published Model Analyst role summary.

Figure C.5. EPF - Transformation Rules Catalog work product relationships.

128

Appendix D

Papers included in the Systematic

Literature Review

Systematic literature review papers listed in this appendix follow this format:

author(s): title (year) [bibliographic source]

1. Samir Kherraf, Éric Lefebvre, Witold Suryn: Transformation From CIM to PIM Using Patterns

and Archetypes (2008) [IEEExplore]

2. Chih-Wei Lu, Chih-Hung Chang, William C. Chu, Ya-Wen Cheng, Hsin-Chien Chang: A Re-

quirement Tool to Support Model-based Requirement Engineering (2008) [IEEExplore]

3. Narayan Debnath, Maŕıa Carmen Leonardi, Maŕıa Virginia Mauco, Germán Montejano, Daniel

Riesco: Improving MDA with Requirements Models (2008) [IEEExplore]

4. Jon Oldevik, Arnor Solberg, Brian Elvesćter, Arne J. Berre: Framework for model transformation

and code generation (2002) [IEEExplore]

5. Jean-Louis Boulanger, Van Quang Dao: Requirements Engineering in a Model-based Methodol-

ogy for Embedded Automotive Software (2008) [IEEExplore]

6. Benoit Baudry, Clémentine Nebut, Yves Le Traon: Model-driven Engineering for Requirements

Analysis (2007) [IEEExplore]

7. Chih-Wei Lu, William C. Chu, Chih-Hung Chang, Ching Huey Wang: A Model-based Object

oriented Approach to RE (MORE) (2007) [IEEExplore]

8. Riham Hassan, Shawn Bohner, Sherif El-Kassas, Mohamed Eltoweissy: Goal-Oriented, B-Based

Formal Derivation of Security Design Specifications (2008) [IEEEXplore]

9. James L. Rash, Michael G. Hinchey, Christopher A. Rouff: Formal Requirements-Based Pro-

gramming for Complex Systems (2005) [IEEEXplore]

10. Ricardo J. Machado, Joăo M. Fernandes, Paula Monteiro, Helena Rodrigues: Transformation of

UML Models for Service-Oriented Software Architectures (2005) [IEEEXplore]

11. David Delahaye, Jean-Frédéric Étienne: Producing UML Models from Focal Specifications (2008)

[IEEEXplore]

12. Maŕıa Virginia Mauco, Maŕıa Carmen Leonardi, Daniel Riesco, Germán Montejano, Narayan

Debnath: Formalising a Derivation Strategy for Formal Specifications from Natural Language

Requirements Models (2005) [IEEExplore]

13. Li Zhang, Wei Jiang: Transforming Business Requirements into BPEL a MDA-Based Approach

to Web Application Development (2008) [IEEExplore]

129

14. Ankit Goel, Abhik Roychoudhury: Synthesis and Traceability of Scenario-based Executable

Models (2007) [IEEExplore]

15. Christian Kop, Heinrich C. Mayr: Conceptual Predesign Bridging the Gap between Requirements

and Conceptual Design (1998) [IEEExplore]

16. CAO Xiao-Xia, MIAO Huai-Kou, XU Qing-Guo: Modeling and Refining the Service-Oriented

Requirement (2008) [IEEExplore]

17. Sadaf Mustafiz, Jorg Kienzle, Hans Vangheluwe: Model Transformation of Dependability-Focused

Requirements Models (2009) [IEEExplore]

18. Philip Liew, Kostas Kontogiannis, Tack Tong: A Framework for Business Model Driven Devel-

opment (2004) [IEEExplore]

19. Janis Osis, Erika Asnina: A Business Model to Make Software Development Less Intuitive (2008)

[IEEExplore]

20. Joăo Santos, Ana Moreira, Joăo Araújo, Vasco Amaral, Mauricio Alférez, Uirá Kulesza: Gener-

ating Requirements Analysis Models from Textual Requirements (2008) [IEEExplore]

21. Renaud De Landtsheer, Emmanuel Letier and Axel van Lamsweerde: Deriving Tabular Event

Based Specifications from Goal-Oriented Requirements Models (2003) [IEEExplore]

22. Jane Cleland-Huang, Jane Huffman Hayes, J. M. Domel: Model-Based Traceability (2009) [ACM

DL]

23. Stefan Biffl, Richard Mordinyi, Alexander Schatten: A Model-Driven Architecture Approach

Using Explicit Stakeholder Quality Requirement Models for Building Dependable Information

Systems (2007) [ACM DL]

24. Eric Dubois, Eric Yu, Michael Petit: From Early to Late Formal Requirements: a Process-Control

Case Study (1998) [ACM DL]

25. Maritta Heisel, Jeanine Souquiéres: Methodological Support for Requirements Elicitation and

Formal Specification (1998) [ACM DL]

26. M.J. Escalona, J.J. Gutiérrez, L. Rodŕıguez-Catalán, A. Guevara: Model-driven in reverse. The

practical experience of the AQUA project (2009) [ACM DL]

27. Alexander Lorenz, Hans-Werner Six: Tailoring UML Activities to Use Case Modeling for Web

Application Development (2006) [ACM DL]

28. Nora Koch: Transformation Techniques in the Model-Driven Development Process of UWE

(2006) [ACM DL]

29. Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, John Mylopoulos: Requirements-Driven Design

of Autonomic Application Software (2006) [ACM DL]

30. Miguel A. Laguna, Bruno Gonzalez-Baixauli: Requirements Variability Models: Meta-model

based Transformations (2005) [ACM DL]

31. Emmanuel Letier, Axel van Lamsweerde: Deriving Operational Software Specifications from

System Goals (2002) [ACM DL]

32. F. Duarte, W. Hasling, R. Leao, E. Silva, V. Cortellessa: Extending Model Transformations in

the Performance Domain with a Node Modeling Library (2008) [ACM DL]

33. N.C. Narendra, Bart Orriens: Modeling Web Service Composition and Execution via a Require-

ments Driven Approach (2007) [ACM DL]

34. Salah Kabanda, Mathew Adigun: Extending Model Driven Architecture Benefits to Require-

ments Engineering (2006) [ACM DL]

35. Kenia Sousa, Hildeberto Mendonça, Jean Vanderdonckt, Marcelo S. Pimenta: Supporting Re-

quirements in a Traceability Approach between Business Process and User Interfaces (2008)

[ACM DL]

36. Nora Koch, Gefei Zhang, Mará José Escalona: Model Transformations from Requirements to

Web System Design (2006) [ACM DL]

130

37. Zhi Li: Progressing Problems from Requirements to Specifications in Problem Frames (2008)

[ACM DL]

38. John A. Van der Poll, Paula Kotze: Combining UCMs and Formal Methods for Representing

and Checking the Validity of Scenarios as User Requirements (2003) [ACM DL]

39. Robert Seater, Daniel Jackson: Problem Frame Transformations: Deriving Specifications from

Requirements (2006) [ACM DL]

40. Christian Seybold, Silvio Meier, Martin Glinz: Scenario Driven Modeling and Validation of

Requirements Models (2006) [ACM DL]

41. Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, Yijun Yu: Towards Requirements-Driven

Autonomic Systems Design (2005) [ACM DL]

42. Leila Naslavsky, Thomas A. Alspaugh, Debra J. Richardson, Hadar Ziv: Using Scenarios to

Support Traceability (2005) [ACM DL]

43. P. Jamshidi, S. Khoshnevis, R. Teimourzadegan, A. Nikravesh, F. Shams: Toward Automatic

Transformation of Enterprise Business Model to Service Model (2009) [ACM DL]

44. Avik Sinha, Amit Paradkar, Clay Williams: On Generating EFSM models from Use Cases (2007)

[ACM DL]

45. Joăo M. Fernandes, Simon Tjell, Jens Bćk Jřrgensen, Óscar Ribeiro: Designing Tool Support

for Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri Net (2007)

[ACM DL]

46. Amit Raj, T. V. Prabhakar, Stan Hendryx: Transformation of SBVR Business Design to UML

Models (2008) [ACM DL]

47. Pedro Valderas, Vicente Pelechano: Introducing requirements traceability support in model-driven

development of web applications (2008) [ScienceDirect]

48. Francesco Basile, Pasquale Chiacchio, Domenico Del Grosso: A two-stage modelling architecture

for distributed control of real-time industrial systems: Application of UML and Petri Net (2008)

[ScienceDirect]

49. Xiaoshan Li, Zhiming Liu: Prototyping System Requirements Model (2008) [ScienceDirect]

50. Jose-Norberto Mazón, Juan Trujillo, Jens Lechtenbörger: Reconciling requirement-driven data

warehouses with data sources via multidimensional normal forms (2007) [ScienceDirect]

51. Günther Fliedl, Christian Kop, Heinrich C. Mayr, Alexander Salbrechter, Jürgen Vöhringer,

Georg Weber, Christian Winkler: Deriving static and dynamic concepts from software require-

ments using sophisticated tagging (2007) [ScienceDirect]

52. Ipek Ozkaya, Ömer Akin: Requirement-driven design: assistance for information traceability in

design computing (2006) [ScienceDirect]

53. Michael G. Hinchey and James L. Rash and Christopher A. Rouff and Denis Gracanin: Achieving

dependability in sensor networks through automated requirements-based programming (2006)

[ScienceDirect]

54. Günther Fliedl and Christian Kop and Heinrich C. Mayr: From textual scenarios to a conceptual

schema (2005) [ScienceDirect]

55. Björn Regnell and Per Runeson and Claes Wohlin: Towards integration of use case modelling

and usage-based testing (2000) [ScienceDirect]

56. Jae Eun Shin, Alistair G. Sutcliffe, Andreas Gregoriades: Scenario advisor tool for requirements

engineering (2005) [SpringerLink]

57. Yann Thierry-Mieg, Lom-Messan Hillah: UML behavioral consistency checking using instantiable

Petri nets (2008) [SpringerLink]

58. J. Angele, D. Fensel, D. Landes, R. Studer: Developing Knowledge-Based Systems with MIKE

(1998) [SpringerLink]

131

59. Dian-Xiang Xu: Aspect-Oriented Modeling and Verification with Finite State Machines (2009)

[SpringerLink]

60. Jane Cleland-Huang, Carl K. Chang, Jeffrey C. Wise: Automating performance-related impact

analysis through event based traceability (2003) [SpringerLink]

61. Hung Le Dang, Hubert Dubois, Sébastien Gérard: Towards a traceability model in a MARTE-based

methodology for real-time embedded systems (2008) [SpringerLink]

62. Joăo Paulo A. Almeida, Maria-Eugenia Iacob, Pascal van Eck: Requirements traceability in

model-driven development: Applying model and transformation conformance (2007) [Springer-

Link]

63. E. Insfran, O. Pastor, R. Wieringa: Requirements Engineering-Based Conceptual Modelling

(2002) [Manual search]

64. N. A. M. Maiden, S. Manning, S. Jones, J. Greenwood: Generating requirements from systems

models using patterns: a case study (2005) [Manual search]

65. Nivedita Deshmukh, Sameer Wadhwa: A Meta Model for Iterative Development of Require-

ments Leveraging Dynamically Associated Prototyping and Specification Artifacts (2007) [Man-

ual search]

66. Matias Kleiner, Patrick Albert, Jean Bezivin: Parsing SBVR-based Controlled Languages (Em-

pirical) (2009) [Manual search]

67. Javier J. Gutiérrez, Cleméntine Nebut, Maria J. Escalona, Manuel Mejia and Isabel Ramos:

Visualization of use cases through automatically generated activity diagrams (2008) [Manual

search]

68. Xulin Zhao, Ying Zou, Jen Hawkins, Bhadri Madapusi: A Business-Process-Driven Approach

for Generating Ecommerce User Interfaces (2007) [Manual search]

69. Marco Brambilla, Jordi Cabot, Sara Comai: Automatic Generation of Workflow-extended Do-

main Models (2007) [Manual search]

70. Wei Zhang, Hong Mei, Haiyan Zhao: Transformation from CIM to PIM: A Feature-Oriented

Component-based Approach (2005) [Manual search]

71. Martin Giese, Rogardt Heldal: From Informal to Formal Specifications in UML (2004) [Manual

search]

72. Shane Sendall, Alfred Strohmeier: From Use Cases to System Operation Specifications (2000)

[Manual search]

132

	Chapter 1. Introduction
	1.1. Motivation
	1.2. Thesis objectives
	1.3. Research context
	1.4. Structure of the document

	Chapter 2. Research Background
	2.1. Requirements Engineering
	2.2. Model-Driven Engineering
	2.2.1. Model-Driven Architecture
	2.2.1.1. Computation-Independent Model
	2.2.1.2. Platform-Independent Model
	2.2.1.3. Platform-Specific Model
	2.2.1.4. MDA development lifecycle

	2.2.2. Model-Driven Development

	2.3. Health-care
	2.4. Service-Oriented Architecture
	2.5. Rational Unified Process
	2.5.1. Lifecycle
	2.5.2. Requirements discipline
	2.5.2.1. Roles
	2.5.2.2. Artifacts
	2.5.2.3. Process - activities workflow

	2.5.3. Environment discipline
	2.5.3.1. Roles
	2.5.3.2. Artifacts
	2.5.3.3. Process - activities workflow

	2.6. OpenUP
	2.6.1. Methodology generals
	2.6.2. Main characteristics
	2.6.3. Process lifecycle
	2.6.3.1. Inception
	2.6.3.2. Elaboration
	2.6.3.3. Construction
	2.6.3.4. Transition

	2.6.4. Disciplines
	2.6.5. Roles
	2.6.6. Artifacts

	2.7. Methods Engineering
	2.7.1. Software Process Engineering
	2.7.2. Tool support

	Chapter 3. Related work
	3.1. Requirements Engineering in Model-Driven Development
	3.1.1. Research method
	3.1.1.1. Research question
	3.1.1.2. Sources selection
	3.1.1.3. Identifying and selecting primary studies
	3.1.1.4. Inclusion criteria and procedures
	3.1.1.5. Data extraction strategy
	3.1.1.6. Conducting the review

	3.1.2. Results
	3.1.3. Threats to validity
	3.1.4. SLR conclusions

	3.2. SOA-focused methodological approaches
	3.2.1. SOA-focused methodologies
	3.2.2. SOA-focused techniques

	3.3. Agile methodologies
	3.4. Requirements engineering in the health-care
	3.5. Related work summary

	Chapter 4. OpenUP/MDRE methodology
	4.1. Introduction
	4.2. Methodology overview
	4.2.1. Disciplines
	4.2.2. OpenUP implementation structure

	4.3. Requirements Engineering in the OpenUP/MDRE
	4.3.1. Roles
	4.3.2. Artifacts
	4.3.3. Process - activities workflow

	4.4. Methodology configuration
	4.4.1. Roles
	4.4.2. Artifacts
	4.4.3. Process workflow

	4.5. OpenUP/MDRE lifecycle
	4.5.1. Inception phase
	4.5.2. Elaboration phase

	Chapter 5. Case study
	5.1. Case study context
	5.2. Case study description (Actor Management)
	5.3. Applying the MPOWER approach to the case study
	5.4. Applying the OpenUP/MDRE approach to the case study
	5.5. Case study conclusions
	5.5.1. Process comparison
	5.5.2. Lessons learned

	Chapter 6. Conclusions
	6.1. Future work
	6.2. Related publications

	List of Figures
	List of Tables
	Abbreviations
	Bibliography
	Appendices
	Appendix A. Definitions
	A.1. Methodology
	A.2. Requirements Engineering
	A.3. Model-driven techniques

	Appendix B. OpenUP/MDRE extension summary
	Appendix C. OpenUP/MDRE definition as EPF plug-in
	Appendix D. Papers included in the Systematic Literature Review

