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Abstract 

Spectroscopy technology and statistical methods (Partial Least Squares) have been integrated to develop a model 

that allows estimating the microalgal biomass in a photobioreactor. The model employing PLS combines the 

absorption spectrum measurements in the visible range (400-750 nm) with a microalgae cell density in a water 

sample. First, a calibration model was constructed using a calibration data set, and then, the predictive capacity of 

the model was determined by cross validation. Finally, an external validation of the predictive performance of the 

model was carried out with an independent data set. To test the accuracy of the model it was applied to different 

culture conditions yielding a predictive capacity of 96.7 %. The results achieved are highly satisfactory due to the 

good lineal adjustment between observed cell densities vs. predicted ones obtained. 

According to the results obtained, the application of the model is a useful tool for the management and the decision-

making process when operating a photobioreactor. Moreover, this model may boost the real-time measurements and 

may represent a previous step for further technical development in the “internet of things” applied to the 

management of the photobioreactor. 
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1. Introduction 

The use of microalgae culture for different purposes has been widely applied and nowadays is 

one of the modern biotechnologies. In natural ecosystems, a high cell density of microalgae 

beside the presence of specific taxa may indicate eutrophication and may cause toxic microalgae 

blooms (Smayda 2008). For that, monitoring the microalgae behavior in order to prevent these 

episodes is of interest. For that purpose, ecosystem optical properties may be analyzed. The 

optical properties are of interest to detect changes in the composition and structure of microalgae 

community. In fact, several investigations have reported the use of these optical properties for 

the study of primary productivity in natural ecosystems (oceans, lakes, rivers, estuaries, etc.) 

(Bricaud et al., 1998; Ciotti et al., 2002; Millán-Núñez et al., 2004; Barocio-León et al., 2006; 

Mercado et al., 2006; Barlow et al., 2008; Le et al., 2008; Organelli et al., 2013; Ali et al., 2014). 

An additional use of these optical properties has been shown to be useful in the detection of 

harmful algal blooms (Cullen et al., 1997; Millie et al., 1997). Moreover, in the last decades the 

use of microalgae culture applicate to wastewater treatment and mass production has been 

widely expanded (Abdel-Raouf et al., 2012).  Microalgae use energy from the sun to grow while 

consuming inorganic nutrients (nitrogen and phosphorus) and CO2. This ability to remove 

nutrients has been proposed as an alternative way to treat wastewater. In addition, these 

organisms can grow in wastewater and simultaneously produce valuable biomass while 

removing organic carbon (Mallick, 2002; Arbid et al., 2014). According to these studies, several 

authors have demonstrated that different species of microalgae are capable of attaining high 

levels of efficiency in the removal of nitrogen and phosphorus. The main species used for this 

purpose are Scenedesmus obliquus (Martínez et al., 2000; Shi et al., 2007; Park et al., 2010), 

Spirulina platensis (Lodi et al., 2003; Olguín et al., 2003) and Chlorella sp. (Hernandez et al., 

2006; Wang et al., 2010). However, the microalgae culture should be checked and some 

parameters need to be monitored on a daily basis. One of these parameters is microalgae cell 

density, since a high nutrient removal rate is related to large amounts of biomass. 
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For that, microalgae cell density and biomass are to some extent the main parameters to evaluate 

in both, natural and bioreactor systems. In fact, for the latter system, in order to evaluated cell 

density and microalgae biomass several methods have been reported. These are based on optical 

density measurements to wavelengths within the maximal absorbance range of chlorophyll a 

(400-460 nm, 650-680), or dry cell weight measurements (Martínez et al., 2000; Rocha et al., 

2003; Chiu et al., 2008; Simionato et al., 2011; Sacristan et al., 2013; Sforza et al., 2014; Tan et 

al., 2014; Delgadillo et al., 2016). However, using these method errors can be introduced due to 

a pigment content in cells varies across the growth cycle and under different culture conditions. 

In addition, select a wavelength within the maximal absorbance range the largest errors are 

introduced (Griffins et al., 2011). Therefore, an alternative way to obtain quantitative 

information about microalgae is to analyze sample absorption through the entire visible spectrum 

combined with the Partial Least Squares multivariate method. These optical methods are based 

on the study of the whole absorption spectrum generated by two spectral components: material 

containing pigments (microalgae) and material that does not (detritus). The absorption properties 

of microalgae are influenced by the composition of intracellular pigments. These photosynthetic 

pigments, mainly chlorophylls and carotenoids, absorb visible light between wavelengths from 

400 nm (violet) to 750 nm (red). Chlorophyll a is the main pigment involved in algal 

photosynthesis. Secondary pigments such as chlorophylls b and c and various carotenoids extend 

the range of absorbed light to other zones of the spectrum, thus ensuring optimal absorption 

efficiencies. Other pigments such as carotenoids work to protect microalgae cells against the 

effects of high irradiances. (Kirk et al., 1994; Barlow et al., 2008). 

The whole absorption spectrum yields large amounts of data that required mathematical and 

statistical transformation to become useful information. The Partial Least Squares (PLS) is the 

statistical tool applied to stablish statistically significant correlation between the spectral data 

matrix (X-data) and the response data matrix (Y-data) of the samples set (Brown, 1982; Martens 

and Naes, 1989). The PLS method yield a model that enables to quantification cell density 
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speeding up or even replacing the tedious and time-consuming traditional microscopic cell 

counts.  

The aim of this study is to develop a statistical model based in PLS to track the microalgae cell 

density of a batch culture in a PBR. The monitoring of cell density in the PBR is carried out by 

visible spectroscopy technique combined with multivariate statistical methods. The absorption 

spectrum is first characterized and studied, and then is related to microalgae cell density through 

a statistical models. This study presents the development of a simple, fast, low cost method 

based on visible spectroscopy combined with statistical methods for the quantification of 

microalgae cell density. 

2. Materials and Methods 

2.1.Experimental start up and sample collection 

The photobioreactor (PBR) is a homogeneous batch culture of 457 L of feed and 4.7 L inoculum. 

The feed introduced into the PBR comes from the effluent of a Submerged Anaerobic Membrane 

Bioreactor (SAnMBR) pilot plant (Giménez et al., 2011). This effluent exhibits low organic 

matter content, furthermore, it is solid free due to a membrane filtration process (Ruiz-Martinez 

et al., 2012), in addition it has high concentrations of ammonium (N-NH4
+) and orthophosphate 

(P-PO4
-3). The PBR was fed once at the starting point and no further addition of feed was made 

during the experiment. The inoculum came from another previously run PBR, which maintained 

a free-cell microalgae culture. Further details of the characteristics of the PBR may be found in 

Ruiz Martínez et al., (2012) and Viruela et al., (2016). 

Daily samples from the PBR were taken during 25 days period (T0 the first and T25 the last 

culture day). Samples were collected from the beginning (low cell density) until the steady state 

(high cell density) with the aim of span a big range of cellular density values. Since samples 

were measured daily the microalgae concentration was increasing gradually. The data related to 
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biological and optical properties of these samples were used to generate the model calibration 

data set. 

Another set of samples from four different PBR cultures (R1, R2, R3-dec, R4) were collected 

and analyzed, to gather the external validation data set. These PBR used to validate the model 

were maintained under different operational condition (hydraulic and cellular retention times, 

feed, purge, pH control, light conditions, etc.) to assure the usefulness of the model.  

2.2.Analytical techniques 

To determine the absorption spectra, a volume of 20 ml of PBR sample (calibration and 

validation samples) was filtered with a glass-fiber filter (Whatman GF/F). The filter with the 

retained biomass was placed on a petri slide and stored at -20º C until analysis.  

The absorption spectrum for each filter, with the biomass particles retained, was determined 

using a Perkin Elmer Lambda 35 spectrophotometer, fitted with an integrating sphere (Labsphere 

RSA-PE-20). The sphere device in the spectrophotometric measures allows determining the 

fraction of light absorbed, reflected and transmitted by a solid surface (AQ-00073-000, Rev.7, 

Perkin Elmer). This solid surface is formed by the biomass particles retained in the glass fiber 

filter. The filter with the solid biomass was placed in the reflectance port position and 

absorbance option was selected in the software. A pre-filtered sample was passed through glass-

fiber filter and this wet filter was used as a blank. The absorbance value was determined at 1-nm 

intervals, between 400 and 750 nm wavelengths. All experiments were conducted under 

controlled lighting conditions in order to prevent pigment photodegradation. This experimental 

procedure was determined according to the procedure outlined by Cleveland and Weidemann 

(1993). 

Regarding to the microalgae abundance determination, the epifluorescence microscopic count 

method was used. The samples contained in 250 ml glass bottles were fixated with 
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glutaraldehyde until reaching a final concentration of 2%. Samples were filtered with Millipore 

GTTP membranes (pore size 0.2 μm). The filters were then dehydrated with successive washes 

of 50%, 80%, 90% and 99% ethanol. Finally, a cover glass was placed on top of the filter 

(Fournier, 1978). The counts were performed by epifluorescence microscopy (Vargo, 1978) with 

a Leica DM 2500, using 100x-oil immersion, the most abundant genera were counted with an 

error below 20% (Lund et al., 1958). 

2.3.Data processes 

The data set obtained to perform the statistical model are made up by two matrices. The first one 

is a predictive data matrix (X-variables, absorbances) with 350 variables/sample (7700 

predictors); and the second one is a response data matrix (Y-variables, cell L-1 Scenedesmus) 

with 1 variable/sample (22 responses). Table I shows the raw data matrix (since there is a large 

number of X variables, only absorbance values at 12 wavelengths are shown). 
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 Predictors (absorbances), X-variables Responses 
Scenedesmus, Cell L-1 

Y-variables 
Wavelength 
(400-750 nm) 400 401 402 … 500 501 502 … 600 601 602 … 747 748 750 

S
A

M
P

L
E

S
 

T0 0.2215 0.2210 0.2207 … 0.1780 0.1764 0.1748 … 0.1451 0.1453 0.1454 … 0.1022 0.1018 0.1013 1.26E+08 

T1 0.4112 0.4114 0.4118 … 0.3111 0.3082 0.3053 … 0.2364 0.2363 0.2362 … 0.1372 0.1365 0.1358 2.04E+08 

T2 0.5445 0.5482 0.5522 … 0.4142 0.4048 0.3955 … 0.2604 0.2615 0.2628 … 0.0570 0.0566 0.0560 8.43E+08 

T3 1.2536 1.2593 1.2653 … 1.0622 1.0398 1.0164 … 0.6501 0.6532 0.6566 … 0.0744 0.0738 0.0731 1.82E+09 

T4 1.6127 1.6095 1.6062 … 1.4136 1.3932 1.3713 … 0.9533 0.9578 0.9626 … 0.1112 0.1103 0.1094 6.56E+09 

T5 1.6733 1.6688 1.6633 … 1.5490 1.5334 1.5167 … 1.0934 1.0983 1.1036 … 0.1219 0.1205 0.1190 6.45E+09 

T6 1.4564 1.4574 1.4580 … 1.4570 1.4481 1.4380 … 1.1502 1.1549 1.1599 … 0.1358 0.1343 0.1328 6.45E+09 

T7 1.5504 1.5491 1.5481 … 1.5498 1.5437 1.5370 … 1.2878 1.2928 1.2980 … 0.1475 0.1460 0.1444 8.39E+09 

T8 1.4593 1.4604 1.4605 … 1.4742 1.4690 1.4632 … 1.2616 1.2660 1.2708 … 0.1534 0.1518 0.1502 8.81E+09 

T9 1.4626 1.4637 1.4644 … 1.4667 1.4605 1.4531 … 1.2292 1.2340 1.2390 … 0.1293 0.1276 0.1259 1.04E+10 

T10 1.4711 1.4723 1.4730 … 1.4781 1.4712 1.4634 … 1.2196 1.2246 1.2298 … 0.1315 0.1298 0.1282 1.09E+10 

T11 1.3900 1.3916 1.3932 … 1.4226 1.4132 1.4022 … 1.0325 1.0369 1.0416 … 0.0950 0.0936 0.0920 9.01E+09 

T12 1.4792 1.4805 1.4817 … 1.4841 1.4764 1.4675 … 1.2169 1.2218 1.2267 … 0.1447 0.1429 0.1411 9.97E+09 

T14 1.7203 1.7149 1.7080 … 1.6212 1.6084 1.5944 … 1.2254 1.2307 1.2365 … 0.1418 0.1401 0.1386 1.04E+10 

T15 1.4191 1.4208 1.4212 … 1.4327 1.4260 1.4182 … 1.1489 1.1537 1.1584 … 0.0837 0.0824 0.0811 1.05E+10 

T16 1.4310 1.4322 1.4335 … 1.4277 1.4198 1.4114 … 1.1426 1.1472 1.1520 … 0.1051 0.1037 0.1024 1.09E+10 

T17 1.4182 1.4193 1.4204 … 1.4100 1.4018 1.3924 … 1.1241 1.1286 1.1334 … 0.0856 0.0841 0.0827 1.08E+10 

T21 1.4084 1.4097 1.4109 … 1.3507 1.3386 1.3255 … 1.0191 1.0236 1.0284 … 0.0938 0.0922 0.0908 1.15E+10 

T22 1.4060 1.4078 1.4090 … 1.3279 1.3129 1.2967 … 0.9635 0.9680 0.9727 … 0.0671 0.0656 0.0641 1.01E+10 

T23 1.4148 1.4165 1.4180 … 1.3521 1.3380 1.3231 … 0.9994 1.0039 1.0087 … 0.0806 0.0791 0.0777 1.09E+10 

T24 1.4033 1.4054 1.4073 … 1.3166 1.3013 1.2851 … 0.9536 0.9581 0.9627 … 0.0676 0.0660 0.0645 1.07E+10 

T25 1.3928 1.3946 1.3967 … 1.2855 1.2687 1.2510 … 0.9115 0.9160 0.9206 … 0.0341 0.0326 0.0312 9.99E+09 

Table 1. Matrix of raw data (X-variables and Y-variables). 
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Before applying the statistical techniques to the raw data, a data-processing was applied: 

2.3.1. Processing of Spectrophotometric data 

Although the absorption spectrum was performed for every single sample with 1 nm wavelength 

intervals, due to the requirements of the statistical software used, the number of data was reduced 

from 350 to 320. Therefore, one absorbance was eliminated every 12 nm of wavelength. 

However, it was verified that equal results were obtained with or without these 30 absorbance 

data. The absorbance value obtained at 750 nm was added to each spectrum to minimize 

differences between the samples and reference filters, assuming a negligible absorption at this 

wavelength. Furthermore, the absorbance data of every sample were normalized, dividing the 

absorbance values in the visible spectrum by the maximum absorbance value obtained (which is 

generally produced at wavelengths of 400-440 nm), yielding a whole data set of absorbances 

between 0 and 1. Figure 1 shows the absorption spectra of three samples (T1, T9 and T25) 

without normalization (left), and after normalization (right). 

 

Fig. 1: Absorbance values in the visible spectrum for samples T1, T9 and T25, before normalization (left) and after 
normalization (right) 

2.3.2. Processing of Biological Data (Scenedesmus sp (cell L-1) 
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All cell density values were transformed by Square Root (Sqrt-Y) to achieve approximately 

normally distributed data, before the multivariate statistical analysis. 

2.3.3. Data sets 

Two data sets were generated to develop the statistical model with processed data; the first one is 

the calibration data set, (Calibration Data set) and the second one the further data validation set 

(Validation Data set). 

The Calibration Data set contains 22 samples (T1-T25) represented by two matrices data; 

predictive and response. The first one is the predictive matrix data that include 320 X-variables 

(absorbances) by sample, and the second one is the response matrix data that include one Y-

variable (square root cellular densities of Scenedesmus sp.) by sample (Fig. 2).  

The Validation Data set comprises 40 samples belonging to different PBR’s. These 40 samples 

are used to generate the predictive matrix data with 320 X-variables by sample, and the response 

matrix data with one Y-variable by sample (Fig. 2).  

 

Fig. 2: Calibration and Validation Data set 

2.4. Statistical techniques 
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The software tool used for this statistical process were Simca-P 9.0 (mainly used for Principal 

Component Analysis method (PCA), and Partial Least Square regression(PLS), and Statgraphics 

Centurion XVI. 

The statistical technique PLS was used for the multivariate analysis of the experimental data 

obtained (Geladi, 1986). This method was used to discern the quantitative relationship between 

the spectral data (absorbances) and the biological responses (cell L-1) of the samples of interest 

(Brown, 1982; Martens and Naes, 1989). 

A statistical model was developed for the major algae group (Scenedesmus sp.) grown in the 

PBR. The quality of the model can be estimated by the following model parameter: R2 is the 

cumulative sum of squares of all the Xs and the Ys respectively explained by the extracted 

components in the PLS models. Q2 is the cumulative fraction of the total variation of the 

variables that can be predicted by a component. The values for both R2 and Q2 range between 0 

and 1, where 1 means a perfect model and 0 an irrelevant model, in a manner similar to the 

coefficient of determination (r2) in a linear regression analysis. 

The predictive capacity of the models (Q2) was determined using internal validation or cross-

validation, a method of repeated sampling where multiple subsets are left out of the calculation 

of the sum of the squared difference between the observed values and estimated values. As this 

approach, deals with repeated sampling, cross-validation can be carried out in various ways 

(Geladi, 2002). The cross-validation method selected for the all models consisted of leaving out 

each observation once from the regression process (“leave one out”) and calculating the model 

without it. The resulting model was subsequently run to predict this observation. Then, the 

predicted data are compared with the original data and the Predicted Residual Sum of Squares 

(PRESS) errors calculated for the whole data set.  

For convenience, it then converts PRESS into Q2 to resemble the scale of the R2. PRESS is 

divided by the sum of the squared deviation of the y-values (ݕ௜) from their mean (ݕത) and 
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subtracted from 1. Good predictions will have low PRESS and therefore high Q2. 

ܳଶ ൌ 1 െ
ܵܵܧܴܲ

∑ ሺݕ௜ െ തሻଶ௡ݕ
௜ୀଵ

 

For the evaluation of the predictive ability of a multivariate calibration model, the Root Mean 

Square Error of Calibration (RMSEC) and Root Mean Square Error of Prediction (RMSEP) can 

be used. 

3. Results and discussion 

3.1.Microalgae culture composition 

PBR samples, from which the statistical model is built, exhibit a microalgae composition of 

mainly Scenedesmus sp. (Chlorophyceae) and to a lesser extent pennate diatom. Other genera 

belonging to the Chlorophyceae and Dinoflagellates were also detected in some isolated 

samples. In fact, the latter group appeared in the last days of the PBR experiment. Since the cell 

density reached by these other groups (pennate diatoms, Dinoflagellates) is low and non-

significant (<1%) they were excluded from the statistical model. For this reason, the PBR culture 

may be considered a Scenedesmus microalgae monoculture. 

3.2.Statistical PLS modeling 

A PLS model that related the absorbances (factors/predictors, X-data) of the sample to the square 

root of the cellular density (response, Y-data) was developed (Table 2).  

To decide the adequate number of components required to diminish the possibility of overfitting 

the model, the general model fit must be taken into account. This is defined by parameter 

R2Y(cum), and the prediction ability thereof, which is defined by parameter Q2. High Q2 and 

R2Y values and low PRESS value indicate the validity of the multivariate calibration and the 

quantitative method. For this reason, the best model appears to be the one using 7 components 

(Table 2) since it fulfills the requirements.  
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Comp R2X R2X 

(cum) 

Eigen. R2Y R2Y 

(cum) 

Q2 limit Q2 

(cum) 

PRESS 

1 0.786 0.786 17.3 0.625 0.625 0.526 0.05 0.526 4.69668E8 

2 0.132 0.918 2.9 0.214 0.839 0.484 0.05 0.755 2.08529E8 

3 0.0399 0.957 0.879 0.0713 0.91 0.292 0.05 0.827 1.64453E8 

4 0.0283 0.986 0.623 0.0638 0.974 0.644 0.05 0.938 7.25648E7 

5 0.00765 0.993 0.168 0.0115 0.985 0.31 0.05 0.957 5.4538E7 

6 0.00252 0.996 0.0554 0.00494 0.99 0.143 0.05 0.964 5.32291E7 

7 0.00317 0.999 0.0698 0.00177 0.992 0.105 0.05 0.967 2.78644E7 

8 0.000264 0.999 0.00581 0.00171 0.994 -0.251 0.05 0.964 3.70488E7 

9 0.000105 1 0.00232 0.00168 0.995 -0.492 0.05 0.961 4.95326E7 

10 0.000124 1 0.00273 0.00094 0.996 -0.228 0.05 0.957 6.95879E7 

Table 2. Partial Least Square (PLS) results. 

The statistical significance of the model was assessed through the Analysis of Variance 

(ANOVA). The P-Values in the ANOVA (Table 3) indicate that model 7-components is 

significant at the 5.0% level of significance. Therefore, there is statistical evidence for the 

existence of a relationship between absorbance and cellular density of microalgae. 

Source Sum of Squares Df Mean Square F-ratio P-Value 

Model 1.9379E10 7 2.76842E9 249.351 0.0 

Residual 1.55435E8 14 1.11025E7   

Total (corr.) 1.95344E10 21    

Table 3. Analysis of Variance for Y-data (PLS model). 

As Table 2 shows, the first three components accounted for most of the variability of the Y-data 

(R2Y(cum)=91%) and the capacity of prediction is 82.7%. This parameter increases to 0.664 

when adding a fourth component (Q2(cum)=93.8%) although the variability of the Y-data added 

6% and R2Y(cum) remains similar.  

Figure 3 shows the standardized regression coefficients that are obtained by subtracting the mean 

and dividing by the standard deviation. As it can be seen in Figure 3, for 3 and 4 component 

models the X-variables that most contribute to the predicted variable (Y-variable) are those 

placed at the edges of the absorption spectrum (400-500 and 650-750 nm).  
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Fig. 3: Standardized coefficients 

It is important to highlight that all photoautotrophic organisms contain chlorophyll a as a 

pigment in the thylakoids membrane. This photosynthetic pigment has its maximum absorption 

preferentially in these wavelength (Lichtenthaler and Buschmann, 2001). This means that the 3 

and 4 component models only provide raw information of biomass value.  

However, the 7-components model shows the highest regression coefficients in the middle 

spectrum zone (510-560 nm). This wavelength range has maximum absorption for carotenoid 

pigments (Lichtenthaler and Buschmann, 2001). These accessory pigments are used to 

discriminate between different taxa in the microalgae composition. 

Therefore, to achieve accurate cell density predictions the model has to include the variability 

due to pigments, chlorophylls and carotenoids allowing to determined shift in the microalgae 

community.  
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The 7-component model is highly recommended for all mentioned before (high R2Y; Q2 values 

and low PRESS value) and furthermore, this model considers the variability due to carotenoids 

which may represent the community composition.  

The PLS calibration model with 7 components, explained 99.2% (R2Y=0.992) of the variation of 

Y-data (Sqrt Scenedesmus) and its ability to predict is 96.7% (Q2=0.967). To evaluate the 

efficiency of the prediction-model, predicted Sqrt Scenedesmus values were plotted against the 

observed Sqrt Scenedesmus values (Fig. 4a). As can be seen from Figure 4a, satisfactory results 

are obtained for the predicted values of cell density of the studied microalgae. In addition, 

outliers in the regression model were detected using standardized residuals (Fig. 4b). For 

samples in the calibration set, standardized residuals with absolute values in excess of ±2 should 

be examined closely. As Figure 4b shows, the residuals are scattered around the horizontal line, 

there are no outliers in the calibration samples and the constructed model is reliable. 

 

Fig. 4: (a) Square root of cellular density of Scenedesmus sp. observed versus predicted (Calibration Data set). (b) 

Standardized residuals for the Y variables 

In order to evaluate the performance of the PLS model, a prediction test was carried out with 

external test samples (Validation Data set). As it can be observed in Figure 5, there is a high 

correlation between the measured and predicted Sqrt Scenedesmus values (r2=0.78). For that, the 
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assessment of the PLS model through and independent samples representing different operating 

conditions is successful in quantifying the microalgae density. 

 

Fig. 5: Validation data set. Square root of cellular density of Scenedesmus sp. observed versus predicted 

The statistical parameters RMSEC and RMSEP displayed in Figure 4a and 5 permit evaluation 

of the predictive capacity of the performed model. The difference between RMSEC and RMSEP 

values might be due to the fact that most of the calibration samples show higher cell density 

values than those corresponding to the validation set (R1, R2 y R4 PBR’s). This suggests that the 

model could be strengthened by feeding it with similar cell density validation samples. 

Therefore, the model will be able to estimate the cell density gradient more accurately from the 

initial cell concentration up to optimal cell density for wastewater treatment. 

Finally, when representing the measured and predicted cell density of Scenedesmus for the 

Validation Data set (Fig. 6) it can be seen that the estimated values are close to the observed 

ones, especially the samples with low cell density (≈ 2*109-3*109 cell L-1). There has been 
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verified through statistical parametric methods (One-way ANOVA) that the differences between 

the predicted and observed values are not statistically significant, (p-vales > 0.05). 

 

Fig. 6: Cell density of Scenedesmus sp observed and predicted in the validation samples 

These results confirmed that the constructed PLS model has acceptable predictive abilities for 

estimating microalgae cell density in the PBR.  

This model represents a baseline for further studies to foster the estimation of algal biomass, 

model prediction and data-driven management of photobioreactor. 
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