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Abstract 

A decade of extensive research has been conducted to enhance the power conversion 

efficiency (PCE) of silicon (Si) solar cells and to cut their prices short. But still, the 

fabrication of Si solar cells are costly. So, to reduce the fabrication cost of the solar cell 

search for alternate earth abundant and non-toxic absorber materials is thriving. Among 

different absorber materials tin sulfide (SnS) is found to be a suitable candidate for the 

non-organic solar cell with a band gap of 1.3 eV. But the PCE achieved for SnS is 4.6% 

that is far less from the PCE of (Si), whereas among other organic non-organic solar cells 

like methylammonium lead halide perovskite (MAPbI3) is proven to be a suitable 

candidate with PCE reaching to a value of 23%. The problem with the commercialization 

of MAPbI3 is due to the toxic nature of lead (Pb). So, in dealing with these issues of solar 

cell numerical analysis can play a key role as numerical analysis allows flexibility in the 

design of realistic problem and experimentation with different hypotheses can easily be 

performed. Complete set of device characteristic can often be easily generated by 

consuming less amount of time and effort. Because of this reason numerical analysis was 

used to revisit solar cells design parameters and the effect of solar cell physical parameters 

on solar cell performance. There are various simulation software’s available that are used 

for solar cell numerical analysis. Here in this work, we used Solar cell capacitance 

simulator (SCAPS) software, it is freely available and is most popular among the research 

community. To achieve effective design for efficient solar cell a numerical guide was 

proposed based on which PCE of an experimental designed solar cell can be enhanced. 

This was done by reproducing results for the experimentally designed solar cell in SCAPS 

environment with structure p − SnS/n − CdS having a conversion efficiency of 1.5%. 

After reproduction of experimental results device performance was optimized by varying 

thickness of (absorber layer, buffer layer), minority carrier lifetime, doping concentration 

(absorber, buffer), and adding window layer. By stepwise optimization of device 

parameters, PCE of an experimental designed solar cell in SCAPS with architecture p −

SnS/n − CdS/n − ZnO was reached to a value of 14.01%. From the analysis, it was found 

that PCE of a solar cell is highly depended upon doping concentration of the absorber 

layer, the thickness of the absorber layer and interface defects. Based on the results 

evaluated an analysis was performed for tin based organic non-organic methylammonium 

tin halide perovskite solar cell (MASnI3) to find the effect of interface recombination on 
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solar cell performance and how it can be governed. The reason for this transition from SnS 

to MASnI3 was because MASnI3 can be fabricated simply by spin-coating 

methylammonium iodide (MAI) over SnS layer. To perform this task analysis was 

performed for the selection of suitable buffer layer for Pb free methylammonium tin halide 

perovskite solar cell (MASnI3) and it was found that PCE of the solar cell is also depended 

upon band alignment between absorber and buffer layer. Based on the results a new 

structure was proposed for Pb free perovskite solar cell (Back contact/MASnBr3/

MASnI3/CdZnS/FTO) with PCE of 18.71% for absorber thickness of 500 nm and acceptor 

doping concentration of 1x1016 cm3. The results achieved in this thesis will provide an 

imperative guideline for researchers to design efficient solar cells.  

  



 

iii 

Resumen 

Desde hace una década se esta investigando intensamente la forma de mejorar la eficiencia 

de conversión de energía (PCE) de las células solares de silicio (Si) y reducir sus precios.  

Sin embargo, a pesar de las mejoras obtenidas, la fabricación de células solares de Si sigue 

siendo costosa y puede rebajarse usando materiales en forma de capa fina. Por ello la 

búsqueda de materiales absorbentes alternativos, no tóxicos, abundantes en la naturaleza 

y con buenos rendimientos de conversión se ha intensificado en los últimos años. Entre los 

diferentes materiales absorbentes el sulfuro de estaño (SnS), con una banda prohibida de 

1.3 eV cercana a la óptima, es un candidato adecuado para la conversión fotovoltaica. Pero 

para células experimentales de SnS el rendimiento alcanzado hasta ahora es de 4.6%, que 

es mucho menos que el PCE para dispositivos de silicio, mientras que entre otras células 

híbridas (orgánicas-no orgánicas) como la perovskita de metilamonio de plomo y yodo 

(MAPbI3) se demuestra que es un candidato adecuado con PCE que alcanza un valor del 

23%. Aparte de la estabilidad, uno de los problemas para la comercialización de células 

de MAPbI3 es la naturaleza tóxica del plomo (Pb). Por este motivo, se ha utilizado el 

análisis numérico para revisar los parámetros de diseño de las células solares de perovskita 

híbrida sustituyendo el absorbente MAPbI3 por MASnI3 y estudiar el efecto del resto de 

parámetros de diseño en el rendimiento de estas células solares. Hay varios softwares de 

simulación disponibles que se utilizan para el análisis numérico de células solares. En este 

trabajo hemos usamos un software llamado “A Solar Cell Capacitance Simulator” 

(SCAPS), está disponible de forma gratuita y es muy popular entre la comunidad científica 

y tecnológica. Para lograr un diseño efectivo para una célula solar eficiente, se propuso 

una aproximación numérica basada en la mejora de la PCE de una célula solar 

experimental. Esto se hizo reproduciendo los resultados para la célula solar diseñada 

experimentalmente en un entorno SCAPS con estructura p-SnS / n-CdS con una eficiencia 

de conversión del 1,5%. Después de la reproducción de los resultados experimentales, el 

rendimiento del dispositivo se optimizó ajustando el grosor de la capa absorbente y la capa 

tampón, la el tiempo de vida de los portadores minoritarios, la concentración del dopado 

en las capas absorbente, tampón y en la capa de la ventana. Mediante la optimización 

gradual de los parámetros del dispositivo, se alcanzó un valor de 14.01% en PCE de células 

solares diseñadas con SCAPS con arquitectura p-SnS / n-CdS / n-ZnO. A partir del 

análisis, se encontró que la PCE de una célula solar depende en gran medida de la 

concentración de dopaje de la capa absorbente, el espesor de la capa absorbente y los 
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defectos de la interfaz. Sobre la base de los resultados obtenidos, se realizó un análisis para 

determinar el efecto de la recombinación de la interfaz en el rendimiento de las células 

solares y cómo se puede controlar. Para realizar esta tarea, se realizó un análisis para la 

selección de la capa tampón adecuada para la célula solar de perovskita metilamonio de 

estaño y yodo (MASnI3) y se encontró que el PCE de la célula solar también depende de 

la alineación de la banda entre el absorbedor y la capa de tampón. Por otra parte, se ha 

propuesto una nueva estructura para la célula solar de perovskita libre de Pb (contacto 

posterior / MASnBr3 / MASnI3 / CdZnS / FTO) con un PCE de 18.71% para un espesor 

del absorbedor de 500 nm y una concentración de dopado en el aceptor de 1x1016 cm-3. 

Los resultados obtenidos en esta tesis proporcionarán una guía para que los investigadores 

experimentales puedan construir células solares más eficientes.  
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Resum 

Des de fa una dècada s'està investigant intensament la forma de millorar l'eficiència de 

conversió d'energia (PCE) de les cèl·lules solars de silici (Si) i reduir els seus preus. No 

obstant això, tot i les millores obtingudes, la fabricació de cèl·lules solars de Si segueix 

sent costosa i pot rebaixar-se usant materials en forma de capa fina. Per això la recerca de 

materials absorbents alternatius, no tòxics, abundants en la naturalesa i amb bons 

rendiments de conversió s'ha intensificat en els últims anys. Entre els diferents materials 

absorbents, el sulfur d'estany (SnS), amb una banda prohibida de 1.3 eV propera a l'òptima, 

és un candidat adequat per a la conversió fotovoltaica. Però per a cèl·lules experimentals 

de SnS el rendiment assolit fins ara és de 4.6%, que és molt menor que el PCE per a 

dispositius de silici, mentre que entre altres cèl·lules híbrides (orgàniques-no orgàniques) 

com la perovskita de metilamonio de plom i iode (MAPbI3) es demostra que és un candidat 

adequat amb PCE que arriba a un valor del 23%.  A part de l'estabilitat, un dels problemes 

per a la comercialització de cèl·lules de MAPbI3 és la naturalesa tòxica del plom (Pb). Per 

aquest motiu, s'ha utilitzat l'anàlisi numèrica per revisar els paràmetres de disseny de les 

cèl·lules solars de perovskita híbrida substituint l'absorbent MAPbI3 per MASnI3 i 

estudiar l'efecte de la resta de paràmetres de disseny en el rendiment d’estes cèl·lules 

solars. Hi ha diversos programaris de simulació disponibles que s'utilitzen per a l'anàlisi 

numèric de cèl·lules solars. En aquest treball hem fem servir un programari anomenat “A 

Solar Cell Capacitance Simulator” (SCAPS), està disponible de forma gratuïta i és molt 

popular entre la comunitat científica i tecnològica. Per aconseguir un disseny efectiu per a 

una cèl·lula solar eficient, es va proposar una aproximació numèrica basada en la millora 

de la PCE d'una cèl·lula solar experimental. Això es va fer reproduint els resultats per a la 

cèl·lula solar dissenyada experimentalment en un entorn SCAPS amb estructura p-SnS / 

n-CdS amb una eficiència de conversió de l'1,5%. Després de reproduir els resultats 

experimentals, el rendiment del dispositiu es va optimitzar ajustant el gruix de la capa 

absorbent y de la capa tampó, el temps de  vida dels portadors minoritaris, la concentració 

del dopatge en les capes absorbent, tampó i en la capa finestra. Mitjançant l'optimització 

gradual dels paràmetres del dispositiu, es va assolir un valor de 14.01% en PCE de cèl·lules 

solars dissenyades experimentalment en SCAPS amb arquitectura p-SnS / n-CdS / n-ZnO. 

A partir de l'anàlisi, es va trobar que la PCE d'una cèl·lula solar depèn en gran mesura de 

la concentració de dopatge de la capa absorbent, el gruix de la capa absorbent i els defectes 

de la interfície. D’altra banda, es va realitzar una anàlisi per determinar l'efecte de la 
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recombinació de la interfície en el rendiment de les cèl·lules solars i com es pot controlar. 

Per realitzar aquesta tasca, es va realitzar una anàlisi per a la selecció de la capa tampó 

adequada per a la cèl·lula solar de perovskita de metilamoni d’estany i iode (MASnI3) i es 

va trobar que el PCE de la cèl·lula solar també depèn de l'alineació de la banda entre 

l'absorbidor i la capa de tampó. 
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Motivation 

The demand of electric power is rising, this rise in electric energy demand has urged the 

utility companies to install more electric power generation plants. As most of the world, 

electric power demand is met by thermal power plants, and these plants produce electric 

power by process fossil fuels combustion, and combustion of fossil fuels produces toxic 

gases in the environment and these gases causing serious environmental changes around 

the globe. The rapid change in an ecosystem has stems the researcher to find some alternate 

energy sources that are eco-friendly, and among these energy sources, one of the major 

sources of energy that is the base of terrestrial life is solar irradiation that is irradiated by 

the sun. The amount of energy transmitted by sun irradiation is around 420 trillion KWh 

and this amount of energy irradiated is greater than the amount of electrical energy 

consumed by human beings on earth. This energy can be harnessed by capturing sunlight 

and convert this light to electrical energy. The idea of conversion of light energy into 

electrical power drives the researchers to find some source/ material that can convert 

sunlight into electrical current. Soon after the invention of a solar cell, solar photovoltaic 

gained importance among the researchers and with a passage of time the demand of PV-

power system has increased drastically.  Now many types of solar cells and solar cell 

modules are available in the market for small scale as well as for large scale production. 

But up till now, low cost and high efficiency solar cell device fabrication were not made 

possible. So, to achieve a low cost and high efficiency solar cell design, understanding of 

device mechanism is important. To deeply understand device operating mechanism 

computer based numerical simulation programme was developed by the research 

community. This work is also intended to use the available software for some of the well-

known and newly emerged type of solar cell. That is to fill the gaps between the device 

physics and state of the art design of solar cell.  Numerical simulation can aid the 

researchers to evaluate their solar cell design and to implement their knowledge at an early 

basis before experimentally fabricating the device structure. This will save time and 

expense of research community. So, efficient design of solar cell requires keen knowledge 

and understanding of basic solar cell physical parameters. And by numerical analysis of 

solar cell in simulation software, we hope to achieve better device performance for an 

experimental solar cell by underlying the key factors that can aid in efficiency 

enhancement of solar cell.  
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Summary 

The invention of semiconductor revolutionized the industry and semiconductor is playing 

a key role in today’s commercial applications. Among different commercial application, 

one of the major applications of semiconductor devices is its role in harvesting sunlight 

and converting into electric current. There are different types of photovoltaic cells 

available for commercial application and they majorly belong to the crystalline group. But 

the cost of production of these materials is very high as compared to other compounds like 

polycrystalline and monocrystalline. Today, silicon dominates the manufacturing of PV 

technology but due to the poor absorption coefficient of silicon 200 µ𝑚 - 500µ𝑚 thick 

absorber layer is utilized to absorb a significant amount of sunlight. Due to poor absorption 

and thicker absorber layer for silicon solar cell an optimal thickness absorber layer is 

required, and this gives rise to thin film technology in which optimal absorber thickness is 

5μm. In thin film technology, less material is required as compared to silicon and 

processing cost of thin film technologies are less than silicon processing. Thin film 

technology is proven to be one of the most cost-effective and efficient technology for the 

manufacturing of photovoltaic cells and it is an excellent subject of intense research in 

photovoltaic industry. Among thin film technologies cadmium telluride (CdTe) and 

copper–indium–gallium–selenide (CIGS) cells that have achieved record efficiencies close 

to 20%. Unfortunately, cadmium is toxic in nature and gallium, indium and tellurium are 

non-abundant and expensive materials. Alternate for those materials must be sought for 

PV technology to scale up to the level of modern-day non-renewable energy production. 

In search of more alternate absorber material, quaternary blends can circumvent the issue 

for availability and cost; and their PV properties can be tailored by varying the 

stoichiometry of individual components. Cu2ZnSnS4 (CZTS), has achieved a greater 

efficiency of 10.1%. The availability of those materials is not a concern in the environment 

but to tailor their PV characteristic is quite difficult to handle.   

So, an alternative to those materials must be sought and among them the most attractive 

candidate for thin film PV applications is SnS. SnS possess an orthorhombic structure and 

a direct band gap of 1.30-1.43 eV. Effective optical absorption of SnS coincides with the 

optimum band gap for maximum efficiency according to the Shockley-Queisser limit 

within the AM 1.5 solar spectrum. The absorption coefficient of SnS is higher than CdTe, 

CIGS and other available PV technologies. Despite being suitable for PV technology still, 
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SnS devices have not yet surpassed 4.6% efficiency. The limitation in the efficiency of 

SnS may be due to the defects and impurities in SnS layers related to deposition technique 

and self-oxidation of Sn2+ to Sn4+. 

Apart from a non-organic solar cell, Lead halide perovskite solar cell (LHPSC) in recent 

years has drawn a great amount of attention because of their good absorption properties, 

optimal band gap, good carrier diffusion length, and low-cost processing technique. Power 

conversion efficiency (PCE) of perovskite solar cell in the past few years has enhanced 

from 3.8% to 22%. Despite the rapid development in PCE and simplification in the 

fabrication process of LHPSC still, the stability of LHPSC and toxic nature of lead 

hindered the way of commercialization of perovskite solar cell. Theoretical and 

experimental studies show that tin halide perovskite (CH3NH3SnI3 (MASnI3)) has an 

optimal band gap of 1.3 eV and considered as a possible replacement for LHPSC. Due to 

its smaller band gap, it can cover a wide range of the visible light spectrum, than the 

LHPSC.  Tin (Sn) perovskite-based planner structure solar cell has been developed with 

heterostructure architecture. The major limitation of Sn based perovskite is oxidation of 

Sn from Sn2+ to Sn4+ in the air which limits the performance of the device. With extensive 

research, development of encapsulation process increases the stability of the Sn based 

perovskite materials. By the addition of tin fluoride (SnF2) in the fabrication process 

reduces the chance of oxidation of Sn2+ to Sn4+.  Despite the rapid improvement in 𝑆𝑛-

based perovskite material still, PCE achieved from 𝑆𝑛-based perovskite solar cell is very 

low. This is mainly due to the lack of understanding of device properties and the effect of 

band structure on device performance. 

Therefore, the effort to improve the efficiency of a solar cell and the reduction in 

their prices has been the main subject of interest for a long time. In this research work, 

numerical modeling is carried out of different solar cell structures to understand the basic 

insight physics of solar cell working and to estimate the effect of physical parameters on 

solar cell performance. Device modeling can be performed on the dedicated SCAPS 

simulation software. To analyze the performance of a photovoltaic device, an analysis was 

performed on different physical parameters such as thickness and doping concentration of 

absorber, buffer and window layers, temperature effect and effect of illumination power 

of the sun on a solar cell. First simple cell structure SnS/CdS/ZnO was simulated with 

PCE of 26.18%. However, up to date, practical solar cell devices do not surpass 4.36%. 

So, numerical analysis was carried out to understand the physic for the limitation of SnS 



 

xv 

based solar cell device performance. From the analysis, it was found out that the major 

limitation in efficiency enhancement of SnS solar cell is optimal absorber thickness, band 

tailing, interface density defect, and absorber defects.  We found that interface defects 

behave like a serial resistance and reduce the open circuit voltage (Voc), while absorber 

defects mainly act as recombination centers and limits the short circuit current (Jsc). The 

analysis for efficiency limits of SnS solar cell was very helpful in further investigating the 

efficiency enhancement of SnS solar cell.  

Therefore, we proposed a model guide about how numerical analysis can aid in the 

improvement of the power conversion efficiency of solar cell based on our previous 

studies. In this step numerical analysis was performed in SCAPS to optimize the 

parameters of a solar cell like absorber layer thickness, buffer layer thickness, window 

layer effect, doping density and minority carrier lifetime. From observation, it was found 

that experimentally designed solar cell efficiency can be enhanced with the aid of 

numerical analysis. After optimization of physical parameters for experimental solar cell 

simulated in SCAPS-1D, PCE jumps from 4.36% to 14.01%. The result presented in this 

work can provide a valuable guideline to a researcher for the efficient design of solar cell 

with optimized parameters. 

From numerical analysis guide about how to improve the efficiency of the solar cell, we 

proposed a method for the selection criteria of the ETL layer for lead-free perovskite solar 

cell. As from analysis, it was found that interface recombination is a major limitation in 

designing of a high efficiency solar cell. So, in this work impact of different ETL and 

effect of their band alignment on solar cell performance was analyzed. From the numerical 

analysis it was found that conduction band offset can play a significant role in solar cell 

performance by creating a hole barrier at the interface and suppressing the interface 

recombination. Based on the results it was found that interface recombination of MASnI3 

solar cell can be controlled with ETL CBO, ETL thickness, ETL donor doping 

concentration and absorber doping concertation. With a small - CBO “Spike” at an 

interface is beneficial for efficiency enhancement of solar cell, but too high spike will 

degrade solar cell performance by impeding the flow of charge carriers. Similarly, ETL 

with moderate - CBO is less prone to interface recombination with the comparison to ETL 

having a +CBO with absorber material. In terms of selection of ETL materials for MASnI3 

absorber based solar cell, interface with moderate −CBO should be advantageous for ETL 

choice.  
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After detail studies of the effect of defects and effect of an interface layer band offset on 

solar cell performance an optimized structure was proposed for lead-free perovskite solar 

cell in SCAPS software. For the first time, a numerical model was presented for lead-free 

HTL layer MASnBr3 with Cd1−xZnxS as ETL for MASnI3 absorber layer. Effect of HTL 

layer band offset was analyzed and based on results it was concluded that HTL band offset 

can greatly affect solar cell performance. Optimal thickness (0.5 µm) and optimal doping 

concentration of absorber layer (1 × 1016 𝑐𝑚−3) was found in this work. Effect of two 

different ETL’s on solar cell performance was analyzed and it was found that by adjusting 

the band offset of Cd1−xZnxS layer can lead to a PCE of 18.71 %. Effect of defect density 

of the absorber layer was analyzed, and it was found that with an increase in defect density 

will limit the thickness of the absorber layer. The results proposed in this work should 

provide a baseline for alternate ETL and HTM layer selection and for the design of an 

efficient solar cell. 
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Acronyms 

 Symbol Explanation 

𝐏𝐂𝐄 Power conversion efficiency 

𝐅𝐅 Fill factor 

𝐕𝐨𝐜 Open circuit voltage 

𝐉𝐬𝐜 Short circuit current density 

𝐉𝟎 Diode saturation current density 

𝐈 Diode current 

𝐈𝟎 Diode saturation current 

𝐕𝐃 Diode voltage 

𝐕𝐓 Thermal voltage 

𝐄 Photon energy 

𝐯 Frequency of light 

𝐜 Speed of light 

𝛌 wavelength 

𝐕 Applied potential 

𝐈𝐋 Light generated photon current 

𝐟𝐭 Probability of occupation of trap state 

𝐃 Diffusion constant 

𝛂 Absorption coefficient 

G Generation rate 

k Boltzmann constant 

T Temperature 

Q Charge 

𝐯𝐭𝐡 Thermal velocity of charge carriers 

𝛅𝐩 Capture cross section area of hole 

𝛅𝐧 Capture cross section area of electron 

𝐄𝐂 Conduction band minimum 

𝐄𝐕 Valence band minimum 

𝐄𝐟𝐧 Electron quasi-Fermi level 

𝐄𝐟𝐩 Hole quasi-Fermi level 

∆𝐄𝐂 Conduction band offset 

∆𝐄𝐕 Valence band offset 

𝐍𝐀 Uniform acceptor density 

𝐍𝐃 Shallow uniform donor density 
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𝛕𝐞 Electron lifetime 

𝛕𝐡 Hole lifetime 

𝑳𝒏 Electron diffusion length 

𝑳𝒑 Hole diffusion length 

CBO Conduction band offset 

VBO Valance band offset 

𝑹𝒊𝑭 Interface recombination 

𝑺𝒊𝑭 Interface recombination velocity 

Si Silicon 

𝑺𝒏𝑺 Tin sulfide 

𝑪𝑯𝟑𝑵𝑯𝟑𝑺𝒏𝑰𝟑 Methylammonium tin iodide 

𝑪𝑯𝟑𝑵𝑯𝟑𝑺𝒏𝑩𝒓𝟑 Methylammonium tin bromide 

𝑪𝑯𝟑𝑵𝑯𝟑𝑷𝒃𝑰𝟑 Methylammonium lead iodide 

𝑪𝑰𝑮𝑺 Copper indium gallium sulfide 

𝑪𝒅𝑻𝒆 Cadmium telluride 

𝑪𝒅𝑺 Cadmium sulfide 

𝒁𝒏𝑶 Zinc Oxide 

𝑻𝒊𝑶𝟐 Titanium dioxide 

𝒁𝒏𝑺 Zinc sulfide 

𝑰𝒏𝟐𝑺𝟑 Indium sulfide 

𝑺𝒏𝑺𝟐 Tin disulfide 

𝒁𝒏𝑺𝒆 Zinc selenide 

𝑪𝑴𝑶 Calcium manganese oxide 

FTO Fluorine doped tin oxide 

ETL Electron transport layer 

HTL Hole transport layer 
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Symbols 

 Symbol Explanation Unit 

𝑷𝑪𝑬 Power conversion efficiency % 

𝑭𝑭 Fill factor % 

𝑽𝒐𝒄 Open circuit voltage 𝑽 

𝑱𝒔𝒄 Short circuit current density 𝒎𝑨/𝒄𝒎𝟐 

𝑱𝟎 Diode saturation current density 𝒎𝑨/𝒄𝒎𝟐 

𝑰 Diode current 𝑨 

𝑰𝟎 Diode saturation current 𝑨 
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1.1 Introduction 

The invention of semiconductor revolutionized the industry and semiconductor is playing 

a key role in today’s commercial applications. Among different commercial application, 

one of the major applications of semiconductor devices is its role in harvesting sunlight 

and converting into electric current. There are different types of photovoltaic cells 

available for commercial application and they majorly belong to the crystalline group. But 

the cost of production of these materials is very high as compared to other compounds like 

polycrystalline and monocrystalline. Today, silicon dominates the manufacturing of PV 

technology but due to the poor absorption coefficient of silicon 200 − 500µ𝑚 thick 

absorber layer is utilized to absorb a significant amount of sun light. Due to poor 

absorption and a large area of absorber layer for silicon optimal absorber layers are 

required and this gives rise to thin film technology in which optimal absorber thickness is 

5𝜇𝑚 [1,2]. In thin film technology, less material is required as compared to silicon and 

processing cost of thin film technologies are less than silicon processing [3,4]. Thin film 

technology is one of the most cost-effective and efficient technology for the manufacturing 

of photovoltaic cells and it is an excellent subject of intense research in photovoltaic 

industry. Thin films are very suitable for low and large-scale photovoltaic cell applications. 

With the passage of time, the demand of renewable energy sources increases. One of the 

natures free gifts as an alternative energy source is solar energy. Due to the energy crisis 

and energy demands photovoltaic (PV) devices are used extensively to meet the increasing 

electrical energy demands. Importance of PV devices due to the reason of limitation in 

natural fossil fuels resources and the associated greenhouse effect caused by 

carbon. Increasing demand for PV devices at low cost with higher energy conversion 

efficiency drives in the world to explore for thinner, low-cost processing, cheaper materials 

with more efficient device structures. To fulfill the consumer demand and for the 

generation of electricity, the high-power conversion efficiency solar cell without 

degradation of materials and economical photovoltaic cells are fabricated.  

Among thin film technologies successful are cadmium telluride (CdTe) and copper–

indium–gallium–selenide (CIGS) cells that have achieved record efficiencies close to 20% 

[5,6]. Unfortunately, cadmium is toxic in nature and gallium, indium and tellurium are 

non-abundant and expensive materials. Alternate for those materials must be sought for 

PV technology to scale up to the level of modern-day non-renewable energy production 

[7]. In search of more alternate absorber material, quaternary blends can circumvent the 
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issue for availability and cost; and their PV properties can be tailored by varying the 

stoichiometry of individual components. Cu2ZnSnS4 (CZTS), has achieved a greater 

efficiency of 10.1% [8]. The availability of those materials is not a concern in the 

environment but to tailor their PV characteristic is quite difficult to handle.   

So, an alternative to those materials must be sought and among them the most attractive 

candidate for thin film PV applications is SnS. SnS possess an orthorhombic structure and 

a direct band gap of 1.20-1.40 eV [9]. Effective optical absorption of SnS coincides with 

the optimum band gap for maximum efficiency according to the Shockley-Queisser limit 

with in the AM 1.5 solar spectrum. The absorption coefficient of SnS is higher than CdTe, 

CIGS and other available PV technologies. For producing tin based thin films solar cell 

large scale production units are already available for converting different metals into their 

corresponding sulphide using a range of sulfurization processes. Different techniques are 

utilized for the preparation of SnS thin films such as cathodic electrodeposition, 

electrochemical deposition, spray pyrolysis, vacuum evaporation, rf-sputtering, plasma 

enhanced chemical vapor deposition, and chemical vapor deposition [10–13].  

Experimental investigation on performances of SnS has been carried out on how 

temperature affects the physical and chemical properties of deposited SnS layers vary with 

source and substrate temperature [14]. Similarly, numerical analysis of SnS material shows 

a maximum efficiency of 10.6% [15]. From the numerical analysis, SnS is proven to be a 

fruitful candidate for future PV technology but despite being suitable for PV technology 

still, SnS devices have not yet surpassed 4.6% efficiency. The limitation in the efficiency 

of SnS may be due to the defects and impurities in SnS layers related to deposition 

technique and self-oxidation of Sn2+ to Sn4+. 

Apart from a non-organic solar cell, Lead halide perovskite solar cell (LHPSC) in recent 

years has drawn a great amount of attention because of their good absorption properties, 

optimal band gap, good carrier diffusion length and low-cost processing technique [16–

19]. Power conversion efficiency (PCE) of perovskite solar cell in the past few years has 

enhanced from 3.8% to 22% [20–25]. Despite the rapid development in PCE and 

simplification in the fabrication process of LHPSC still, the stability of LHPSC and toxic 

nature of lead hindered the way of commercialization of perovskite solar cell. Theoretical 

and experimental studies show that 𝐶𝐻3𝑁𝐻3𝑆𝑛𝐼3 (𝑀𝐴𝑆𝑛𝐼3) has an optimal band gap of 

1.3 eV and considered as a possible replacement for LHPSC. Due to its smaller band gap, 

it can cover a wide range of the visible light spectrum, than the LHPSC.  Tin (𝑆𝑛) 
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perovskite-based planner structure solar cell has been developed with heterostructure 

architecture [26–28]. The major limitation of 𝑆𝑛 based perovskite is oxidation of 𝑆𝑛 from 

𝑆𝑛2+ to 𝑆𝑛4+ in the air which limits the performance of the device. With extensive 

research, development of encapsulation process increases the stability of the 𝑆𝑛 based 

perovskite materials. By the addition of tin fluoride (𝑆𝑛𝐹2) in the fabrication process 

reduces the chance of oxidation of 𝑆𝑛2+ to 𝑆𝑛4+ [29].  Moreover, like LHPSC its band 

gap can also be tuned by changing iodine (𝐼) with bromide (𝐵𝑟) and with an addition of 

𝐵𝑟 its bandgap increases. The tunability of bandgap provides an opportunity to use 𝑆𝑛 

based perovskite for solar cell application as a possible replacement for LHPSC [30]. 

Despite the rapid improvement in 𝑆𝑛-based perovskite material still, PCE achieved from 

𝑆𝑛 based perovskite solar cell is very low. This is mainly due to the lack of understanding 

of device properties and the effect of band structure on device performance [31,32]. 

In this research work, numerical modeling is carried out to estimate or analyze the 

parameters of different photovoltaic thin film solar cells. Device modeling can be 

performed on the dedicated SCAPS simulation software. To analyze the performance of a 

photovoltaic device, numerical analysis was performed on different physical parameters 

such as thickness and doping concentration of absorber, buffer and window layers, 

temperature effect and effect of illumination power of the sun on a solar cell. This analysis 

can help to achieve the high conversion efficiency from thin film solar cell. 

1.2 Research aims/objectives 

The main aims and objectives of the research work presented in this thesis are: 

i. One dimensional numerical analysis of an experimental solar cell in 

SCAPS-1D 

ii. Find the factors that limit the efficiency of experimental solar cell 

iii. Find effect of a buffer layer on solar cell performance 

iv. Propose guidelines for efficiency enhancement of experimental designed 

solar cell 

v. To propose new buffer and window layers to improve the efficiency of solar 

cells. 

vi. To propose new absorber materials for getting high output voltage and high 

efficiency from thin film photovoltaic devices. 

vii. To discover alternate solutions for the cost reduction of thin film solar cells. 

viii. To propose a new photovoltaic device structure.  
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Device performances are described based on numerical modeling by using SCAPS 

software. The analysis was performed on the following parameters such as the thickness 

and doping concentration of absorber, buffer and window layers and working temperature 

to analyze their effects on the cell performance. SCAPS simulation software was used for 

the analysis of photovoltaic solar cells.  

1.3 Milestones achieved 

The main result accomplished in this work were: 

i. Numerical analysis guide is proposed to enhance the efficiency of 

experimental designed solar cell. 

ii. Interface recombination mitigation was proposed. 

iii. A new structure was proposed to enhance the efficiency of a solar cell. 

1.4 Structure of the thesis 

The thesis is organized in seven chapters whose contents are described below 

i. Chapter 1 includes the problem statement and contributions in this thesis. 

Thesis organization is also described in it. 

ii. Chapter 2 describes the semiconductor theory. 

iii. Chapter 3 Recombination losses in solar cell. 

iv. Chapter 4 Numerical analysis in SCAPS  

v. Chapter 5 Efficiency enhancement of experimental designed solar cell in 

SCAPS. 

vi. Chapter 6 proposed a model to select a suitable ETL for efficiency 

enhancement of CH3NH3SnI3 solar cell 

vii. Chapter 7 presents the concluding remarks
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2.1 Physics of p-n junction 

2.1.1 Semiconductors 

Semiconductor material belongs to group IVA of the periodic table with some alloys 

belongs to other groups of periodic table highlighted in blue shown in Figure 2.1 below 

[33].  

 

Figure 2.1: Common semiconductor materials 

Semiconductors are materials whose electrical properties lie in between of conductor and 

insulator. This happens because of the band gap of semiconductor material lies in between 

of conductor and insulator. So, in semiconductors electron need external energy to jump 

from valance band to conduction band to participate in electrical current. Electrical 

properties of semiconductors are heavily depended upon temperature. As with increase in 

temperature, the conductivity of semiconductor materials increases unlike in metals. This 

is well explained with the aid of band diagram for conductor, semiconductor and insulator.  

From Figure 2.2 for insulator the band gap energy value is too high to conduct current 

whereas for conductor band gap energy is zero so for electrons there is no external energy 

required for conduction of electric current but for semiconductor band gap energy is 

neither too large neither zero. So, for electrons in valance band for semiconductor requires 

a small amount of energy to jump from valance band to conduction band to participate in 

electric current. And when an electron (-) jumps from valance band to conduction band in 

case of semiconductor it leaves a vacant space in valance band that is filled by a hole (+) 

and with an increase in temperature concentration of electron in conduction band increases 

with proportional to holes in valance band. At given temperature T under thermal 

equilibrium current in pure semiconductors flows because of electrons in the conduction 
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band and holes in valance band. Because of this nature semiconductors gained much 

importance in the scientific community that flow of current can be altered at any given 

time just by controlling the ratio of charge carriers. To do so pure semiconductors were 

doped with impurities. 

 
Figure 2.2: Band diagram 

i. Trivalent doped semiconductor (p-type): 

The p-type semiconductor material is formed by adding trivalent boron (B) atom in the 

crystal lattice of pure silicon (Si) semiconductor material. Because of this trivalent atom, 

the concentration of holes increases as it acts as an acceptor concentration. This happens 

because added impurity is bonded with four atoms of Si but it only has three electrons to 

share with Si, a hole is created. This hole created by impurity behaves like a positive 

charge. This is shown in Figure 2.3 below [34]. 

 
Figure 2.3: p-type semiconductor 

When a p-type semiconductor is sourced by voltage supply; holes in valence band moves 

towards the negative terminal and thermally generated free electrons towards the positive 

terminal of the voltage supply source. This phenomenon is well understood from Figure 
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2.4. In p-type semiconductor, holes population in the valence band is more than thermally 

generated free electrons of conduction band under thermal equilibrium. Hence, in the p-

type semiconductor, minority carriers are free electrons and majority carriers are holes. 

 
Figure 2.4: Conduction in p-type semiconductor 

ii. Pentavalent doped semiconductor (n-type): 

The n-type semiconductor is fabricated by insertion of a pentavalent atom into the pure 

silicon (Si) semiconductor lattice. By insertion of pentavalent phosphorous (P) into the Si 

crystal lattice a free electron is created with every P atom in the crystal lattice and these 

impurities are called donor impurity. The free electron is created because P has 5 electrons 

to share with neighboring four Si atoms so one extra electron is given to conduction band. 

This is shown in Figure 2.5 for n-type semiconductor. 

             
Figure 2.5: n-type semiconductor 

When an n-type semiconductor is sourced by voltage supply; holes in valence band moves 

towards the negative terminal and free electrons towards the positive terminal of the 

voltage supply source. This phenomenon is well understood from Figure 2.6. In an n-type 

semiconductor, free electrons population in the conduction band is more than holes of a 
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valence band. Hence, in n-type semiconductor, minority carriers are holes and majority 

carriers are free electrons. 

 
Figure 2.6: Conduction in n-type semiconductor 

2.1.2 𝐩𝐧 junction 

A junction is formed by combining two different doped regions of a semiconductor that is 

p-type and n-type [35]. As shown in Figure 2.7, the left-hand side is a p-type region with 

the hole as majority carriers whereas the right-hand side is an n-type region with electrons 

as majority carriers.  

 
Figure 2.7: Cross section of a 𝑝𝑛 junction 

The principle of operation of formation of junction barrier at the interface is shown in 

Figure 2.8 with the aid of band diagram with vacuum energy level. From the band diagram 

in Figure 2.8 it is visible that Fermi energy level for p and n region are not aligned and to 

achieve thermal equilibrium diffusion of electron in p − side and hole in n − side is 

expected. This diffusion of the electrons and holes across the boundary interface leaves 

the ionized donor near to the junction region. This moment of electrons and holes across 
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the region create a depletion region which further stops the flow of electrons and holes 

across the junction. The band diagram for pn junction under thermal equilibrium is shown 

in Figure 2.9.  

 

Figure 2.8: Band diagram 

 

Figure 2.9: Band diagram under thermal equilibrium 

pn junction semiconductor diode has two electrodes, the anode, and cathode. Diode 

offered very low resistance to flow the electric current in one direction whereas very high 

resistance in other direction. Thus, a diode is a unidirectional device. Which only allow 

the flow of current in on direction while stops the current in other direction.  To attain 

extreme current in the forward direction or in low resistance, diode must be connected in 

forward bias (anode with positive and cathode with negative source potential) as shown in 

Figure 2.7. IV characteristics cure of pn junction diode is shown in Figure 2.10. The barrier 

potential for silicon diode is 0.7 V and for germanium diode is 0.3 V. This barrier potential 



C H A P T E R  2   Theory of Semiconductor 
 

 14 

is termed as cut-in voltage or knee voltage. Reverse characteristics can be obtained by 

reverse biasing the diode. Notice that a reversed biased diode only allows a flow of very 

small current because of minority charge carrier up to the point of breakdown and after 

that reverse current increases rapidly. 

 

Figure 2.10: 𝑝𝑛 junction semiconductor diode 𝑉𝐼 characteristics. 

2.2 Diode current equation 

Shockley’s equation explains the general characteristics for the reverse and forward bias 

regions of p-n junction diode[36]. The diode current equation is given below in equation 

2.1. 

I = Io [e
VD

ηVT − 1]                                                                   (2.1) 

Where 

I = Diode current 

I0 = Reverse saturation current 

VD = Diode voltage 

η =semiconductor constant, depends on the construction and operating conditions (1 to 2, 

usually taken as 1) 

VT = Thermal voltage (whereVT =
kBT

q
) 

Where 

kB = Boltzmann’s constant = 1.38 × 10−23 J/K 

T = Absolute temperature in Kelvin 
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q = magnitude of electronic charge =1.6 ×  10−19 C 

Therefore, with aid of equation 2.1 Figure 2.10 can be explained as with 𝑉𝐷 > 0 there will 

be an exponential increase in the diode current and with 𝑉𝐷 < 0 the current through the 

diode will be negligible. For voltage across the diode 𝑉𝐷 < 0 the diode is in reverse biased 

region and this is shown in Figure 2.11. 

 

Figure 2.11: Reverse biased pn junction 

With the negative end of the battery is connected to p-side of a diode and positive end of 

a battery is connected to n-type of a diode as shown in Figure 2.11. The width of the 

depletion region will increase and stopping the flow of current through the diode. Whereas 

when we change the polarity and positive end of the battery is connected to p-side of diode 

and n-side is connected to a negative end of the battery as shown in Figure 2.12 the width 

of depletion layer will be reduced and will force a large current to flow through the diode.  

     

Figure 2.12: Forward biased pn-junction 
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The current through diode will rise exponentially when the voltage across the diode 

increases the diode potential because diode offer low resistance in this region and with 

further increase in potential more charge carriers will be pushed.  

Application of pn-junction diode: 

pn-junction diodes are heavily used in daily life for commercial applications around the 

globe in power converter 

i. AC to DC converter 

ii. DC to AC converter 

iii. Oscillator 

Photonic applications  

i. LED’s (Light emitting diodes) 

ii. LASER diodes (Light amplification stimulated emission radiation) 

iii. Photodetectors (Infra-red and photocoupler) 

Photovoltaic application 

i. Solar cells (e.g. Si solar cell) 

From here we will discuss the application of semiconductor in photovoltaic. 

2.3 Introduction to photovoltaic 

The word “photovoltaic” was made up from the Greek word “pros” means light and 

“voltaic” means electricity associated with the name of Italian physicist Alessandro Volta. 

Electricity can be produced from the “photovoltaic effect”. An appropriate definition of 

the photovoltaic effect is the direct conversion of electromagnetic radiation (light) into 

electrical energy. The term “solar cell” is employed to describe a device, that can convert 

the energy of the sunlight into electrical energy. Sunlight is an important and abundant 

source that can be utilized to produce electrical energy by using solar cells. The first 

practical solar cell that was made available for industrial application was in 1950 after a 

long effort of intensive investigation by the research community. But the photovoltaic 

process was first discovered in 1839 by a French scientist Edmond Becquerel. Silver 

chloride (AgCl2) electrode was placed in acidic solution while connected with plutonium 

(Pt) electrodes [35].  When electrodes were illuminated it generates electric current and 

this was called photovoltaic effect which at that time was also known as “Becquerel 

effect”.  The next significant development in photovoltaic came when Adams and Day 

(1877) invented the first metal solar cell by exposing metal selenium (Se) to solar 

radiation. Light-induced crystallization of the outer layers of the selenium bar to the 

javascript:void(0);
javascript:void(0);
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photogenerated current was attributed by Adams and Day. The next breakthrough came in 

solar cell was after seven years from the invention of Se metal solar cell by Fritts (1883). 

This was the first thin film solar cell by placing Se metal between two different metals 

electrodes. The area of the first thin film solar cell invented in 1883 was of 30 cm2. But 

after the extensive studies, the first commercially available solar cell that was used in a 

satellite orbiting around the globe was demonstrated by Chapin, Pearson, and Fuller in 

1954 [37]. 

Today, mono-crystalline and poly-crystalline silicon solar cells with 1-sun conversion 

efficiencies ranging from 14.7% to around 25% have been demonstrated using different 

fabrication techniques with different device structures. There are several competing PV 

technologies available to produce commercial PV modules for terrestrial power generation 

and consumer electronics applications. They are (i) silicon solar cell modules made from 

single-crystal and polycrystalline silicon, (ii) low-cost thin-film solar cell modules 

fabricated from a − Si: H, Cu(In, Ga)Se2 (CIGS), and CdTe materials, and (iii) high-

efficiency multijunction tandem solar cells and concentrator solar cells using III-V 

compound semiconductors such as InGaP/GaAs and InGaP/GaAs/Ge material systems 

for solar cell fabrication. These solar cells and solar cell modules can be used in a wide 

variety of applications for consumer electronics, office, residential buildings, remote 

irrigation systems, microgrids and off-grid industrial systems [38]. To calculate the 

conversion efficiency of a solar cell, one needs to know the exact incident solar irradiance 

power under different illumination conditions. 

2.4 Physics of photovoltaics 

2.4.1 Photovoltaic effect 

Photovoltaic is a process that converts light energy into electrical energy when exposed to 

sun and the device that performs this task is called a photovoltaic cell or a solar cell. These 

cells made up of different semiconductor materials (p-type, n-type) that are merged 

together to form a pn-junction. By joining these two materials create a barrier which allows 

the flow of electron only in one direction and holes in the opposite direction to electrons. 

When light falls on semiconductor materials it generates electron-hole pairs in material 

that are extracted to provide power to an external load.  
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2.4.2 Working principle of solar cell 

The solar cell working principle is based on the photovoltaic effect that is the generation 

of charge carrier by absorbing light photons. This effect is closely related to the 

photoelectric effect, where the emission of electrons from a material is due to light 

absorption with a frequency above a material-dependent threshold frequency. This effect 

was explained by the scientist Albert Einstein in 1905 by assuming that the light comprises 

of well-defined energy quanta, called photons. The energy of such photon 𝐸𝑝ℎ is given in 

equation 2.2.  

𝐸𝑝ℎ  =  ℎ𝜈                                                                                    (2.2) 

Where     

𝑣 =
𝑐

𝜆
                                                                                      (2.3) 

Here c is the speed of light in a vacuum (c = 3 × 108m/s), h is the Planck’s constant 

(h = 6.626 ×  10−34 Js) and ν is the frequency of the light. For the explanation of this 

effect Einstein received the Nobel Prize in Physics in 1921  

Based on the theory if a photon has enough energy it will transfer its energy to the electron 

and eject it from the material surface and the kinetic energy of ejected electron was given 

as in equation 2.4. 

𝐾𝑚𝑎𝑥  =  ℎ𝜈 − ∅                                                                   (2.4) 

∅ =  ℎ𝑓0 is the work function, that is the energy required to knock out electron from the 

surface of a material with frequency 𝜈 >  𝑓0. The experimental study of the proposed 

theory is depicted in figure 2.13. 

 

Figure 2.13: Photoelectric effect 
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When the light hit the metal electrode (C) situated inside the bulb with frequency 𝜈 >  𝑓0 

connected to a negative end of the battery with other ends of electrode (A) connected to a 

positive end of the battery via potentiometer to break the photoelectron. A galvanometer 

is connected in series to electrode A to measure the photocurrent.  

Whereas in solar cell photoelectric works the same way for the generation of the electrons 

by incident of photons but for solar cell electron do not leave the material surface. In a 

solar cell these generated electrons were pulled off and fed to an external circuit called 

load. The photovoltaic effect can be divided into the following three basic processes [39]: 

i. Generation of charge carrier due to absorption of photons  

Photon absorption in PV material excites the electrons and they move from initial energy 

state (Ei) to higher energy state (Eh)  as given in Figure 2.14 and it is illustrated that 

electron present in the valance band (Ei, initial energy state) shifted to conduction band 

(Eh, final energy state) after absorption of photon energy. 

 

Figure 2.14: Absorption and emission of photon 

Photon energy can be absorbed only if Eh and Ei electron energy levels are present and are 

equal to their difference (hv = Eh − Ei).                                                    

In an ideal case, electron populates below the valance band edge (Ev) and above the edge 

of the conduction band (Ec) in a semiconductor. There is no other energy level for the 

population of electron in-between these two states. Hence the energy difference 

between Ec and Ev is called the band gap energy (Eg) and is given in equation 2.5.  

Eg  = Ec − Ev                                                                (2.5) 

So, the photon energy smaller than this band gap energy will not be absorbed. And for 

Eph ≥  Eg electron will be excited from Ei state to Ef state creating a void in valance band. 

This void created by absorption of photon will also be represented by a particle called hole. 
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So, absorption of a photon will lead to a generation of electron hole pair as shown in figure 

2.15 below and this shows the conversion of radiation energy of sunlight in to chemical 

energy of electron hole pairs.  

ii. Separation of photo-generated charge carrier in a junction 

Recombination takes place in electron-hole pairs and the electron will fall back to its initial 

energy state Ei by releasing absorber energy in the form of radiative recombination (photon 

emission) or non- radiative recombination (transfer of energy to other electron-holes 

pairs). So, to utilize the energy absorbed by electron-hole pairs and provide power to 

external load semipermeable membrane must be present on both sides of the absorber layer 

that allow the use of energy stored in these electron-hole pairs. Electrons flow out from 

one membrane whereas holes from other as depicted in Figure 2.15 [40]. From Figure 2.15 

it is illustrated that electrons and holes are separated due to semipermeable membranes. 

These membranes are formed by p-type and n-type materials. The solar cell is designed in 

such a manner that before recombination of electron-hole pairs they must be reached to 

the membrane. It means that time required to reach these charge carriers to their respected 

membrane must be shorter than their lifetime. Because of this reason, optimal thickness of 

the absorber material was chosen in efficient solar cell design.  

 

Figure 2.15: Photon generated charge carrier separation 

iii. Extraction of photo-generated charge carrier due to absorption of light 

Photogenerated charge carriers are extracted with the help of externally connected 

electrical contacts or terminals and able to use this energy in an external circuit. This 

phenomenon is well illustrated in Figure 2.15. Finally, in this stage, light energy is 
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converted into electrical energy. After passing from external circuit these electrons are 

recombined with holes at back contact and at the absorber layer interface. 

2.5 Basic parameters and electrical characterization methods 

2.5.1 𝐈𝐕 characteristic of a PV device 

IV characteristics curve of a photovoltaic device is the graphical representation of the 

operation of the solar cell. The photovoltaic cell IV characteristics curve is the 

superposition of the IV curve of the solar cell diode in dark (absence of light) and 

illuminating (under light) conditions[41]. In dark conditions solar cell has same electrical 

characteristics as a large diode. When light falls on the solar cell, electrical power can be 

extracted and IV curve down into the fourth quadrant. Amount of shift is directly 

proportional to the incident light intensity. Illuminating a cell adds to the normal "dark" 

currents in the diode so that the diode law becomes as given in equation 2.6. 

𝐼 = 𝐼0 [𝑒𝑥𝑝 (
𝑞𝑉

𝑛𝑘𝑇
) − 1] −  𝐼𝐿                                                             (2.6) 

where  

I0 = diode leakage current in absence of light or dark saturation current 

IL= light generated current 

q = electronic charge 

V= applied terminal voltage across diode 

n = ideality factor 

k= Boltzmann’s constant 

T=temperature 

2.5.2 Short circuit current 

Short circuit current (Isc) is the maximum current flows through the solar cell at zero load 

condition (i.e. solar cell at short-circuited). At the largest value of  Isc voltage across the 

solar cell will be zero. The short-circuit current flows due to generation and collection of 

light generated carriers. It mainly depends on the number of incident photons as well as its 

spectrum, optical properties, collection probability and the area of a solar cell. The 

graphical representation of short circuit current is given in Figure 2.16. 
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Figure 2.16: Short circuit current and open circuit voltage representation in VI cure 

2.5.3 Open circuit voltage 

The open circuit voltage (Voc) is the maximum voltage taken from a solar cell. When a 

solar cell is open circuited, there is no connected load across the solar cell then current will 

be at its minimum (zero) value whereas the voltage will be at maximum value.Voc can be 

derived by setting net current to zero in solar cell equation 2.7.  

𝑉𝑜𝑐 =
𝑛𝑘𝑇

𝑞
ln (

𝐼𝐿

𝐼0
+ 1) 𝑎𝑡 𝐼 = 0                                               (2.7) 

From the above equation, open circuit voltage (Voc) depends on the light generated (IL) 

and saturation current (I0).  I0 depends on recombination in the solar cell. so, Voc is a 

measure of the amount of recombination in a solar cell. The graphical representation of 

open circuit voltage is given in Figure 2.17. 

 

Figure 2.17: Graphical representation of open circuit voltage 
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2.5.4 Efficiency 

Efficiency is the ratio of output power to input power and solar cell efficiency is defined 

in regime 0 to Voc in which solar cell will deliver power. So, the output power density of 

solar cell is given by equation 2.8. 

𝑃𝑚𝑎𝑥 = 𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥                                                             (2.8) 

Power (𝑃𝑚𝑎𝑥) reached to its maximum at cell maximum power point shown in Figure 2.17. 

So, efficiency of solar cell is defined by equation 2.9. 

𝜂 =
𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝑃𝑆
                                                             (2.9) 

𝑃𝑆 is the incident power of sunlight. 

Equation 2.9 can be rearranged in terms of fill factor (FF) and FF is the quality measure 

for solar cell performance by taking the ratio of maximum power delivered by a solar cell 

to the theoretical power of a solar cell. FF can also be interpreted as the ratio of rectangular 

areas depicted in figure 2.17 for maximum power point and (MPP) and theoretical 

maximum power Pmax.  

 

FF is defined in equation 2.10. 

𝐹𝐹 =
𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝐽𝑜𝑐𝑉𝑜𝑐
                                                             (2.10) 

So, by rearranging equation 2.10 we will get (𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥 =  𝐹𝐹 × 𝐽𝑜𝑐𝑉𝑜𝑐) and by 

replacing the value of (𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥) in equation 2.9 we will get equation 2.11 as given 

below. 

𝜂 =
𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑆
                                                             (2.11) 
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The core of this study is to provide an overview of how a solar cell performance is affected 

by recombination loss in perspective of SCAPS-1D for the realization of an experimental 

solar cell in a simulation environment. A brief overview about semiconductor and the solar 

cell was covered in chapter 2. Whereas in this section, we will relate basic physical 

properties of charge transfer of recombination loss in a solar cell. 

3.1 Recombination loss 

Incident photon generates an electron-hole pair in solar cell and these generated electron-

hole pairs are called carriers. Generated carriers need to separate before they combined 

again and emit energy. This recombination in a solar cell causes the loss of photon 

generated carriers which in terms affect the conversion efficiency of solar cell. 

Recombination in the solar cell occurs at different places as carriers are generated in the 

different the region of a solar cell. Carriers generated near depletion region are separated 

by the electric field of depletion region but carries generated at the front, bulk and far end 

of solar cell has a small probability to get separated.  So, carriers generated in these regions 

will recombine again with the emission of absorbed energy and will not contribute to the 

photovoltaic process. So, to improve the efficiency of solar cell recombination of those 

carriers must be governed. 

There are three major kinds of recombination losses in a solar cell that affect solar cell 

performance, and these are listed as.  

i. Bulk recombination loss 

ii. Interface recombination loss 

iii. Recombination at metal semiconductor contacts 

3.1.1 Bulk recombination loss 

If impurities are present in the semiconductor material, then these impurities create energy 

state which acts as a trap for photon generated carriers. A model for trap assisted bulk 

recombination loss is given by Shockley-Read hall recombination and this is illustrated 

with the aid of Figure 3.1 [42]. 

Figure 3.1 shows the possible ways with which holes and electron may recombine and 

these processes are denoted by, R1 a possible way with which electron will be capture at 

energy state Et, R2 emission of electrons from trap state, R3 capture of holes, R4 emission 

of holes. So, to find out the dependency of these process on trap state we will analyze these 

four processes individually. For R1 as from diagram, trapping of the electron is depended 
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upon the concentration of electrons, defect density of state and probability of the empty 

state of these traps. Mathematically this is expressed as in equation 3.1.  

 

Figure 3.1: Trap assisted recombination 

𝑅1 =  𝑣𝑡ℎ𝜎𝑛𝑛𝑁𝑡 (1 − 𝑓𝑡)    (3.1) 

𝑣𝑡ℎ𝜎𝑛 are proportionality constants, n is concentration of electrons, 𝑁𝑡 is density in trap 

states, and 𝑓𝑡 is the probability of occupation of trap state for electron. And expression for 

𝑓𝑡 is given in equation 3.2.  

𝑓𝑡 =  
1

1+ 𝑒𝑥𝑝
(
𝐸𝑡− 𝐸𝑓

𝑘𝑇
)

     (3.2) 

𝐸𝑡 is energy of trap state and 𝐸𝑓 is fermi energy level.  

For process R2 in which electron is emitted in to conduction band is expressed as emission 

of electron with probability of occupation of trap state. This relation is given in equation 

3.3. 

𝑅2 =  𝑒𝑛𝑁𝑡  𝑓𝑡      (3.3) 

𝑒𝑛 is emission of electron. For hole capture and hole emission expression is given in 

equation 3.4 and 3.5. 

𝑅3 =  𝑣𝑡ℎ𝜎𝑛𝑝𝑁𝑡 𝑓𝑡     (3.4) 

𝑅4 =  𝑒𝑝𝑁𝑡 (1 − 𝑓𝑡)     (3.5) 

To find the emission rate for electron we assume that capture of electron and emission of 

electron from trap state are equal. So related R1 and R2 with each other we can find 

emission rate for electron.  

𝑅1 =  𝑅2      (3.6) 
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putting value of R1 and R2 in equation 3.6 it will become as  

𝑣𝑡ℎ𝜎𝑛𝑛𝑁𝑡 (1 − 𝑓𝑡) =  𝑒𝑛𝑁𝑡  𝑓𝑡     (3.7) 

further solving, rearranging for 𝑒𝑛  and putting value for 𝑓𝑡 in equation 3.7 it will become 

as equation 3.8. 

𝑣𝑡ℎ𝜎𝑛𝑛 (1 − 𝑓𝑡) =  𝑒𝑛 𝑓𝑡 

𝑒𝑛 =  
𝑣𝑡ℎ𝜎𝑛𝑛 (1 − 𝑓𝑡)

𝑓𝑡
 

𝑒𝑛 =  𝑣𝑡ℎ𝜎𝑛𝑛 (
1

𝑓𝑡
− 1) 

𝑒𝑛 =  𝑣𝑡ℎ𝜎𝑛𝑛 𝑒𝑥𝑝(
𝐸𝑡− 𝐸𝑓

𝑘𝑇
)
 

where 𝑛 =  𝑛𝑖 𝑒𝑥𝑝(
𝐸𝑓−𝐸𝑖

𝑘𝑇
)
so replacing n with the value we will get 

𝑒𝑛 =  𝑣𝑡ℎ𝜎𝑛𝑛𝑖  𝑒𝑥𝑝(
𝐸𝑡− 𝐸𝑖

𝑘𝑇
)
    (3.8) 

for 𝑒𝑝the expression will be as given in equation 3.9. 

𝑒𝑝 =  𝑣𝑡ℎ𝜎𝑛𝑛𝑖  𝑒𝑥𝑝(
𝐸𝑖− 𝐸𝑡

𝑘𝑇
)
    (3.9) 

now to derive Shockley recombination model we know that under equilibrium generation 

rate is equal to recombination rate.  

𝐺 =  𝑈 =  𝑅1 −  𝑅2 = 𝑅3 − 𝑅4   (3.10) 

so, solving it for equation 3.10 we will get equation 3.11 for total recombination. 

𝑈 =  𝑣𝑡ℎ𝜎(𝑛,𝑝)𝑁𝑡
𝑛𝑝− 𝑛𝑖

2

𝑛+ 𝑝+2 cosh(
𝐸𝑡− 𝐸𝑖

𝑘𝑇
)
    (3.11) 

from equation 3.11 it is evident that recombination is highly depended upon density of 

defect states 𝑁𝑡, capture cross section for (electron, holes) 𝜎(𝑛,𝑝)and concentration of 

(electron, holes).  

3.1.2 Interface recombination loss 

The incomplete bonds at the interface of solar cell work as a trap for photon generated 

carriers. So, loss due to irregular crystal shape at the interface is called interface 

recombination loss. defects at the interface arise because of lattice mismatch, different size 
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in grain boundaries and injection of impurity during junction formation between absorber 

buffer interface. These trap state at the interface cause interface recombination and result 

in loss of open circuit voltage (𝑉𝑜𝑐) of a solar cell. This is illustrated with the aid of Figure 

3.2 and from Figure 3.2, there are two possible interfaces that can be formed between the 

absorber/buffer interface [43]. With electron affinity of absorber smaller than the buffer, a 

cliff like an interface will be formed with positive conduction band offset (+CBO) as 

shown in Figure 3.2(a). And with the electron affinity of absorber larger than the buffer a 

spike like interface will be formed with a negative conduction band offset (-CBO) as 

shown in Figure 3.2(b).  

 

Figure 3.2: Interface between absorber/buffer layer 

The difference between these two interfaces is the built-in potential at the junction 

interface. For cliff like interface the built-in potential is smaller than that of spike interface 

thus creating a weak charge separation in the depletion layer and leading to high interface 

recombination. 

Interface recombination of a solar cell is depended upon defect density and the relation for 

interface recombination can be derived from equation 3.10 and solving it for interface 

recombination. Now putting the value of 𝑅1 and 𝑅2 in the equation 3.10 we will get 

equation 3.12. 

𝑅𝑖𝐹 =  𝑆𝑛𝑛 (1 − 𝑓𝑡) −  𝑆𝑛 𝑓𝑡  𝑛1   (3.12) 

whereas 𝑓𝑡 =  
𝑆𝑛𝑛+𝑆𝑝𝑝1

𝑆𝑝(𝑝+ 𝑝1)+ 𝑆𝑛(𝑛+ 𝑛1)
 that can be found from equation 3.10 by solving it 

for 𝑓𝑡, 𝑆𝑝 =  𝑣𝑡ℎ𝜎𝑝𝑁𝑡, 𝑆𝑛 =  𝑣𝑡ℎ𝜎𝑛𝑁𝑡 and 𝑛1 =  𝑛𝑖exp (
𝐸𝑡− 𝐸𝑖

𝑘𝑇
). Now putting the value 
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of 𝑓𝑡 in equation 3.12 we will get the result for interface recombination that is expressed 

in equation 3.13. 

𝑅𝑖𝐹 =  𝑆𝑛  (1 −
𝑆𝑛𝑛+𝑆𝑝𝑝1

𝑆𝑝(𝑝+ 𝑝1)+ 𝑆𝑛(𝑛+ 𝑛1)
) − 𝑆𝑛  

𝑆𝑛𝑛+𝑆𝑝𝑝1

𝑆𝑝(𝑝+ 𝑝1)+ 𝑆𝑛(𝑛+ 𝑛1)
 𝑛1 

𝑅𝑖𝐹  =  
𝑆𝑛𝑆𝑝(np −  𝑛𝑖

2)

𝑆𝑛(𝑛 + 𝑛1) +  𝑆𝑝(p + 𝑝1)
 

𝑅𝑖𝐹  =  
np− 𝑛𝑖

2

𝑆𝑝
−1(𝑛+𝑛1)+ 𝑆𝑛

−1(p+𝑝1)
    (3.13) 

𝑝𝑖𝐹 concentration of hole at interface, , 𝑛𝑖𝐹 concentration of electron at interface, (𝑝 =

 𝑁𝑣𝑒
−(𝐸𝑖𝐹−𝐸(𝑉,𝑖𝐹))

𝑘𝑇
⁄

) is the emission rate of holes from defect states, (𝑛 =

 𝑁𝑐𝑒
−(𝐸(𝑐,𝑖𝐹)−𝐸𝑖𝐹)

𝑘𝑇
⁄

) emission rate of electrons from defect states, 𝑆𝑝 is hole interface 

recombination velocity, 𝑆𝑛 is electron interface recombination velocity and 𝑅𝑖𝐹 is total 

interface recombination. Whereas (𝑆𝑝, 𝑆𝑛) are depended upon defect density at the 

interface 𝑁𝑡 (𝑖𝐹), capture cross section area for electron and hole at interface (𝜕𝑛 , 𝜕𝑝) and 

thermal velocity of carries 𝑣𝑡ℎ.   

From equation 3.13 it is evident that surface/interface recombination loss is depended upon 

defect density and concentration of charges (electron, holes) at the interface. So, this loss 

can be reduced by introducing a passivation layer to avoid any lattice mismatch between 

absorber/buffer interface or by controlling band offset between the absorber/buffer 

interface.  

3.1.3 Recombination at metal semiconductor contacts 

When a metal brings in contact to a semiconductor a junction is formed between the metal 

contact and the semiconductor material of a solar cell both at the front and at the back. 

Back contact contributes more in the recombination process as it has a wider contact area 

with the semiconductor of solar cell, this is shown in Figure 3.3.  

Carriers that are generated and separated by depletion region electric field need to be 

collected at metal contacts to provide power to load. Because if they get recombine by 

defects in metal semiconductor contact then this in term affect solar cell efficiency [44]. 

Passivation of rear contact or creating a strong electric field at rear contact can reduce 

surface recombination velocity and recombination process. Strong Electric field at rear 

contact can sweep those generated carriers very quickly. The electric field at the back 

contact can be created by heavily doping the semiconductor near the contact region. This 
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high doping at rear contact will create a back-surface field (BSF) and this field helps in to 

improve the efficiency of a solar cell [45,46].  

 
Figure 3.3: BSF layer at back contact 

3.2 Effect of minority charge carrier mobility on recombination 

The mobility of the charge carrier of bulk semiconductor material can greatly affect the 

performance of solar cell [47]. As it also plays a key role in defining the diffusion length 

of minority carriers (𝐿𝑑𝑖𝑓𝑓). Diffusion length is average length scale over which it can 

travel in semiconductor material before recombining. Minority carrier diffusion length is 

defined in equation 3.14 [48]. 

𝐿𝑑𝑖𝑓𝑓 =  √𝐷𝜏     (3.14) 

𝐷 is diffusion coefficient and 𝜏 is minority carrier lifetime. 𝐷 is depended upon elementary 

charge of carrier (𝑞), environment temperature (𝑇), Boltzmann’s constant 𝑘 and mobility 

of carrier 𝜇. Relation ship of 𝐷 is given in equation 3.15.  

𝐷 =  𝜇
𝑘𝑇

𝑞
     (3.15) 

So, putting the value of equation 3.15 in equation 3.14 it will become as given in equation 

3.16. 

𝐿𝑑𝑖𝑓𝑓 =  √𝜇
𝑘𝑇

𝑞
𝜏     (3.16) 

From equation 3.16, the mobility of minority carriers will greatly affect the diffusion 

length. With an increase in mobility the probability of collection of photogenerated charge 

carrier at the terminals will increase and thus contributing in enhanced photocurrent for a 

solar cell. Whereas a reduction in mobility will cause degradation in solar cell 

performance. 
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4.1 Introduction 

Performing numerical analysis methods by integrating real-life problem into a virtual 

machine environment like a computer are considered a high priority job. By the integration 

of computers in numerical problem solving has led the researcher to find an optimum way 

of performing complex problem-solving in an efficient way. With the aid of computers, 

precious time was saved, and it was easy to optimize any real time design problem without 

physically implementing it in real test environments.  Because of this reason computer-

based learning is emphasized over worldwide universities. Computer-based learning 

systems have helped the researchers in the field of semiconductor devices. As today most 

of the world market is dominated by semiconductor devices like mobile phones, laptops, 

computers, street lights, and solar panels. In the field of semiconductor devices, the most 

prominent field is a solar cell. A semiconductor device can be used to convert sunlight into 

electrical energy and due to excessive demand of electric energy by consumers solar cell 

is a good alternative to meet user demands [49–52].  But currently, most of the world 

energy demand is meet by hydel power plants, coal-fired thermal power plants, natural 

gas-fired thermal power plants, and nuclear power plants [53]. The burning of fossil fuel 

has a drastic effect on climate change, so extensive research is being done in the field of 

solar photovoltaics (solar cell) [54–56]. New and improved design for a solar cell is 

developed at a very rapid pace with efficiency reaching to limit of 22% [38]. But the cost, 

availability, and stability of these devices for further commercial development is still an 

issue [57–59]. So, in dealing with these issues of solar cell numerical analysis of solar cell 

on a computer can play a vital role. As Computer allows flexibility in the design of realistic 

problem, experimentation with different hypotheses can easily be performed. And a 

complete set of device characteristic can often be easily generated by consuming less 

amount of time and effort than a small set of hand-calculated single point values.  

Based on the discussion above it is evident that for rapid improvement in design and 

efficiency numerical analysis of photovoltaic solar cells is an imperative approach to 

assess the practicability of the proposed physical structure and its performance. In this 

chapter effect of physical parameters like the thickness of solar cell layers, doping 

concentration of layers and temperature on solar cell performance will be explained with 

the aid essential input parameters for a solar cell. It is very valuable to take a common 

baseline or starting point for numerical analysis of solar cell [60]. This numerical 
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investigation will yield fallouts for, predicting the outcome of changes in material 

properties and testing the practicability of proposed physical explanation.  

4.2 Basic semiconductor equation 

To analyze solar cell with the aid of numerical analysis software must be capable of solving 

basic semiconductor equations. These equations play a key role in analyzing solar cell 

performance and its possible output. Among these equations, the governing equation is 

Poison equation for electrostatic potential. Equation 4.1 represent Poison’s equation for 

electrostatic potential [61].  

d2V

dx2
=   

ρ

ε
                    (4.1) 

𝜌 is density of charge (C/𝑐𝑚3) and 𝜀 is product of semiconductor dielectric constant and 

permittivity of free space. From charge neutrality equation 𝜌 can be expressed as given in 

equation 4.2 with assumption that dopant is totally ionized.  

𝜌 = 𝑞(𝑝 − 𝑛 +  𝑁𝐷
+ +  𝑁𝐴

−)                 (4.2) 

where 𝑞 is electronic charge, 𝑝 is concentration of holes, 𝑛 concentration of electrons, 𝑁𝐴
− 

ionized acceptor dopant carrier concentration and 𝑁𝐷
− is ionized donor dopant carrier 

concentration. by putting the value of equation 4.2 in equation 4.11 it will become as 

equation 4.3.  

d2V

dx2 =   
𝑞(𝑝−𝑛+ 𝑁𝐷

++ 𝑁𝐴
−)

ε
                   (4.3) 

And to solve equation 4.3 for V as a function position value of x one must have to rearrange 

the expression for concentration of carriers (𝑝, 𝑛).  

Second equation called continuity equation, the reason that continuity equation is called 

governing equation is because drift, diffusion, generation and recombination are analyzed 

simultaneously. equation 4.4 and equation 4.5 represent continuity equation for 

concentration change in electron and hole. 

𝜕𝑛

𝜕𝑡
=  

1

𝑞
 
𝜕𝐽𝑛

𝜕𝑥
+ (𝐺𝑛 − 𝑅𝑛)     (4.4) 

𝜕𝑝

𝜕𝑡
=  

1

𝑞
 
𝜕𝐽𝑝

𝜕𝑥
+ (𝐺𝑝 − 𝑅𝑝)     (4.5) 

The output from equation 4.1,4.4 and 4.5 have non-linear dependencies on charge carrier 

concentration (𝑝, 𝑛). So, these equations will be solved with numerical techniques with 

standard approaches like discretization of equation, discretization of device and set of 

boundary conditions. To measure current characteristics of solar cell simulator must be 
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able to solve drift-diffusion equation for current in solar cell. The equation for drift-

diffusion of charge carriers is given in equation 4.6 and equation 4.7 [62]. 

𝐽𝑛 =  𝑞𝜇𝑛𝑛𝜖 +   𝑞𝐷𝑛𝜕𝑛     (4.6) 

𝐽𝑝 =  𝑞𝜇𝑝𝑝𝜖 −   𝑞𝐷𝑝𝜕𝑝     (4.7) 

(𝐽𝑛, 𝐽𝑝) are the current density for electron and holes, (𝜇𝑛, 𝜇𝑝) mobility of carriers, (𝐷𝑛, 𝐷𝑝) 

diffusion coefficient of electron and holes and from Einstein relationship diffusion 

coefficient is depended upon mobility of carrier with product of carrier lifetime. Relation 

of 𝐷𝑛 with mobility of carrier is given in equation 4.8. 

𝐷(𝑛,𝑝) =  𝜇(𝑛,𝑝)
𝑘𝑇

𝑞
     (4.8) 

other quantities need to solve to find the solution for equation 4.3, 4.4 and 4.5 are 

generation and recombination (𝐺, 𝑅) and this can also be expressed as net recombination 

in device (U). That is represented in equation 4.9 for n-type semiconductor. 

𝑈 =  
𝑝− 𝑝0

𝜏𝑝
            (4.9) 

There are different commercially available software and educational software for 

numerical analysis of solar cell that solves these basic semiconductor equations. The list 

of software that are available free for an educational purpose is listed below. 

i. SCAPS-1D (Solar cell capacitance simulator) 

ii. AMPS-1D (Analysis of Microelectronics and Photonics Structures) 

iii. AFORS-HET (Automat FOR Simulation of Heterostructures) 

iv. PC1D 

v. ASA (Amorphous Semiconductor Analysis) 

Among these different software’s listed above we use SCAPS-1D for our work and the 

reason for selection of SCAPS is because extensive literature is available for SCAPS and 

its possible applications for the analysis of a solar cell.  

4.3 SCAPS-1D 

SCAPS-1D (Solar Cell Capacitance Simulator) is a one-dimensional solar cell simulation 

program developed at the Department of Electronics and Information Systems (ELIS) of 

the University of Gent, Belgium. Several researchers have contributed to its 

development: Alex Niemegeers, Marc Burgelman, Koen Decock, Stefaan Degrave, Johan 

Verschraegen.  
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SCAPS program was originally developed for CuInSe2 and the CdTe family. Recent 

developments make the program now also applicable to crystalline solar cells (Si and GaAs 

family) and amorphous cells (a-Si). 

The most recent version, SCAPS 3.7, April 2012, includes: 

i. Seven semiconductor layers. 

ii. All physical parameters required for solar cell / semiconductor can be modeled in 

SCAPS. (𝐸𝑔, 𝜒, 𝜀, 𝑁𝐶 , 𝑁𝑉, 𝑣𝑡ℎ𝑛, 𝑣𝑡ℎ𝑝, µ𝑛, µ𝑝, 𝑁𝐴, 𝑁𝐷 ,  (defects) 𝑁𝑡 ). 

iii. Recombination profiles in solar cell. (SRH, Auger). 

iv. Defects density in bulk of semiconductor and at interface. 

v. Defects with charge type. (Neutral, Single (donor, acceptor), double (donor, 

acceptor), defined by a user). 

vi. Defect with different energy distribution: uniform distribution, single level 

distribution, Gaussian distribution, and band tails. 

vii. Work function of working electrodes/contacts for a solar cell with an optical filter. 

viii. Illumination of a working structure with different spectra available in the literature 

(AM0, AM1.5D, AM1.5G, monochromatic, white). 

ix. Illuminate device from either side. (Front contact, back contact with cutoff filters). 

x. Calculate: (Energy band diagram, I − V curve, C − V curve, quantum efficiency, 

recombination profile with temperature). 

xi. Run simulation under batch setting with controlled iteration. 

xii. Simulation can be run by writing scripts for SCAPS. 

xiii. A user can save its personalized setting for startup of SCAPS. 

xiv. Friendly user interface. 

xv. A built-in curve fitting facility. 

4.3.1 SCAPS-ID front end interface 

Figure 4.1 shows the front-end interface of SCAPS-1D software. it majorly consists of 4 

panels and the overview of these panels is listed below. 

i. Problem definition panel is used to define a solar cell structure that we want to 

define in SCAPS software, analyze simulated output, save data of simulated output 

and clear simulated history from SCAPS. To define a solar cell structure, we need 

to click on a set problem button. 
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ii. Action panel is for reading scale setting and this panel consists of I − V 

characteristics scale calibration and setting, C − V capacitance voltage setting, C −

F capacitance frequency setting and QE quantum efficiency setting.  

iii. Illumination panel is for spectrum setting and direction from where solar cell 

structure will be illuminated 

iv. Working point is for a setting of operating temperature  

 
Figure 4.1: SCAPS front end interface 

4.3.2 SCAPS-ID problem setting 

To set or define a problem in SCAPS we click on “Set problem” button and after clicking 

on set problem button another interface will open. This interface is called “Solar cell 

definition panel” and in this panel, we define the structure of our solar cell. This panel 

plays a key role in defining solar cell because structure definition and visualization is 

shown in this panel. To explain this panel, it is divided into three categories as shown in 

Figure 4.2. 

Explanation of these categories is listed below. 

i. Consists of 5 buttons and the function of these buttons is to load a structure file 

from SCAPS structure definition library or to save already modeled structure 

in SCAPS definition library. After loading the file or creating the new structure 

we click “OK” to return to the main front-end interface for further analysis. 
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ii. This consists of front and back contact and layers that we are going to define 

for our solar cell structure. From Figure 4.2, it is visible that SCAPS can only 

support 7 layers structure for numerical analysis of solar cell. 

iii. This section is for visualization of defined solar cell structure with illumination 

from the front or back contact. In this section there are some buttons which are 

used to define illumination from front or back contact, applied potential and 

current reference. 

 

Figure 4.2: SCAPS solar cell definition panel 

4.3.3 Adding layers to structure 

To define layers in SCAPS for construction of solar cell structure we click on add layer as 

shown in Figure 4.2 section 2. So, by clicking on add layer another panel will open, and 

this is called “Layer properties panel”. In this panel, we will set the basic physical 

parameters for our layer and this shown in Figure 4.3.  

After setting the problem in SCAPS environment next step was to perform numerical 

analysis for defined structure and to analyze the effect of different physical parameters on 

solar cell performance like the thickness of absorber layer, buffer layer, doping 

concentration of absorber layer, a buffer layer, and operating temperature.  
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Figure 4.3: Layer properties panel 

4.4 Baseline simulation for numerical analysis of 𝐒𝐧𝐒 solar cell [63] 

The simulation model that was set up in SCAPS software used to found out the electrical 

characteristics (AC and DC) of heterojunction solar cell. In this environment, the solution 

which was generated for the case of our simulation has the result of dark and illumination 

current along with some other characteristics. Based on Poison equation, electron, and hole 

current equation SCAPS had the distinction to appropriately evaluate the steady-state band 

diagram, recombination profile; transport carrier in 1D. Model proposed in this section 

consists of three layers and these were ZnO/n − CdS/p − SnS. The output of a 

photovoltaic device is highly depended on the parameters such as the concentration of 

charge carriers, temperature thickness of photovoltaic cell also optical and electrical 

properties. The necessary parameters in the SCAPS-1D simulation environment for PV 

device including SnS absorbers are presented in Table 4.1.  

Table 4.1: Parameters for simulation [9-10] 
Parameters ZnO n-CdS SnS 

Thickness, W (μm) 0.01-0.1 0.01-0.5 0.1-4 

Bandgap, Eg (eV) 3.35 2.42 1.2-1.4 

Electron affinity, χ (eV) 4.5 4.4 4-4.2 

Dielectric permittivity, ε/ε0 9 10 13 

Conduction band Density of states, NC (cm−3) 2.2x1018 2.2x1018 1.18x1018 

Valance band Density of states, NV (cm−3) 1.8x1019 1.7x1019 4.76x1018 

Electron mobility, μe(cm2/Vs) 100 340 15 

Hole mobility, μp (cm2/Vs) 25 50 100 

concentration of Electron and hole, n, p (cm−3) 1018 1x1017 1x1015 
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4.4.1 Results and discussion 

In this section, we will analyze the energy band diagram and the effect of various physical 

parameters on solar cell performance like the thickness of each layer (absorber, buffer) 

and operating temperature. The purpose of this work was to get an idea that how these 

parameters affects solar cell performance.   

i. Energy band diagram 

p − SnS/n − CdS/ZnO photovoltaic cell Energy band diagram is given in Figure 4.4 with 

illumination in a biased condition. This was obtained for analysis from the output of 

SCAPS. The band diagram helps in explaining the property of a photovoltaic cell and it is 

visible that SnS has a band gap in the range of 1.2 eV to 1.4 eV. For incident light photons 

the value that is best for most of light to be absorbed for effective conversion efficiency is 

equal to or greater than maximum value of 1.2 eV. 

ii. Current density and voltage characteristics of 𝑺𝒏𝑺 based photovoltaic device 

In this step, we tested photovoltaic cell characteristics under dark and illuminated 

conditions. The working of a photovoltaic cell is to alter light energy into electrical energy. 

To analyze a diode, and to find out diode operating characteristics dark current analysis 

was needed. A photovoltaic cell is a big flat diode in the dark. Figure 4.5 shows the J − V 

curve of SnS/CdS/ZnO photovoltaic cell. Photovoltaic cell gives an extreme minimum 

value of current due to its minority carriers in dark. Under illumination, the photovoltaic 

process starts because of incident photons, and these photons will generate charge carriers 

which are produced after exposing the solar cell to sunlight condition of 1 Sun (Air Mass 

1.5). 

 
       Figure 4.4: Energy band diagram 
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Figure 4.5: Dark and illuminated curve of photovoltaic cell 

iii. Effect of 𝑪𝒅𝑺 layer on photovoltaic cell performance 

In this stage, the outcome of thickness of CdS layer was analyzed by varying the thickness 

and keeping another layer thickness constant. Layer thickness was varied from 0.1 µm to 

0.5 µm.  Figure 4.6 shows the effect of main photovoltaic cell parameters by varying 

thickness of the CdS buffer layer. From figure 4.6 CdS layer thickness has no effect on 

photovoltaic cell performance, so this result was comprehended that change in thickness 

of CdS layer has no effect on solar cell performance. 

 

Figure 4.6: CdSlLayer thickness 

iv. Optimization of absorber layer thickness 

In this step, absorber layer thickness was varied from 1 µm to 3 µm to find out the optimum 

point for maximum conversion efficiency of SnS based photovoltaic cell. The outcome of 
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the main factors of a soalr cell as a function of a thickness of the absorber layer for SnS is 

shown in Figure 4.7. It was observed that by increasing the thickness of SnS absorber layer 

the efficiency of light conversion for a solar cell was improved, but with a much slower 

rate reaching 3 µm. Optimal thickness for absorber layer was 3 µm, as shown in the 

spectral representation.  

 
Figure 4.7: Absorber layer thickness 

v. Effect of temperature on the performance of photovoltaic cell 

From diode characteristic equation it is evident that environmental temperature has a key 

part in evaluating the performance of a solar cell. The solar cell performance was affected 

by varying temperature. To carry out simulation the temperature was varied from 260 K 

to 400 K. Figure 4.8 shows the effect of temperature on photovoltaic cell performance.  

 
Figure 4.8: Effect of Temperature 
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At room temperature photovoltaic cell operates at its near maximum. But with a slight 

change in temperature, there is a drastic change in photovoltaic cell parameters. As 

temperature directly affect the mobility electron hole-pair, carrier concentration and band 

gap of material. 

4.4.2 Conclusion 

The numerical model of a solar cell helps a researcher to get the inside details of a solar 

cell. This works reports the outcome for changing the thickness of absorber layer, 

temperature, and doping concentration of acceptor on the performance of SnS based thin 

film soalr cell. The dark characteristic of solar cell is just like a normal Schottky diode but 

in illumination, the current density increased up to 38.52 𝑚𝐴/𝑐𝑚2. The thickness of the 

absorber layer also affects the current density, efficiency, fill factor and open circuit 

voltage. The optimum value of absorber thickness was chosen to be 3 µm. Temperature 

also influences photovoltaic cell performance; the optimal temperature which was used for 

numerical analysis is 300K. Overall efficiency decreased with increase in temperature. 

4.5 Adding back surface field layer to 𝐙𝐧𝐎/𝐧 − 𝐂𝐝𝐒/𝐩 − 𝐒𝐧𝐒 structure [63] 

The model that is proposed in section consists of four layers and these are ZnO/n −

CdS/p − SnS/p + −SnS layer. The output of a photovoltaic device is highly depended on 

the parameters such as a concentration of charge carriers, temperature, and thickness of 

solar cell also optical and electrical properties. ZnO used as an optical window and CdS as 

a buffer layer for better charge transportation to contact, both materials properties were 

available in the literature. The required parameters for SCAPS simulations in PV devices 

involving SnS absorbers are displayed in Table 4.2.  

Table 4.2:  Parameters for simulation  

Parameters 𝐙𝐧𝐎 𝐧 − 𝐂𝐝𝐒 𝐒𝐧𝐒 𝐩+ − 𝐒𝐧𝐒 

Thickness, W (μm) 0.01-0.1 0.01-0.5 0.1-4 0.1-1 

Bandgap, Eg (eV) 3.35 2.42 1.2-1.4 1.2-1.4 

Electron affinity, χ (eV) 4.5 4.4 4-4.2 4-4.2 

Dielectric permittivity, ε/ε0 9 10 13 13 

Conduction band Density of states,  (𝒄𝒎𝟑) 2.2x1018 2.2x1018 2.2x1018 2.2x1018 

Valance band Density of states,  (𝒄𝒎𝟑) 1.8x1019 1.8x1019 4.76x1018 4.76x1018 

Electron mobility, μe(𝒄𝒎𝟐/Vs) 100 340 15 15 

Hole mobility, μp (𝒄𝒎𝟐/Vs) 25 50 100 100 

concentration of Electron and hole, (𝒄𝒎𝟑) 1018 1017 1015 1017 
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4.5.1. Results and discussion 

The simulation was done to achieve the optimal performance of SnS based solar cell. This 

was done by analyzing the energy band diagram then then effect of SnS layer thickness on 

the performance of solar cell to choose the optimal thickness of the layer.  

i. Cell structure and band diagram 

p + −SnS/p − SnS/n − CdS/ZnO solar cell energy band diagram is given in Figure 4.9.  

 

Figure 4.9: Cell structure and energy band diagram of proposed solar cell 

The band diagram helps in explaining the property of a solar cell and from the band 

diagram it is visible the hole can easily be extracted from p − SnS layer due to its valance 

band offset (VBO) with layer p+ − SnS, whereas electron moving to the back contact will 

be stopped by the p+ − SnS due to conduction band offset (CBO). Similarly, the hole 

entering at the CdS layer will be stopped by VBO between p − SnS/CdS layer and this will 

help in improving the efficiency of SnS based solar cell.  

 

ii. 𝑱 − 𝑽 dark and light characteristics of solar cell 

In this step, solar cell characteristics were tested under dark and illuminated conditions. 

To analyze a diode, the dark current analysis is necessary to find out diode operating 

characteristics.  The current and voltage (J − V) curve of a solar cell with structure p+ −

SnS/p − SnS/n − CdS/ZnO is shown in Figure 4.10. In dark solar cell gives an extreme 

minimum value of current that is due to the thermal activation of minority carriers. The 

PV process starts due to incident photons by illuminating the solar cell by 1 Sun (Air Mass 

1.5) and these photons will generate charge carriers. 
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Figure 4.10: Dark and Illuminated J − V Curve of solar cell 

iii. Effect of 𝑪𝒅𝑺 layer on solar cell performance 

In this step, effect of CdS layer thickness was analyzed by varying its thickness and 

keeping another layer’s thickness constant. The thickness of the CdS layer is varied from 

0.1um to 1um.  Figure 4.11 shows the effect of main solar cell parameters by varying 

thickness of the CdS buffer layer. From Figure 4.11 variation in CdS thickness has a 

negligible effect on solar cell performance. So, with increasing CdS thickness 𝑉𝑜𝑐, eta and  

𝐽𝑠𝑐 changes but with a minor variation due to which FF almost remains constant. In this 

step, we have chosen thickness of 0.3µm for CdS layer. 

 

Figure 4.11: CdS layer thickness (µm) 
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iv. Effect of absorber layer 𝒑 − 𝑺𝒏𝑺 thickness on solar cell performance 

To analyze the effect of the absorber layer on solar cell performance thickness of the 

absorber layer was varied from 0.1µm to 2µm. The results for the effect of changing 

absorber thickness on the main parameters of PV solar cell are shown in Figure 4.12.  

 
Figure 4.12: absorber layer thickness (µm) p − SnS 

It was analyzed that with an increase in absorber layer thickness the conversion efficiency 

of the solar cell is increased. It was also observed that FF (fill factor) starts decreasing after 

increasing thickness from 0.9-1.1 µm. From spectral representation in Figure 4.13 with 

inset graph, optimum thickness is around 1 µm because quantum efficiency (QE %) almost 

reaches to its maximum for SnS absorber layer. But for analysis thickness was varied to 2 

µm and the variation in calculated efficiency is between 20% and 29%, respectively. 

Comparing the results with the 29% conversion efficiency electrons will be captured easily 

by the back contact. The increasing trend in eta (%), Voc and Jsc can be seen when the 

absorber layers thickness is increased but there was a decrease in FF. The chosen optimum 

thickness for SnS absorber layer was 1 µm. 

i. Optimization of BSF layer (𝒑+ − 𝑺𝒏𝑺) thickness 

In this step, the thickness of the back-surface layer with highly doped SnS was varied from 

0.1 um to 1um. Figure 4.14 shows the result for p+ − SnS layer.  From Figure 4.14 an 

increase in thickness will help in increase in 𝑉𝑜𝑐, 𝐽𝑠𝑐, eta but FF start to decrease after a 

thickness of 0.6µm. As the change in 𝑉𝑜𝑐, 𝐽𝑠𝑐 after the thickness of 0.4µm was very small 

so FF starts to decrease. Therefore, optimum value of thickness was chosen 0.6µm. 
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Figure 4.13: QE % of SnS solar cell as a function of absorber layer thickness 

 

 

Figure 4.14: BSF layer (p+ − SnS) thickness effect on solar cell performance (µm) 
 

ii. Effect of temperature on solar cell performance 

Diode characteristic heavily depended upon temperature, from Figure 4.15 it is evident 

that temperature plays a vital role in the performance of a solar cell. To carry out simulation 

the temperature was varied from 230 K to 400 K. Figure 4.15 shows the effect of 

temperature on solar cell performance. At room temperature solar cell operates at its near 

maximum. But with a slight change in temperature, there was a drastic change in solar cell 

parameters. As in SCAPS temperature directly affect the thermal velocity (𝑣𝑡ℎ), thermal 
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voltage (kT) and density of state for conduction band (𝑁𝐶) and valance band (𝑁𝑣). This is 

given in equation 4.1 to 4.3. 

 

Figure 4.15: Effect of Temperature 

NC = Nc (
T

T0
)

1.5

                                                               (4.1) 

NV = NV (
T

T0
)

1.5

                                                              (4.2) 

vth = vth (
T

T0
)

0.5

                                                            (4.3) 

So, with increase in ambient temperature intrinsic carrier concentration of solar cell 

increases and this given in equation 4.4. 

ni = √NCNV e
-(Ec - Ev)

kT                                                      4.4 

Based on the result from equation 4.4, the reverse saturation current of device will increase, 

and this will result in decrease in open circuit voltage. The relationship for reverse 

saturation current and open circuit voltage is given in equation 4.5 and equation 4.6. 

J0  =  BT3e
−Eg

kT                                                                         4.5 

Voc = 
kT

q
 ln (

JSC

Jo
)                                                               4.6 
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iii. Comparison with simple 𝑺𝒏𝑺/𝑪𝒅𝑺/𝒁𝒏𝑶 cell 

Figure 4.16 shows the comparison between p+ − SnS/SnS/CdS/ZnO and SnS/CdS/ZnO 

solar cell. From Figure 4.16 for solar cell of type p+ − SnS/SnS/CdS/ZnO has a higher 

Voc  and  Jsc with comparison to SnS/CdS/ZnO solar cell. 

 

Figure 4.16: J − V Comparison between p+ − SnS/SnS/CdS/ZnO with SnS/CdS/ZnO 

4.5.2. Conclusion 

The numerical simulation of solar cell helps the researcher to get the inside details of a 

solar cell. This work reports the effect of absorber layer thickness, acceptor doping 

concentration in absorber layer and temperature on the performance of SnS based thin film 

solar cell. The dark characteristic of the solar cell is just like a normal Schottky diode but 

in illumination, the current density increased up to 38.55 mA/cm2. The thickness of the 

absorber layer also affects the current density, efficiency, fill factor and open circuit 

voltage. The optimum value of absorber thickness is chosen to be 1µm with a back-surface 

layer thickness of 0.6µm. Temperature also had a direct effect on solar cell performance 

as with an increase in temperature overall efficiency decreased. This happens because with 

the increase in temperature diode reverse saturation current increases that in terms affect 

the open circuit voltage of the solar cell. So, with a decrease in open circuit voltage other 

function parameters of solar cell also reduced.  It is also found that BSF layer thickness 

can affect the performance of the solar cell. With BSF layer we achieve a solar cell with a 

conversion efficiency of 30.18%. the study presented in this work can be helpful in 

designing efficient and low-cost SnS absorber based solar cell.
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Over a decade of extensive work in thin film (TF) solar cells technology, TF had made 

impressive improvements in conversion efficiency of device, with cadmium telluride 

(CdTe) and Copper indium gallium sulfide selenide (CIG(S, Se)) solar cell reaching to 

conversion efficiency of 21% [64]. Due to the toxic nature of Cd, the scarcity of (In, Te) 

and a high price of Ga make it impossible for terawatt scale applications and production. 

There for alternate earth abundant, non-toxic, low cost and easy to process material must 

be explored for large scale production of the high conversion efficiency of solar cell. 

Kesterite / Copper zinc tin sulphide selenide (CZT(S, Se)) is another promising candidate 

for thin film technology with a conversion efficiency of 11.5% is reported [65]. But the 

major issue with kesterite solar cell is to control the composition of this compound during 

fabrication to achieve maximum conversion efficiency. apart from (CZT(S, Se)) other non-

organic absorber materials for thin film technologies that had been extensively explored 

and studied are SnS, FeS2, Cu2O and Cu2S [66–69], but still their conversion efficiencies 

are far less than from expectation. 

SnS tin sulphide is the future of energy source due to its abundance and non-toxicity with 

energy band gap ranging from 1.1~1.4 eV. SnS is group IV-VI compound semiconductor 

with orthorhombic structure with absorption coefficient of (𝛼 ∝  104) with higher carrier 

concentration of (𝑝 − 1015, 𝑝 − 1018 ) with theoretical efficiency of 30 % [70][71]. But 

still, tin sulphide suffers low power conversion efficiency is due to the lack of knowledge 

to successfully process and produce a pure SnS device. Up till now maximum power 

conversion efficiency reported for SnS was 4.4% by the atomic layer deposition with 

crystal structure (040) [72]. Due to its anisotropic behaviour electrical characteristics of 

𝑆𝑛𝑆 are highly depended upon crystal structure [73][74]. Although improving in efficiency 

and simplification in process of SnS fabrication, still some drawback which hinders the 

way in the commercialization of SnS materials. So, to achieve the optimized design and 

good conversion efficiency the detailed understanding of the device operation needs to be 

done. To accomplish this task, various parameters like absorber thickness, acceptor doping 

density, buffer layer thickness, donor density of buffer layer and minority carrier lifetime 

were analysed for a solar cell with structure SnS/CdS/ZnO.  To the best of our knowledge, 

there has been no numerical model proposed to explain the factor that limits the conversion 

efficiency of SnS solar cell and to propose a numerical guide to enhance the efficiency of 

experimentally designed solar cell. 
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Here the device simulation is carried out in solar cell capacitance simulator (SCAPS) 

developed by the University of Gent. SCAPS is a one-dimensional software used to 

calculate, band diagram, IV characteristic, quantum efficiency/spectral response (QE) and 

AC quantities. This program was mainly developed for the analysis of CIGS and CdTe 

solar cell and was widely used for the optimal design of these solar cells  [75,76].  

5.1 Factor limiting the efficiency of SnS solar cell 

As discusses in detail in chapter 3 that the performance of a solar cell is highly affected by 

recombination at the interface, at bulk semiconductor, and at contacts. So, in this work, we 

will evaluate the performance of SnS solar cell under these defects and will propose a study 

about how we can improve the efficiency of experimental designed solar cell.  

5.1.1 Solar cell model and simulation parameters 

Model for a solar cell that is evaluated in SCAPS is shown in Figure 5.1 below.  

 
Figure 5.1: Solar cell model diagram 

Table 5.1: Simulation parameters for the different layers in 𝑆𝑛𝑆/𝐶𝑑𝑆/𝑍𝑛𝑂 thin film solar cells. 

Parameters 𝐙𝐧𝐎 𝐧 − 𝐂𝐝𝐒 𝐩 − 𝐒𝐧𝐒 

Thickness, W (μm) 0.1 0.05 1-25 

Bandgap, Eg (eV) 3.35 2.42 1.1-1.4 

Electron affinity, χ (eV) 4.5 4.4 4 

Dielectric permittivity, ε/ε0 9 10 13 

Effective density of states, NC (𝐜𝐦−𝟑) 2.2 × 1018 2.2 × 1018 1.18 × 1018 

Effective density of states, NV (𝐜𝐦−𝟑) 1.8 × 1019 1.7 × 1019 4.76 × 1018 

Electron mobility, μe (𝐜𝐦𝟐/Vs) 100 340 15 

Hole mobility, μp (𝐜𝐦𝟐/Vs) 25 50 100 

Electron and hole concentration, n, p (𝐜𝐦−𝟑) 1018 1017 1015 

To run numerical simulations for the designed solar cell in SCAPS several parameters for 

SnS absorber layers need to be defined, like absorber layer thickness, doping density, 
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electron-hole mobility, band gap, electron affinity, and intrinsic carrier concentration. 

Similar parameters are required for both, window and buffer layers. These parameters were 

extracted from available literature [15,63,77], and are listed in Table 5.1.  

5.1.2 Result and Discussion 

In this part, the effect of the absorber thickness, operating temperature and the band tailing 

of the absorber material affecting the performance of solar cell were analysed. 

i. Effect of absorber thickness 

Absorber thickness has a direct effect on the PCE of solar cell because the number of 

absorbed photons depends on both the absorption coefficient and the thickness of the 

absorber, this is shown in equation 5.1.  

𝑎 (𝜆 , 𝑊) = 1 − 𝑒(−2𝛼(𝜆)𝑊)                                                          (5.1) 

W is the thickness of a solar cell, 𝛼(𝜆) is the absorption of a solar cell with wavelength 𝜆. 

The absorption coefficient for SnS thin film solar cell is given in equation 5.2. 

𝛼(𝜆) =  
4𝜋𝑘

𝜆
                                                                          (5.2) 

𝑘 is the extinction coefficient of SnS. Based on equation 5.2 the absorption coefficient 

𝛼(𝜆) depends upon 𝜆 and 𝑘. Figure 5.2 displays the effect of absorber thickness on the 

performance of an SnS based solar cell, as the thickness increases 𝑉𝑜𝑐 increases linearly 

and 𝐽𝑠𝑐 and PCE increases drastically up to about 5µm and then remain nearly constant. 

The FF reaches a maximum at about 5µm and then starts to decrease. So, the optimal 

thickness for the absorber layer to gain maximum efficiency from SnS solar cell was 5µm. 

 

Figure 5.2: Effect of the absorber thickness on performance parameters of 𝑆𝑛𝑆 solar cells 
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ii. Effect of temperature 

Effect of temperature on solar cell parameters can be inferred from equation 5.3 and 5.4. 

𝑉𝑜𝑐 =  
𝑘𝑇

𝑞
ln(

𝐽𝐿

𝐽0
+ 1 )                                                    (5.3) 

J0  =  BT3e
−Eg

kT                                                                   (5.4) 

From equation 5.3 and 5.4, temperature directly affect the performance parameters of solar 

cell. With increase in temperature the reverse saturation current increases and this results 

in decrease in open circuit voltage of solar cell. With decrease in open circuit voltage of 

solar cell PCE was also affected. 

 

Figure 5.3: Effect of temperature on SnS/CdS/ZnO solar cell. 

Figure 5.3 shows the behaviour of the main photovoltaic parameters as a function of the 

operating temperature. As the operating temperature increases the open circuit voltage 

tends to decrease.  

iii. Effect of band tailing (Urbach tail) 

Many impurities are inserted into the host lattice for heavily doping a semiconductor. 

Insertion of those impurities introduces a band level in the band gap, so these band level 

can interact to form a band tail at higher densities. This effect may be view as a shift of 

conduction band towards valance band and this can also be called a band gap narrowing. 

In disordered materials, the prominent observation is the exponential Urbach tail. Band 

tailing has a direct effect on the performance of a solar cell, it creates a trap density of state 

in solar cell devices. The equation for the effect of band tail/Urbach tail is given in [78–

80] and for SnS thin film it is represented in equation 5.5.  

𝛼 = {
𝛼0𝑒𝑥𝑝(𝐸 − 𝐸𝑔/𝐸0)  𝐸 < 𝐸𝑔

𝛼0 (1 + 𝐸 − 𝐸𝑔/𝐸𝑝𝑟𝑖𝑚𝑒  )  𝐸 ≥ 𝐸𝑔
                                                         (5.5) 
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𝛼 is absorption profile,  𝛼0>104 cm−1is absorption coefficient, E is photon energy, the 

Urbach tail 𝐸0 for SnS is given in [78] and 𝐸𝑝𝑟𝑖𝑚𝑒 is constant. The result for Urbach tail 

effect is shown in Figure 5.4 and Figure 5.5. Figure 5.4 shows the result for Urbach tail 

effect on absorption profile that was evaluated from equation 5.5 by putting different 

values of Urbach tail. Figure 5.5 with inset graph shows the effect of the Urbach tail of the 

performance parameters of a solar cell. 

 
Figure 5.4: Effect on absorption coefficient for different energy level of Urbach tail. 

Figure 5.5 shows the result of solar cell parameters for the Urbach tail. For analysis, we 

vary the value of 𝐸0 from 0 to 0.14eV. Figure 5.5 shows that as Urbach tail value is 

increased efficiency of the SnS thin film solar cell starts to decrease, this happens because 

the creation of band tail leads to strong recombination in the band gap region. 

 

Figure 5.5: Urbach tail effect of SnS thin film solar cells. 
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Based on the discussion above the SnS solar cell can reach an efficiency of 28% with no 

band tail, defects, and optimum absorber thickness. This can also be validated from the 

results presented in Table 5.2 that have been extracted from the literature. 

Table 5.2: Reported PV parameters for simulated SnS solar cells in literature with different cell 

structures. 

Cell Structure Voc(V) Jsc (mA/cm2) PCE (%) FF (%) Reference 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.920 13.40 10.6 86.00 [15] 

𝐒𝐧𝐒/𝐙𝐧𝐒 0.894 31.88 16.3 57.0 [81] 

𝐒𝐧𝐒/𝐚 − 𝐒𝐢 0.893 30.67 14.3 52.2 [81] 

𝐒𝐧𝐒/𝐒𝐧𝐒 0.985 29.31 25.3 87.6 [82] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.800 38.60 26.0 85.0 [63] 

𝐒𝐧𝐒/𝐙𝐧𝐎 0.749 26.86 17.03 85.0 [83] 

The numerical analysis results presented in Table 5.2 are far ahead of experimental known 

conversion efficiency because experimentally reported SnS solar cell has a maximum 

conversion efficiency of 4.6%. The results for the experimental work of SnS solar cell is 

presented in Table 5.3. 

Table 5.3: Reported PV parameters for experimental SnS solar cells in literature with 

different cell structures. 

 Cell Structure Voc(V) Jsc (mA/cm2) PCE (%) FF (%) Reference 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.26 9.6 1.30 53 [84] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.12 7 0.29 35 [85] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.14 8.4 0.5 38 [86] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.274 0.301 0.08 40 [87] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.217 19 1.6 39.2 [88] 

𝐒𝐧𝐒/𝐂𝐝𝐒 0.223 26.1 2.53 43.5 [89] 

𝐒𝐧𝐒/𝐂𝐝𝐙𝐧𝐒 0.288 9.16 0.71 27 [90] 

𝐒𝐧𝐒/𝐙𝐧𝐌𝐠𝐎 0.28 12.5 2.1 - [91] 

𝐒𝐧𝐒/𝐙𝐧𝐌𝐠𝐎 0.575 9.96 2.02 36.4 [92] 

𝐒𝐧𝐒/𝐙𝐧(𝐎, 𝐒) 0.244 19.4 2.04 42.97 [93] 

𝐒𝐧𝐒/𝐙𝐧(𝐎, 𝐒) 0.261 24.9 2.9 44.4 [94] 

𝐒𝐧𝐒/𝐙𝐧(𝐎, 𝐒) 0.334 20.645 3.88 56.28 [95] 

𝐒𝐧𝐒/𝐙𝐧(𝐎, 𝐒) 0.37 20.2 4.36 58 [96] 

𝐒𝐧𝐒/𝐓𝐢𝐎𝟐 0.471 0.3 0.1 71 [97] 

𝐒𝐧𝐒/𝐒𝐧𝐒𝟐 0.12 10.87 0.51 39 [98] 

𝐒𝐧𝐒/𝐒𝐧𝐒 0.65 7.64 1.95 39 [99] 
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So, from Table 5.3 experimentally reported solar cell has an efficiency less than reported 

in numerical studies and this was mainly due to the defects that are present in a solar cell. 

Defects are the major cause for the loss in a solar cell, these are interface defects and 

absorber layer defects. In step below, we analyse the effect of defects on solar cell 

performance.  

iv. Effect of defects in SnS/CdS/ZnO solar cells 

Indeed, the presence of defects in the different layers of the solar cell, as well as defects in 

the interlayers, will disturb the performance of the devices. In this part, the effects of two 

kinds of defects such as defects in the interface absorber/buffer (SnS/CdS) and defects in 

the absorber SnS layer were analysed [100].  

Figure 5.6 shows the J − V curves for different densities of interlayer defects with neutral 

charge, energy distribution 0.6eV and density ranging from 1010 to 1014 cm−2. As the 

trap density of state increases performance of solar cell starts to decrease. Figure 5.6 

illustrates that 𝑉𝑜𝑐 and 𝐽𝑠𝑐 are higher for a solar cell with no defects at the interface but as 

the amount of trap defect density increases in SnS solar cell the open circuit voltage starts 

to decrease, and this happens due to band traps at the interface which captures the electron 

and hole. Thus, causing recombination at the interface. From the analysis it is shown that 

interface recombination due to the density of defects majorly affect the open circuit voltage 

of the SnS/CdS/ZnO solar cell. 

 
Figure 5.6: Effect of defect density of state at the interface of SnS/CdS layer 

Figure 5.7 shows the result for the effect of SnS layer defect, in this defect density was 

kept constant with a value of 1 × 1014 cm−3 and capture cross section electrons and 

capture cross section holes was varied from 10−15 to 10−10 cm−2.  
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From Figure 5.7 it is shown that SnS absorber layer defects will also affect the performance 

of the solar cell, by reducing the value of capture cross-section of electron and hole in 

absorber layer we are reducing the diffusion length of photogenerated electron Ln and hole 

Lp. This is shown in equation 5.6 below. 

𝐿𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =  √
𝑘𝑇µ𝜏

𝑞
                 (5.6) 

whereas 𝐿𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 is the diffusion length of electron and hole, µ is mobility and 𝜏 is the 

lifetime of these carriers. Similarly, the lifetime of the carrier is depended upon on the 

parameters described in equation 5.7 below. 

𝜏 =  
1

𝑁𝑡𝛿𝑣𝑡ℎ
      (5.7) 

𝑁𝑡 is the density of state, 𝛿 is capture cross-section area and 𝑣𝑡ℎ is thermal velocity. 

As capture-cross section area increases the lifetime of carrier will decrease and with 

respect to that diffusion length will also decrease. The reduction in length means holes and 

elections will easily be captured within the material thus affecting the efficiency of a solar 

cell and this will also limit the thickness of the absorber layer.  

 
Figure 5.7: Effect of capture cross section area for electron and hole. 

v. Comparison with experimental design solar cell result 

To validate the design and effect of the defect on solar cell performance we compare the 

simulated result with experimental results. The value of defect density that was added 

between the interface of SnS/CdS is Nt =  5 × 1011 (cm−2) and for SnS absorber layer 

defect Table 5.4 is drawn below. 
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Table 5.4: Defects in SnS absorber layer according to references [100,101]. 

Defect properties Values 

Energy level with respect to Reference (eV) 0.200 

Total Density (𝟏/𝐜𝐦𝟑) 𝐍𝒕 5 × 1014 

Capture Cross section area of electrons (𝐜𝐦𝟐) 𝛅𝒆 1.8 × 10−12 

Capture Cross section area of holes (𝐜𝐦𝟐) 𝛅𝐡 1.8 × 10−12 

Figure 5.8 shows the results of SnS/CdS solar cell simulated in SCAPS with defects and 

result from experimental work presented in [84] are compared.  From Figure 5.8 it is shown 

that the added defects in SCAPS for the analysis SnS/CdS solar cell can lead us to match 

the experimental result of SnS/CdS solar cell. With further investigation of those defects, 

it is possible that we can improve the efficiency of SnS/CdS solar cell with careful 

optimization of physical parameters.  

 

Figure 5.8: Comparison between experimental data and the simulation output using SCAPS. 

The obtained results of SnS/CdS solar cell with defects and without any defects are 

presented in Table 5.5.  

Table 5.5: Calculated PV parameters for SnS/CdS solar cells with and without defects. 

 Cell Structure 𝐕𝐨𝐜(𝐕) 𝐉𝐬𝐜 (𝐦𝐀/𝐜𝐦𝟐) 𝐏𝐂𝐄 (%) 𝐅𝐅 (%) 

Without defects SnS/CdS 0.848 39.4 28.33 84.7 

With defects SnS/CdS 0.260 9.6 1.33 54.5 

Experimental [25] SnS/CdS 0.260 9.6 1.30 53.0 
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5.1.3 Conclusion 

Numerical simulation using the solar cell software SCAPS has been used for analysing the 

main factors limiting the efficiency of SnS based solar cells. Owing to the optical and 

electrical characteristics of SnS semiconductor a photon conversion efficiency of 28% is 

expected for solar cells based in SnS absorbers. However, up to date, practical solar cell 

devices do not surpass 4.36%. The proposed method evaluates the efficiency of SnS thin 

film device under the influence of absorber thickness, temperature, band tailing energy 

and defects in a solar cell. From the analysis, it was found out that the major limitation in 

efficiency enhancement of SnS solar cell was band tailing, interface density defect, and 

absorber defects. As all these factors lead to recombination of photogenerated charge 

carriers. We found that interface defects behave like a serial resistance and then reduce the 

Voc, while absorber defects mainly act as recombination centres and then limit the Jsc. The 

IV curve and PV parameters of experimental SnS based solar curve are well fitted by 

introducing both types of defects in the SnS layer absorber and in the interlayer buffer-

absorber. The simulation carried out in this work will be very helpful in further 

investigating the efficiency limits of SnS solar cell.  

5.2 Numerical analysis a guide to improve the efficiency of experimental solar cell [32] 

In this section, a numerical analysis guideline was proposed about how to improve the 

efficiency of experimentally designed solar cells with the aid of numerical analysis. To 

validate the study presented in this section, we first reproduce the results for an 

experimentally designed solar cell in SCAPS with solar cell structure p − SnS/n − CdS 

having a conversion efficiency of 1.5%. After this device performance was optimized in 

solar cell capacitance simulator (SCAPS) by changing absorber layer thickness, buffer 

layer thickness, minority carrier lifetime, absorber acceptor doping concentration, buffer 

donor doping concentration and adding window layer. After optimization of physical 

device parameters and structure the new solar cell structure     p − SnS/n − CdS/n − ZnO 

achieves power conversion efficiency (PCE) of 14.01% in SCAPS. 

Our approach for the improvement of SnS solar cell performance was by means of 

addressing the following facts: 

i. Validation of simulated results for SnS/CdS solar cell in SCAPS. 

ii. Optimization of buffer and absorber thickness. 

iii. Adding ZnO window layer in SCAPS. 

iv. Effect of minority carrier lifetime on solar cell performance. 
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v. Effect of mobility of carrier on solar cell performance. 

vi. Optimization of absorber layer doping concentration. 

vii. Optimization of buffer layer doping concentration. 

viii. Comparison of Results. 

The proposed results in this study will give a beneficial guideline for the designing of high 

performance SnS based solar cells. Here the device simulation was carried out in SCAPS, 

developed by the University of Gent Belgium. SCAPS is one-dimensional software used 

to calculate, band diagram, IV characteristic, quantum efficiency/spectral response (QE) 

and AC quantities. This program was mainly developed for the analysis of CIGS and CdTe 

solar cell and was widely used for the optimal design of different solar cells [102,103]. 

5.2.1 Simulation model 

Table 5.6: Parameters for simulation [63,82,83] 

Parameters 𝐒𝐧𝐒 

Thickness, W (μm) 0.1-4 

Bandgap, Eg (eV) 1.2-1.4 

Electron affinity, χ (eV) 4-4.2 

Dielectric permittivity, ε/ε0 13 

Conduction band Density of states, NC (𝐜𝐦−𝟑) 1.18 × 1018 

Valance band Density of states, NV (𝐜𝐦−𝟑) 4.76 × 1018 

Electron mobility, μe(𝐜𝐦𝟐/Vs) 30 

Hole mobility, μp (𝐜𝐦𝟐/Vs) 90 

concentration of Electron and hole, n, p (𝐜𝐦−𝟑) 1 × 1015 

To find out the electrical characteristic’s AC and DC of the heterojunction solar cell 

simulation model was set up in SCAPS software. SCAPS was developed for CIGS and 

CdTe thin film solar cells, but the simulation environment of SCAPS can be extended to 

analyse solar cells other then CdTe and CIGS. In SCAPS environment the results generated 

for your simulation contains the result of dark and illumination current along with some 

other characteristics. These results are extracted based on Poison equation, electron, and 

hole current equation. SCAPS can calculate properly the steady-state band diagram, 

recombination profile; transport carrier in 1D. Recombination current is calculated using 

the Shockley-Read-Hall (SRH) model for bulk and interface defects. The SRH approach 

in SCAPS allows carriers from both bands conduction and valence to participate in the 
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interface recombination process. SCAPS software gives graphical user interface to provide 

a visual interface for the spectral response of J − V, C − V, C − f, and Q − V characteristics.  

The model proposed in this paper consists of three layers and these layers are ZnO/n −

CdS/p − SnS layer. The output of a photovoltaic device is highly depended on the 

parameters such as the concentration of charge carriers, temperature, and thickness of solar 

cell also optical and electrical properties. ZnO was used as an optical window and CdS was 

used as a buffer layer for better charge transportation to contact, both materials properties 

can be easily found in the literature. The required parameters for SnS absorber layer in 

SCAPS simulation are given in Table 5.6.  

5.2.2 Cell structure and band diagram 

p − SnS/n − CdS solar cell energy band diagram is given in Figure 5.9. The band diagram 

helps in explaining the property of a solar cell. From band diagram, it is visible that the 

SnS absorber material has an optimal band gap based on the theory presented by Shockley 

Queisser limit, whereas CdS is working as a buffer layer and its valance band offset with 

absorber stops the hole from getting into buffer layer. 

 

Figure 5.9: Cell structure and energy band diagram of proposed solar cell 

5.2.3 Results and Discussion 

To compare the simulated result with experimental work defect density was added between 

the interface of SnS/CdS is Nt =  5 × 1011(cm−2) with neutral charge distribution and the 

capture cross-section area of electrons and holes (𝐜𝐦𝟐) is  1.0 × 10−15. For defect density 

in absorber layer table 5.7 is drawn below. 
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Table 5.7: Defects in 𝑆𝑛𝑆 absorber layer according to references [101,104,105] 

Defect properties Values 

Energy level with respect to Reference (eV) 0.200 

Total Density (1/𝐜𝐦𝟑) 𝑵𝒕 1.0 × 1014 

Capture Cross section area of electrons (𝐜𝐦𝟐) 𝛅𝒆 1.8 × 10−12 

Capture Cross section area of holes (𝐜𝐦𝟐) 𝛅𝒉 1.8 × 10−12 

i. Comparison of result with experimental work 

Figure 5.10 shows the results comparison of 𝑆𝑛𝑆/𝐶𝑑𝑆 solar cell simulated in SCAPS and 

result taken from experimental work that was fabricated in [84]. From Figure 5.10 it is 

shown that the added defects in SCAPS for the analysis SnS/CdS solar cell can lead us to 

match the experimental results for a solar cell. Solar cell parameters used to derive the 

results in SCAPS are given in Table 5.8 with defects density given in Table 5.7. 

 
Figure 5.10: Comparison between experimental data (Ref. 84) and the simulation output using SCAPS. 

Table 5.8: Parameters used to derive experimental results 

Parameters 𝐧 − 𝐂𝐝𝐒 𝐒𝐧𝐒 

Thickness, W (μm) 0.6 0.6 

Bandgap, Eg (eV) 2.42 1.2-1.4 

Electron affinity, χ (eV) 4.4 4-4.2 

Dielectric permittivity, ε/ε0 10 13 

Conduction band Density of states, NC (𝐜𝐦−𝟑) 2.28 × 1018 1.18 × 1018 

Valance band Density of states, NV (𝐜𝐦−𝟑) 1.7 × 1019 4.76 × 1018 

Electron mobility, μe(𝐜𝐦𝟐/Vs) 25 30 
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Hole mobility, μp (𝐜𝐦𝟐/Vs) 100 90 

concentration of Electron and hole, n, p (𝐜𝐦−𝟑) 1 × 1017 1 × 1015 

 Front Contact Back contact 

Surface recombination velocity for electron (cm/s) 1 × 107 1 × 107 

Surface recombination velocity for hole (cm/s) 1 × 107 1 × 107 

 

ii. Effect of buffer layer on solar cell performance 

In experimental work [84], the thickness of buffer layer was 0.6μm and with thicker buffer 

layer less photon will reach to absorber layer to participate in solar cell conversion 

efficiency. So, to improve the efficiency we optimize the thickness of buffer layer for 

SnS/CdS solar cell. For this thickness of the buffer layer was varied from 0.1μm to 1μm 

in SCAPS while other parameters were kept constant. Figure 5.11 shows the results for the 

effect of buffer layer thickness on solar cell J − V characteristics and performance.  

 
Figure 5.11: Buffer thickness effect on J-V characteristics 

From Figure 5.12 the thinner buffer layer leads to efficient solar cell design because with 

thinner buffer layer more photon will reach the absorber layer and will take part in the 

enhancement of power conversion efficiency (PCE) of a solar cell. The optimal thickness 

chosen for the buffer layer is 0.1𝜇𝑚. 

i. Effect of absorber layer on solar cell performance 

The thickness of the absorber layer was optimized by varying thickness of the absorber 

layer from 1μm to 6μm in SCAPS. Figure 5.13 shows the results for absorber layer 

thickness and from Figure 5.13 change in absorber thickness has a minor effect on the 
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performance of a solar cell due to bulk recombination of defects in the absorber layer. 

Therefore, for our simulation from this point, the thickness for the absorber layer chosen 

for analyses was 2μm. Based on thickness optimization of buffer and absorber layer the 

PCE can jump from 1.57 % of to 2.1% with same defect values given in Table 5.7. 

 

Figure 5.12: Buffer thickness effect on solar cell performance 

 

Figure 5.13: Absorber thickness effect on solar cell performance 

ii. Adding ZnO window layer in design 

To further improve the PCE of solar cell ZnO as window layer, was added to the simulation 

structure and Figure 5.14 shows the result for effect of ZnO window layer on solar cell 

performance. Because of the wide band gap of ZnO window layer more photons will be 
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absorbed, and this can help to further improve the efficiency of experimental designed 

solar cell. This generalization is well explained with aid of results given in Figure 5.14 and 

Figure 5.15.  

 
Figure 5.14: Window layer effect on solar cell performance 

 
Figure 5.15: QE (%) enhancement due to window layer 

iii. Effect of band gap on solar cell performance 

After the addition of the window layer, the PCE of solar cell simulated in SCAPS jumps 

to 2.29%. The efficiency of a solar cell can further be improved by considering the 

optoelectronic characteristic of the device. As bandgap of material also plays a vital role 

in defining solar cell efficiency limits. Figure 5.16 shows the effect of band gap variation 

of SnS absorber material on solar cell PCE. And from Figure 5.16 this result can be 
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comprehended that optimal band gap to achieve high PCE from SnS absorber material is 

1.4 eV.  

 
Figure 5.16: Bandgap variation effect on PCE 

iv. Effect of mobility and diffusion length on solar cell performance 

Impact of crystalline structure on solar cell performance can further be extended by 

analyzing the effect of minority carrier lifetime of 𝑆𝑛𝑆 absorber material. By improving 

bulk properties of SnS absorber layer minority carrier lifetime also improves, as minority 

carrier lifetime plays a key role in defining the efficiency of a solar cell [106,107]. Minority 

carrier lifetime is the average time required to the photogenerated carrier to recombine 

before reaching to contact and effect of minority carrier lifetime on solar cell performance 

is shown in Figure 5.17 and Figure 5.18. In Figure 5.17 with an increase in minority carrier 

lifetime the J − V characteristics and solar cell performance shows remarkable 

improvements. This happens because with an increase in minority carrier lifetime defect 

density of SnS absorber material reduced. The relation between the minority carrier 

lifetime and defect density of the absorber layer is given in equation 5.8. 

𝜏(𝑛,𝑝) =  
1

𝛿(𝑛,𝑝)𝑣𝑡ℎ𝑁𝑡
     (5.8) 

𝛿(𝑛,𝑝) is the capture cross-section area for electron and hole, 𝑣𝑡ℎ is the thermal velocity of 

carriers and 𝑁𝑡 is defect density in the absorber layer. So, if capture-cross section area and 

thermal velocity is constant than minority carrier lifetime has an inverse relation with 

defect density in absorber layer that why there is an improvement in solar cell performance.  



C H A P T E R  5   Efficiency Enhancement of Experimentally Designed Solar Cell 
 

 72 

 
Figure 5.17: Minority carrier lifetime effect on J − V characteristics. 

 
Figure 5.18: Minority carrier lifetime of SnS absorber layer effect of solar cell 

performance 

The second parameter that affects the performance of a solar cell is the mobility of charge 

carrier in SnS absorber layer. And mobility is also depended upon crystal structure of SnS 

absorber material [108]. The relation of mobility with solar cell performance can be 

explained with the aid of equation 5.9.  

𝐿𝐷(𝑛,𝑝) =  √𝜇𝑛,𝑝
𝑘𝑇

𝑞
𝜏(𝑛,𝑝)    (5.9) 

L(n,p) is the diffusion length of photogenerated carriers of SnS absorber layer and it is 

depended upon the product of carrier mobility and minority carrier lifetime. So, with an 

increase in mobility of carriers LD(n,p) increases, and this also aids the photogenerated 
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carriers to reach to contact without getting recombined. So, from equation 5.9 with an 

increase in mobility of carriers, PCE of the solar cell will also increase and for analysis to 

find the effect of mobility on solar cell performance a plot of μn,pvs. PCE of 

SnS/CdS/ZnO solar cell is plotted in Figure 5.19. And with an increase in mobility PCE 

of solar cell also increases and this result can be comprehended that with an increase in 

carrier mobility solar cell performance will increase. 

 

Figure 5.19: Mobility vs. PCE for SnS/CdS/ZnO solar cell 

After the selection of optimal bandgap for SnS absorber material with carrier mobility 

given in Table 5.8 and improvements in minority carrier lifetime of the absorber layer, the 

PCE of solar cell improves to 4.47 % with structure SnS/CdS/ZnO. To further increase 

the efficiency, we change the bulk properties of absorber and buffer layer by changing 

their doping density. 

v. Effect of absorber acceptor and buffer donor doping concentration  

Figure 5.20 shows the result for optimization of acceptor doping density of SnS absorber 

layer to further improve the efficiency of solar cell. The acceptor doping concentration 

was varied from 1 × 1010cm−3to 1 × 1017cm−3, but in Figure 5.20 results are only 

plotted for 1 × 1010cm−3to 1 × 1015cm−3 to get the optimum doping concentration 

value. With an increase in acceptor doping concentration the performance of solar cell 

decreased this happens due to high recombination in the absorber layer and at the interface 

with the presence of defects. The optimum value here chosen is 1x1012cm−3on which the 

PCE of a solar cell is 12.16%. 
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Figure 5.20: Acceptor doping concentration effect on solar cell performance 

The effect of SnS acceptor doping concentration on solar cell band structure and build in 

potential is given in Figure 5.21 below. And form Figure 5.21 with an increase in acceptor 

doping concentration there is a decrease in built-in potential. So, a weaker potential will 

cause high interface recombination, and this leads to degradation in device performance.  

 

Figure 5.21: Band structure with different acceptor doping concentration 

Figure 5.22 shows the result for donor doping concertation of buffer layer and the 

concentration of doping is varied from 1x1016cm−3 to 1x1019cm−3. With an increase in 

buffer layer donor doping concentration PCE of solar cell increases with FF. But at value 

of 1x1018cm−3 FF starts to decrease with Jsc. So, the optimum value chosen for buffer 

donor doping density is 1x1018cm−3  on which the PCE of solar cell reached a value of 

14.01%.  
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Figure 5.22: Effect of donor doping concentration of CdS layer on solar cell performance 

vi. Proposed design of solar cell 

Based on the above results if the structure of solar cell proposed in [84] with a careful 

design is updated to SnS/CdS/ZnO then the solar cell can reach to an efficiency of 14%. 

Figure 5.23, Table 5.9 and Table 5.10 shows the comparison of experimentally simulated 

solar cell with and without optimization parameters. 

 
 

Figure 5.23: Comparison of structure between experimental and numerical optimized structure. 

(a) shows the structure of experimental work with thickness of buffer layer 0.6µm and 

absorber thickness of 0.6 µm (b) shows the structure of numerical optimized in SCAPS 

with buffer layer thickness of 0.1µm with ZnO thickness of 0.1µm and absorber layer 

thickness of 2µm. 
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Table 5.9: Comparison of physical optimized parameters 

𝐒𝐧𝐒 Without optimization After optimization 

Thickness (µm) 0.6 2 

Acceptor Concentration(cm−3) 1 × 1015 1 × 1012 

 

𝐂𝐝𝐒 Without optimization After optimization 

Thickness (µm) 0.6 0.1 

Donor Concentration(𝐜𝐦−𝟑) 1 × 1017 1 × 1017 

Table 5.10: Result comparison 

 Cell Structure 𝐕𝒐𝒄 

(𝐕) 

𝐉𝒔𝒄  

(𝐦𝐀/(𝐜𝐦𝟐) 

𝐏𝐂𝐄  
(%) 

𝐅𝐅  
(%) 

Without optimization of parameters SnS/CdS 0.26 9.6 1.33 54.5 

With optimization of parameters SnS/CdS/ZnO 0.47 37.99 14.01 78.42 

 

5.2.4 Conclusion 

We proposed a model guide about how numerical analysis can aid in the improvement of 

the power conversion efficiency of a solar cell. To perform analysis in first step 

experimental result was reproduced for SnS absorber layer based solar cell. In next step 

numerical analysis was performed in SCAPS to optimize the parameters of a solar cell like 

absorber layer thickness, buffer layer thickness, window layer effect, doping density and 

minority carrier lifetime. From observation, it was found that experimentally designed 

solar cell efficiency can be enhanced with the aid of numerical analysis. After optimization 

of physical parameters for solar cell PCE of 14.01% was achieved. The result presented in 

this work can provide a valuable guideline to a researcher for the efficient design of solar 

cell with optimized parameters.
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Perovskite materials named after Russian mineralogist Lev Pervoski, the mineral was first 

discovered in 1839, in the Ural mountain of Russia [109]. The mineral with a chemical 

formula of CaTiO3, composed of calcium titanate. The name of this mineral was borrowed 

for a material having a crystal structure same as CaTiO3, known as perovskite structure. 

The perovskite mineral exits in nature in abundance and among them magnesium silicate 

perovskite is the most abundant one [110,111]. The chemical formula for perovskite 

material is AMX, where A and M are two different cations of varying sizes and X is an 

anion. These classes of devices have been under discussion for several decades but in the 

spring of 2009 methylammonium lead halide perovskite (MAPbI3) was introduced with 

the name of visible light sensitizers for photovoltaic cells [112].  The first mesoporous 

TiO2 based MAPbI3 was sensitized with the conversion efficiency of 3.81 % but the 

stability of the cell was very poor. After some year of extensive research in 2011 

conversion efficiency of MAPbI3 is improved to 6.11% but stability was still poor until 

2012, the efficiency of MAPbI3 jumped up to 9.7% with the solid hole transport layer 

Spiro − MeOTAD [113]. In 2013 the research in perovskite material has gained much 

attention because the reported conversion efficiency of perovskite material has reached to 

a value of 15% [114–118] and in 2014 the reported efficiency is of 17.9% [119]. The fast-

growing in efficiency has triggered a tremendous amount of research in the fabrication and 

development of perovskite as an absorber layer for thin film solar cell.  The major reason 

for the high efficiency of MAPbI3, is due to the high absorption coefficient and long carrier 

diffusion length [20–25,120–122]. Despite the rapid development in the design of MAPbI3 

based solar cell the operation mechanism for further improvement in these devices is still 

not enough and some question still needs to be answered. Like stability of perovskite 

material, transportation of electron among TiO2 electron transport layer (ETL) and TiO2 

deposition upon perovskite require high temperature and cost of hole transport material 

(HTM) like Spiro − OMETAD with gold or silver electrode [123–125].    

Although improving in efficiency and simplification in process of perovskite fabrication 

still some drawback like stability and toxic nature of lead (Pb) that hinders the way in the 

commercialization of MAPbI3 materials. Theoretical and experimental studies show that 

CH3NH3SnI3 (MASnI3) has an optimal band gap of 1.3 eV and considered as a possible 

replacement for LHPSC. Due to its smaller bandgap, it can cover a wide range of the 

visible light spectrum, than the LHPSC.  Tin (𝑆𝑛) perovskite-based planner structure solar 

cell has been developed with heterostructure architecture [26–28]. The major limitation of 
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𝑆𝑛 based perovskite is oxidation of 𝑆𝑛 from 𝑆𝑛2+ to 𝑆𝑛4+ in the air which limits the 

performance of the device. With extensive research, development of encapsulation process 

increases the stability of the 𝑆𝑛 based perovskite materials. By the addition of tin fluoride 

(𝑆𝑛𝐹2) in the fabrication process reduces the chance of oxidation of 𝑆𝑛2+ to 𝑆𝑛4+ [29].  

Moreover, like LHPSC its band gap can also be tuned by changing iodine (𝐼) with bromide 

(𝐵𝑟) and with an addition of 𝐵𝑟 its bandgap increases. The tunability of bandgap provides 

an opportunity to use 𝑆𝑛 based perovskite for solar cell application as a possible 

replacement for LHPSC [30]. 

Despite the rapid improvement in 𝑆𝑛-based perovskite material still, PCE achieved from 

𝑆𝑛 based perovskite solar cell is very low. This is mainly due to the lack of understanding 

of device interface properties and effect of band structure at interfaces on device 

performance. Because with improvement in bulk material properties interface 

recombination remains very critical for device performance. To the best of our knowledge, 

there has been no report on a simulation model for 𝑆𝑛-based perovskite solar cell for 

selection of an appropriate electron transport layer (ETL) for 𝑀𝐴𝑆𝑛𝐼3 absorber material. 

In this chapter, we report on theoretical proven and experimentally expected effects of 

conduction band offset, the thickness of ETL and donor doping density of  𝐸𝑇𝐿 layer on 

the performance of perovskite solar cell.  Device simulation was carried out in solar cell 

capacitance simulator (SCAPS) developed by the University of Gent Belgium. SCAPS is 

a one-dimensional software used to calculate, band diagram, IV characteristic, quantum 

efficiency/spectral response (QE) and AC quantities. This program was mainly developed 

for the analysis of CIGS and CdTe solar cell and was widely used for the optimal design of 

(CIGS, CdTe) solar cells [76]. But recently, SCAPS has emerged as an alternate numerical 

tool for the analysis of kesterite and perovskite solar cell [126–131]. 

Our approach for the improvement of MASnI3 solar cell performance is by means of 

addressing the following facts: 

i. Analyzing the effect of different ETL on solar cell performance. 

ii. Effect of ETL conduction band offset on interface recombination and solar cell 

functional parameters. 

iii. Effect of ETL thickness on interface recombination and solar cell performance 

parameters. 

iv. Effect of ETL doping on interface recombination and solar cell performance 

parameters. 
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v. Selection of ETL for MASnI3. 

vi. Effect of absorber thickness on interface recombination and solar cell 

performance parameters. 

vii. Effect of acceptor doping concentration on interface recombination and solar 

cell performance parameters. 

viii. Effect of HTM layer on solar cell performance 

The proposed results in this study will give a beneficial guideline for the designing of high 

performance MASnI3 based solar cells. 

6.1 Mitigation of interface recombination by careful selection of ETL for 

efficiency enhancement of MASnI3 solar cell [43] 

Lead halide perovskite solar cells (LHPSC) are of great potential for commercial 

application with conversion efficiency exceeding 20%. But the toxic nature of lead, 

fabrication of perovskite solar cell is still not considered for commercial applications. 

Methylammonium tin halide perovskite (MASnI3) is being used as an alternate absorber 

layer for replacement of LHPSC but the power conversion efficiency (PCE) achieved from 

MASnI3 solar cell is still far less from LHPSC. To investigate the limitation of MASnI3 

solar cell performance numerical analysis was performed. For device modeling, different 

electron transport layer (ETL) and methylammonium tin halide (MASnBr3) as the hole 

transport layer (HTL) was used. From the analysis it was revealed that open circuit voltage 

(V0c), short circuit current (Jsc), fill factor (FF) and PCE are highly depended on ETL 

conduction band offset (CBO) between ETL/Absorber (MASnI3) interface, the thickness 

of ETL and donor doping concentration of ETL. With +CBO at the junction a “cliff” is 

formed at the interface, this leads to high interface recombination because of built-in 

potential to separate charge carriers. In contrast to −CBO a “spike” suppresses interface 

recombination, but a larger value of spike will lead to degradation of device performance. 

For selection of ETL, a moderate value of −CBO is required and this is achieved by 

changing elemental composition of ETL alloy materials (Cd1−xZnxS, ZnS1−xOx). These 

materials are expected to provide higher conversion efficiency for MASnI3 solar cell. A 

novel concept in numerical modeling is presented which will categorically offer a new 

direction for the fabrication of high efficiency photovoltaic devices. 

6.1.1 Device physics 

Defects in perovskite solar cell are present at the interfaces between different layers and 

in absorber layer. The defect at interface arises because of lattice mismatch between two 
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layers, size difference in grain boundaries and injection of impurities during junction 

formation [132]. Defects present at the interface create a trap state to capture electron and 

hole from either side of the junction (ETL side, Absorber side). The solar cell performance 

is highly degraded by interface recombination because recombination at interface reduced 

photocurrent of a solar cell and cause high diode current with a significant loss in Voc.  

There are two types of band structure interfaces for ETL/Absorber that are plotted in 

Figure 6.1.  

 
Figure 6.1: ETL/Absorber band structure diagram 

Figure 6.1(a) has a cliff like band structure with a positive conduction band offset 

(+CBO/+∆Ec) between ETL/Absorber interface and for Figure 6.1(b) has a spike like band 

structure with a negative conduction band offset (-CBO/−∆Ec) between ETL/Absorber 

interface. The major difference between interface band structure under the forward biased 

condition is the build in potential at the interfaces which helps in charge separation of 

photogenerated charge carriers. The build in potential is represented as hole barrier for 

photogenerated holes and electron in Figure 6.1(a, b). From observation of Figure 6.1 that 

with cliff like structure (+∆Ec) the value of built-in potential is smaller than that of a spike 

(−∆Ec) which in terms affect the interface recombination. So, with +∆Ec interface 

recombination will dominate with a comparison to spike.  

Interface recombination for solar cell is depended upon an effective density of 

recombination center. This relation for interface recombination is expressed in equation 

6.1 [133]. 
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RiF  =  
piFniF− ni

2

Sp
−1(niF+n)+ Sn

−1(piF+p)
     (6.1) 

RiF is total interface recombination where (Sp, Sn) are the hole and electron interface 

recombination velocities. Recombination velocities for electron and hole are depended 

upon interface defect density (Nt (iF)), thermal velocity of carrier (vth) (hole, electron) and 

capture cross area for electron and hole (δn, δp). The relation for interface recombination 

is given in equation 6.2. 

Sp =  Nt (iF)vthδp     (6.2) 

(piF, niF)are the electron and hole concentration at the interface, and they determine the 

availability of carrier for interface recombination. Quantities ( p =

 Nve
−(EiF−E(V,iF))

kT
⁄

, n =  Nce
−(E(c,iF)−EiF)

kT
⁄

 ) are related to emission rate from defect 

energy state to the corresponding band edges (Ec, EV,) at interface. 

The effect of ETL CBO on solar cell performance parameters was analyzed in SCAPS 

software developed by the University of Gent Belgium. The basic solar cell structure that 

was simulated in SCAPS to analyze the effect of different ETL’s CBO on solar cell 

performance given in Figure 6.2 and basic simulation parameters for given structure in 

SCAPS are given in Table 6.1, Table 6.2, Table 6.3 and Table 6.4. In table 6.3 neutral 

defect is an idealization of defects that only contribute to Shockley-Read-Hall 

recombination but does not contribute to the space charge. 

 

Figure 6.2: Solar cell structure 
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Table 6.1: Parameters for SCAPS [134]. 

SCAPS Parameters 
FTO 

(Sn𝐎𝟐) 

ETL Absorber 

(𝐌𝐀𝐒𝐧𝐈𝟑) 

HTL 

(𝐌𝐀𝐒𝐧𝐁𝐫𝟑) 

Thickness (nm) 500 0.1~1000 0.1~1000 200 

CB effective DOS (cm-3) 1019 2.8x1018 1x1018 1x1018 

VB effective DOS (cm-3) 1019 3.9x1018 1x1018 1x1018 

Doping density (cm-3) n-2x1019 n-1x1017 p-1x1014 ~ 1x1017 p-1x1018 

Permittivity 9 10 8.2 8.2 

Electron affinity (eV) 4 Table 4 4.17 3.39 

Band Gap (eV) 3.50 Table 4 1.3 2.15 

Electron/Hole mobility (cm2/Vs) 100/25 100/25 1.6/1.6 1.6/1.6 

 Front Contact Back contact 

Surface recombination velocity for electron (cm/s) 1 × 107 1 × 107 

Surface recombination velocity for hole (cm/s) 1 × 107 1 × 107 

 

    

Table 6.2: Interface Defects  

Defect layer properties 𝐄𝐓𝐋/𝐌𝐀𝐒𝐧𝐈𝟑 𝐌𝐀𝐒𝐧𝐈𝟑/𝐇𝐓𝐋 

Capture cross section area of electron/hole 1.0 × 10−15cm2 1.0 × 10−15cm2 

Density of defect  1.0 × 1013cm−2 1.0 × 1013cm−2 

Table 6.3: Defect layer properties (Neutral) 

Defect layer properties 𝐌𝐀𝐒𝐧𝐈𝟑 

Capture cross section area of electron/hole 1.0 × 10−15cm2 

Density of defect 1.0 × 1015cm−3 

Table 6.4: Different ETL layers  

Semiconductor Band gap (𝐄𝐠 (eV)) Electron affinity (𝛘 (eV)) Reference CBO 

𝐂𝐝𝐒 2.4 4.4 [135] + 0.23 

𝐓𝐢𝐎𝟐 3.4 4.0 [136] -0.17 

𝐙𝐧𝐒 3.76 3.44 [137] -0.57 

𝐈𝐧𝟐𝐒𝟑 2.1 4.65 [138] +0.48 

𝐒𝐧𝐒𝟐 2.38 4.16 [139] -0.01 

𝐙𝐧𝐎 3.3 4.4 [140] +0.23 

𝐙𝐧𝐒𝐞 2.92 3.99 [141] -0.18 

𝐂𝐚𝐌𝐧𝐎𝟑 1.7 4.2 [142] +0.03 
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6.1.2 Results and discussion 

Conversion of light energy into electrical energy is the main function of the photovoltaic 

cell. In the dark when there is no light, the photovoltaic solar cell acts as a large flat diode 

and produces the exponential J − V curve. Under illumination condition solar cell starts 

working and current flows due to charge carriers generated by the incidence photons. 

Figure 6.3 shows J − V characteristic for different ETL applied to the solar cell structure. 

Results presented in Figure 6.3 shows that ETL having a −CBO with absorber layer gives 

maximum performance under illumination condition. CBO for different ETL are given in 

Table 6.4 and it was found that TiO2 and ZnSe gives good results.  

From results plotted in Figure 6.3, it was comprehended that CBO between ETL/Absorber 

greatly affect the solar cell performance because CBO has a major impact on band bending. 

A −CBO at the interface will induce a strong band bending and a good built-in potential to 

separate charge carriers at an interface. Whereas less band bending produces a smaller 

value of built-in potential barrier and this term increase interface recombination in a solar 

cell as shown in Figure 6.1(a) for +CBO [143].  

 

Figure 6.3: ETL effect on solar cell performance 

i. Effect of ETL 𝐂𝐁𝐎 on 𝐉 − 𝐕 characteristics and interface recombination 

The key element in Interface recombination that results in loss of V0c of solar cell is (Sp, 

Sn) and (piF, niF). Factors like (Sp, Sn) cannot be controlled as interface recombination 

velocities are depended upon material interface properties but other parameters (piF, niF) 

can be controlled by band alignment of ETL/Absorber, ETL thickness, and doping 

optimization. Effect of CBO on Voc was evaluated by assuming a mid-gap acceptor type 



C H A P T E R  6   Efficiency Enhancement of CH3NH3SnI3 Solar Cell   
 

 86 

trap state at the interface with (donor concentration of ETL Nd > Na acceptor concentration 

of absorber).  Based on assumption that niF > piF and neglecting n, p, ni
2 equation 6.1 can 

be rewritten and is given in equation 6.3. 

RiF =  SppiF                   (6.3) 

From equation 6.3 interface recombination is dominated by recombination velocity of 

holes and holes concentration of absorber side. CBO was adjusted by moving conduction 

band minimum towards vacuum energy level and keeping valance band position constant. 

For analysis, CBO was varied from CBO = +0.2 eV  to CBO = −0.2 eV. Figure 6.4 shows 

the results for band diagrams with the different values of CBO. From Figure 6.4(a) with 

cliff like conduction band alignment, the built-in potential is very small and that allows a 

significant number of holes to recombine with the electrons without getting separated at 

the interface. This results in a significant increase in carrier recombination and a loss to 

Voc. While in Figure 6.4(b) with a spike the built-in potential is quite high thus resulting a 

strong force to separate charge carriers before recombining at an interface and results in 

reduced interface recombination with improvement in Voc of a solar cell. But a very high 

spike that is shown in 6.4(c), impedes the flow of electron and effect device performance 

causes a loss in FF (%) of a solar cell. The detail of the CBO effect on Voc is well explained 

with the aid of equation 6.4  [133,144]. 

Voc =  
EA

q
− 

nKT

q
 ln (

J00

Jsc
)     (6.4) 

Voc is open circuit voltage, EA is activation energy, n is diode ideality factor, K is 

Boltzmann’s constant, T is a temperature in Kelvin, J00 is current prefactor and Jsc is short 

circuit current. From equation 6.4 with an increase in temperature Voc will decrease. For 

analysis operating temperature of the solar cell was varied from 280 K to 400 K. Result 

for effect of temperature on Voc is plotted in Figure 6.5 with different CBO and from Figure 

6.5 with an increase in temperature for CBO (+) loss in Voc is higher than for CBO (−). If 

the assumption was made that J00, n, and Jsc are temperature independent than the plot of 

Voc  vs T will give a straight line and its linear interpolation at T=0K will give Voc =EA/q 

where EA  =  Eg −  ∆Ec as given in the literature [145].` So, with linear interpolation of 

data given in Figure 6.5, Voc  is equal to band gap for MASnI3 given in Table 6.1 for spike 

interface and whereas for cliff interface Voc is less than the band gap of MASnI3. So, from 

Figure 6.5 this result was comprehended and as discussed in previous reports that although 
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there is no barrier for transfer of electron charge for +CBO, Voc  will monotonically 

decrease with increase in +CBO value due to the decrease in EA [143]. 

 

 

Figure 6.4: Different band diagram with different values of CBO 

 

Figure 6.5: Temperature vs Voc with data extrapolated to 0 K 

The effect of CBO on J − V characteristics of the solar cell are plotted in Figure 6.6 below. 

From Figure 6.6 with a large conduction band offset there is no loss in Voc but there a 

reduction in Jsc. Based on results optimized band offset for MASnI3 is CBO (-0.1 eV). 
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Figure 6.6: Effect of CBO of J-V characteristics of solar cell 

Effect of CBO on solar cell performance is given in Figure 6.7 with different interface 

recombination velocities. From Figure 6.7 it can be observed that for +CBO (cliff) solar 

cell performance is quickly degraded with increasing interface recombination velocity 

whereas for −CBO (spike) even at high recombination rate performance of the solar cell is 

still better then +CBO. 

 
Figure 6.7: Effect of CBO on solar cell performance vs different interface recombination 

velocities 

ii. Effect of thickness of ETL on solar cell performance 

Thickness of ETL can also affect the performance of solar cell by suppressing interface 

recombination and for analysis thickness of ETL was varied from 10 nm to 100 nm for 
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CBO values of (+0.1 eV, -0.1 eV) and with assumption that ETL donor doping 

concentration is larger than absorber acceptor doping concentration (Nd >  Na). And with 

these assumptions, from equation 6.3 interface recombination is largely governed by hole 

density at the interface. The result of the effect of ETL thickness on Voc is given in Figure 

6.9. With cliff (+CBO = 0.1 eV) an increase in ETL thickness will reduce the band 

bending of the absorber layer and allowing a larger number of holes at the interface for 

recombination and for the spike (−CBO = 0.1 eV) it has a marginal effect otherwise it 

remains constant. Effect of thickness on hole density and Voc is shown in Figure 6.8 and 

6.9 below.  

 

Figure 6.8: Effect of ETL thickness on hole concentration for recombination with different CBO 

    

Figure 6.9: Effect of ETL thickness on Voc of solar cell with different CBO 
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From Figure 6.8 it can be observed that with an increase in thickness of ETL the 

concentration of hole at interface also changes and for (+CBO) this change is larger than 

(-CBO). By looking at equation 6.3 the surface that has larger hole concentration will have 

larger recombination at interface whereas for low concentration of hole at the interface the 

interface recombination will be reduced. Results plotted in Figure 6.9 shows that change 

in Voc for -CBO is smaller than that of +CBO.   

iii. Effect of donor doping of ETL on solar cell performance 

Like CBO and ETL thickness, donor doping of ETL also affects the performance of a solar 

cell. Increase in donor doping concentration changes the distribution of build in potential 

across the junction which causes a different degree of band bending. The result for band 

bending at different donor doping concentration are plotted in Figure 6.10. 

 

Figure 6.10: ETL donor doping vs band bending for different CBO values 

With varying ETL donor doping equation 1 can be rewritten by considering that product 

of piFniF >  ni
2, niF > n, piF > p  then equation 6.1 will be rewritten as equation 6.5. 

RiF  ≅  
piFniF

niF+piF 
 SiF     (6.5) 

Based on equation 6.5, interface recombination is governed by recombination 

velocity, the density of electron and hole carrier at the interface and by varying ETL donor 

doping concentration equation 6.5 will switched between two conditions. 

i. For (ETL donor doping Nd <  NaAbsorber acceptor doping), then RiFwill be 

governed by the availability of electron at the interface and because of this Voc loss 

will happen. 



C H A P T E R  6   Efficiency Enhancement of CH3NH3SnI3 Solar Cell   
 

91 

ii. For (ETL donor doping Nd >  Na Absorber acceptor doping) then RiFwill be 

governed by the holes at the interface and this will restore the loss in Voc. 

The impact of doping concentration on solar cell functional parameters is given in 

Figure 6.11. From Figure 6.11, it can be observed that Voc of solar cell for both cases 

(+CBO, −CBO), with an increase in donor doping of buffer layer there is a decrease in Voc. 

But the change in Voc for (-CBO) is smaller than (+CBO) due to spike at the interface by 

suppressing interface recombination and governing the density of hole at an interface. 

After reaching to a doping concentration of 1 × 1017 cm−3 further increase in doping 

concentration loss in Voc will restored as discussed above.   

 

Figure 6.11: Effect of ETL doping on solar cell performance with different CBO values 

iv. Selection of ETL 

Based on the discussion above different ETL semiconductor materials and their alloys can 

be considered suitable for MASnI3 absorber layer solar cell. ETL with wide band gap and 

small −CBO should be considered suitable for fabrication of solar cell, because small 

−CBO suppresses the interface recombination.  Here alloy semiconductor Cd1−xZnxS 

[146], Zn(O, S) are considered suitable as an alternate ETL for MASnI3 solar cell because 

of their wide bandgap and good band alignment with absorber layer of CBO =  −0.1 eV. 

Results of solar cell parameters vs interface recombination velocities for Cd1−xZnxS, 

Zn(O, S) and CdS are given in Figure 6.12. With an increase in interface recombination 
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from Figure 6.12 it can be observed that with CdS the device performance is highly 

affected. This happens as band alignment of CdS layer with MASnI3 creates a cliff interface 

with band offset of + 0.23 eV and creates a small built-in potential that leads to high 

interface recombination velocity. In contrast to CdS, the alloy semiconductor materials 

with band offset of - 0.1 eV are less prone to interface recombination because of spike type 

band alignment with MASnI3 as shown in Figure 6.12. 

 

Figure 6.12: Solar cell performance parameters of different ETL as function of SiF 

After the detail explanation of effect of different ETL CBO on solar cell performance in 

next step we analyze the effect of absorber thickness and doping concentration on interface 

recombination of solar cell.  

v. Effect of absorber thickness on solar cell performance 

The thickness of a absorber layer can affect the performance of a solar cell because with 

increase in thickness more photon will be absorbed in the absorber layer. But here absorber 

layer thickness was varied to analyze its effect on interface recombination with CBO values 

of +0.1 eV and -0.1 eV with an assumption that Nd >  Na and interface recombination is 

totally governed by the hole at the interface.  

The results of hole concentration at the interface are plotted in Figure 6.13 and as with an 

increase in absorber thickness there is no change in hole density for CBO (+0.1 eV) but for 

CBO (-0.1 eV) with increase in thickness there is a slight decrease in hole concentration. 
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So, with an increase in thickness, the change in V0c for CBO (-0.1 eV) is marginally higher 

than CBO (+0.1 eV). Figure 6.14 shows the result for effect of thickness on V0c of a solar 

cell. 

   
Figure 6.13: Effect of absorber thickness on hole concentration at interface 

 
Figure 6.14: Effect of absorber thickness on Voc of solar cell with different CBO 

vi. Effect of absorber layer doping on interface recombination 

Like ETL doping concertation, acceptor doping concertation of absorber layer also affect 

the performance and interface recombination of a solar cell. Equation 6.5 presented above 

will be switched between two states as discussed above depending upon acceptor doping 

concentration.  

i. For (absorber acceptor doping Na <  Nd ETL donor doping), then RiFwill be 

governed by the availability of holes at the interface and because of this Voc loss 

will happen. 
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ii. For (absorber acceptor doping Na >  Nd ETL donor doping) then RiFwill be 

governed by the electrons at the interface and will restore the loss in Voc. 

The impact of the acceptor doping concentration of the absorber layer on solar cell 

functional parameters is given in Figure 6.15. So, in Figure 6.15 it can be seen with an 

increase in acceptor doping of absorber layer there is a decrease in Voc for both cases 

(+CBO, −CBO). But the change in Voc for (−CBO) is smaller than (+CBO) due to spike at 

the interface by suppressing interface recombination and governing the density of hole at 

an interface. After reaching to a doping concentration of 1 × 1017 cm−3 further increase 

in doping concentration loss in Voc was restored as discussed above. 

 

Figure 6.15: Effect of Absorber doping concentration on solar cell performance 

6.1.3 Conclusion 

Interface recombination is a major limitation for the design of high efficiency lead free 

perovskite solar cell and this can be suppressed by interface engineering. In this work 

impact of different ETL and effect of their band alignment on a solar cell, performance 

was analyzed. From the numerical analysis it was found that conduction band offset can 

play a significant role in solar cell performance by creating a hole barrier at the interface 

and suppressing the interface recombination. Based on the results it was found that 

interface recombination of MASnI3 solar cell can be controlled with ETL CBO, ETL 

thickness, ETL donor doping concentration and absorber doping concertation. With a 



C H A P T E R  6   Efficiency Enhancement of CH3NH3SnI3 Solar Cell   
 

95 

small - CBO “Spike” at an interface is beneficial for efficiency enhancement of a solar cell, 

but too high spike will degrade solar cell performance by impeding the flow of charge 

carriers. Similarly, ETL with moderate - CBO is less prone to interface recombination with 

the comparison to ETL having a +CBO with absorber material. In terms of selection of 

ETL materials for MASnI3 absorber based solar cell, the solar cell with moderate −CBO 

should be advantageous for ETL choice.  

6.2 Efficiency enhancement of 𝐂𝐇𝟑𝐍𝐇𝟑𝐒𝐧𝐈𝟑 solar cell by device modeling [31] 

Numerical analysis was performed to propose a novel structure for lead-free perovskite 

solar cell with MASnI3 as an absorber layer. Device modeling for Cd1−xZnxS as ETL and 

methylamine tin halide (MASnBr3) as HTL was proposed for the first time using solar cell 

capacitance simulator (SCAPS). Simulation revealed dependence of open circuit voltage 

(V0c), short circuit current (Jsc), fill factor (FF) and power conversion efficiency (PCE) on 

HTL valance band offset, absorber layer thickness, doping concentration of absorber layer, 

band offset of ETL, diffusion length of minority carriers, defects at the interface between 

HTL/absorber and absorber/ETL. Optimum thickness for absorber layer was confirmed of 

and is well consistent with the thickness range for practical absorber layer design. 

Moreover, the conversion efficiency of 18.71% was revealed with absorber thickness of 

500 nm and doping concentration of 1x1016 cm-3. The result proposed in this work will 

provide an important guideline for a design of a low-cost perovskite solar cell.   

Despite the rapid improvement in Sn-based perovskite material still PCE achieved from 

Sn-based perovskite solar cell is very low. This is mainly due to the lack of understanding 

of device properties and effect of band structure on device performance. To the best of our 

knowledge, there has been no report on a simulation model for Sn-based perovskite solar 

cell with Cd(Zn, S) as electron transport layer (ETL) and MASnBr3 as the hole transport 

layer (HTL). In this article we report on theoretical proven and experimentally expected 

effects of conduction band offset (CBO) of ETL/MASnI3 layer of a performance of 

perovskite solar cell. To analyze the effect, it is necessary to control the band gap of CdS 

ETL layer and this is done by adding a control amount of zinc (Zn) to the ETL chemical 

bath solution containing (Cd) and Sulphur (S) ions as discussed in the literature [146–149]. 

Cd1−xZnxS thin film was deposited by chemical bath deposition (CBD) technique. The 

parameters of the bath used for fabrication of Cd1−xZnxS film on transparent conducting 

oxide (TCO) were similar to those used elsewhere [146]. Various ratios (x= 0%, 3%, 5% 

and 10%) for zinc/cadmium were used in this experiment. After fabrication film on TCO 
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substrate optical analysis was performed and it was found that there is a shift in the 

bandgap of Cd1−xZnxS layer with various concentration of Zn. The optical analysis of 

Cd1−xZnxS layer with different concertation of Zn is given in Figure 6.16 and Figure 6.17.  

 

Figure 6.16: Transmittance of Cd1−xZnxS  

       

Figure 6.17: Plot of (Ahv)2 vs photon energy (eV) 

In this work device simulation was carried out in solar cell capacitance simulator (SCAPS) 

developed by the University of Gent belgium. SCAPS is a one-dimensional software used 

to calculate, band diagram, IV characteristic, quantum efficiency/spectral response (QE) 

and AC quantities. This program was mainly developed for the analysis of CIGS and CdTe 

solar cell and was widely used for the optimal design of (CIGS, CdTe) solar cells [76]. But 

recently, SCAPS has emerged as an alternate numerical tool for the analysis of perovskite 

solar cell [79,126]. 
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Our approach for the improvement of MASnI3 solar cell performance is by means of 

addressing the following facts: 

i. Validation of simulated results for Spiro − MeOTAD as HTL. 

ii. Replacing Spiro − MeOTAD HTL with MASnBr3 of the validated simulation. 

iii. Analyzing the effect of valance band offset of HTL on solar cell performance 

iv. Optimization of absorber layer thickness and doping concentration. 

v. Replacing TiO2 with CdS ETL layer. 

vi. Analyzing the conduction band offset to improve the efficiency of the device. 

vii. Effect of Absorber layer minority carrier diffusion length on a thickness of the 

absorber layer. 

viii. Comparison of Results. 

The proposed results in this study will give a beneficial guideline for the designing of high 

performance of MASnI3 based solar cells. 

6.2.1 Simulation setup 

A planner heterostructure of MASnI3 absorber material based solar cell is adopted in this 

work with layer configuration; glass substrate/transparent conducting oxide/ 

 CdxZn1−xS (ETL)/MASnI3 (absorber) /MASnBr3 (HTL)/Back contact is shown in Figure 

6.18. 

 
Figure 6.18: Solar cell structure. 

Simulation parameters for different layers were carefully taken from experimental and 

from theoretical work [26–28,30,134]. The primary parameters of the proposed structure 

that were used in SCAPS simulation are summarized in Table 6.5. The defect in the 

absorber layer are considered as neutral gaussian distribution, with a characteristic energy 

of 0.1 eV and energy of defect is above valance band with an energy of 0.6 eV. Interface 
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defects for ETL/Absorber layer and Absorber/HTL are set to be neutral and single defect 

having an energy of defects 0.6 eV on the top of valance band with the total concentration 

of interface defect to be 1x1017 cm−2. The defects in the absorber layer and at the interface 

region are given in Table 6.6 and Table 6.7.  

 

Table 6.5: parameters for SCAPS [29-30,31-35]. 

SCAPS Parameters 
FTO 

(Sn𝐎𝟐) 

ETL 

(𝐂𝐝𝐙𝐧𝐒) 

Absorber 

(𝐌𝐀𝐒𝐧𝐈𝟑) 

HTL 

(𝐌𝐀𝐒𝐧𝐁𝐫𝟑) 

Thickness (nm) 500 0.1~1000 0.1~1000 200 

CB effective DOS (cm-3) 1019 2.8x1018 1x1018 1x1018 

VB effective DOS (cm-3) 1019 3.9x1018 1x1018 1x1018 

Doping density (cm-3) n-2x1019 n-1x1017 p-1x1014 ~ 1x1017 p-1x1018 

Permittivity 9 10 8.2 8.2 

Electron affinity (eV) 4 4.4~3.6 4.17 3.39 

Band Gap (eV) 3.50 2.42~3.2 1.3 2.15 

Electron/Hole mobility (cm2/Vs) 100/25 100/25 1.6/1.6 1.6/1.6 

 

Table 6.6: Interface Defects (Neutral) 

Defect layer properties 𝐂𝐝𝐙𝐧𝐒/𝐌𝐀𝐒𝐧𝐈𝟑 𝐌𝐀𝐒𝐧𝐈𝟑/𝐌𝐀𝐒𝐧𝐁𝐫𝟑 

Capture cross section area of electron/hole 1.0 × 10−15cm2 1.0 × 10−15cm2 

Density of defect  1.0 × 1017cm−2 1.0 × 1017cm−2 

 

Table 6.7: Defect layer properties (Neutral) 

Defect layer properties 𝐌𝐀𝐒𝐧𝐈𝟑 𝐌𝐀𝐒𝐧𝐁𝐫𝟑 

Capture cross section area of electron/hole 1.0 × 10−15cm2 1.0 × 10−15cm2 

Density of defect 1.0 × 1015cm−3 1.0 × 1015cm−3 

 

6.2.2 Result and Discussion 

i. Effect of 𝐌𝐀𝐒𝐧𝐁𝐫𝟑 HTL on solar cell performance 

Result for J-V characteristics for a solar cell with two different HTL’s is given in Figure 

6.19 below. By changing the HTL layer from Spiro-MeOTAD to MASnBr3 there is an 

increase in short circuit current (Jsc) and open circuit voltage (Voc).  
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Figure 6.19: HTL effect on solar cell performance 

This mainly happens because of valance band offset of HTL layer with absorber layer. 

With Spiro-MeOTAD as HTL layer the band structure forms a cliff like structure that 

reduces the activation energy of solar cell while for MASnBr3 band structure forms a small 

spike and because of this spike activation energy is equal to band gap energy thus 

increasing open circuit voltage for the solar cell [143]. Band structure for HTL interface 

with absorber layer is given in Figure 6.20. Figure 6.20a shows the band structure for 

Spiro-MeOTAD and Figure 6.20b shows band structure for MASnBr3. 

 

Figure 6.20: Band interface for HTL with absorber layer 

Figure 6.21 shows that with an increase in electron affinity with a bandgap of 2.2 eV the 

PCE tends to increase to a value of 3.3eV after which it starts to decrease. This happens 

because with an increase in EA value the valance band position changes for HTL and this 

result in an increase in VBO (χHTL − χAbsorber). So, with increase in VBO the band 

structure of valance band at interface changes from cliff to spike which that is already 
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shown in Figure 6.20 above. But with further increase in VBO, increases the spike height 

which increases the resistance for the flow of hole towards back contact and causing a loss 

in PCE of a solar cell.  

 
Figure 6.21: Effect of Electron affinity on solar cell performance 

ii. Effect of Absorber thickness and doping concentration of solar cell performance 

Absorber thickness has a direct effect on the performance of solar cell and for analysis 

absorber layer thickness was varied from 0.1 µm to 1µm. Figure 6.22 shows the plotted 

results for effect on absorber layer thickness on solar cell performance.  

 

Figure 6.22: Absorber layer thickness effect on solar cell performance 

With the change in thickness PCE, JSC, Voc tends to increase with thickness but after 

reaching to a thickness of 0.5 µm PCE, JSC, Vocbecome constant. Whereas FF tends to 

increase with thickness at the start but with further increase in thickness FF starts to 
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decrease and this mainly happens due to an increase in series resistance with an increase in 

thickness.  

MASnI3 is unstable in air because of oxidization process of Sn2+ to Sn4+ which act as p-

type dopant for perovskite absorber layer. This self-doping process can greatly affect the 

performance of solar cell based on MASnI3 absorber layer solar cell. So, to investigate the 

effect of acceptor concentration on solar cell performance doping level was varied from 

1 × 1013 c m−3 to 1 × 1017 c m−3. Result for acceptor concentration is plotted in Figure 

6.23, JSC and Voc change is related to change in acceptor concentration. JSC reach to 

maximum value with acceptor concentration value of  1 × 1016 c m−3 whereas Voc  start 

to decrease at value of 1 × 1016 c m−3for acceptor concertation. The behavior is well 

explained with the aid of quantum efficiency (QE) (see Figure 6.24) of solar cell and with 

increase in acceptor concentration QE increases up to a value of 1 × 1016 c m−3, which 

indicates that the generation rate of the photo-generated carriers increases under the same 

incident photon number.  Hence, an optimal acceptor carrier concentration is necessary for 

improvement in JSC and photo-absorption efficiency. Acceptor concentration also affects 

the PCE and FF of a solar cell and with an increase in carrier concentration PCE and FF 

increase after reaching to a value of optimal acceptor concentration PCE starts to decrease 

whereas FF tends to increase. The increase in FF is depended upon JSC and Voc as depicted 

in equation 6.6 below. 

FF =  
VMaxIMAX

VOCISC
                   (6.6) 

 

 

Figure 6.23: Acceptor carrier concentration effect on solar cell performance 
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Figure 6.24: QE as a function of acceptor concentration vs wavelength  

iii. ETL band gap and electron affinity effect on solar cell performance 

By replacing TiO2 layer with CdS the conversion efficiency of solar cell is reduced, and 

this happens because of large conduction band offset (CBO) between ETL and absorber 

layer which give rise to interface recombination. Thus, CBO can greatly affect solar cell 

performance by observing the graph given in Figure 6.25a of J − V characteristics for two 

different ETL layers with electron affinity of 4.4 eV for CdS and 4.27 eV for TiO2. So, by 

adjusting CBO of ETL/Absorber we can improve the efficiency of solar cell and the reason 

for the selection of CdS is because of its band gap tuneability. CdS band gap can be tuned 

by adding Zn in to the CdS bath solution as discussed above.  As discussed above that 

band gap of Cd1−xZnxS is varied from 2.42 eV to 3.2 eV by changing Zn concentration in 

the bath solution. So, by applying the change of band gap for Cd1−xZnxS layer in SCAPS 

with assumption that only conduction band minimum changes with band gap of 

Cd1−xZnxS whereas valance band mximum remain constant throughout. Thus, with 

change in band gap the electron affinity of Cd1−xZnxS will change which will greatly affect 

the band structure between ETL/Absorber layer. The effect of CBO on solar cell 

performance and on band structure is shown in Figure 6.25b, 6.25c and 6.25d. The cliff 

like band structure (see Figure 6.25c) does not impede the flow of electron towards the 

front contact but the activation energy for carrier recombination (Ea) becomes lower than 

absorber band gap Eg and whereas Ea is represented by Eg – |CBO|. Main recombination 

is interface recombination when Ea is less than band gap of absorber layer [150–152]. 

Thus, CBO directly correlates with PCE of solar cell as Ea directly correlates with Voc, 
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and the negative CBO reduces Voc. When the CBO is positive, PCE is excellent, however 

further increase in CBO values reduces PCE of solar cell. When the CBO is positive, a 

spike is formed at the buffer/absorber interface (see Figure 6.25d), an increase in spike 

impedes the flow of photo-generated electron towards the front electrode, thus affecting 

the PCE of solar cell as shown in Figure 6.25b. 

 

Figure 6.25: (a) Effect of ETL’s on solar cell J-V characteristics curve (b) Effect of CBO 

of Cd1−xZnxS on solar cell performance (c) Band structure for χETL  >  χAbsorber  (d) Band 

structure for χETL  <  χAbsorber 

iv. Effect of absorber layer defect on solar cell performance 

By setting the band offset of HTL and ETL we can improve the PCE of a solar cell by 

suppressing carrier recombination at the interface but still, PCE of a solar cell cannot get 

to it maximum theoretical conversion efficiency. The main reason is the defect density in 

the absorber layer of a solar cell, as the density of these defects in the absorber layer 

directly affect the photogenerated carrier lifetime and diffusion length. This is well 
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expressed from equation 6.7 and equation 6.7 written below. The relation of diffusion 

length with the mobility of the carrier lifetime is expressed in equation 6.7. 

LD =  √
µ(e,h)kΤ

q
τlifetime      (6.7) 

In equation 6.7, LD is diffusion length, µ(e,h) is mobility for electron and hole, τlifetime is 

the minority carrier lifetime. Whereas τlifetime depended upon defect trap density and 

capture cross section area for electron and hole. The relation of τlifetime with bulk defect 

density is expressed in equation 6.8. 

τlifetime =  
1

Ntδ vth
      (6.8) 

𝛿 represents capture cross-section area of electron and hole, 𝜈th represents the thermal 

velocity of carriers (107 cm/s) and Nt density of traps. So, based on equation 6.7 and 6.8 

with an increase in traps density the diffusion length of carrier will reduce thus reducing 

the chance of carrier to reach to the contact. Diffusion length constant can affect the 

performance of a solar cell and limiting the thickness of the absorber layer. This effect of 

diffusion length with a change in thickness of absorber material vs PCE is shown in Figure 

6.26 below.  

 

Figure 6.26: PCE vs Absorber thickness for different diffusion lengths 

From Figure 6.26 the value of diffusion length limits the optimal thickness of the absorber 

layer on which we get maximum conversion efficiency. The effect of diffusion length on 

optimal thickness is well clear for diffusion length of 0.5 µm and 0.1 µm. for 0.5 µm the 

optimal thickness of absorber layer on which maximum PCE was achieved was 0.6 µm 

whereas for 0.1 µm the optimal thickness of absorber layer was 0.4 µm. Based on the results 
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it was concluded that the diffusion length of the minority carrier or density of the defect in 

the absorber layer will limit the optimal thickness of the absorber layer. 

v. Comparison of results 

The result evaluated for every single step are plotted in Figure 6.27. And from Figure 6.27, 

the result for a final optimized solar cell with Cd1−xZnxS as ETL and MASnBr3 as HTL 

are proven to be a good alternative for the design of high efficiency MASnI3 absorber layer 

solar cell with PCE of 18.71%.  

 

Figure 6.27: Result comparison 

The detail of solar cell performance parameters for every action performed in this work is 

given in Table 6.8.  

Table 6.8: Results comparison 

Steps Performed 𝐕𝐨𝐜 (V) 𝐉𝐬𝐜 (𝐦𝐀/𝐜𝐦−𝟐) FF (%) PCE 

(%) 

With Spiro-MeOTAD as HTL 0.55 25.82 63.31 8.97 

MASnBr3 as HTL 0.67 26.54 65.02 11.53 

Optimization of Absorber thickness 0.77 30.74 67.31 15.96 

Optimization of Acceptor doping concentration 0.78 30.75 67.06 16.13 

ETL CBO adjustment 0.87 31.42 68.88 18.71 

 

6.2.3 Conclusion 

Lead free perovskite solar cell was simulated in this works in SCAPS software. For 

the first time, a numerical model was presented for lead free HTL layer MASnBr3 with 

Cd1−xZnxS as ETL for MASnI3 absorber layer. Effect of HTL layer band offset was 
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analyzed and based on results it was concluded that HTL band offset can greatly affect 

solar cell performance. Optimal thickness (0.5 µm) and optimal doping concentration of 

absorber layer (1 × 1016 cm−3) was found in this work and exceeding the optimal limits 

lead to degradation in solar cell performance. Effect of two different ETL’s on solar cell 

performance was analyzed and it was found that by adjusting the band offset of Cd1−xZnxS 

layer can lead to a PCE of 18.71 %. Effect of the defect density of the absorber layer was 

analyzed, and it was found that with an increase in defect density will limit the thickness 

of the absorber layer. The results proposed in this paper should provide a baseline for 

alternate ETL and HTL layer selection and for the design of an efficient solar cell.
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7.1 Conclusion 

Numerical simulation using the solar cell software SCAPS has been used for analyzing the 

main factors that limit the efficiency of SnS based solar cells. Owing to the optical and 

electrical characteristics of SnS semiconductor a photon conversion efficiency of 28% is 

expected for solar cells based on SnS absorber. However, up to date, practical solar cell 

devices do not surpass 4.36%. The proposed method evaluates the efficiency limits of SnS 

thin film device under the influence of absorber thickness, temperature, band tailing energy 

and defects in a solar cell. From the analysis, the major limitation in efficiency 

enhancement of SnS solar cell was absorber thickness, band tailing, interface density 

defect, and absorber defects.  We found that interface defects behave like a serial resistance 

and reduce the open circuit voltage (Voc), while absorber defects act as recombination 

centers and limits the short circuit current (Jsc). The J − V curve and PV parameters of 

experimental SnS-based solar curve were well fitted by introducing both types of defects 

in the SnS layer absorber and at the interface of buffer-absorber. The simulation carried 

out in this work will be very helpful in further investigating the efficiency limits of SnS 

solar cell.  

So, after the investigation of efficiency limits of SnS solar cell, we proposed a numerical 

model guide about how numerical analysis can aid in the improvement of the power 

conversion efficiency of experimentally designed solar cell. To perform analysis in first 

step experimental result was reproduced for SnS absorber layer based solar cell in SCAPS 

environment. In next step numerical analysis was performed in SCAPS to optimize the 

parameters of a solar cell like absorber layer thickness, buffer layer thickness, window 

layer effect, doping density and minority carrier lifetime. From observation, it was found 

that experimentally designed solar cell efficiency can be enhanced with the aid of 

numerical analysis. After optimization of physical parameters for a solar cell, PCE jumps 

from 4.36% to 14.01%. The result presented in this work can provide a valuable guideline 

to a researcher for the efficient design of solar cell with optimized parameters. 

From numerical analysis guide about how to improve the efficiency of solar cell, we 

proposed a method for the selection criteria of ETL layer for lead free perovskite solar cell. 

In the design of high efficiency lead free perovskite solar cell Interface recombination is a 

major limitation. In this work impact of different ETL and effect of their band alignment 

on a solar cell, performance was analyzed. From the numerical analysis it was found that 

conduction band offset can play a significant role in solar cell performance by creating a 
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hole barrier at the interface and suppressing the interface recombination. Based on the 

results it was found that interface recombination of MASnI3 solar cell can be controlled 

with ETL CBO, ETL thickness, ETL donor doping concentration and absorber doping 

concertation. With a small - CBO “Spike” at interface is beneficial for efficiency 

enhancement of solar cell, but too high spike will degrade solar cell performance by 

impeding the flow of charge carriers. Similarly, ETL with moderate - CBO are less prone 

to interface recombination with the comparison to ETL having a +CBO with absorber 

material. In terms of selection of ETL materials for MASnI3 absorber based solar cell, solar 

cell with moderate −CBO should be advantageous for ETL choice.  

After detail studies of the effect of the defects and effect of an interface layer, band offset 

on solar cell performance an optimized structure was proposed for lead free perovskite 

solar cell in SCAPS software. For the first time, a numerical model was presented for lead 

free HTL layer 𝑀𝐴𝑆𝑛𝐵𝑟3 with 𝐶𝑑1−𝑥𝑍𝑛𝑥𝑆 as ETL for 𝑀𝐴𝑆𝑛𝐼3 absorber layer. Effect of 

HTL layer band offset was analyzed and based on results it was concluded that HTL band 

offset can greatly affect solar cell performance. Optimal thickness (0.5 µm) and optimal 

doping concentration of absorber layer (1 × 1016 𝑐𝑚−3) was found in this work. Effect of 

two different ETL’s on solar cell performance was analyzed and it was found that by 

adjusting the band offset of 𝐶𝑑1−𝑥𝑍𝑛𝑥𝑆 layer can lead to a PCE of 18.71 %. Effect of 

defect density of the absorber layer was analyzed, and it was found that with an increase 

in defect density will limit the thickness of the absorber layer. The results proposed in this 

paper should provide a baseline for alternate ETL and HTM layer selection and for the 

design of an efficient solar cell. 

7.2 Future Work 

The simulations presented here have been done for SnS and Sn based organic non-organic 

metal halide perovskite solar cell on SCAPS-1D. From results, it was evaluated that 

contact recombination can be reduced by using back surface field and interface 

recombination can be suppressed by adjusting the band offset of these materials. The 

simulation model used in this thesis is restricted to one dimension. Therefore, using two 

or three dimensional computer simulation programs will aid in to effectively analyze the 

effect of the scattering mechanism of a light photon, photon recycling, grain boundaries, 

and space charge region. These two dimensions and three dimensions effects will possibly 

not overturn our current understanding, but they will, however, be of interest for future 

research.
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