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ABSTRACT 

The ceramic sanitary-ware market generates large amounts of waste, both during the 

production process and due to construction and demolition practices. In this paper, the effect of 

different amounts and calcium sources (calcium hydroxide Ca(OH)2, calcium aluminate cement 

CAC, Portland cement PC) on the alkaline activation of ceramic sanitary-ware waste (CSW) 

was assessed. Blended samples were activated with NaOH and sodium silicate solutions and 

cured for 3 and 7 days at 65 ºC. The maximum amount of calcium source-type added to the 

system varied according to its influence on the compactability of the mortars.CSW was physico-

chemically characterized and the compressive strength development of activated samples was 

assessed on the mortars. The nature of the reaction products was analyzed in pastes, by X-ray 

diffraction, thermogravimetric analysis, infrared spectroscopy and microscopic studies. The 
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results show a great positive influence with the addition of moderate amounts of Ca(OH)2, PC 

and CAC on the mechanical properties. Among the typical hydrates usually observed in plain 

water-hydrated PC or CAC, only AH3 and a small amount of C3AH6 were identified in the alkali-

activated CSW/CAC blended pastes, which indicates that Al and Ca from PC, CAC and 

Ca(OH)2 are taken up in the newly-formed (N,C)-A-S-H or C-A-S-H gels. 

Keywords: Alkali activation, cements, geopolymers, mechanical properties, microstructure 
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1. INTRODUCTION  

 

Portland cement was a key material during the Industrial Revolution and allowed great 

technological advances in the history of humanity. However, concerns about the natural 

resources consumed and the CO2 emitted during its production have prompted the scientific 

community and cement industry to seek more sustainable alternative binders. Among them, 

alkali-activated cements are being increasingly investigated, due to the lower energy cost and 

environmental impact. These binders allow reduced CO2 emissions and reuse of the industrial 

by-products, which contributes to minimizing the surface required to dispose the waste and the 

exploitation of non-renewable raw materials1,2. 

 

Although different aluminosilicate waste materials have been successfully used as a precursor 

to develop alkali-activated cements3, certain requirements must be met for the residue to be 

activated, such as high solubility in the basic medium and high availability of Al2O3 and SiO2 in 

the precursor4.The durability, hardness and high resistance to biological, chemical and physical 

degradation forces of ceramic sanitary-ware waste products (i.e. washbasins, lavatories, 

bidets...) give rise to serious environmental problems when dumping this ceramic waste in 

landfills, mainly motivated by dust pollution and the large areas of land which it occupies. An 

advantage of this ceramic waste, which facilitates its reuse and valorization, is that the products 

can be easily separated from dumps, since they are not attached to gypsum, cement or other 

binding materials. Given all the above-mentioned particularities, and by considering the 

prolonged period of biodegradation of a residue such as ceramic sanitary-ware (up to 4000 

years)5, exploring its potential use and valorization as a precursor to produce new alternative 

low CO2 binders by alkaline activation remains an attractive and highly interesting option. 

 

Ceramic sanitary-ware waste (CSW) is not only generated during the refurbishment of buildings, 

but also due to the rejection of products during the production process, mainly due to breakage, 

deformed shapes or minor defects, which usually occur when firing the pieces, and affect the 

physico-chemical and aesthetic properties of the final product. According to data reported in 

Baraldi et al.6, world sanitary-ware production is estimated to have grown by 61.3% in a decade, 
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rising from 216.6 to 349.3 million pieces produced in the years 2004 and 2014, respectively. It 

has been reported7 that 5-7% of the pieces are discarded because the presence of defects, 

which means that about 20 millions of pieces may be considered as waste.  Previous research 

focused on the reutilization of CSW as a raw material in the cement and concrete industry. 

While authors such as Medina et al.7,8 and Guerra et al.9 successfully replaced natural coarse 

aggregates with CSW in concrete production, Pacheco-Torgal and Jalali10 and Alves et al.11 

investigated its use to replace natural fine aggregates. Moreover, its reutilization as a 

pozzolanic admixture was explored by Medina et al.12 and Reig et al.13, who replaced 

percentages of cement with ceramic waste within the 10–20 % and 15–25 % ranges, 

respectively. However, the use of ceramic sanitary-ware waste as a precursor to obtain binders 

by the alkali-activation process is a new line of research barely explored to date.  

 

Preliminary studies on the alkali-activation of ceramic sanitary-ware waste were successfully 

performed by Reig et al.13,14, who investigated the optimum NaOH/sodium silicate mix 

proportions and the influence of Ca(OH)2 additions on the fresh behavior, mechanical strength 

and microstructure of the designed binders. The authors concluded that mortars activated by 

means of solutions with 7.28 mol·kg-1 of SiO2 and 7.5 mol·kg-1 of sodium (Na+), blended with 4.5 

wt% of Ca(OH)2, exhibited the best workability with good compressive strength results (21 and 

27.5 MPa after 3 and 7 curing days at 65 ºC, respectively). They also observed that the addition 

of Ca(OH)2 proved essential for the alkali-activation process, which prompts a great interest in 

further analyses on the influence of various calcium sources on the microstructure and 

mechanical properties of CSW alkali-activated mortars. In this regard, previous studies have 

focused on this issue and analyzed the influence of additions such as calcium aluminate cement 

(CAC)4,15,16, Portland cement (PC)4,17 or Ca(OH)2
18,19 on the reactivity and properties of alkali-

activated blended systems with different precursors. They generally concluded that these 

admixtures enhance the reactivity of the system and contribute to the mechanical strength 

development of the samples. Specifically, the influence of Ca(OH)2 on alkali-activated ceramic 

materials was investigated by Reig et al.18,19. Although porcelain stoneware tile waste was 

successfully activated and mortars with compressive strengths close to 30 MPa (7 days, 65 ºC) 

were obtained18, no activation took place in the absence of calcium hydroxide, and rapid setting 
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occurred when 5% of the residue was replaced with this calcium source. Further research 

studied the influence of the alkali activator concentration and calcium dosage on the activation 

process of porcelain stoneware tiles19. It was concluded that mortars prepared with a constant 

calcium to sodium molar ratio (MCa) presented an equal setting time. Also, when both the SiO2 

concentration and MCa were constant, the mortars exhibited a linear increase of the compressive 

strength with the sodium concentration.  

 

According to the review by Shi et al.4, CAC additions have been observed to improve the 

reactivity and mechanical properties of alkali-activated binders. Results were confirmed in Reig 

et al.15, where CAC proved to accelerate the activation process of red clay brick waste, 

increasing the compressive strength by 68.6% and 165.7% in the mortars that contained 20 

wt% and 40 wt% CAC (cured for 7 days at 65ºC), respectively. Both studies agree that, in the 

systems that contained up to 20 wt% cement, the CAC hydration pattern differs from that 

usually observed in water, and the Al and Ca from CAC are taken up in the alkali-activated 

aluminosilicate gel formed, so that the typical CAC hydrates that appear during standard water 

hydration (CAH10, C2AH8, C3AH6, AH3) were not identified in the alkali-activated samples. The 

hexagonal aluminates (CAH10 and C2AH8) were not distinguished either in the studies by Arbi et 

al.16, where 20% CAC addition was used on alkali-activated blast furnace slag and diatomite 

(using 8 M NaOH solution), and Pastor et al.20, who hydrated CAC with 8M and 12M NaOH 

solutions. However, in both studies the cubic hydrate (C3AH6) was formed from very early ages 

(2 days at room temperature). 

 

Studies on alkali-activated Portland cement blended systems (hybrid alkaline cements) have 

also shown that Portland cement hydration differs from that usually observed in water, 

depending on the pH and the presence of soluble silica4. After analyzing the cementitious gels 

formed in 70%FA-30%PC hybrid cements hydrated with water and with 12.5 M NaOH and 

sodium silicate solutions, Garcia-Lodeiro et al.17 confirmed that the traditional products formed 

during water hydration diverge from that yielded during alkaline activation. This improved the 

mechanical properties of the activated hybrid cements when compared to the water-hydrated 
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systems (both at 28 and 365 curing days), which was interpreted as an acceleration of the fly 

ash reaction.  

 

The work reported in this paper aims to investigate the influence of different sources and 

amounts of calcium on the mechanical properties and microstructure of alkali-activated ceramic 

sanitary-ware waste binders. This could open a new way of valorizing the residues from the 

sanitary-ware industry and demolition activity. 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1. Materials 

 

Ceramic sanitary-ware waste (CSW) pieces were crushed in a jaw crusher BB200 (Retsch) and 

then dry-milled in alumina medium (Gabrielli Mill-2 ball mill) for 25 minutes (90 balls of alumina, 

450 g of waste) to obtain a milled material with a mean particle diameter, d10, d50 and d90 of 

23.9, 1.7, 15.8 and 60.7 µm, respectively (determined through laser granulometry in a 

Mastersizer 2000, by Malvern Instruments).The morphology of the crushed CSW and the milled 

CSW particles is shown in Fig. 1. As observed in Fig. 1a, the crushed CSW particles are 

composed of a white ceramic body with an external glaze covering, and both parts constitute 

the precursor to be activated. The milling process homogeneized the sample and the chemical 

composition of the ground material is the weighted average of both parts. Dense and irregularly-

shaped particles were observed by scanning electron microscopy (SEM JEOL JSM-6300, Fig. 

1b and 1c). 

 

Insert Fig. 1. Images of ceramic sanitary-ware waste: a) Crushed; b) Milled; c) Milled, 

magnification. 

 

 

The chemical composition of CSW, determined by X-ray fluorescence (XRF) in a Philips Magix 

Pro spectrometer, is shown in Table 1.The residue is mainly composed of SiO2 and Al2O3 (the 
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sum is 89.6 wt%) and contains a low percentage of CaO (1.2%). These values are close to 

those previously reported by Pacheco-Torgal and Jalali10, who also found the silica and alumina 

content close to 90 wt% for white paste sanitary-ware. The amorphous CSW content, 

determined according to specification UNE EN 196-2, was 45.6% (soluble fraction of the waste). 

 

 

Insert Table 1 

 

 

The mineralogical composition of CSW was determined by X-ray diffraction (XRD, Brucker AXS 

D8 Advance), from 10º to 70º 2θ degrees, with Cu Kα radiation at 40 kV and 20 mA. As plotted 

in Fig. 2, quartz (Q, SiO2, PDFcard331161) and mullite (M, Al6Si2O13, PDFcard150776) were the 

major crystalline phases identified, and small amounts of the potassium feldspar microcline (m, 

KAlSi3O8, PDFcard190926) were also distinguished. A deviation from the baseline was 

observed within the 15º to 30º 2θ degrees range, which denotes considerable amounts of 

amorphous phases in the CSW waste material. 

 

 

Insert Fig. 2. XRD pattern for the raw CSW material. Q: Quartz (SiO2); M: mullite (M, Al6Si2O13); 

microcline (m, KAlSi3O8). 

 

 

Ca(OH)2 (purity higher than 96%), calcium aluminate cement (CAC, composed mainly of 37.1 

wt.% Al2O3, 35.4 wt.% CaO, 15.6 wt.% Fe2O3 and 4.9 wt.% SiO2
15 and provided by Cementos 

Molins S.A., Barcelona, Spain) and Portland cement (PC, CEM I 52.5R, Lafarge, Puerto de 

Sagunto, Spain) were used as calcium sources. Siliceous sand (4.36 modulus fineness and 

maximum particle diameter of 2 mm) was used for mortar preparation. Sodium hydroxide pellets 

(98% purity, Panreac) and sodium silicate (Merck, 28% SiO2, 8% Na2O, 64% H2O) were used 

for the preparation of alkaline activating solutions. 
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2.2. Samples preparation  

 

Pastes and mortars were produced according to the process previously described in Reig et 

al.15,21. Mix proportions were adopted from previous studies13,14, where NaOH, sodium silicate 

and Ca(OH)2 contents were optimized for the alkali-activated ceramic sanitary-ware waste 

binders. These studies13,14 revealed that addition of calcium was essential for the alkali-

activation of CSW to occur, and that the mix proportions strongly influenced the setting time and 

workability of the developed mortars. The best results were obtained in the samples prepared 

with a water to binder ratio of 0.40, Na2O and SiO2 concentrations of 3.75 and 7.28 mol·kg-1, 

respectively, and 4.5 wt.% of Ca(OH)2. The SiO2/Na2O mass ratio and the modulus of sodium 

(MNa) of this system were 1.88 and 0.236, respectively. As defined in13, MNa is the ratio between 

the moles of sodium Na+ in the activating solution and the amount of SiO2 and Al2O3 in the 

precursor CSW. This sample was used as the reference throughout the study. 

 

All samples were prepared with a water to binder ratio of 0.40, and with Na+ and SiO2 

concentrations in the activating solution of 7.5 and 7.28 mol·kg-1, respectively. The binder was 

composed of CSW and its partial replacement with different calcium sources were: Ca(OH)2, in 

4.5%, 6% and 8%;  PC, in 5%, 10% and 15%; CAC, in 5%, 10%, 15%, 20%, 30%, 40%, 50% 

and 100%. The percentages used for each calcium source were chosen depending on the 

feasibility of compacting the fresh material into the molds (by vibration). Maximum amounts of 8 

wt% and 15 wt.% were used for Ca(OH)2 and PC, respectively, since mortars with further 

additions presented dry consistency and could not be compacted. The good workability of the 

mortars that contained CAC allowed to use 50 wt.%, and even 100 wt.% CAC. These samples 

with such high CAC contents were prepared only for comparison purposes. A binder (precursor) 

to sand ratio of 1:3 was used in all the prepared mortars. Pastes and mortars were cured in a 

thermostatically controlled bath at 65ºC and 95% relative humidity (floating in a water bath 

inside a sealed box) for 3 and 7 days.  
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2.3. Pastes and mortars characterization 

 

The compressive strength of alkali-activated CSW blended mortars was tested according to 

UNE EN 196-1:2005 standard, after 3 and 7 curing days at 65 ºC. The influence of the different 

sources and amounts of calcium on the microstructure developed was investigated in pastes 

cured at 65 ºC for 7 days. Thermogravimetric analyses were performed in a TGA-850 Mettler-

Toledo thermobalance, at a heating rate of 10ºC min-1 from 35ºC to 600ºC, under N2 

atmosphere and using sealed pin-holed aluminum crucibles. The Fourier-transformed infrared 

spectroscopy (FTIR, Bruker Tensor 27 Platinum ATR spectrometer, 32-seconds acquisition 

time) data were collected in the transmittance mode, from 4000 to 400 cm-1 and X-ray diffraction 

tests were run in a Brucker AXS D8 Advance, under the conditions previously described in 

section 2.1. Scanning electron microscopy images of fractured surfaces of the pastes were 

obtained using a SEM-EDX JEOL JSM-6300 microscope, equipped with an energy dispersive 

X-ray for the microanalysis. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Mechanical strength  

 

The compressive strength results of the mortars with different percentages of calcium additions, 

cured at 65ºC for 3 and 7 days, are plotted in Fig. 3. The substitution of CSW with the different 

calcium sources (Ca(OH)2, PC and CAC), according to the experimental layout described, 

generally improves the mechanical properties of the alkali-activated mortars. Although Ca(OH)2 

provides the best mechanical properties when used in low proportions (up to 6 wt%), the 

maximum quantity that can be used is relatively small, since mortars with more than 8 wt% 

Ca(OH)2 cannot be compacted due to their dry consistency. The strength of Ca(OH)2 mortars 

significantly improved when increasing the percentage of substitution from 4.5 to 6 wt% (27.29 

and 40.06 MPa respectively, at 7 curing days). However, similar properties were obtained with 

further Ca(OH)2 addition (8%), which is attributed to the lower compactability of this mortar. 

These results are close to those previously reported in Reig et al. 19 for alkali-activated porcelain 
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stoneware tiles waste, where up to 36 MPa were obtained in mortar samples blended with 5% 

Ca(OH)2 and activated with 12.5 mol.kg-1 of Na+ and 7.28 mol.kg-1of SiO2 solution, cured for 7 

days at 65 ºC. 

 

Although production of PC or CAC emits CO2 to the atmosphere, consumes natural resources 

and requires fuel burning to reach clinkering temperatures, the alkali-activated CSW mortars 

prepared with up to 15wt.% cement (CAC or PC) significantly improved their mechanical 

properties. Since waste material CSW is being replaced with others that have a negative 

environmental impact, the smaller the amount of ceramic waste to be replaced with PC or CAC 

cement, the better. The obtained results confer a great practical interest to these cement 

additions since improvement in the mechanical properties achieved with relatively low cement 

contents (up to 15 wt.%) provide benefits from an environmental point of view (less synthetic 

materials and natural resources are used) and allow the alkali-activated CSW structural 

elements to be used in shorter times. It was not possible to prepare samples with more than 15 

wt% PC (due to rapid setting and dry consistency), but the good workability and long setting 

time of the CAC mortars allowed mortars to be produced with 50 wt%, and even 100 wt% CAC 

contents (both prepared only for comparison purposes). The mechanical properties of 5 wt% PC 

mortars were higher than those prepared with the same amount of CAC; however, the tendency 

reversed with 15 wt% replacement (the strengths of the CAC mortars were higher than the PC 

ones), which is attributed to the better compactability observed when using CAC. The mortars 

prepared with 10 wt% PC or CAC exhibited the best mechanical properties improvement with 

curing time (49.6% and 44.73%, respectively). In the study performed by Garcia Lodeiro et al.17, 

where FA/PC blended pastes (30 wt% PC) were activated with NaOH/Na2SiO3 solutions, 35 

MPa was reported after 365 days at room temperature. Similarly, 33 MPa was reported in hybrid 

alkaline cements consisting of 60 wt% clinker and 40 wt% incinerator waste (blend of fly ash 

and bottom ash), activated with a mix of CaSO4, Na2SO4 and water, and cured for 28 days22. In 

our case, similar or better strengths were obtained, probably due to the higher curing 

temperature (65ºC) or to the improved reactivity of the CSW precursor. When compared with 

the mortars prepared with Ca(OH)2, the better compressive strength results are attributed to the 
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possibility of using larger cement amounts, and to the fact that CAC or PC additions would not 

only provide calcium, but also other elements, mainly aluminum and silicon respectively. 

 

The results exhibited by the alkali-activated CSW/CAC blended mortars differ from those 

previously reported by Fernández-Jiménez et al.23 for alkali-activated metakaolin/CAC blended 

pastes prepared with 20% CAC, where strength values close to 13 MPa were reported after 20 

curing hours at 85ºC. The strength of the CSW/CAC mortars significantly improved with up to 20 

wt% CAC substitutions and generally decreased with further additions. This behavior could be 

attributed to the delay in the CAC hardening process previously observed by Pastor et al.20 

when hydrating CAC with highly alkaline NaOH solutions. In our CSW-CAC activated system, 

and under the studied conditions, the interaction between NaOH in the activating solution and 

CAC particles increases with higher CAC contents which, consequently, retards the hydration of 

CAC. This behavior also differs from that previously observed for alkali-activated red clay brick 

waste and CAC blended systems15, where compressive strength values progressively increased 

with the addition of CAC (values close to 40, 60, 70 and 92 MPa in the mortars that contained 

10, 20, 30 and 40 wt% CAC, respectively, cured at 65 ºC for 7 days).  

 

 

Insert Fig. 3. Compressive strength of the alkali-activated CSW blended mortars developed with 

different calcium sources. 

 

3.2. X-ray diffraction (XRD) 

 

The XRD patterns for the selected alkali-activated pastes blended with different amounts of the 

calcium sources are presented in Fig. 4. The reference paste (4.5 wt.% Ca(OH)2), those 

containing 8 wt.% Ca(OH)2 and 15 wt.% PC (maximum contents which provided good 

workability), and those prepared with 10 wt.% of PC and 10 and 20 wt.% CAC (which resulted in 

good mechanical properties with relatively low cement additions) were selected for the 

microstructural analyses. The diffractogram of the CSW raw material was also plotted for 

comparison purposes. Signals attributed to quartz (Q, SiO2, PDFcard331161), mullite (M, 
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Al6Si2O13, PDFcard150776) and microcline (m, KAlSi3O8, PDFcard190926), previously identified 

in the precursor (Section 2.1), appeared in all the activated pastes, which denotes that these 

crystalline phases did not react (or was at least a very limited reaction) during the activation 

process. As described in previous studies16,17, the slight displacement of the baseline, from 15–

30º 2 degrees in the ceramic waste raw material toward higher angles (20–35° 2 degrees) in 

the alkali-activated blended samples, is attributed to the formation of the binding geopolymeric 

gel.  

 

In agreement with the previous study by Reig et al.19, where porcelain stoneware tiles waste 

was activated in the presence of Ca(OH)2, no peaks attributed to Ca(OH)2 were clearly 

distinguished in the diffraction pattern, which indicates that it was consumed during the 

activation reactions. The signals attributed to the sodium carbonate decahydrate natron (N, 

Na2CO3·10H2O, PDFcard150800) were identified in the Ca(OH)2 blended pastes, which is also 

in line with previously reported results19. 

 

Although no peaks associated with the formation of new crystalline compounds were observed 

after the alkali-activation of CSW/PC blended pastes, signals arising due to larnite (β–Ca2SiO4, 

PDFcard330302, usually referred to as belite in the cement industry) denote that PC was only 

partially consumed/hydrated after 7 days at 65 ºC. Calcite (C, CaCO3, PDFcard050586), which 

is attributed mainly to the presence of limestone filler in the Portland cement composition, was 

identified in the PC blended pastes. These findings are consistent with those previously 

reported by García-Lodeiro et al.17, where neither portlandite nor ettringite was distinguished in 

the alkali-activated FA/PC blended pastes that contained 30% PC. As described by Shi et al.4, 

the absence of portlandite confirms that the PC hydration pathway followed in alkali-activated 

systems differs from that usually observed in water.  

 

Similarly, none of the typical hydrates formed during standard water hydration of CAC 

(hexagonal aluminates CAH10 and C2AH8, or the cubic phase C3AH6) was clearly distinguished 

in the XRD diffraction patterns of the CSW/CAC blended pastes, which indicates that CAC did 

not undergo normal hydration in the samples developed in the present study. Although no 
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calcium aluminate hydrates were identified, aluminum hydroxide (in the forms of bayerite and 

gibbsite) was formed. In the paste that contained 10 wt% CAC, the signals attributed to gibbsite 

(G, Al(OH)3, PDFcard070324) and bayerite (B, Al(OH)3, PDFcard200011) were identified; 

however, in the sample that contained 20 wt% CAC, the zeolitic phases faujasite (F, 

Na2Al2Si4O12·8H2O, PDFcard391380) and zeolite A (A; Na2Al2Si1.85O7.7·5.1H2O, 

PDFcard380241), together with the sodium carbonate hydrate natron (N, Na2CO3·10H2O, 

PDFcard150800) and small amounts of gibbsite, were distinguished. According to the obtained 

results, the typical conversion problems associated with water-hydrated CAC, in which the 

transformation of the hexagonal hydrates into the cubic ones leads to loss of strength and 

increased porosity15, are not expected in the alkali-activated CSW systems prepared with up to 

20 wt.% CAC and cured at 65 ºC. The XRD results are in line with those previously described in 

the review by Shi et al.4, where it was explained that, instead of the typical hexagonal or cubic 

CAC hydrates being formed, Al and Ca from CAC were taken up in the newly-formed gel, and 

(N,C)-A-S-H or C-A-S-H gels were produced, depending on the reaction conditions and blend 

proportions. These results were corroborated by Reig et al.15 in alkali-activated red clay brick 

waste/CAC blended systems (RCBW/CAC), where none of the typical CAC hydrates (CAH10, 

C2AH8, AH3, C3AH6) was clearly distinguished in the pastes that contained up to 20 wt% CAC 

and alkali-activated with NaOH and sodium silicate solutions (cured at 20 ºC and 65 ºC). 

Whereas the cubic phase katoite (C3AH6) was formed only in the RCBW/CAC pastes blended 

with 30 wt% and 50 wt% CAC and cured at 65 ºC, bayerite was identified only in that which 

contained 50 wt% CAC (also cured at 65 ºC). Neither did the XRD pattern reveal the formation 

of hexagonal hydrates (CAH10 and C2AH8) in the study by Pastor et al.20, where cubic hydrate 

C3AH6 and AH3 were distinguished instead in NaOH-hydrated CAC samples. Similar results 

were reported by Arbi et al.16, who observed the formation of (N,C)-A-S-H gel, katoite (C3AH6) 

and two carboaluminates, hydrotalcite and C4AcH11, in 20% CAC-80% blast furnace slag (BFS) 

blends alkali-activated with 8 M NaOH solutions.  

 

Zeolite-type crystalline phases, hydrated aluminosilicates typically originated from the newly-

formed alkaline aluminosilicate gel in alkali-activated low calcium systems24, were only 

distinguished in the CSW paste that contained 20 wt% CAC. Fernandez-Jimenez et al.25, who 
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alkali-activated CAC in the presence of soluble silica, observed that the reaction between the 

silica, and the aluminum and calcium provided by CAC, was favored under those highly alkaline 

solutions, which led to the formation of a (C,N)ASH gel that could crystallize into zeolitic phases. 

Although zeolitic compounds have not been generally distinguished in previous studies of alkali-

activated blended systems, such as fly ash/PC17or ceramic porcelain stoneware/Ca(OH)2
19, the 

zeolitic phase herschelite (NaAlSi2O6·3H2O) has been identified only in the RCBW/CAC blended 

system that contained 10 wt% CAC15. 

 

  

Insert Fig. 4. XRD patterns for the CSW raw material and alkali-activated pastes prepared with 

different calcium sources and cured at 65ºC for 7 days. Q, quartz (SiO2); M, mullite (Al6Si2O13); 

m, microcline (KAlSi3O8); C, calcite (CaCO3); N, natron (Na2CO3·10H2O); L, larnite (β-Ca2SiO4); 

G, gibbsite (Al(OH)3); B, bayerite (Al(OH)3); F, faujasite F (Na2Al2Si4O12·8H2O); A, zeolite A 

(Na2Al2Si1.85O7.7·5.1H2O). 

 

3.3. Thermogravimetric analysis 

 

The differential thermogravimetric curves (DTG) of the alkali-activated CSW pastes, prepared 

with selected amounts of Ca(OH)2, PC and CAC and cured at 65 ºC for 7 days, are shown in 

Fig. 5. The results agree well with compressive strength evolution since total weight loss 

increased with calcium addition. All the curves exhibited a single broad band at 120–170 ºC, 

which was attributed to the dehydration of the NASH or (N,C)ASH gels formed during the alkali-

activation process15,19. This band overlaps with those that resulted from the dehydration of 

different compounds, such as zeolitic phases (60–160 ºC)26, alumina gel (130 ºC)15, the typical 

hexagonal hydrates formed in water-hydrated CAC (CAH10 and C2AH8, 150 ºC to 180 ºC)27, and 

the calcium silicate hydrates (C-S-H) or ettringite (Aft) (100–180°C)28 that typically form in water-

hydrated Portland cement systems. Thus it was not possible to clear distinguish these phases 

by TG tests. Similarly, it was not possible to confirm the presence of calcite and the hydrated 

sodium carbonate (natron), previously identified by XRD analyses in the alkali-activated CSW 
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blended pastes, from the DTG curves since, according to Hidalgo et al.29, bands appear within 

the 625–875 ºC range. 

 

No signals associated with the dehydroxylation of Ca(OH)2 (520–580°C)19,28 arose in any of the 

DTG curves, which confirms that Ca(OH)2 was consumed during the alkali-activation process, 

and that the Portland cement hydration pathway differed from that usually followed in water-

hydrated systems (portlandite was not formed). The signals attributed to the dehydration of 

calcium aluminate hydrates and calcium aluminosilicate hydrates (CAH and CASH) (180–

240°C)28 were not distinguished in the PC blended pastes. On the contrary, small amounts of 

new phases were identified in the CSW/CAC samples. The band that arose within the 280–320 

ºC range in the curves of the CAC-activated pastes confirmed the presence of gibbsite and 

bayerite (AH3), previously distinguished by XRD analyses. A band arose at 345 ºC and denoted 

the formation of small amounts of C3AH6, which were not clearly identified in the XRD pattern30. 

These results are in line with that previously reported by Pastor et al.20, who also distinguished 

katoite (C3AH6) and aluminum hydroxide (AH3) in alkali-activated CAC (8 M and 12 M NaOH 

solutions). According to the previous studies by Fernández-Jiménez et al.25, who investigated 

the effect of sodium silicate on alkali-activated CAC, the presence of soluble silicon may modify 

the structure of katoite and lead to the formation of katoite-type phases (C3ASnHm). 

 

The broadening and shift of the main band, attributed to the newly-formed gel, toward higher 

temperatures with more calcium contents denote a modification in the gel structure. As 

described in Reig et al.19, several studies suggest that calcium from Ca(OH)2 may act as a 

charge-balancing ion, and may lead to (C,N)- A-S-H gels, or participate in the C-(A)-S-H gel 

formation, which mainly depends on the calcium concentration and pH of the system. In their 

review, Shi et al.4 also indicated that the hydration of CAC in alkali-activated systems differed 

from that which occurred when hydrated in water; so instead of forming the typical CAC 

hydrates, aluminum and calcium from the cement are taken up in the new geopolymeric gel 

formed. Similar conclusions have been reported by Garcia-Lodeiro et al.17 for 70%FA-30%PC 

hybrid cements hydrated with water and 12.5 M NaOH and sodium silicate solutions, who 

concluded that the composition and microstructure of the gels formed in the presence of alkalis 
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differed from the gels detected in the water-hydrated samples. In the alkali-activated system, a 

mix of C-S-H/N-A-S-H gels precipitates at early ages and, while the C-S-H gel evolves to C-A-S-

H in the presence of Al, calcium interacts with N-A-S-H to form (N,C)-A-S-H, which may even 

evolve to C-A-S-H if there is a suitable concentration of calcium17. Although these gels may co-

precipitate, once formed the C-A-S-H gel remains, as it is the most thermodynamically stable 

form in mixes of aluminosilicate and calcium silicate gels.  

 

 

 

Insert Fig. 5. Differential thermogravimetric curves for alkali-activated CSW pastes (total mass 

loss within the studied range is depicted to the right of each DTG curve). 

 

3.4. Infrared spectroscopy (FTIR) 

 

The FTIR curves of the alkali-activated CSW pastes, prepared with selected amounts of 

Ca(OH)2, PC and CAC and cured at 65 ºC for 7 days, are shown in Fig. 6. The spectral pattern 

of the CSW is also included as a reference. Data were plotted from 400 to 2000 cm-1, since only 

very weak signals appeared within the 2000–400 cm-1 range.  The signals that appeared at 453 

cm-1, 695 cm-1, 775 and 794 (double band) cm-1, 1084 cm-1and 1145 cm-1 24,31-33, were 

associated with quartz, which was also identified by XRD in the raw material and activated 

pastes (Section 3.2). The main band arising at 1185 cm-124, together with the low intensity 

bands at 570 and 734 cm-134, were attributed to mullite.   

 

The signal that appeared at 453 cm-1, mainly attributed to quartz, shifted toward a lower 

wavenumber in the alkali-activated pastes because it overlapped the signals attributed to the 

deformation vibrations of the C-A-S-H and N-A-S-H gels (δ Si-O-Si/δ Si-O-Al)35. The main band 

that resulted from the geopolymeric gel appeared to be centered at 995 cm-1 and wais attributed 

to the asymmetric stretching vibrations generated by the T–O–T bonds (T: Si or Al) in the newly-

formed gel25,36. Although no significant deviation was observed with the different sources and 

amounts of calcium, the signal was centered at a slightly lower wavenumber than those 
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previously recorded for the alkali-activated porcelain stoneware tiles waste blended with 

Ca(OH)2 (1013–1020 cm-1)19. As explained by Criado et al.24, this indicates higher Al contents in 

the activated CSW gel since Si–O bonds are stronger than Al–O bonds.  

 

In agreement with the XRD results, no significant amounts of the typical CAC hydrates (CAH10, 

C2AH8 and C3AH6), whose bands were found at 524 cm-1 and in the 3465–3670 cm-1 region37, 

were clearly distinguished in the FTIR spectra. Although gibbsite and bayerite were identified in 

the XRD pattern of the 10 wt% CAC blended paste, these phases were not clearly identified by 

the FTIR tests since the corresponding strong signals did not appear at the 3475, 3530 and 

3630 cm-1 wavenumbers, which are characteristic of O–H stretching vibrations. As denoted by 

the low intensity of the signals attributed to AH3 on the thermogravimetric curves (Fig. 5), this 

indicates that only small amounts of this compound were formed. The lack of strong signals 

within the 3450 to 3670 cm-1 range also corroborated the absence of significant amounts of 

Ca(OH)2 or portlandite in the selected pastes. Although these bands would be associated with 

others arising due to O–H bending vibration, which appeared at 1027 cm-1 and within the 990–

970 cm-1 range, these lower frequency bands overlapped that of the newly formed 

aluminosilicate gel20,27,30,31, which made it difficult to identify them. The presence of zeolitic-type 

products, which were distinguished only in the XRD spectra of the pastes that contained 20 wt% 

CAC, was associated with the absorption within the 660–720 cm-1 range38,39. Conversely, the 

signals attributed to carbonates appeared from 1400 to 1500 cm-1 in the FTIR spectra. While 

calcite, whose existence was revealed in the XRD pattern of the CSW/PC blended pastes, was 

associated with the band that arose at 1420 cm-1, the signals attributed to other carbonate 

species, such as natron (Na2CO3·10H2O), distinguished by XRD in the CSW pastes that 

contaied Ca(OH)2 or CAC, shifted to a higher wavenumber (1455–1484 cm-1)20. The absorption 

bands that arose at 712 and 875 cm-1, when appearing together with the band centered at about 

1450 cm-1, were also linked to carbonate salts30.  

 

  

Insert Fig. 6. FTIR spectra for the alkali-activated CSW pastes. 
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3.5. Scanning electron microscopy (SEM) 

 

The SEM micrographs of fractured surfaces of alkali-activated CSW pastes, blended with 8 wt% 

Ca(OH)2, 15 wt% PC and 20 wt% CAC, are shown in Figures 7a and 7b, respectively. The 

ceramic sanitary-ware waste unreacted particles surrounded by an amorphous structure and 

covered by hydration products were observed by in SEM analyses. This corroborates the XRD 

and FTIR results, and indicates that CSW reacted only partially and was not totally consumed 

during the activation process. Zeolitic crystalline phases, previously identified in the XRD 

pattern of the 20 wt% CSW/CAC blended paste, were also distinguished from the microscopic 

analyses. Faujasite particles presented an octahedral morphology with regular crystal edges 

and a diameter close to 2 μm40, and the zeolite A crystalline structures had a crosslinked layer-

like morphology (similar to pseudo-herschelite crystals41).  

 

 

Insert Fig. 7. SEM micrographs of pastes’ fractured surfaces: a) 8% Ca(OH)2; b) 15%PC; c) 

20%CAC. B, binding gel; CSW, unreacted ceramic sanitary-ware waste particles; F, Faujasite; 

Z, Zeolite A.  

 

4. CONCLUSIONS 

 

The influence of different amounts and sources of calcium (CAC, PC and Ca(OH)2) on the 

microstructure and mechanical properties of an alternative cementitious system, developed by 

the alkali activation of ceramic sanitary-ware waste (CSW), has been assessed. The following 

conclusions are made according to the results of this paper: 

- The different calcium sources seriously limited the compactability of the prepared mortars 

so that, while maximum amounts of 8 wt% Ca(OH)2 and 15 wt% PC could be used, no limit 

was observed in the CAC blended mortars for the selected activating solution used in the 

study.  

- Mechanical properties significantly improved with the addition of calcium. While 40.06 MPa 

and 64.41 MPa were obtained in mortars prepared with 6 wt% Ca(OH)2and 10 wt% PC 
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respectively, 56.65 MPa and 70.69 MPa were achieved in those containing 10 and 15 wt% 

CAC respectively (all of them cured at 65 ºC for 7 days). 

- The hydration of CAC and PC in alkali-activated systems differed from that usually 

observed in water. Whereas neither portlandite nor ettringite was formed in CSW/PC 

blended pastes, only AH3 and small amounts of C3AH6 (distinguished only by TG analyses) 

were identified in those containing CAC. Ca from Ca(OH)2 and Al and Ca from PC and CAC 

were taken up in the newly-formed gel to confer (N,C)-A-S-H or C-A-S-H gels, depending on 

the blend proportions.  
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FIGURE CAPTIONS 

 
Fig. 1. Images of ceramic sanitaryware waste: a) Crushed; b) Milled; c) Milled, magnification.  
 
Fig. 2. XRD pattern for the raw CSW material. Q: Quartz (SiO2); M:mullite (M, Al6Si2O13); 

microcline (m, KAlSi3O8). 

Fig. 3. Compressive strength of the alkali-activated CSW blended mortars developed with 

different calcium sources. 

Fig. 4. XRD patterns for the CSW raw material and alkali-activated pastes prepared with 

different calcium sources and cured at 65ºC for 7 days. Q, quartz (SiO2); M, mullite (Al6Si2O13); 

m, microcline (KAlSi3O8); C, calcite (CaCO3); N, natron (Na2CO3·10H2O); L, larnite (β-Ca2SiO4); 

G, gibbsite (Al(OH)3); B, bayerite (Al(OH)3); F, faujasite F (Na2Al2Si4O12·8H2O); A, zeolite A 

(Na2Al2Si1.85O7.7·5.1H2O). 

Fig. 5. Differential thermogravimetric curves for alkali-activated CSW pastes (total mass loss 

within the studied range is depicted to the right of each DTG curve). 

Fig. 6. FTIR spectra for the alkali-activated CSW pastes. 

Fig. 7. SEM micrographs of pastes fractured surfaces: a) 8% Ca(OH)2; b) 15%PC; c) 20%CAC. 

B, binding gel; CSW, unreacted ceramic sanitary-ware waste particles; F, Faujasite; Z, Zeolite 

A.  

 


