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Abstract 

Thermal barrier coatings have been extensively studied in the last years in 

order to increase the operational temperature of the current gas turbines as well 

as to improve the coating lifetime. Many coating characteristics must be met to 

achieve these requirements (low thermal conductivity, high thermal fatigue 

resistance…); therefore, complex systems have been engineered for these 

purposes. One of the possibilities to optimise the different properties deals with 

the design of multilayer or functionally-graded coatings where various types of 

microstructures with different characteristics are combined. 

One of the most important cause of gas turbines degradation relates to the 

attack of different type of particles which are suspended in the atmosphere 

(sand, fly ash…). These solid particles are molten at the operational 

temperatures and then, the molten salts chemically react with the coating. For 

this reason, the present research was focused on this type of attack.  

In the present work, the molten salt attack of various YSZ coatings with 

multilayer and functionally-graded design was addressed. Two different type of 

microstructures were specifically combined for this design: the APS coating 

microstructure obtained from conventional (microstructured) powder and a 

bimodal structure with nanozones obtained from nanostructured feedstock. 

Besides, different salts were used to simulate different attack environments 

(desert sand and volcanic fly ash). Findings show that nanozones act as barrier 

against the penetration of molten salts toward deeper layer. However, a layer 

formed by nanozones can detach when the salt attack is too aggressive. Hence, 

functionally-graded coatings, where two types of microstructures are combined 

through the whole coating, become ideal to diminish the molten salt attack.  

 

Keywords: c. chemical properties; d. ZrO2; E. thermal applications; a. thermal 

spray deposition 
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1. Introduction 

Thermal barrier coatings (TBC) are commonly utilized to protect the metallic 

parts of gas-turbines engines used to propel aircrafts and to generate electricity 

against extremely hot atmospheres. The most usual material for TBC is the 

yttria-stablised zirconia (YSZ) because of its low thermal conductivity and good 

mechanical behaviour at high temperatures [1]. Regarding the technique, one of 

the most common is the atmospheric plasma spraying (APS) owing to its 

feasibility at industrial scale. The resultant APS coatings displays a laminar 

microstructure formed by flatten drops or splats with pores and cracks retained 

between them [2]. 

TBCs usually exhibit a limited lifetime due to the hard conditions which they 

must be subjected to (extreme temperatures, thermal fatigue, erosion…) [3]. 

One of these reasons deals with the attack of molten salts in contact with the 

coating surface. Solid particles (desert sand, volcanic fly ash…) which are 

suspended in the atmosphere are deposited onto the gas-turbine surface during 

the propelling. These particles are known as CMAS due to the main oxides they 

are usually composed of (CaO, MgO, Al2O3, SiO2) . CMAS particles are molten 

at the operational temperatures and the resultant melt can chemically attack the 

coating and the substrate[4–7].  

In the last years, some works have addressed several materials alternatives to 

the conventional YSZ to improve the different characteristics of the TBC, as the 

molten salt attack. One of the most promising materials is the zirconate with 

pyrochlore structure in general, and Gd2Zr2O7 in particular, which exhibits an 

exceptionally low thermal conductivity and a good chemical resistance [5,7,8]. 

However, its low coefficient of thermal expansion causes that these coatings 

present poor thermal fatigue resistance. Another alternative consists in 

designing of several types of microstructures which lead to develop different 

characteristics for the TBC [2,9]. 

Nanostructured materials have been extensively studied due to their enhanced 

properties compared to their respective conventional ones. In the case of TBC 

developed by APS, nanoparticles must be enlarged in nanostructured 

agglomerates to become the feedstock sprayable inside the plasma plume. The 

resultant coating displays the so-called bimodal microstructure formed by 

unmolten zones, where the initial nanostructure is partially retained, rounded by 

a matrix of molten splats. The unmolten zones lead to a reduction of the thermal 

conductivity and an improvement of the thermal fatigue resistance. However, 

some properties, such as the hardness, can be compromised [11–13].  

In order to optimise the properties of different kind of materials and/or 

microstructures, multilayer and functionally-graded coatings can be designed 

where both kind of microstructures/compositions are combined. The multilayer 

coatings consist in depositing two layers with different microstructure while the 
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variation of microstructure/composition is gradual in the case of functionally-

graded coatings. Previous works have addressed this type of coatings to 

optimise the mechanical and thermal properties of the TBC. Thus, this 

functionally-graded coatings display  high lifetime because the generation of 

tensions during the thermal fatigue diminishes due to the gradual microstructure 

change through the coating [14–19]. Once the improvement of multilayer and 

functionally-graded coatings have been demonstrated in terms of mechanical 

and thermal behaviour, the objective of the present work was the evaluation of 

the chemical attack resistance of this type of coatings.   

 

2. Experimental 

2.1. Coating preparation 

Two commercial yttria-stabilised zirconia (YSZ) powders were used as 

feedstocks for obtaining the conventional and the nanostructured layers. On 

one hand, the conventional powder (Metco 204NS, Oerlikon-Metco, 

Switzerland) consisted in hollow spheres (HOSP) with a average granule size of 

55 μm, granule specific mass of 4500 kg/m3 and a amount of dopant of 8 wt% 

Y2O3. On the other hand, the nanostructured powder (NanoxTM S4007, 

Inframat Advanced Materials, USA) was made up of nanostructured porous 

agglomerates with an average granule size of 160 μm, granule specific mass of 

2320 kg/m3 and an amount of dopant of 7 wt% Y2O3. The feedstock 

characterisation has been set out in a previous work [20]. 

The different YSZ layers were deposited by atmospheric plasma spraying (APS) 

torch (F4-MB, Oerlikon-Metco, Switzerland) operated by a 6-axes robot (IRB 

1400, ABB, Switzerland). Besides, a bond coat (Amdry 997, Oerlikon-Metco, 

Switzerland) was deposited between the substrate and the ceramic layers. Two 

independent feed systems (one for each powder) were used to develop the 

multilayer and functionally-graded coatings. More information about the 

spraying parameters as well as the deposition process can be consulted in 

[14,20]. 

Two multilayer coatings (M1 and M2) and two functionally-graded ones (G1 and 

G2) were designed in this work. Multilayer coatings were formed by two 

different YSZ layers: one conventional and another nanostructured. As set out 

in a previous research [14,15], the conventional layer was formed by molten 

lamellas or splats with small pores embedded between these splats while the 

nanostructured layer consisted in an unmolten zones called nanozones, where 

the starting nanostructure of the feedstock is retained, rounded by a matrix of 

molten splats.  The conventional layer was located between the bond coat and 

the nanostructured layer in M1 coating while conventional and nanostructured 

layers were exchanged in M2 coating. Regarding functionally-graded coatings, 
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these were made up of five YSZ layers with different 

conventional/nanostructuctured ratios changing the proportion the gradually 

along their thickness. In the case of G1 the conventional layer laid in bottom 

and the nanostructured layer in the top while for G2 the same layers were 

deposited in the opposite order. A scheme about the design of the four coatings 

is displayed in Fig. 1. 

 

2.2 CMAS synthesis and characterisation 

Two CMAS compositions were studied in the present work: one simulates the 

composition of the desert sand while another simulates the fly ash, called 

CMAS-1 and CMAS-2 respectively. The compositions, which are shown in 

Table 1, were taken from previous works [5,6].  

Simulated CMAS glass was prepared from reagent-grade dry powders of SiO2, 

CaCO3, Al2O3, MgO, Na2O, K2O and Fe2O3 (all supplied from Sigma-Aldrich, 

USA) which were mixed in the appropriate proportions. These mixtures were 

molten in an electrical furnace at 1550 ºC for 1 h and then, the melt was 

quenched in water. The resultant amorphous material was characterised in 

order to predict the thermal behaviour during the attack to the coating. A 

differential thermal analysis (DTA) tests (TGA/SDTA 851e, Mettler Toledo, 

Switzerland) were carried out using a platinum crucible in air atmosphere, with a 

heating rate of 10 °C min−1 until a maximum temperature of 1500 °C. Besides, 

the crystalline phases were identified by Raman spectroscopy (NRS-3100, 

Jasco, USA) before and after thermal treating the CMAS. A 785 nm laser 

wavelength excitation was used in the Raman measurements besides the 

spectra background was subtracted because the fluorescence effect was 

important and dissimilar among the different samples.  

2.3 Study of the CMAS attack 

CMAS suspensions, with ethanol as dispersant, were prepared by an attrition 

mill (Pulverisette 7, Fritsch, Germany) to deposit correctly the CMAS onto the 

coating surface. The glass was milled with1 mm alumina balls for 30 min at 

1000 rev/min and the resultant suspension was sieved at 63 μm mesh size to 

remove the coarse CMAS particles. The resultant suspension, with a solid 

loading of 20 wt.%, was stable and it displayed an ideal rheology behaviour to 

spray the CMAS using an airbrush. Then, the coatings with CMAS were dried to 

remove the ethanol prior to the thermal treatment and it was corroborated that 

the amount of CMAS onto the coatings was 20 mg/cm2. The thermal treatment 

was realised in an electrical furnace (Thermolyne type 46100, Thermo Fischer 

Scientific, USA) at a temperature of 1250 ºC for 1 h. The temperature was 

selected from the thermal characterisation performed in the CMAS.  
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As-sprayed and CMAS-attacked coatings were microstructurally characterised 

to describe the CMAS attack. In addition, thermally-treated coatings without 

CMAS were also characterised to evaluate sintering changes. Microstructure 

observation was realised by field-emission scanning electron microscopy 

(ULTRA 55, ZEISS, Germany) on cross-section samples embedded in a 

polyacrylate resin, metalograhically prepared and coated with carbon by 

sputtering. Besides, an energy disperse X-ray microanalysis (Oxford 

Instruments, United Kingdom) associated to the FE-SEM allows realising 

chemical analysis in different zones of the coating. The crystalline changes 

during the attack were also identified by Raman spectroscopy following the 

same methodology used to characterise the CMAS glass.  

 

3. Results and discussion 

3.1 CMAS characterisation 

A differential thermal analysis permits to know the behaviour of the CMAS 

during the temperature changes when it attacks the turbines. Fig. 2 displays 

DTA of both CMAS glasses. In the case of CMAS 1, an endothermic peak was 

observed at 910 ºC which corresponds to vitreous transition, an exothermic 

peak around 1000 ºC which corresponds to the crystallization and other 

endothermic peak at  1̴250 ºC associated with the melting point. The thermal 

behaviour of CMAS-2 was similar, occurring the thermal phenomena at similar 

temperatures but the melting process was more energetic in the case of CMAS-

2. The temperature treatment to evaluate the  CMAS attack was selected at the 

beginning of CMAS melting  because the attack commence to be important 

after this point (1250 ºC) . In preliminary results it was observed the damage 

was insignificant when the CMAS attack took place at lower temperatures. 

Finally, the crystalline formation after treating the CMAS glass a 1250 ºC and 

subsequent slow cooling, following the same thermal treatment that the coating 

attacked, was detected by Raman spectra. The glass was mainly amorphous 

although  the spectra shown in Fig. 3 reveals some peaks which correspond to 

the wollastonite crystallization (CaSiO4) [21].  

Other properties of the CMAS were estimated in order to predict the damage 

that each material can produce. In this sense, viscosity was calculated using the 

model validated by Giordano et al. for silicate melts at different temperatures 

[22] while another model proposed by Kucuk et al. was utilised to estimate the 

surface tension [23]. The viscosity and surface tension are shown in Table 2. As 

it can be appreciated surface tension is similar but CMAS-2 is less viscous than 

CMAS-1. It is reasonable because CMAS-2 contains higher fluxing oxide 

amount such as Na2O, K2O or Fe2O3 which facilitate the melt formation. It 

means that CMAS-2 is expected to display further ability to penetrate more 

easily into the coating. In addition to above properties,  optical basicity was also 
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estimated averaging  the basicity values of each component  forming the glass 

[4]. This concept, based in Lewis acid-base theory, permits to predict the 

chemical activity of the glasses. This way the higher the optical basicity 

mismatch between glass and coating the higher chemical activity is expected. 

The optical basicity of the 8 mol% yttira-stabilized zirconia is 0.87 therefore 

CMAS-2 exhibited a slightly higher basicity respect the coating. Nevertheless, 

the optical basicities were not significantly dissimilar but a different behaviour in 

the CMAS attack can be expected because of their viscosities which were very 

different.  

 

3.2 Study of the CMAS attack 

3.2.1 Description of the CMAS attack 

The assessment of the CMAS attack was basically realised comparing the 

coating microstructures. First, the coatings thermally treated with and without 

the CMAS were compared in order to evaluate if the damage was originated by 

the CMAS attack or just by the thermal treatment produced during the test. Fig. 

4 displays M2 coating (conventional layer onto nanostructured layer) comparing 

the different treatments (as-sprayed, thermally treated and attacked by the 

CMAS). The nanozones were observed in the bottom of the coating where the 

nanostructured layer was located. Nevertheless, differences in these 

nanozones can be detected [14,20]. The nanozones in the as-sprayed coating 

were quite porous and the original particles which formed the starting 

feedstocks can be distinguished. In the case of thermally-treated coating 

without the CMAS, these nanozones were less porous and some of these 

particles coalesced or are linked by a neck owing to the sintering process [13]. 

Nevertheless, the coalescence was negligible in the nanozones of coatings 

attacked by the CMAS because the melt penetrated into the nanozones 

surrounding the particles before the sintering process occurred. It was 

corroborated by EDX that the dark zone around the particles displays a rich 

content in CMAS oxides.  

In addition to the differences in the nanozones, zones chemically attacked were 

observed in the attacked coating which cannot be detected in the other cases. 

This zone is magnified in Fig. 5 and the chemical composition in several regions 

is also displayed in Table 3. An EDX analysis in the coating crack (marked by a 

star in Fig. 5) confirmed they are composed mainly by CMAS although ZrO2 

was detected because the solid matrix around the cracks was inside the 

influence zone of the EDX analysis. Therefore it means CMAS melt penetrated 

into the coating through the cracks. Besides, little channels perpendicular to the 

cracks were formed because CMAS melt reacted and dissolved the solid matrix 

(marked by a diamond in Fig. 5) [24]. Moreover, a yttria reduction was observed 

in the solid matrix  (from 7-8 wt.% in as-sprayed coating to 6 wt.% in attacked 
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coating) as well as a significant presence of yttria (around 5 wt.%) in the CMAS 

melt zone, concluding that an yttria transport or lixiviation from the solid matrix 

(bright zones) toward the CMAS melt (dark zones) was observed [7]. The yttria 

content reduction inside the solid matrix can imply a loss of crystalline stability 

which was analysed by Raman spectroscopy. 

 

3.2.2 Effects of the CMAS-1  

CMAS unevenly attacked the coating due to the different microstructure 

features. CMAS oxides were mainly appreciated in the layers with nanozones 

because these layers were more porous therefore easier to be penetrated, as it 

can be observed in Table 4. However, CMAS penetration into the coating 

depended in turn on the distribution of these nanozones. Moreover, chemical 

attack also leads to different microstructural changes among the coatings (Fig. 

6). On one hand comparing multilayer coatings (M1 and M2), the zones 

chemically attacked as described in Fig. 5 practically took up the whole 

conventional layer in M2 coating whereas these zones were unclearly visible in 

M1 coating. Besides, CMAS oxide content was similar in the nanostructured 

layers but the conventional layer in M1 coating displayed lower CMAS content 

than that of its respective layer in M2 coating. It means that nanostructured 

layer acts as a reservoir of CMAS melt which prefers to react with zones 

displaying higher specific surface as the nanozones. Hence, the nanostructured 

layer behaved as a barrier against CMAS penetration.  

On the other hand, the functionally-graded coatings (G1 and G2) showed a 

behaviour moderately improved respect their multilayer counterparts since 

CMAS penetration into the coating was slightly lower. Consequently, the 

combination of the two microstructures (conventional and nanostructured) acts 

much better as barrier than each microstructure separately. It can be caused by 

two opposite effects which are displayed by the nanozones. Thus nanozones 

are quite porous therefore CMAS melt can easily penetrate despite these zones 

acted as a barrier as set out above. Therefore the result of combining 

conventional and nanostructured layers involves the presence of nanozones in 

the coating while the porosity is reduced and hence an improved behaviour 

observed. 

3.2.3 Effects of the CMAS-2  

In Fig. 7 it can be observed that CMAS-2 attack was more aggressive, as 

predicted. In fact, top layer in the coating M1 (nanostructured layer) was 

completely detached. This is because the porosity in nanostructured layer was 

very high increasing the reactivity of the melt. As a result the melt reacted 

quickly with the nanozones before it can distribute towards other regions of the 

coating. The nanozones took a large portion of the nanostructured layer whose 
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disintegration produces the layer detachment. In the case of M2 coating, the 

conventional layer in the top did not block the access of the melt toward the 

bottom layer because the melt viscosity is too low and consequently the melt 

rapidly flowed through the cracks. Once nanostructured layer was detached 

then the full coating collapsed. Hence, it can be concluded that it is convenient 

to deposit the nanostructured layer onto the conventional layer as observed with 

the CMAS-1 attack despite the fact that the lower hardness of the 

nanostructured layer can give rise to an impaired erosion resistance [15]. 

CMAS-2 attack was catastrophic for multilayer coatings but the effect was 

different in functionally-graded coatings since no detachment of any layer was 

observed. Besides, the amount of CMAS oxides detected by EDX analysis was 

lower than that of CMAS-1 although it was slightly higher in G2 coating. The 

preference to attack the nanozones occurs with both CMAS melts but it is more 

important in CMAS-2. The nanostructured layer displays huge nanozones and 

the attack toward these zones causes the depletion of that layer. However, 

nanozones combined with a bulk matrix prevent the layer depletion while the 

nanozones keep performing its function as barrier. Definitively, the combination 

nanostructured and conventional microstructures responds better against any 

type of CMAS attack.  

The chemical attack mechanism of the CMAS-2 was similar to that of the other 

CMAS melt. In this case, less zones chemically attacked, as those displayed in 

Fig. 8, are observed in spite of the higher attack intensity. Likewise, the sum of 

the CMAS oxides in these coatings was lower than that of coatings attacked by 

CMAS-1 (Table 5). This is because some CMAS melt reacted with the detached 

areas leading to material removal. Nevertheless, an attack intensity increment 

was confirmed when the chemical analysis of these chemical-attacked zones 

was performed (Table 3). Higher amount of yttria was observed in the cracks 

where the CMAS melt was located as well as less presence of this oxide in the 

molten areas. Consequently, a higher yttria lixiviation occurred which can affect 

zirconia crystallisation. Besides, significant calcium oxide content was 

appreciated in the solid matrix, hence calcium cations from the CMAS were 

introduced in the crystalline lattice. Whereas calcium is another dopant which 

can stabilise the tetragonal zirconia phase its effect is lower than that of yttria, 

consequently the impact on the tetragonal stabilization in these coatings should 

be unimportant [25]. 

 

3.2.4 Study of the crystalline phases by Raman 

The Raman spectra analysis in different areas of the coatings, as well as 

among coatings with the same treatment, were all of them similar. A spectrum 

of M1 coating with different treatments (as-sprayed, thermally treated and 

attacked by CMAS), obtained in the molten matrix, is displayed in Fig. 9. 
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Tetragonal zirconia was the only crystalline phase detected in any area of the 

coatings whereas wollastonite, an original phase from the thermally-treated 

CMAS was imperceptible. Despite the peaks in all spectra were similar, the 

position of these peaks was slightly shifted. It means that the nature of the 

bonds in the crystalline lattice were similar but changes in the local symmetry 

must exist. As addressed in previous works  a shift of the Raman band toward 

higher wavelength represents an increment of the oxygen displacement, i.e a 

lower stabilisation of the tetragonal phase because of a decreasing in the  

amount of stabilizer ions (Y3+) [26]. It agrees with the EDX analysis so that in 

coatings chemically attacked with CMAS, especially CMAS-2, a lixiviation of 

yttrium cations observed gave rise to a lower tetragonality in zirconia phase. 

The consequence was that the chemically attacked coatings exhibited a worse 

lifetime because a lower tetragonality means a catastrophic martensitic 

transformation can occur at lower temperatures and/or exposure times [27].. 

Another possibility to explain this peak translation deals with the stress 

generation during the thermal treatment [28]. It explains that thermally-treated 

coating spectrum was displaced. However, this displacement was lower than 

that of the coatings attacked by CMAS, consequently thermal stresses as well 

as tetragonality lose should explain the spectrum displacement. .  

 

4. Conclusion 

The resistance of TBC against two different CMAS salts was studied, one 

simulating the dessert sand and the other the volcanic ash. CMAS 

characterisation allowed to conclude that both glasses melt at 1250 ºC, for that 

reason the attacks against the coatings were realized at this temperature. 

CMAS-2 displayed lower viscosity at high temperature therefore it is expected 

this molten salt can attack faster a given coating.   

The effect of the coating CMAS resistance was addressed in coatings 

combining different type of microstructutures: a conventional (from 

microstructured powder feedstocks) formed by molten splats and 

nanostructured (from nanostructured powder feedstocks) with porous 

nanozones embedded in a molten matrix. For this goal, four coatings (two 

multilayer and two functionally-graded), where both type of microstructures 

were combined, were attacked with the two salts. It was observed the CMAS 

preferred to attack the nanozones because of their higher specific surface. 

Therefore, nanostructured layers were more damaged, and even they were 

detached when the salt was more aggressive (CMAS-2). It implied that in 

coatings where the nanostructured layer was located in the bottom, the top 

layer was more damaged, or the fully detachment of the coating in the case of 

CMAS-2 attack. Another consequence of the corrosion attack was a worse 
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crystalline phase stability, corroborated by Raman spectroscopy, owing to a 

lixiviation of yttrium cations from the coating to the CMAS melt.  

Regarding the functionally-graded coatings, the CMAS attack was reduced. In 

fact, the layer detachment was not observed, besides CMAS oxides content 

detected in the coatings after the test was lower. The reason is based on the 

fact that the combination of conventional and nanostructured microstructures 

allows to obtain nanozones but with a porosity decrease, optimising the barrier 

effect of the CMAS. As a conclusion, the functionally-graded coatings displays a 

better behaviour against the CMAS corrosion compared to multilayer coatings.   
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Table list 

Table 1. Chemical composition of both CMAS studied in the present work. 

  SiO2 CaO Al2O3 MgO Na2O K2O Fe2O3 

CMAS-1 [5] 
mol% 51.5 39.2 7.1 3.5    

wt% 52.3 37.1 7.1 3.5    

CMAS-2 [6] 
mol% 50.0 38.0 5.0 4.0 1.0 1.0 1.0 

wt% 49.6 35.2 3.3 6.7 1.0 1.6 2.6 

 

Table 2. Viscosity (µ), surface tension (σ) and optical basicity (˄) of the CMAS 

melts.  

 µ (Pa·s) σ (N/m) ˄ 

CMAS-1 101 426 0.70 

CMAS-2 40 423 0.68 

 

Table 3. Punctual EDX analysis (wt%) in different zones of the region attacked 

by CMAS. CMAS-1 and CMAS-2 attack are displayed in fig. 5 and fig. 8 

respectively.  

Attacked Zone ZrO2 Y2O3 SiO2 CaO Al2O3 MgO Na2O K2O Fe2O3 ∑CMAS 

CMAS-1 
(M2 
coating) 

Solid 
matrix 

93.8 6.2 - - - - - - - - 

Crack/ 
melt 

6.2 4.8 48.7 25.2 12.8 2.3 - - - 89.1 

CMAS-2 
(M1 
coating) 

Solid 
matrix 

92.2 5.3 - 2.5 - - - - - (2.5)* 

Crack/ 
melt 

6.0 5.1 43.2 27.4 14.5 1.3 0.7 0.6 1.3 6.0 

(*) CaO is introduced in the crystalline lattice and it really doesn’t constitute a 

part of CMAS glass.  

Table 4. EDX analysis (wt%) of the coatings attacked by CMAS-1 in half top 

region and half bottom region. The type of layer (c: conventional; n: 

nanostructured) is pointed between parenthesis.  

 Layer/level ZrO2 Y2O3 SiO2 CaO Al2O3 MgO ∑CMAS 

M1 
Top (n) 74.7 3.2 10.8 8.4 3.2 0.4 22.7 

Bottom (c) 81.5 4.1 6.4 5.5 2.2 0.3 14.4 

M2 
Top (c) 86.5 2.2 4.1 4.1 1.0 0.2 9.4 

Bottom (n) 78.1 2.1 9.2 6.8 2.8 0.5 19.2 

G1 
Top (n) 76.8 1.5 10.9 2.8 7.5 0.6 21.7 

Bottom (c) 86.2 2.3 5.8 4.2 1.1 0.4 11.5 

G2 
Top (c) 80.3 4.7 7.2 5.3 2.1 0.4 15.0 

Bottom (n) 81.4 4.8 6.3 4.6 2.5 0.4 13.8 
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Table 5. EDX analysis (wt%) of the coatings attacked by CMAS-2 in half top 

region and half bottom region. The type of layer (c: conventional; n: 

nanostructured) is pointed between parenthesis. 

 Layer/  
level 

ZrO2 Y2O3 SiO2 CaO Al2O3 MgO Na2O K2O Fe2O3 ∑CMAS 

M1 
Top (n) - - - - - - - - - - 

Bottom (c) 86.8 6.5 2.5 2.4 1.4 0.2 0.1 - 0.2 6.7 

M2 
Top (c) - - - - - - - - - - 

Bottom (n) - - - - - - - - - - 

G1 
Top (n) 89.9 6.6 1.1 1.3 0.8 0.1 0.2 - 0.1 3.4 

Bottom (c) 88.6 6.6 1.4 1.7 1.3 0.1 - - 0.3 4.8 

G2 
Top (c) 88.4 7.3 1.0 1.4 1.4 0.3 0.1 0.2 0.1 4.4 

Bottom (n) 84.1 6.6 4.1 2.6 2.0 0.3 0.2 0.2 - 9.3 
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Figure caption 

Figure 1. Schematic illustration of the four composite coating series, two 

multilayer coatings and the other two functionally-graded coating (c: 

conventional feedstock, n: nanostructured feedstock). 

Figure 2. DTA analysis of CMAS-1 (top) and CMAS-2 (bottom).  

Figure 3. Raman spectra of: CMAS-1 (a) and CMAS-2 (b). 

Figure 4. M2 coating untreated, thermally-treated and attacked by CMAS-1. 

Top) Micrographs at 500x; bottom) Detail of nanozones (micrographs at 5000x) 

marked by a square in the top micrographs. Detail of zone chemically attacked 

surrounded by a square that is amplified in fig. 4. Triangles mark areas where 

EDX signal is low; stars mark areas where CMAS oxide signal is high.  

Figure 5. Detail of a zone chemically attacked by CMAS-1 in M2 coating (start 

marks a crack and the diamond marks a solid matrix around the zone 

chemically attacked).  

Figure 6. Coatings attacked with the CMAS-1 (micrographs at 500x). 

Nanozones and zones chemically attacked are marked by squares and circles 

respectively.   

Figure 7. Coatings attacked with the CMAS-2. Nanozones and zones 

chemically attacked are marked by squares and circles respectively.   

Figure 8. Detail of a zone chemically attacked by CMAS-2 in M1 coating (star 

marks a crack and the diamond marks a solid matrix around the zone 

chemically attacked).  

Figure 9. Left) Raman spectra of M1 coating a) as sprayed; b) thermally-

treated; c) attacked with CMAS-1; d) attacked with CMAS-2. Right) 

Amplification of the Raman spectra around 630 cm-1. 

 

 

 

 

 

 

 


