

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/120233

Borba, L.; Ritt, M.; Miralles Insa, CJ. (2018). Exact and heuristic methods for solving the
Robotic Assembly Line Balancing Problem. European Journal of Operational Research.
270(1):146-156. https://doi.org/10.1016/j.ejor.2018.03.011

http://doi.org/10.1016/j.ejor.2018.03.011

Elsevier

Accepted Manuscript

Exact and Heuristic Methods for solving the Robotic Assembly Line
Balancing Problem

Leonardo Borba, Marcus Ritt, Cristóbal Miralles

PII: S0377-2217(18)30220-0
DOI: 10.1016/j.ejor.2018.03.011
Reference: EOR 15030

To appear in: European Journal of Operational Research

Received date: 25 October 2016
Revised date: 5 March 2018
Accepted date: 7 March 2018

Please cite this article as: Leonardo Borba, Marcus Ritt, Cristóbal Miralles, Exact and Heuristic Methods
for solving the Robotic Assembly Line Balancing Problem, European Journal of Operational Research
(2018), doi: 10.1016/j.ejor.2018.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ejor.2018.03.011
https://doi.org/10.1016/j.ejor.2018.03.011

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We propose new algorithms for minimizing the cycle time in robotic assem-

bly lines.

• The first is a branch-bound-and-remember method with cyclic best-

first search.

• The second is an iterative beam search.

• Both methods use newly proposed lower bounds and dominance rules.

• Our methods improve the results from the literature and are faster.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Exact and Heuristic Methods for solving the Robotic
Assembly Line Balancing Problem

Leonardo Borbaa, Marcus Ritta, Cristóbal Mirallesb

aInstituto de Informática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves
9500, Porto Alegre-RS, Brasil

bDepartamento de Organización de Empresas, Universitat Politècnica de València, Camino de
Vera, s/n, Valencia, España

Abstract

In robotic assembly lines the task times depend on the robots assigned to each

station. Robots are considered an unlimited resource and multiple robots of the

same type can be assigned to different stations. Thus, the Robotic Assembly Line

Balancing Problem (RALBP) consists of assigning a set of tasks and a type of

robot to each station, subject to precedence constraints between the tasks. This

paper proposes a lower bound, and exact and heuristic algorithms for the RALBP.

The lower bound uses chain decomposition to explore the graph dependencies.

The exact approaches include a novel linear mixed-integer programming model

and a branch-bound-and-remember algorithm with problem-specific dominance

rules. The heuristic solution is an iterative beam search with the same rules. To

fully explore the different characteristics of the problem, we also propose a new set

of instances. The methods and algorithms are extensively tested in computational

experiments showing that they are competitive with the current state of the art.

∗Corresponding author
Email addresses: lmborba@inf.ufrgs.br (Leonardo Borba), mrpritt@inf.ufrgs.br

(Marcus Ritt), cmiralles@omp.upv.es (Cristóbal Miralles)

Preprint submitted to Computers & Operations Research March 13, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: Production, Robotic Assembly line balancing,

Branch-bound-and-remember, Beam Search

1. Introduction

The range of tasks that can be performed by robots has increased significantly

in the past decades Purnell (1998); Henrich & Wörn (2000); Baeten et al. (2008).

Robots are especially efficient for the repetitive small tasks, which are common in

flexible assembly lines Milberg & Schmidt (1990); Pires & Sá da Costa (2000).

To model this kind of problem Rubinovitz et al. (1993) have proposed the Robotic

Assembly Line Balancing Problem (RALBP). The RALBP extends the Simple

Assembly Line Balancing Problem (SALBP) Baybars (1986) by adding the con-

cept of robots. In the SALBP a set of partially ordered tasks must be assigned

to a linearly ordered set of stations, such that the task precedences agree with the

linear order of the stations Scholl & Becker (2006). Each task t has a task time pt

and the station time of each station is given by the total time of the tasks assigned

to that station. The greatest station time defines the bottleneck of the line and

therefore the cycle time of the line. Possible objectives are to minimize the cycle

time, or the number of stations, or both, or simply finding a valid solution. In the

case of the RALBP, a robot must be additionally assigned to each workstation, and

is responsible for performing the tasks assigned to that station. Robots are usually

heterogeneous and the time to execute a task depends on the robot performing it.

According to the definition of Rubinovitz et al. (1993), the RALBP is com-

posed of a set T of nonpreemptive tasks. These tasks must be assigned to a set of

workstations S. There is also a set of types of robots R and one robot of type r ∈ R

must be designated to each workstation.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The time ptr needed to execute the task t ∈ T is deterministic and depends

on the type r of the robot assigned to the station where task t is performed. The

station time Cs is the sum of the task times ptr of the tasks t assigned to station s,

given that robot r is responsible for that station. The cycle time of the line then is

the largest station time C = maxs∈SCs.

We also have a set of precedence relations A. If (t, t ′) ∈ A task t precedes task

t ′. For such a pair, task t ′ can only be executed at the same station as t or at a

station following the station performing t.

Based on these assumptions, the RALBP has two dependent variables: the

number of workstations |S| and the cycle time C of the line. In this paper we

propose solutions for the minimization of C given a fixed |S|. This problem is

called RALBP-2 in the literature.

1.1. Related Work

Assembly Line Balancing research, which was traditionally focused on the

SALBP defined by Salveson (1955) through several well-known simplifying hy-

potheses, has been recently enriched by many realistic features that have been

successively added in the literature (see the reviews of Scholl & Becker (2006);

Becker & Scholl (2006); Boysen et al. (2007, 2008); Battaı̈a & Dolgui (2013)).

In the particular case of the consideration of heterogeneity in the resources

involved, the RALBP model proposed by Rubinovitz et al. (1993) was a clear an-

tecedent of this trend, inspiring further approaches like the Assembly Line Worker

Assignment and Balancing Problem (ALWABP) first presented by Miralles et al.

(2007). In this paper a new set of hypotheses motivated by assembly lines in

sheltered work centres for disabled persons are defined, where all workers are

considered heterogeneous. The fundamental difference to the RALBP is that the

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

resources available are constrained: in the RALBP the same type of robot can be

assigned to multiple workstations if convenient, whereas in ALWABP there is a

set of unique workers that can only be assigned once.

Despite the clear differences, exact methods for the SALBP Salveson (1955);

Scholl & Becker (2006); Klein & Scholl (1996); Morrison et al. (2014); Vilà &

Pereira (2013) and the ALWABP Miralles et al. (2007, 2008); Vila & Pereira

(2014); Borba & Ritt (2014) can be applied to the RALBP. Notably, the SALBP

lower bounds Scholl & Becker (2006), some dominance rules (e.g. the maximum

load rule Jackson (1956)), and the search strategies Scholl & Becker (2006); Mor-

rison et al. (2014); Vilà & Pereira (2013); Vila & Pereira (2014); Borba & Ritt

(2014). However, many of the methods for the SALBP and ALWABP largely

rely on properties of these problems and cannot be adapted to the RALBP. For

instance, Jackson’s dominance rule Jackson (1956), proposed for SALBP, highly

depends on station-independent task times to define potential domination between

the tasks. Similarly, the problem cannot be relaxed to the unbounded parallel ma-

chines scheduling problem Borba & Ritt (2014), like the ALWABP.

In the RALBP literature, two lower bounds adapted from the SALBP are

used Rubinovitz et al. (1993): LM1 = P−/C for the RALBP-1 and LC1 = P−/|S|
for the RALBP-2, where P− = ∑t∈T minr∈R ptr is the sum of the minimal task

times Scholl & Becker (2006). These two lower bounds relax the precedence

constraints and consider the tasks to be preemptive, dividing them equally among

the stations. Rubinovitz et al. (1993) also proposed a best-first search branch-

and-bound algorithm for the type 1 of the problem. For the RALBP-2, Levitin

et al. (2006) have proposed a genetic algorithm (GA). Their algorithm uses a

common genotype, and mutation and crossover operators of genetic algorithms

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for the SALBP Rubinovitz & Levitin (1995). They also improved the results of

this GA using a hill climbing algorithm. A Particle Swarm Optimization (PSO)

method and an hybrid method of PSO and a Cuckoo Search algorithm were pro-

posed by Mukund Nilakantan et al. (2015), with the best known results for the

RALBP. They also introduced a mathematical formulation for the RALBP, here

referred as M1. Model M1 is a quadratic mixed-integer programming model that

uses two-index variables. Finally, Gao et al. (2009) solves a different RALBP

problem where only one robot of each type is available and, therefore, can only

be assigned once. This problem is equivalent to the ALWABP, and the ALWABP

has significantly better results in the literature Miralles et al. (2007); Chaves et al.

(2007); Miralles et al. (2008); Chaves et al. (2009); Blum & Miralles (2011); Mor-

eira et al. (2012); Mutlu et al. (2013); Vila & Pereira (2014); Borba & Ritt (2014);

Polat et al. (2016).

1.2. Outline of the Paper

In the next sections we will present solution procedures for the RALBP-2.

Section 2 introduces the mathematical formulation of the problem. In Section 3

we investigate a novel lower bound. It uses the task dependencies to improve

the lower bounds in the literature. Furthermore, a branch-bound-and-remember

(BBR) method for the problem is proposed in Section 4, with a series of dom-

inance rules adapted or created for RALBP. An iterative beam search using the

same dominance rules and lower bounds is then proposed in Section 5. The

computational experiments for the mixed-integer programming (MIP) models, the

lower bounds, the heuristics and the branch-and-bound method are presented in

Section 6, as well as a new set of instances to explore different characteristics of

the problem.

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Mathematical Formulation

We propose using a model M2, that avoids the quadratic functions of model

M1. We also use the techniques proposed by Ritt & Costa (2015) to improve the

precedence constraints. The resulting model M2, with notation described in Table

1, can then be defined by

M2 = minimize C, (1)

subject to ∑
t∈As

ptrxts ≤C+Mr(1− ysr), ∀s ∈ S,r ∈ R, (2)

∑
r∈R

ysr = 1, ∀s ∈ S, (3)

∑
s∈It

xts = 1, ∀t ∈ T, (4)

∑
k∈Ii|k≤s

xik ≥ ∑
k∈I j|k≤s

x jk, ∀i ∈ T, j ∈ Fi,s ∈ S, (5)

xts ∈ {0,1}, ∀s ∈ S, t ∈ As, (6)

ysr ∈ {0,1}, ∀s ∈ S,r ∈ R. (7)

The model minimizes the cycle time C (1), defined in constraint (2). Since the

right side of constraint (2) must be free to assume any value when ysr is not set and,

given a lower bound C on the cycle time, we can assume that Mr ≥∑t∈T {ptr}−C,

for each robot r. Constraints (3) and (4) ensure that each task will be performed

and that each station will have a robot assigned to it. Constraint (5) defines the

precedence relations between the tasks. The robots do not affect the dependencies,

therefore the precedence constraints for the SALBP can be directly applied to the

RALBP. We ensure that the variables xts are only defined for the tasks that can

be performed in a given station s (t ∈ As). Model M2 is linear and has O(|T ||S|+

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Notation used in the article.
T set of tasks;
R set of robots;
S set of workstations;
Et and Lt the earliest and latest station, respectively, where a task can be placed;
As As = {t ∈ T | Et ≤ s≤ Lt}, the set of tasks that can be assigned to station s;
It It = {s ∈ S | Et ≤ s≤ Lt}, the set of stations where task t can be performed;
G(T,A) precedence graph of tasks, where (t, t ′) ∈ A indicates that task t must be per-

formed before task t ′;
G∗(T,A∗) the transitive closure of graph G(T,A);
ptr execution time of task t by robot r;
Pt ⊆ T set of immediate predecessors of task t;
Ft ⊆ T set of immediate followers of task t;
P∗t ⊆ T set of all predecessors of task t;
F∗t ⊆ T set of all followers of task t;
C the cycle time of a solution;
Mr a constant equal to ∑t∈T {ptr}−C;
xts 1 if task t is assigned to station s, and 0 otherwise;
ysr 1 if robot r is assigned to station s, and 0 otherwise.

|S||R|) variables and O(|S||R|+ |T |2|S|) constraints.

3. Lower Bounds

Lower bound LC1 Rubinovitz et al. (1993) relaxes precedence constraints. In

our proposed lower bound LC2 we maintain some of the precedence constraints

such that we have a set of task chains Tc and remove all the other precedence

constraints. Since the precedence constraints of this set of chains are present in

the original graph, all the solutions that are valid for the original problem are valid

for the adapted instance. Therefore, an optimal solution for the new instance is a

valid lower bound for the original problem.

To decompose the original graph into a set of chains Tc, we iteratively select

the longest chain in the graph until all tasks have been assigned to one of the

chains. The longest chain is selected since this increases the chance that multiple

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

t1 t2

t3 t4

t5 t6

Figure 1: Example of a precedence graph of an instance with six tasks.

tasks are assigned to the same station and the same robot has to perform them.

Consider the example shown in Figure 1. We first select the longest chain

(t1, t2, t5, t6) of the graph. Then, only tasks t3 and t4 remain and they form the

second chain.

After selecting the chains we determine for each chain the smallest total task

time, considering that some groups of tasks must be performed at the same sta-

tion and therefore by the same robot. The minimum total task times for a set of

chains is the sum of the minimum total task time of each chain. For a given chain

Q = (q0,q1, . . . ,qn−1) the minimum total task time can be computed by dynamic

programming. Let

MQ(t,s) =

0, if t = n,

∞, if t < n∧ s = 0,

min
t<t ′≤n

min
r∈R

∑
t≤t ′′<t ′

pt ′′,r +MQ(t ′,s−1), otherwise,

(8)

be the minimum total task time for tasks qt , . . . ,qn−1 on s stations. Then MQ(0, |S|)
is the minimum total task time for chain Q. There first two conditions handle the

base case: if all tasks have been assigned, the sum of the remaining tasks is zero;

and if there are no stations left but still tasks to assign, it is impossible to solve the

problem. Otherwise we assign the tasks in the range [t, t ′), for some t < t ′ ≤ n to

the current station, and assign the robot that executes them fastest to that station.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

To the time for executing these tasks we have to add the minimum total time for

executing the remaining tasks starting with t ′ on one station less.

For example, consider the case where we have a chain Q = (q0,q1,q2,q3) of

length four, two stations and two robots. The tasks have times p11 = 1, p12 =

2, p21 = 2, p22 = 1, p21 = 1, p22 = 2, p41 = 2, and p42 = 1. The sum of the

minimum task times is 4. However, at least two subsequent tasks must be assigned

to the same robot. Indeed, the result of the minimum total task time obtained by

recurrence (8) is MQ(0,2) = 5.

Function M can be determined by dynamic programming in time O(n2|S| |R|)
for a chain of length n, and to calculate the result for all the chains, the total

complexity is O(|T |2|S| |R|). We can define lower bound LC2 by

LC2 = ∑
Q∈Tc

MQ(0, |S|)/|S|.

Lower bound LC2 is the minimum possible sum of task times considering that

some tasks must be assigned to the same station. In the best case, the total sum of

the task times will be equally distributed among stations, and therefore dividing

the minimum sum of task times by the cycle time we have a valid lower bound on

the number of stations.

A longest path can be found in time O(|T |+ |A|) and this process is repeated

at most |T | times. Thus, computing LC2 takes total time O(|T |2|S| |R|+ |T | |A|).

4. An Iterative Branch-Bound-and-Remember Method

The optimal solution for the RALBP-2 is the smallest cycle time C for which

a valid solution can be found. To find the value C, we iterate over cycle times

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in the interval [C,C], where C is a lower bound and C an upper bound for the

problem. We initially set the cycle time to the upper bound C =C. The value C is

the result of our heuristic method defined in Section 5. Afterwards the cycle time

C is decremented one unit at a time until it is impossible to find a valid solution

for C. The optimal cycle time C∗ then is C+1. Therefore, we only need to prove

infeasibility for the smallest tested cycle time. The problem of verifying if there

is a valid solution for a fixed number of stations and a fixed cycle time C is called

RALBP-F in the literature.

4.1. A Branch-Bound-and-Remember Algorithm

For the RALBP-F we propose using a station-oriented BBR algorithm. Our

branching strategy consists of filling one station at a time. In the initial node of

the branch-and-bound method, we generate all possible station loads for the first

workstation. A branch is generated for each station load and the first station is

closed. Then, the method expands the generated branches. The expansion process

generates all the station loads for the first open station of the current node. A

solution is valid when all tasks are assigned to less than |S| stations.

To decide the order in which the branches are explored, we use a cyclic best-

first search (CBFS). In the cyclic best-first search the partial solutions are divided

in levels. In the RALBP, each level k contains all the partial solutions with k

stations. At each iteration of the algorithm, the method selects the solution of

the least lower bound and expands it, adding the new branches to the next level.

Lower bounds LC1 and LC2 can be used to prioritize the solutions and their per-

formance will be evaluated in Section 6.3. When lower bound LC2 is used, the

chain decomposition is computed at each node anew, to improve the bound.

In our method, level zero starts with only one partial solution with no stations

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

First Iteration
s0 s1 s2 s3

a0 a1

a2

a3

a4

a5

a6

a7

Second Iteration
s0 s1 s2 s3

a2 a4

b0

a5

b1

b2

b3

a7

Figure 2: An example of CBFS. In the first iteration the method expands the partial solutions a0,
a1, a3 and a6. In the second iteration, the first priority queue is empty and the method continues
to expand partial solutions a2, a4 and b2, which is a valid solution for the given cycle time. The
method ends after expanding five nodes.

loaded. This branch is expanded and the new partial solutions are added to level

one. After that, the method selects the best solution and expands it by assigning

tasks to the second station. The method continues until the last level and if no

valid solution is found the method returns to the first level with partial solutions

yet to expand, starting a new iteration. The process is repeated until a solution is

found or all the partial solutions have been explored. In this case, we know that

there are no valid solutions for the current cycle time. The CBFS is exemplified

in Figure 2.

4.2. Dominance Rules

To reduce the number of partial solutions explored, we use four dominance

rules:

• Maximal Station Load Rule Jackson (1956): A station is said to be max-

imally loaded if no other task can be assigned to the current station without

exceeding the cycle time. We only consider maximally loaded stations. If a

partial station load is not maximal, a task can be added to the current station.

The new solution with this task dominates the previous one.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Feasible Set Dominance Rule Schrage & Baker (1978): Given a partial

solution v1 with a set of tasks already assigned to the first m1 stations, if

the same set of tasks has already been assigned to another set of m2 stations

in another solution v2, with m2 ≤ m1, then solution v2 dominates solution

v1, because assigning the remaining tasks would take the same number of

stations in both cases. To apply this rule, our algorithm memorizes the tasks

already assigned in a given partial solution and every time a branch visits a

partial solution with a set of tasks visited previously, the branch is cut.

• Late Acceptance Dominance Rule Sewell & Jacobson (2011): If none

of the tasks of a station load has successors, this set of tasks can be assigned

to any future station. A station load has no successors if no unassigned

task succeeds the tasks in the current station. Therefore, to avoid multiple

equivalent solutions, if it is possible to postpone the current station load to

a future station, the current partial solution can be eliminated.

• Best Robot Dominance Rule: Since we can use the same type of robot as

many times as needed, the assignment of a robot to a station is independent

from the rest of the solution. Therefore for each station with a set of tasks

assigned, we only need to consider the robot that executes the set of tasks

fastest. This rule can be combined with the Maximal Station Load Rule and

we can ignore a station load if there exists any other robot for which the

current station load is not maximal.

Given these dominance rules, the number of nodes explored by the BBR al-

gorithm can be bounded as follows. First, consider a fixed cycle time. If we

decompose the precedence graph into the smallest number of chains w by a Dil-

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

worth chain decomposition (w is the partial order’s width, see Dilworth (1950)),

and the length of the longest chain in this decomposition is l, then there are at

most (l + 1)w partial solutions. This holds since each partial solution can be de-

scribed by the already assigned tasks, which are uniquely defined by a position

in [0, l] for each of the w chains. By the feasible set dominance rule, each set of

assigned tasks is visited only once. Therefore, since at most C−C different cycle

times must be considered, the total number of nodes is bounded by

O((C−C)lw). (9)

5. An Iterative Beam Search

By running the BBR method with a time limit, we obtain a heuristic for the

RALBP. The BBR method, however, stores branches, which will probably never

be used in the case of a limited execution. A beam search reduces this problem

by storing only a few of the best partial solutions found. Since in our case, our

method is a cyclic best-first search, we limit the number of partial solutions stored

by level. As in the cyclic best first search, the best partial solution of a given

level is selected and all station loads for the next level are generated. However,

the method keeps only the best bw solutions of that level. The best solutions are

those with the smallest lower bound, and the lower bounds used are the same as

the lower bounds in the branch-bound-and-remember method. All the dominance

rules are also applied.

The method is iterative. For each cycle time the heuristic searches for a valid

solution for at most time h. Because of the limited beam width bw the time for

each iteration for small cycle times is not as high as for the branch-and-bound

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

algorithm and we can apply a binary search to test the cycle times. Here, to define

the initial upper bound C, we use the sum of the task times as performed by the

best robot to perform all tasks minr∈R ∑t∈T ptr, and we set the initial lower bound

to C = LC1−1. At each iteration of the method, we test cycle time
⌊
(C+C)/2

⌋
.

If a valid solution is found for the given cycle time, we set C to the current tested

cycle time, otherwise we set C to the cycle time being tested.

We also do not need to generate all the station loads for a given station. The

lower bound LM1 can be improved during the generation of the station loads. If

a partial load is already worse than the worst partial solution stored for the next

level and the next level already has bw partial solutions, then the solution with

the current set of tasks will not be added to the next level and this branch is not

explored. The partial lower bound LM′1 can be defined by

LM′1 = s+min
r∈R

∑
t∈Ts

ptr + ∑
t∈U

min
r∈R

ptr

where s is the number of stations already fully loaded in the current partial solu-

tion, Ts is the set of tasks already assigned to the current station and U is the set

of unassigned tasks. The lower bound LC2 is not used in the beam search.

6. Computational results

In the literature on the RALBP only one set of 32 instances is used Gao et al.

(2009). It uses eight precedence graphs from the literature of SALBP-1 (Roszieg,

Gunther, Hahn, Tonge, Lutz3, Arc111, Barthol2 and Scholl) and four instances for

each of the graphs. These four instances were generated using increasing WEST

ratios Dar-El (1973), varying from 2 to 15. The WEST ratio defines the average

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

number of tasks per station. In all cases the number of stations is considered to be

equal to the number of robots. Each task time ptr is defined based on three values

chosen uniformly at random: the difficulty dt of performing task t, the efficiency

factor er of robot r, and the specialization ability ctr of robot r to perform task t.

Given these three factors, the task times are defined as ptr = dt/(etctr).

This instance set (instance set 1) is limited for a number of reasons. First, the

number of robots and stations is equal, so it is not possible to study their influence

on the methods separately. Second, only one graph is used for each number of

tasks. Therefore, the influence of different graph structures on the algorithms can

not be evaluated.

We propose a second set of instances (instance set 2) that adapts the SALBP in-

stance set of Otto et al. (2013) for the RALBP. The set considers three graph struc-

tures: chain graphs (“CH”), bottleneck graphs (“BN”) and mixed graphs (“MX”).

In a chain graph, at least 40% of the tasks are part of a chain, i.e. tasks that have at

most one predecessor and one successor. A graph is a bottleneck graph if it has at

least one bottleneck task. A bottleneck task has at least b tasks that precede it and

have no other successors, and at least b successors that have no other predecessors.

For the instances with 50 and 100 tasks explored here, the number b is set to 4.

In the mixed graphs, no limitations are imposed on the graph generation. Differ-

ent order strengths (OS) ranging from 20% to 90% are also represented in these

instances. The order strength represents the percentage of precedence relations

of the instance in comparison to the maximum number of precedence relations

|A|/(|T |(|T |− 1)/2). Different task time distributions are considered. To define

the task times, three types of distributions are used Kilbridge & Wester (1961): a

normal distribution with a peak at task times of a tenth of the cycle time (PB), a

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Parameters of instance set 2.

Parameter Levels

Number of Tasks |T | 50, 100
Graph Types CH, BN and MX

Order Strength (OS) 20%, 60% and 90% (only for type MX)
Task Times Distribution (Dist.) PM, PB, BM

Types of robots |R| |T |/7, |T |/4
Number of stations |S| |R|/2, |R|, 2|R|

Task time variability var [pt ,2pt], [pt ,5pt]

normal distribution with a peak at half the cycle time (PM) and a bimodal distri-

bution with peaks at a tenth of the cycle time and half the cycle time (BM), where

the peak at a tenth of the cycle time is larger. Finally, the set contains instances

with 20, 50, 100, and 1000 tasks but here we only consider instances with 50 and

100 tasks. This instance set is summarized in Table 2.

For each combination of the parameters above, Otto et al. (2013) produce

30 instances. To adapt the instances for the RALBP we select 5 of them, and

generate RALBP-2 instances with two different numbers of types of robots (|R| ∈
(|T |/7, |T |/4)), three different numbers of stations (|S| ∈ (|R|/2, |R|,2|R|)), and

two task time variabilities (var). The task time variability defines the range from

which the task times ptr are uniformly selected. Given the time of a task pt from

the corresponding SALBP instance, the range for a task time ptr is either [pt ,2pt]

(low variability), or [pt ,5pt] (high variability). Therefore, for each of the 210

instances selected of Otto et al. (2013), we generate twelve instances, totaling

2520 RALBP-2 instances to be used in our experiments.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Comparison of MIP models M1 Mukund Nilakantan et al. (2015) and M2 on instance set
1.

M1 M2
|T| |R| Dev. (%) Time (s) Dev. (%) Time (s)

25

3 0.00 12.30 0.00 0.02
4 0.00 1,254.11 0.00 0.15
6 11.86 3,600.00 0.00 5.19
9 60.55 3,600.00 0.00 604.40

35

4 2.93 3,600.00 0.00 0.41
5 23.10 3,600.00 0.00 3.56
7 36.32 3,600.00 0.00 330.13

12 186.02 3,600.00 0.00 3,600.00

53

5 41.87 3,600.00 0.00 0.57
7 21.20 3,600.00 0.00 30.48

10 318.23 3,600.00 0.00 3,600.00
14 561.19 3,600.00 2.24 3,600.00

70

7 142.27 3,600.00 0.00 3,600.00
10 193.97 3,600.00 3.45 3,600.00
14 332.35 3,600.00 8.24 3,600.00
19 949.17 3,600.00 9.17 3,600.00

89

8 92.13 3,600.00 1.85 3,600.00
12 462.12 3,600.00 5.12 3,600.00
16 822.93 3,600.00 3.90 3,600.00
21 1,021.94 3,600.00 9.68 3,600.00

111

9 291.85 3,600.00 3.86 3,600.00
13 420.22 3,600.00 5.88 3,600.00
17 809.52 3,600.00 10.00 3,600.00
22 755.26 3,600.00 15.79 3,600.00

148

10 488.19 3,600.00 0.00 3,600.00
14 721.59 3,600.00 5.40 3,600.00
21 1,388.79 3,600.00 9.42 3,600.00
29 1,748.68 3,600.00 20.39 3,600.00

297

19 611.62 3,600.00 4.57 3,600.00
29 2,348.19 3,600.00 29.22 3,600.00
38 1,719.03 3,600.00 40.08 3,600.00
50 2,701.62 3,600.00 48.65 3,600.00

Avg. 602.67 3414.60 7.41 2617.97

6.1. MIP Models

We first compare our model M2 to the model M1 by Mukund Nilakantan et al.

(2015) on instance set 1. The models were solved with CPLEX 12.5.0 using a

single thread on a PC with a 3.66 GHz AMD FX-8150 processor with 32 GB of

memory, and a time limit of one hour. The results are presented in Table 3.

In the table, column “Dev.” shows the relative deviation (C−C∗)/C∗ of the

cycle time C found by the model compared to the best known value C∗ for each

instance, and column “Time” presents the time in seconds needed to solve it. The

table shows that model M2 consistently produces smaller cycle times than model

M1 and it also proves more solutions to be optimal. Nine instances are proven

optimal by model M2 compared to only two instances by model M1. The perfor-

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

mance of model M2 is strongly influenced by the number of robots. Instances with

more robots take much longer to be solved and when they are not optimally solved

the relative deviations are larger than those for instances with fewer robots.

6.2. Iterative Beam Search

The iterative beam search has only two parameters, the beam width bw for

all the levels, and the time h, in seconds, for each of the iterations of the binary

search. We have considered values of bw ∈ {5,10,20,40} and h ∈ {5,10,20,40}.
For longer search times h and greater beam widths bw, the results are better, but

with a higher computational cost. Parameter h has the strongest influence on the

results. The pairs of parameters with the longest search time h produce the small-

est average relative deviation. The best results are found with h = 40 and bw = 40

and are achieved in less than 15 minutes for every instance from both instance

sets.

We compare the method with this set of parameters against the two heuristic

methods available in the literature: the Particle Swarm Optimization (PSO) and

the hybrid Cuckoo Search with Particle Swarm Optimization (CS-PSO), both pro-

posed by Mukund Nilakantan et al. (2015). Their article presents results for 10

replications of the method but all the replications have the exact same result. The

iterative beam search is deterministic and, therefore, for the same instance, always

produces the same result. Thus, we only present results for one replication of the

methods in Table 4.

In Table 4 we present the relative deviation from the best known cycle time

(C−C∗)/C∗ (column “Dev.”) and the running time for each of the methods (col-

umn “t”). PSO and CS-PSO were run on a PC with a 2.30 GHz Core i5 processor,

while our method was run on a PC with an AMD FX-8150 processor, running

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Comparison of the Iterative Beam Search (IBS) with the PSO and CS-PSO by
Mukund Nilakantan et al. (2015)

PSO Mukund Nilakantan et al. (2015) CS-PSO Mukund Nilakantan et al. (2015) IBS
|T| |R| Dev. (%) t (s) Dev. (%) t (s) Dev. (%) t (s)

25

3 0.00 2.65 0.00 3.60 0.00 0.11
4 12.37 2.90 12.37 3.90 0.00 0.05
6 7.22 3.00 3.09 4.20 0.00 0.07
9 4.59 3.25 0.92 4.50 0.00 0.04

35

4 0.88 4.90 0.00 5.20 0.00 0.06
5 2.13 5.40 0.91 6.30 0.00 0.12
7 6.47 6.90 4.98 6.90 0.00 0.10

12 12.90 8.50 10.75 8.90 0.00 0.07

53

5 1.11 13.10 0.00 13.50 0.00 0.15
7 6.36 14.90 3.89 16.80 0.00 0.15

10 10.34 16.20 8.87 17.90 0.00 0.16
14 8.96 19.90 5.97 20.00 0.00 0.14

70

7 11.08 29.00 10.82 32.90 0.77 2.12
10 15.95 32.50 13.79 35.80 0.43 0.54
14 17.65 39.10 14.12 43.30 0.00 0.35
19 22.50 43.40 16.67 47.80 0.83 0.85

89

8 7.18 41.90 6.48 45.70 0.93 0.43
12 21.16 50.40 9.22 51.60 1.02 0.57
16 14.15 59.60 6.83 63.30 0.00 0.18
21 13.55 75.30 9.68 80.50 0.65 0.70

111

9 12.88 82.30 12.23 85.50 0.43 27.69
13 16.18 89.50 18.01 92.50 1.10 11.00
17 20.95 98.50 14.29 107.40 0.95 5.83
22 21.71 110.80 19.74 114.50 1.32 4.00

148

10 11.25 179.80 9.41 183.50 1.48 157.73
14 19.32 205.50 19.03 207.90 0.00 46.87
21 24.22 215.90 22.42 219.50 0.90 19.60
29 25.00 230.30 24.34 242.20 1.32 20.24

297

19 15.81 891.80 13.14 1,118.30 0.00 136.78
29 19.58 997.60 18.67 1,331.30 0.00 125.59
38 19.43 1,269.90 23.48 1,593.50 0.00 93.62
50 32.43 1,390.80 19.46 1,664.30 0.00 73.43

Avg. 13.60 194.86 11.05 233.53 0.38 22.84

at 3.60 GHz. Both processors are comparable according to the Passmark bench-

marks (Passmark Software Pty. Ltd., 2017). The average time of our method

(22.84s) is much smaller than the times of both methods of Mukund Nilakantan

et al. (2015) (194.86s for the PSO and 233.53s for the CS-PSO). Our method is

faster than the methods in the literature for every instance but also produces the

best results when compared to the best known values. The average relative devia-

tion from the best known values is 0.38%, against 13.60% and 11.05% of the PSO

and CS-PSO, respectively, and in every instance, the relative deviation produced

by our method is smaller or equal to that of either PSO or CS-PSO.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.05|T | 0.10|T | 0.15|T | 0.20|T | 0.25|T | 0.30|T |

0
5

10
15

20
25

30

Number of Stations

D
ev

.(
%

)

0.05|T | 0.10|T | 0.15|T | 0.20|T | 0.25|T | 0.30|T |

0
10

20
30

40

Number of Stations

D
ev

.(
%

)

Figure 3: Comparison of the two lower bounds. The figures show the relative deviation between
LC2 and LC1 as a function of the number of stations. On the left are the results for n = 50 tasks,
on the right for n = 100 tasks.

6.3. Lower Bounds

To evaluate the lower bounds we need to consider multiple numbers of sta-

tions. We analyze |S| from 1 to 0.3|T | for each of the instances in set 2. In

Figure 3, we present the relative deviations between lower bounds LC2 and LC1

for 50 and 100 tasks.

In this figure, each point represents the average relative deviation (LC2 −
LC1)/LC1 of lower bound LC2 from LC1 for a given number of stations. The

graphs show that the difference between the two lower bounds decreases for an

increasing number of stations. The lower bound LC2 has better results when mul-

tiple tasks need to be assigned to the same station for some of the chains. There-

fore, LC2 is better if there are much fewer stations than tasks. Because of this, we

have studied the application of LC2 only in cases where the number of stations is

smaller than a fraction f of the number of tasks (|S| ≤ f |T |).

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Dev. (%)

T
im

e
(m

s)

LC0%
2 LC5%

2

LC10%
2

LC15%
2

LC20%
2

LC25%
2

LC30%
2

Figure 4: Results of the lower bound LC f
2 for varying values of f

Figure 4 compares the quality of the lower bound compared to the time to

compute it for varying values of f from 0% to 30%. The quality is defined, as

above, as the relative deviation from lower bound LC1 on instance set 2. Both the

relative deviation and the time increase with f . However, for f ≥ 20%, the time

increases significantly with almost no improvements of the relative deviation. The

time needed to compute lower bounds LC0%
2 and LC5%

2 is very similar, but their

results are significantly different. The relative deviation improves to 3.2% using

f = 20% and this result is obtained in 1.22 milliseconds in average. After that,

the quality does not improve significantly and thus we select f = 20% for our

experiments.

6.4. Branch-Bound-and-Remember

For the BBR method we evaluate two variants: the first uses the lower bound

LC1 in each of the nodes of the branch-and-bound algorithm and the second uses

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Comparison of the results of the exact solution of Model M2 and the BBR methods.
Model M2 BBR method with LC1 BBR method with LC20%

2
|T| |W| Dev. (%) t (s) Dev. (%) t (s) Dev. (%) t (s)

25

3 0.00 0.02 0.00 0.72 0.00 0.46
4 0.00 0.15 0.00 0.59 0.00 0.42
6 0.00 5.19 0.00 0.57 0.00 0.42
9 0.00 604.40 0.00 0.64 0.00 0.42

35

4 0.00 0.41 0.00 0.72 0.00 0.65
5 0.00 3.56 0.00 0.64 0.00 0.60
7 0.00 330.13 0.00 0.69 0.00 0.62

12 0.00 3,600.00 0.00 0.66 0.00 0.60

53

5 0.00 0.57 0.00 0.78 0.00 0.64
7 0.00 30.48 0.00 0.86 0.00 0.71

10 0.00 3,600.00 0.00 0.80 0.00 0.72
14 2.24 3,600.00 0.00 0.92 0.00 0.77

70

7 0.00 3,600.00 0.00 170.14 0.00 50.05
10 3.45 3,600.00 0.00 10.72 0.00 9.00
14 8.24 3,600.00 0.00 6.86 0.00 9.50
19 9.17 3,600.00 0.00 13.41 0.00 17.49

89

8 1.85 3,600.00 0.00 12.52 0.00 18.54
12 5.12 3,600.00 0.00 11.06 0.00 17.15
16 3.90 3,600.00 0.00 11.30 0.00 22.89
21 9.68 3,600.00 0.00 9.65 0.00 13.56

111

9 4.09 3,600.00 0.00 3,600.00 0.86 3,600.00
13 5.88 3,600.00 0.00 3,600.00 1.10 3,600.00
17 10.00 3,600.00 0.00 3,600.00 0.48 3,600.00
22 15.79 3,600.00 0.00 3,600.00 1.32 3,600.00

148

10 0.00 3,600.00 1.66 3,600.00 1.66 3,600.00
14 5.40 3,600.00 0.28 3,600.00 0.28 3,600.00
21 9.42 3,600.00 0.90 3,600.00 1.35 3,600.00
29 20.39 3,600.00 0.00 3,600.00 1.97 3,600.00

297

19 4.57 3,600.00 0.19 3,600.00 0.19 3,600.00
29 29.22 3,600.00 0.30 3,600.00 0.30 3,600.00
38 40.08 3,600.00 0.00 3,600.00 0.40 3,600.00
50 48.65 3,600.00 0.54 3,600.00 0.54 3,600.00

Avg. 7.41 2617.97 0.12 1357.94 0.33 1355.16

LC20%
2 . Both methods were run on a PC with a 3.66 GHz AMD FX-8150 pro-

cessor with 32 GB of memory, using one thread per execution. We use the IBS

method to produce an initial solution for the BBR algorithm. We have tested the

heuristic with different values of bw and h. The method with bw = 40 and h = 40

has the best results but can take up to 15 minutes without improving much the

results compared to setting bw = 20 and h = 20, which takes up to 6 minutes and

half the average time of the previous parameter set. Therefore, we set bw = 20 and

h = 20 for finding the initial solutions. The time limit for each run was one hour.

The memory usage of none of the runs did exceed 28 GB of main memory.

We first compare both BBR variants to model M2 solved by CPLEX in the

same computational environment using the same time limit on instance set 1. The

results are presented in the Table 5. It reports the relative deviation (C−C∗)/C∗

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of the best cycle time C from the best known value C∗ (columns “Dev.”), the total

running time in seconds (columns “t”) for each instance. We can see that both

BBR methods solve all instances with up to 89 tasks and prove them to be optimal

in less than three minutes. Only in some cases with a small number of robots

the solution of M2 takes less time than the BBR algorithm and in the case of M2

the time grows exponentially with the number of robots. In average, the BBR is

faster than model M2 solved by CPLEX and the relative deviation found by the

BBR method with LC1 is better than the relative deviation found by the method

with LC20%
2 . This can be explained by the longer time to compute lower bound

LC20%
2 . For cycle times where a valid solution is found the number of explored

nodes of both BBR methods is very similar. The largest difference in number of

nodes between the two methods occurs in the last step, where the entire branch-

and-bound tree must be explored. The method with LC1 is faster until the last

cycle time being tested, but is slower than the method with LC20%
2 in this last step,

and therefore, it takes more time to prove a solution to be optimal. In instances

where both methods prove a solution to be optimal, the method using LC20%
2 is, in

average, about 35% faster than the method using LC1.

The heuristic and the BBR methods presented were also executed for all the

instances of instance set 2. The heuristic was configured with the same parameters

used for the small instances. To present the results we divide the instance param-

eters in two groups: the parameters derived from Otto et al. (2013), which relate

to the tasks (task times distribution and precedence graph), and the parameters

related to robots and workstations.

The results related to the first set of parameters are presented in Table 6. It

shows for each set of parameters with a fixed number of tasks (|T |), graph type

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Comparison of the BBR method and the IBS on instance set 2.
IBS BBR method with LC1 BBR method with LC20%

2
Gap Dev. Prov. Gap Dev. Prov. Gap Dev.

|T| Gr. OS Dist. (%) (%) t (s) (%) (%) (%) t (s) (%) (%) (%) t (s)

50

BN

2
bimodal 7.21 1.08 5.38 66.67 5.98 0.00 1,748.30 68.33 5.99 0.01 1,701.29
bottom 9.02 1.03 8.18 55.00 7.83 0.00 2,047.44 60.00 7.84 0.01 2,016.44
middle 13.20 1.14 5.28 58.33 11.88 0.00 2,035.93 61.67 11.88 0.00 1,947.29

6
bimodal 0.54 0.54 0.36 100.00 0.00 0.00 5.01 100.00 0.00 0.00 5.38
bottom 0.38 0.38 0.54 100.00 0.00 0.00 8.62 100.00 0.00 0.00 8.61
middle 0.58 0.58 0.60 100.00 0.00 0.00 7.11 100.00 0.00 0.00 7.59

CH

2
bimodal 1.47 0.95 2.19 88.33 0.51 0.00 887.51 98.33 0.51 0.00 537.31
bottom 2.35 0.96 2.31 88.33 1.36 0.00 1,034.52 93.33 1.36 0.00 738.63
middle 3.62 1.01 2.59 75.00 2.59 0.00 1,381.73 88.33 2.59 0.00 1,202.95

6
bimodal 0.63 0.63 0.21 100.00 0.00 0.00 2.86 100.00 0.00 0.00 2.95
bottom 0.77 0.77 0.24 100.00 0.00 0.00 4.04 100.00 0.00 0.00 3.92
middle 0.24 0.24 0.42 100.00 0.00 0.00 2.91 100.00 0.00 0.00 3.05

MX

2
bimodal 9.05 1.00 4.78 61.67 7.96 0.00 1,734.77 66.67 7.97 0.00 1,668.45
bottom 13.91 0.97 8.51 46.67 12.78 0.00 2,321.75 48.33 12.79 0.01 2,307.88
middle 15.97 1.36 7.05 53.33 14.34 0.00 2,118.09 56.67 14.35 0.01 2,065.57

6
bimodal 0.48 0.48 0.30 100.00 0.00 0.00 3.47 100.00 0.00 0.00 3.44
bottom 0.40 0.40 0.34 100.00 0.00 0.00 3.07 100.00 0.00 0.00 2.88
middle 0.34 0.34 0.56 100.00 0.00 0.00 3.57 100.00 0.00 0.00 3.36

9
bimodal 0.68 0.68 0.07 100.00 0.00 0.00 1.85 100.00 0.00 0.00 1.84
bottom 0.40 0.40 0.07 100.00 0.00 0.00 1.66 100.00 0.00 0.00 1.63
middle 0.09 0.09 0.12 100.00 0.00 0.00 1.57 100.00 0.00 0.00 1.57

Avg. 3.87 0.72 2.39 85.40 3.11 0.00 731.23 87.70 3.11 0.00 677.72

100

BN

2
bimodal 22.62 0.81 55.85 18.33 21.55 0.00 2,940.15 18.33 21.93 0.32 2,940.15
bottom 29.07 0.89 40.22 16.67 27.84 0.00 3,013.22 16.67 28.21 0.31 3,013.18
middle 57.41 1.24 44.91 1.67 55.42 0.00 3,540.01 1.67 55.95 0.43 3,540.01

6
bimodal 28.52 1.12 21.79 18.33 27.04 0.00 2,940.14 18.33 27.42 0.29 2,940.14
bottom 29.18 1.09 14.40 18.33 27.70 0.00 2,940.15 18.33 28.14 0.34 2,940.14
middle 64.51 1.40 17.74 0.00 62.16 0.00 3,600.00 0.00 62.56 0.30 3,600.00

CH

2
bimodal 24.73 0.96 38.75 16.67 23.48 0.00 3,000.14 16.67 24.05 0.46 3,000.14
bottom 22.43 1.00 29.61 21.67 21.15 0.00 2,820.18 21.67 21.72 0.47 2,820.18
middle 59.17 1.22 35.92 1.67 57.26 0.01 3,540.06 1.67 57.80 0.43 3,540.06

6
bimodal 18.65 0.85 5.30 46.67 17.56 0.00 2,228.71 48.33 17.62 0.04 2,194.82
bottom 7.94 0.80 4.76 76.67 7.02 0.00 1,429.44 76.67 7.02 0.00 1,465.26
middle 9.81 0.87 4.61 85.00 8.86 0.00 1,173.73 86.67 8.86 0.00 1,257.92

MX

2
bimodal 23.28 0.77 50.05 16.67 22.41 0.08 3,000.14 16.67 22.68 0.33 3,000.14
bottom 26.47 1.02 38.90 18.33 25.14 0.01 2,940.21 18.33 25.69 0.46 2,940.23
middle 55.84 1.03 46.92 0.00 54.22 0.00 3,600.00 0.00 54.68 0.38 3,600.00

6
bimodal 17.83 0.93 8.84 45.00 16.67 0.00 2,470.88 45.00 16.67 0.00 2,481.00
bottom 16.99 0.82 7.53 46.67 15.92 0.00 2,356.43 46.67 15.93 0.01 2,356.28
middle 36.96 1.06 9.73 30.00 35.47 0.00 2,926.36 30.00 35.49 0.01 2,934.46

9
bimodal 0.42 0.42 0.36 100.00 0.00 0.00 3.19 100.00 0.00 0.00 3.23
bottom 0.34 0.34 0.34 100.00 0.00 0.00 2.70 100.00 0.00 0.00 2.68
middle 0.16 0.16 0.55 100.00 0.00 0.00 3.34 100.00 0.00 0.00 3.46

Avg. 26.30 0.90 22.72 37.06 25.09 0.01 2403.294 37.22 25.35 0.22 2408.261
Overall Results 15.09 0.81 12.55 61.23 14.10 0.00 1567.26 62.46 14.23 0.11 1542.99

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(Gr.), order strength (OS), and task time distribution (Dist.), the results for the

heuristic and the BBR method. In both tables in this section, we present the aver-

age time in seconds (“t”) needed to solve all the instances with the given param-

eters, the average relative deviation (C−LC∗)/LC∗ of the current result from the

best known lower bound LC∗ for the instance (column “Gap”), the average relative

deviation (C−C∗)/C∗ of the current result from the best known value C∗ (column

“Dev.”), as well as the percentage of instances proven to be optimal (“Prov.”).

First, it is possible to observe that both BBR methods consistently produce

smaller relative deviations (and thus gaps) than the IBS, but need two orders of

magnitude more time in average to find these results. In only 18 of the instances,

the relative deviation of the IBS is better than that of one of the BBR methods,

and in 1639 instances the result produced by the BBR algorithm is better than the

result of the IBS. It is possible to observe the high influence of the order strength

on the quality of the results. Since the number of nodes to be explored in a full

branch-and-bound algorithm is larger for instances with low order strength (see

Section 4.2), the nodes visited by the IBS are a smaller fraction of the complete

space of solutions for the low order strength instances, and therefore are less prob-

able to lead to optimal solutions. The type of the graph also influences the time

needed to solve an instance but does not affect significantly the relative deviation

found. In particular, chain graphs are the fastest to solve.

The BBR algorithm finds a provably optimal solution for 87.78% of the in-

stances with 50 tasks, including all instances with order strength 60% or higher.

Overall, 62.50% of the 2520 instances are solved and proven to be optimal, in-

cluding all instances with order strength 90%, independently of the number of

tasks.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The instances with chain precedence graphs are significantly faster to solve

than the mixed graphs, which in turn are significantly faster to solve than the

bottleneck graphs. That corroborates the time complexity presented in Section 4,

since the chain graphs are composed of a few long chains, while a bottleneck task

forces the decomposition in multiple small chains. Also, the time needed to solve

instances with the “peak in the middle” distribution is significantly larger than the

time needed for the other distributions. That happens because the task times for

the “peak in the middle” distribution are larger than the task times in the other two

distributions, and consequently the difference between the initial upper bound and

the final result is a much greater than in the other two distributions, which leads

to more iterations needed to achieve the final result.

As for instance set 1, the BBR method with LC20%
2 solves more instances than

the version with LC1, and in average in less time, but the relative deviations found

by the former in the cases that are not proved to be optimal, are significantly

worse than those found with LC1. Despite this, in all the instances proved to

be optimal by both methods, the number of nodes visited and the time to prove

optimality by the solution using LC20%
2 are in average 6.10% and 7.55% smaller

than the number of nodes visited by the solution using LC1. This means that for

instances with 50 and 100 tasks the cost of executing the LC20%
2 method is more

significant for the result than the reduction of nodes caused by it. The largest

difference in the relative deviation is found for instances with 100 tasks, especially

in bottleneck graphs, because the division in chains of a CH graph creates larger

chains than those produced in BN graphs, and the family of bounds LC2 has better

results for instances with large chains. This finding is corroborated by the fact that

the instances with graphs CH and MX where LC20%
2 improves the most have the

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: Comparison of the BBR method and the IBS on instance set 2, aggregated by the RALBP-
specific instance parameters.

IBS BBR method with LC1 BBR method with LC20%
2

Gap Dev. Prov. Gap Dev. Prov. Gap Dev.
|T| |R| |S| Var. (%) (%) t (s) (%) (%) (%) t (s) (%) (%) (%) t (s)

50

7

3
2 3.14 0.29 12.91 0.70 2.84 0.00 1,304.43 0.76 2.84 0.00 1,160.82
2 1.31 0.46 0.66 0.87 0.84 0.00 811.35 0.88 0.84 0.00 770.05

14
2 0.38 0.38 0.50 1.00 0.00 0.00 154.79 1.00 0.00 0.00 156.18
5 9.85 0.99 9.43 0.63 8.70 0.00 1,436.40 0.72 8.71 0.01 1,236.77

7
5 3.82 1.50 0.62 0.84 2.25 0.00 1,041.18 0.87 2.25 0.00 906.63
5 0.95 0.95 0.50 1.00 0.00 0.00 113.86 1.00 0.00 0.00 109.92

12

6
2 3.31 0.48 0.99 0.69 2.81 0.00 1,301.88 0.71 2.81 0.00 1,232.99
2 5.33 0.26 0.54 0.96 5.04 0.00 472.85 0.96 5.04 0.00 471.90

24
2 0.93 0.16 0.40 0.98 0.75 0.00 124.18 0.98 0.75 0.00 124.63
5 10.12 1.62 1.03 0.65 8.26 0.00 1,390.23 0.70 8.27 0.01 1,327.23

12
5 7.07 1.21 0.60 0.94 5.77 0.00 573.30 0.93 5.78 0.00 586.60
5 0.28 0.28 0.43 1.00 0.00 0.00 50.28 1.00 0.00 0.00 48.89

Avg. 3.87 0.72 2.39 85.40 3.11 0.00 731.23 87.70 3.11 0.00 677.72

100

14

7
2 10.98 0.34 80.26 0.21 10.61 0.01 2,938.47 0.21 10.72 0.10 2,928.35
2 6.06 0.58 12.43 0.28 5.44 0.00 2,784.22 0.28 5.75 0.29 2,800.56

28
2 42.13 0.46 4.28 0.40 41.42 0.00 2,357.59 0.40 41.42 0.00 2,359.94
5 36.12 1.01 99.35 0.19 34.79 0.05 3,016.83 0.21 35.23 0.36 2,988.83

14
5 20.81 2.08 9.51 0.24 18.27 0.00 2,883.94 0.24 19.24 0.80 2,905.63
5 30.60 1.39 3.65 0.43 28.71 0.00 2,333.32 0.43 28.70 0.00 2,337.06

25

12
2 8.32 0.40 25.59 0.22 7.88 0.00 2,912.32 0.22 8.11 0.21 2,922.99
2 59.53 0.46 5.26 0.36 58.72 0.00 2,539.47 0.36 58.72 0.00 2,540.45

50
2 6.64 0.25 2.04 0.79 6.33 0.00 783.29 0.79 6.33 0.00 783.95
5 29.48 1.76 22.91 0.21 27.16 0.00 2,916.75 0.21 28.25 0.83 2,935.19

25
5 60.98 1.63 5.33 0.30 58.22 0.00 2,718.05 0.30 58.24 0.02 2,740.34
5 3.97 0.40 2.02 0.83 3.52 0.00 655.28 0.83 3.52 0.00 655.84

Avg. 26.30 0.90 22.72 37.06 25.09 0.01 2403.294 37.22 25.35 0.22 2408.261
Overall Results 15.09 0.81 12.55 61.23 14.10 0.00 1567.26 62.46 14.23 0.11 1542.99

highest order strength.

The results for the new parameters introduced for RALBP, the number of sta-

tions and robots, as well as the task time variability are presented in Table 7. In

this table, the parameters considered are the number of tasks “|T |”, the number of

robots “|R|”, and the number of stations “|S|”, as well as the task time variability

“Var”. While we can not observe an influence of the task time variability on the

time needed by the BBR algorithm to optimize the problem, both the parameters

|W | and |S| influence the result. The number of nodes given by bound (9) does

not depend on the number of robots, for the instances proven to be optimal. The

running time, however, depends on the number of robots r because in each node

the method has to select the best robot to perform the current station in a time

linear in r.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The number of stations in the worst case complexity calculated in Section 4.2

impacts directly the time of the algorithm. However we can see that instances

with more stations are significantly faster to solve than instances with fewer sta-

tions and the number of solutions provably optimal also increases with the number

of stations. The reason is that with more stations only a few tasks are assigned to

each station, so less station loads are generated and, since the dominance rules

and lower bounds are applied only to maximal station loads, much of the partial

solutions are removed. It can also be observed that in general the difference be-

tween the lower bound and the upper bound for the cycle time is much smaller

than the same difference in instances with a small number of stations. This differ-

ence substantially influences the time of the algorithm. In particular, the method

with LC20%
2 is slower than the method with LC1 for fewer stations and a larger

cycle time. The time used in early iterations of the method increases the overall

time by the BBR method with LC20%
2 .

The BBR algorithm with LC20%
2 proves more solutions to be optimal than

BBR algorithm with LC1 because it solves more instances with 50 tasks and a low

number of stations. This is expected because the family of bounds LC2 is more

efficient when there are fewer stations.

7. Conclusion

In this article a MIP model, a heuristic procedure and a branch-bound-and-

remember method were presented for the Robotic Assembly Line Balancing Prob-

lem of type 2. The MIP model improves over previous models by using a bet-

ter formulation of the precedence constraints and using a linear objective func-

tion instead of the quadratic objective function. The branch-bound-and-remember

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

method can solve all instances up to 89 tasks in instance set 1. When compared

to our MIP model, the method performs well independently of the number of sta-

tions. The heuristic is shown to be efficient and able to, in less than 15 minutes,

find results in average less than 1% above the best known values in the literature.

Therefore, the heuristic is used to provide good initial upper bounds for the BBR

method. Finally, after identifying that the instance set in the literature only con-

sider a few characteristics of the problem, we propose a new set of instances and

evaluate the algorithms on them. More than 60% of the new instances proposed

with 50 and 100 tasks are solved by our branch-bound-and-remember method.

The order strength and the number of tasks are the parameters that influence the

results the most. The BBR method, for example, is able to solve all instances

with very high order strength, as well as solving 87.78% of the instances with

50 tasks versus 37.22% of the instances with 100 tasks. Also, the number of sta-

tions and the number of robots are directly proportional to the number of instances

provably optimal, but influence the results independently and need to be studied

independently, which is made possible by the new instance set.

The experiments show that it is possible to obtain good results even with an

exact method, and our exact methods have comparable results to the heuristics

proposed in the literature. This opens an opportunity for further improvements of

heuristics for the problem and the solution of larger instances. Also, identifying

special cases where lower bounds and dominance rules are more efficient and

applying these methods only in these cases may lead to future improvements of

the proposed algorithms.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Au-

tonomous Fruit Picking Machine: A Robotic Apple Harvester. In C. Laugier,

& R. Siegwart (Eds.), Field and Service Robotics SE - 51 (pp. 531–9). Springer

Berlin Heidelberg volume 42 of Springer Tracts in Advanced Robotics. doi:10.

1007/978-3-540-75404-6_51.

Battaı̈a, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and

their solutionapproaches. Int. J. Prod. Econ., 142, 259–77. doi:10.1016/j.

ijpe.2012.10.020.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line

balancing problem. Manag. Sci., 32, 909–32. doi:10.1287/mnsc.32.8.909.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in general-

ized assembly line balancing. Eur. J. Oper. Res., 168, 694–715. doi:10.1016/

j.ejor.2004.07.023.

Blum, C., & Miralles, C. (2011). On solving the assembly line worker assignment

and balancing problem via beam search. Comput. Oper. Res., 38, 328–39.

Borba, L., & Ritt, M. (2014). A heuristic and a branch-and-bound algorithm for

the Assembly Line Worker Assignment and Balancing Problem. Comput. Oper.

Res., 45, 87–96. doi:10.1016/j.cor.2013.12.002.

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line

balancing problems. Eur. J. Oper. Res., 183, 674–93. doi:10.1016/j.ejor.

2006.10.010.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which

model to use when. Int. J. Prod. Res., 111, 509–28. doi:10.1016/j.ijpe.

2007.02.026.

Chaves, A., Lorena, L., & Miralles, C. (2009). Hybrid Metaheuristic for the

Assembly Line Worker Assignment and Balancing Problem. In Hybrid Meta-

heuristics (pp. 1–14). Springer Berlin / Heidelberg volume 5818 of Lecture

Notes in Computer Science. doi:10.1007/978-3-642-04918-7_1.

Chaves, A. A., Miralles, C., & Lorena, L. A. N. (2007). Clustering search ap-

proach for the assembly line worker assignment and balancing problem. In

Proc. 37th Int. Conf. Comput. Indust. Eng. (pp. 1469–78). Alexandria, Egypt.

Dar-El, E. M. (1973). MALBA Heuristic Technique for Balancing Large Single-

Model Assembly Lines. A I I E Transactions, 5, 343–56. doi:10.1080/

05695557308974922.

Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Ann.

Math., 51, 161–6. doi:10.2307/1969503.

Gao, J., Sun, L., Wang, L., & Gen, M. (2009). An efficient approach for type

II robotic assembly line balancing problems. Comput. Ind. Eng., 56, 1065–80.

doi:10.1016/j.cie.2008.09.027.

Henrich, D., & Wörn, H. (2000). Robot Manipulation of Deformable Objects.

(1st ed.). London: Springer London. doi:10.1007/978-1-4471-0749-1.

Jackson, J. R. (1956). A Computing Procedure for a Line Balancing Problem.

Manag. Sci., 2, 261–71. doi:10.1287/mnsc.2.3.261.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Kilbridge, M., & Wester, L. (1961). The Balance Delay Problem. Manag. Sci., 8,

69–84. doi:10.1287/mnsc.8.1.69.

Klein, R., & Scholl, A. (1996). Maximizing the Production Rate in Simple As-

sembly Line Balancing–A Branch and Bound Procedure. Eur. J. Oper. Res., 91,

367–85. doi:10.1016/0377-2217(95)00047-X.

Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic

assembly line balancing. Eur. J. Oper. Res., 168, 811–25. doi:10.1016/j.

ejor.2004.07.030.

Milberg, J., & Schmidt, M. (1990). Flexible Assembly Systems Opportunities

and Challenge for Economic Production. CIRP Annals - Manufacturing Tech-

nology, 39, 5–8. doi:10.1016/S0007-8506(07)60991-3.

Miralles, C., Garcı́a-Sabater, J. P., Andrés, C., & Cardos, M. (2007). Advantages

of assembly lines in Sheltered Work Centres for Disabled. A case study. Int. J.

Prod. Econ., 110, 187–97. doi:10.1016/j.ijpe.2007.02.023.

Miralles, C., Garcı́a-Sabater, J. P., Andrés, C., & Cardós, M. (2008). Branch and

bound procedures for solving the Assembly Line Worker Assignment and Bal-

ancing Problem: Application to Sheltered Work centres for Disabled. Discrete

Appl. Math., 156, 352–67. doi:10.1016/j.dam.2005.12.012.

Moreira, M., Ritt, M., Costa, A., & Chaves, A. (2012). Simple heuristics for

the assembly line worker assignment and balancing problem. J. Heuristics, 18,

505–24. doi:10.1007/s10732-012-9195-5.

Morrison, D. R., Sewell, E. C., & Jacobson, S. H. (2014). An application of

the branch, bound, and remember algorithm to a new simple assembly line

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

balancing dataset. Eur. J. Oper. Res., 236, 403–9. doi:10.1016/j.ejor.2013.

11.033.

Mukund Nilakantan, J., Ponnambalam, S. G., Jawahar, N., & Kanagaraj,

G. (2015). Bio-inspired search algorithms to solve robotic assembly line

balancing problems. Neural Comput. Appl., 26, 1379–93. doi:10.1007/

s00521-014-1811-x.

Mutlu, Ö., Polat, O., & Supciller, A. A. (2013). An iterative genetic algorithm for

the assembly line worker assignment and balancing problem of type-II. Com-

put. Oper. Res., 40, 418–26. doi:10.1016/j.cor.2012.07.010.

Otto, A., Otto, C., & Scholl, A. (2013). Systematic data generation and test design

for solution algorithms on the example of SALBPGen for assembly line balanc-

ing. Eur. J. Oper. Res., 228, 33–45. doi:10.1016/j.ejor.2012.12.029.

Passmark Software Pty. Ltd. (2017). Passmark benchmarks. URL: http://www.

cpubenchmark.net http://www.cpubenchmark.net.

Pires, J., & Sá da Costa, J. (2000). Object-oriented and distributed approach for

programming robotic manufacturing cells. Robot. Comput.-Integr. Manuf., 16,

29–42. doi:10.1016/S0736-5845(99)00039-3.

Polat, O., Kalayci, C. B., zcan Mutlu, & Gupta, S. M. (2016). A two-phase

variable neighbourhood search algorithm for assembly line worker assignment

and balancing problem type-II: an industrial case study. Int. J. Prod. Res., 54,

722–41. doi:10.1080/00207543.2015.1055344.

Purnell, G. (1998). Robotic equipment in the meat industry. Meat Sci., 49, S297–

307. doi:10.1016/S0309-1740(98)90056-0.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ritt, M., & Costa, A. M. (2015). Improved integer programming models for

simple assembly line balancing and related problems. Int. Trans. Oper. Res.,

online. doi:10.1111/itor.12206.

Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB - A Heuristic Algorithm

for Design and Balancing of Robotic Assembly Lines. CIRP Annals - Manu-

facturing Technology, 42, 497–500. doi:10.1016/S0007-8506(07)62494-9.

Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly line balanc-

ing. Int. J. Prod. Econ., 41, 343–54. doi:10.1016/0925-5273(95)00059-3.

Salveson, M. E. (1955). The assembly line balancing problem. J. Ind. Eng., 6,

18–25.

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing. Eur. J. Oper. Res., 168, 666–

93. doi:10.1016/j.ejor.2004.07.022.

Schrage, L., & Baker, K. R. (1978). Dynamic programming solution of sequenc-

ing problems with precedence constraints. Oper. Res., 26, 444–9.

Sewell, E. C., & Jacobson, S. H. (2011). A Branch, Bound, and Remember Algo-

rithm for the Simple Assembly Line Balancing Problem. INFORMS J. Comput.,

24, 433–42. doi:10.1287/ijoc.1110.0462.

Vilà, M., & Pereira, J. (2013). An enumeration procedure for the assembly line

balancing problem based on branching by non-decreasing idle time. Eur. J.

Oper. Res., 229, 106–13. doi:10.1016/j.ejor.2013.03.003.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Vila, M., & Pereira, J. (2014). A branch-and-bound algorithm for assembly line

worker assignment and balancing problems. Comput. Oper. Res., 44, 105–14.

doi:10.1016/j.cor.2013.10.016.

Appendix A. Model M1 by Mukund Nilakantan et al. (2015)

The model M1, proposed by Mukund Nilakantan et al. (2015), is presented

here:

M1 = minimize C, (A.1)

subject to ∑
t∈As

ptrxtsysr ≤C, ∀s ∈ S,r ∈ R, (A.2)

∑
r∈R

ysr = 1, ∀s ∈ S, (A.3)

∑
s∈It

xts = 1, ∀t ∈ T, (A.4)

∑
s∈S

sxis−∑
s∈S

sx js ≥ 0, ∀(i, j) ∈ A, (A.5)

xts ∈ {0,1}, ∀s ∈ S, t ∈ As, (A.6)

ysr ∈ {0,1}, ∀s ∈ S,r ∈ R. (A.7)

The objective function (A.1) and the constraints (A.3), (A.4), (A.6) and (A.7)

are the same as the constraints of the model M2 presented in Section 2. The cycle

time is defined in (A.2), using a quadratic function that associates tasks and robots

to stations. The other constraint that differs from model M2 are the constraints

(A.5). These constraints are dominated by constraints (5) as shown by Ritt &

Costa (2015).

36

