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A. Carreñoa, A. Vidal-Ferràndiza, D. Ginestarb, G. Verdúa,∗
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Abstract

The dominant λ-modes associated with a nuclear reactor configuration describe the neutron
steady-state distribution and its criticality. Furthermore, they are useful to develop modal meth-
ods to study reactor instabilities. Different eigenvalues solvers have been successfully used to
obtain such modes, most of them are implemented reducing the original generalized eigenvalue
problem to an ordinary one. Thus, it is necessary to solve many linear systems making these
methods not very efficient, especially for large problems. In this work, the original generalized
eigenvalue problem is considered and two block iterative methods to solve it are studied: the
block inverse-free preconditioned Arnoldi method and the modified block Newton method. All
of these iterative solvers are initialized using a block multilevel technique. A hybrid multilevel
method is also proposed based on the combination of the methods proposed. Two benchmark
problems are studied illustrating the convergence and the competitiveness of the methods pro-
posed. A comparison with the Krylov-Schur method and the Generalized Davidson is also in-
cluded.

Keywords: Lambda modes, Neutron diffusion equation, Generalized eigenvalue problem,
Multilevel methods, Newton’s block method.

1. Introduction

The neutron diffusion equation is an approximation of the neutron transport equation that
assumes that the neutron current is proportional to the gradient of the neutron flux by means of a
diffusion coefficient. Given a configuration of a reactor core, its criticality can be forced dividing
the neutron production by a positive number, λ, leading to a generalized differential eigenvalue
problem known as the λ-modes problem (Stacey, 2007). This problem, considering that the
energy is divided into two energy groups and that there is no up-scattering, can be expressed as

Lφ =
1
λ
Mφ, (1)
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where the neutron loss operator is

L =

−~∇(D1~∇) + Σa1 + Σ12 0
−Σ12 −~∇(D2~∇) + Σa2

 ,
and the neutron production and the neutron flux are

M =

(
νΣ f 1 νΣ f 2

0 0

)
, φ =

(
φ1
φ2

)
.

φ1 and φ2 are neutron fast and thermal flux, respectively. The subindex in each coefficient in-
dicates the corresponding energy group. Thus, the diffusion coefficients are D1 and D2. The
absorption cross sections are Σa1 and Σa2. The values of νΣ f 1 and νΣ f 2 are the average number of
neutrons produced in each fission multiplied by the fission cross sections. Finally, Σ12 is the scat-5

tering cross section from group 1 to group 2. The dominant eigenvalue of the problem established
in Equation (1), known as the keff , and its corresponding eigenfunction describe the criticality and
the steady state neutron distribution inside the core. The next eigenvalues and their correspond-
ing eigenfunctions can be used to develop modal methods to study the time dependent neutron
diffusion equation (Miró et al., 2002) and to classify BWR reactor instabilities (March-Leuba &10

Blaked, 1991). Because of this, the solution of the partial eigenvalue problem associated with
the neutron diffusion equation, (1), that is, the computation of the dominant eigenvalues and their
corresponding eigenfunctions has a great interest in nuclear reactor physics.

Several methods have been proposed for the spatial discretization of the neutron diffusion
equation. Some of the most popular numerical techniques are the Nodal Collocation Method15

(NCM) Verdú et al. (1994), the Nodal Expansion Method (NEM) (Singh et al., 2014), the Ana-
lytical Nodal Method (ANM) (Hébert, 1987), the Finite Volume method (FVM) (Theler, 2013)
and the Finite element methods (FEM) (Hébert, 2008) and all of them provide accurate results.
In this work, a high order continuous Galerkin Finite Element Method is used, transforming the
problem given in Equation (1) into an algebraic generalized eigenvalue problem (see more details20

in (Vidal-Ferrandiz et al., 2014)).
Different methods such as the subspace iteration method (Verdú et al., 1994; Vidal et al.,

1998), the classical Arnoldi method, the Implicit Restarted Arnoldi method (IRAM) (Warsa et al.,
2004; Verdú et al., 1999) or, more recently, the Krylov-Schur method (Vidal-Ferrandiz et al.,
2014) have been used to solve this kind of algebraic eigenvalue problems. The application of25

these methods requires to transform the generalized problem into an ordinary eigenvalue problem
(for two energy groups) or to apply a shift and invert technique. In both cases it is necessary to
solve numerous linear systems associated with large matrices and the convergence of the methods
is slow. This problem can be mitigated using the Jacobi-Davidson method, (Verdú et al., 2005),
that also makes use of a shift and invert strategy, but it does not need to solve as many linear30

systems as the previous ones. Moreover, classical methods such as the shifted inverse iteration
method for the computation of several eigenvalues make use of a deflation process and this has
been shown to have a slow converge when it is compared with Krylov-Schur method (Bernal
et al., 2017).

Other methods to solve eigenvalue problems associated with nonsymmetric matrices are the35

gradient type methods, that do not require solving linear systems. However, if there are clus-
tered or degenerate eigenvalues, these methods may have problems to find all the eigenvalues. In
practical situations of reactor analysis, the dominance ratio corresponding to the dominant eigen-
values is often near unity, resulting in a slow convergence. In such cases, block methods with
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several initial approximated eigenvalues and eigenvectors are an alternative since their conver-40

gence behaviour depends only on the separation of the group of target eigenvalues from the rest
of the spectrum. One of these methods is the Generalized Davidson that has been successfully
used for the computation of the modes in other approximations of the neutron transport equation
such as the multigroup SPN equations (Hamilton & Evans, 2015). In this work, an inverse-free
Krylov subspace method introduced by Golub in (Golub & Ye, 2002) is used with a block imple-45

mentation proposed by Quillen in (Quillen & Ye, 2010). This method improves the traditional
steepest descent method by expanding the search direction to a Krylov subspace with the advan-
tage of better approximation properties offered by Krylov subspaces. Usually, different types of
preconditioners are used to accelerate these iterative methods. In our case, the incomplete LU
preconditioner and a geometric multigrid preconditioner are studied.50

On the other hand, Newton’s methods have been shown very efficient in the computation of
eigenvalues in neutron diffusion theory. The modified block Newton method has been consid-
ered to solve the ordinary eigenvalue problem associated with the original generalized problem,
(González-Pintor et al., 2011) or directly in the generalized eigenproblem resolution, (Carreño
et al., 2017a). Furthermore, the use of Jacobian-Free Newton-Krylov methods has been stud-55

ied using traditional methods as preconditioners (Gill & Azmy, 2009; Knoll et al., 2011; Gill
& Azmy, 2011). However, all of these methods are very sensitive to the initial guess and good
approximations are needed to initialize them. In this context, hybrid methods have been devel-
oped using slow convergence methods to initiate Newton’s methods. The Jacobian-free Newton-
Krylov method with the IRAM has been investigated in (Gill & Azmy, 2009) and in (Mahadevan60

& Ragusa, 2008).
In our work, a hybrid multilevel method, based on the combination of the preconditioned

block inverse-free Krylov method and the generalized modified block Newton method, is also
presented. This method uses two spatial meshes, a coarse and a fine mesh. The initial approx-
imations for the desired eigenvalues and their corresponding eigenfunctions are obtained from65

the solution of the problem in a coarse mesh, using a block multilevel technique to improve
the computational speed to compute the solution of the partial eigenvalue problem in the fine
mesh. Other multilevel strategies for the solution of the neutron diffusion equation using a nodal
collocation method have been studied in (Ginestar et al., 2001).

The structure of the rest of the paper is as follows. In Section 2, the block methods studied70

to solve the λ-modes problem are presented. In Section 2.1, the block inverse-free precondi-
tioned Arnoldi method is exposed and in Section 2.2 the Modified block Newton method is
briefly reviewed. In Section 2.3, the multilevel technique used to initiate the eigenvalue solver
is explained. Some numerical results for two different benchmark problems to analyze the block
methods performance are given in Section 3. In Section 4, a block hybrid method combining75

an inverse-free block method with Newton’s method is proposed and numerical results of the
performance of this hybrid method are also presented. Finally, the main conclusions of the paper
are summarized in Section 5.

2. Block eigenvalue methods

In this section, we present two block algorithms for finding the q dominant eigenvalues and
their corresponding eigenvectors of the generalized eigenvalue problem associated with the λ-
modes problem given by the Equation (1). This algebraic problem can be expressed as a generic
problem of the form

AX = BXΛ, (2)
3



where A ∈ Rn×n and B ∈ Rn×n arise from the discretization ofM andL, respectively. The matrix80

X ∈ Rn×q has the eigenvectors in its columns and Λ ∈ Rq×q is a diagonal matrix whose elements
are the first q dominant eigenvalues. The number n denotes the number of degrees of freedom in
the finite element method used for the spatial discretization of the continuous problem (1). We
assume that the eigenvalues and their corresponding eigenvectors are real, even thought it this
seems to be proved only under restrictive conditions (e.g., monoenergetic transport). If not, this85

theoretical assumption is nevertheless supported by numerical evidence on benchmark problems
(Carney et al., 2014).

Note that the structure of the algebraic eigenvalue problem (2) is the same for other approxi-
mations of the neutron transport equation, even if the neutron loss and production operators are
different. Therefore, this method can be applied not only to the diffusion equation but also to90

other angular approximations of the neutron transport equation, such as the SPN , the SN (Lewis
& Miller, 1984) or the PN approximations (Capilla et al., 2005). Furthermore, this block imple-
mentation is interesting for the development of modal methods to integrate the transient equa-
tions (Miró et al., 2002), since it permits initializing all modes in each time step from the modes
computed in a previous time step. Perturbation calculations can be also improved using this95

initialization characteristic.
A block multilevel initialization based on two different meshes to initialize these methods for

those cases we can not dispose of initial approximations is also presented.

2.1. Block inverse-free preconditioned Arnoldi method (BIFPAM)

The block inverse-free preconditioned Arnoldi method was originally presented and analyzed100

for A and B symmetric matrices and B positive definite (see (Golub & Ye, 2002; Quillen & Ye,
2010)). Nevertheless, we will show that this methodology also works efficiently to compute
the λ-modes associated to two benchmark reactor problems, where matrices A and B are not
symmetric.

We start with the problem for one eigenvalue

Ax = λBx, (3)

and an initial approximation (λ0, x0).105

An iterative method is constructed where a new approximation, xk+1, is obtained from the
m-order Krylov subspace

Km(A − λkB, xk) := span{xk, (A − λkB)xk, (A − λkB)2xk, . . . , (A − λkB)mxk},

by using the Rayleigh-Ritz projection method. The projection can be carried out by forming the
projected problem for the generalized eigenvalue problem (3) as

ZT AZU = ZT BZUΛ, (4)

where Z is a basis of Km(A − λkB, xk), which is constructed by using the Arnoldi method (Saad,
1992). Problem (4) is small and the dominant eigenvalue Λ1,1, together with its corresponding
eigenvector u1 are computed to obtain the value of λk+1 = Λ1,1 and its eigenvector xk+1 = Zu1.

This method can be dealt with through an iteration with a block of vectors that allows com-
puting several eigenvalues simultaneously, improving the convergence. If we are interested in
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computing q eigenvalues of problem (2), we can accelerate the convergence by using the sub-
space Km with

Km :=
q⋃

i=1

Ki
m(A − λk,iB, xk,i),

where λk,i denotes the i-th eigenvalue computed in the k-th iteration and xk,i its associated eigen-
vector. One may construct a basis for this subspace by first constructing q bases, say Zi, of the110

Krylov subspaces Ki
m(A − λk,iB, xk,i), 1 ≤ i ≤ q. Then, the original generalized eigenvalue prob-

lem (2) is projected on the union of all bases and it is solved for the first q dominant eigenvalues
to obtain the new eigenvalues and the corresponding eigenvectors.

The basic block inverse-free method (BIFAM) is summarized in Algorithm 1. In this imple-
mentation, in contrast to original Algorithm proposed in (Quillen & Ye, 2010), the orthonormal-115

ization of the union of subspaces is not considered in order to reuse the matrix-vector multiplica-
tions when forming Am and Bm by utilizing AZi and BZi, 1 ≤ i ≤ q, which need to be computed
in the construction of Ki

m.

Algorithm 1 Block inverse-free Arnoldi method (BIFAM)
Input: Matrices A and B, initial approximation X0 = [x0,1, . . . , x0,q].
Output: Diagonal matrix of eigenvalues Λ and matrix V with the eigenvectors as its columns.

1: Compute λ0,i = (xT
0,iAx0,i)/(xT

0,iBx0,i), 1 ≤ i ≤ q
2: for k = 1 to maxits do
3: Obtain the basis Zi of Ki

m(A − λk−1,iB, xk−1,i), 1 ≤ i ≤ q
4: Construct Z := [Z1, . . . ,Zq]
5: Form projections Am = ZT AZ, Bm = ZT BZ
6: Compute q dominant eigenpairs (λk,i, ui) of AmU = BmUΛ

7: Compute xk,i = Zui, 1 ≤ i ≤ q
8: end for

The rate of convergence of this method improves when the dimension of subspace, m, is
increased. However, the computational cost is also considerably increased. In this way, alterna-120

tively the BIFAM will be accelerated with an equivalent transformation of the original problem
by means of a preconditioner.

The idea of preconditioning is based on a convergence result of the method, presented in
(Golub & Ye, 2002) which states that the rate of convergence of the method depends on the
spectral distribution of C = A − λB, being λ the desired eigenvalue.125

With an approximate eigenpair (λi,k, xi,k), we consider for some matrices Li,k, Ui,k the trans-
formed eigenvalue problem

(L−1
i,k AU−1

i,k )x = λ(L−1
i,k BU−1

i,k )x ⇔ Âi,k x = λB̂i,k x, (5)

which has the same eigenvalues as the original problem. This transformation is called precondi-
tioning. Thus, applying one step of Algorithm 1 to the problem (5), the rate of convergence will
be determined by the eigenvalues of

Ĉi,k := Âi,k − λi,k B̂i,k = L−1
i,k (A − λi,kB)U−1

i,k . (6)

Different preconditioning transformations can be constructed using different factorizations of
the matrix A− λi,kB. The main goal must be to choose suitably Li,k and Ui,k to obtain a favorable
distribution of the eigenvalues of matrix Ĉi,k.
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Moreover, the preconditioned iteration of block inverse-free Arnoldi method (BIFPAM) can
be implicitly implemented by constructing a basis for the subspace U−1

i,k K̂i
m, where

K̂i
m := span{Ui,k xi,k, Ĉi,kUi,k xi,k, Ĉ2

i,kUi,k xi,k, . . . , Ĉm
i,kUi,k xi,k}.

In practice, we use constants Li,k = L1,1 and Ui,k = U1,1 obtained from a preconditioner for
A − λ1,1B, where λ1,1 is a first approximation of the first eigenvalue.130

Two preconditioners have been considered in this paper. The first one is a classical incom-
plete LU factorization with level 0 of fill in which is referred as the ILU preconditioner. The
second one is a geometrical multigrid preconditioner (GMG) used to solve linear systems. In
particular, it is a V-cycle multigrid method with two meshes (coarse and fine meshes), smoothing
with a Gauss-Seidel iterative method, similar to the strategy developed in (Neymeyr, 2003). This135

preconditioner is implemented using the matrices and operators that have already been defined
to initialize the iterative block method as it is explained below. Using the notation introduced in
Section 2.3, the application of this preconditioner is summarized in Algorithm 2. In our imple-
mentation, the number of iterations for the smoothers, r, is set to r = 3. The solution of the linear
system associated with the coarse mesh is computed with low precision.140

Algorithm 2 Geometric multigrid preconditioner (GMG)
Input: Vector b.
Output: Vector y = M−1b con M preconditioner of D = A − λB.

1: Pre-smooth with r iterations of Gauss-Seidel on Dy = b (Initialize the iterative method with
y = 0)

2: Restrict the residual r = Dy − b to the coarse mesh by rc = R(r)
3: Solve Dcec = rc with Dc = Ac − λBc

4: Prolongate ec by e = P(ec)
5: Correct y = y + e

2.2. Modified generalized block Newton method (MGBNM)
Another kind of block methods for eigenvalue computations are based on Newton’s method.

The modified block Newton method for ordinary eigenvalue problems was proposed by Lösche
in (Lösche et al., 1998) and it was applied to the neutron diffusion equation in (González-Pintor
et al., 2011). In this section, we briefly review an extension of this method for generalized145

eigenvalue problems given by the authors in (Carreño et al., 2017b).
To apply this method to the problem (2), we assume that the eigenvectors can be factorized

as
X = ZS , (7)

where ZT Z = Iq. Then, problem (2) can be rewritten as

AX = BXΛ⇒ AZS = BZS Λ⇒ AZ = BZS ΛS −1 ⇒ AZ = BZK. (8)

It is necessary to introduce a biorthogonality condition WT Z = Iq in order to determine the
problem, where W is a fixed matrix of rank q. Newton’s method is used to solve the following
problem

F(Z,Λ) :=
(

AZ − BZK
WT Z − Iq

)
=

(
0
0

)
. (9)
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Thus, a new iterated solution arises as,

Z(k+1) = Z(k) − ∆Z(k), K(k+1) = K(k) − ∆K(k), (10)

where ∆Z(k) and ∆K(k) are solutions of the system that is obtained substituting (10) into (9) and
removing second order terms.

The system obtained is coupled, since the matrix K(k) is not necessarily a diagonal matrix.
To decouple the system, the Modified Block Newton method performs two previous steps. The150

first step consists of an orthogonalization of the columns of the matrix Z(k) using the modified
Gram-Schmidt Orthogonalization. In the second step, a Rayleigh-Ritz projection method for
generalized eigenvalue problems is applied (Saad, 1992). More details on the method can be
found in (Carreño et al., 2017b).

2.3. Multilevel initialization155

A block multilevel technique is proposed to obtain good initial approximations of several
eigenvectors for the block iterative solvers when we can not dispose of initial approximate solu-
tions. This technique is based on two meshes: the fine mesh, which is the final mesh considered
to solve the problem that comes from the spatial discretization and, a coarse mesh, with less num-
ber of nodes, constructed from the fine mesh to obtain an initial approximation for the problem.160

This multilevel method will strongly depend on the geometry of the underlying meshes.
A complete description of the multilevel concepts can be found, for instance, in (McCormick,

1987; Sampath & Biros, 2010; Hackbusch, 2013). However, some basic concepts on multilevel
techniques are reviewed.

Let us consider the original algebraic partial eigenvalue problem

A f X f = B f X f Λ f , (11)

where A f and B f are the matrices that arise from the discretization of a given domain Ω using the
fine mesh Ω f . From this mesh a coarser mesh, Ωc, is constructed and a new eigenvalue problem

AcXc = BcXcΛc, (12)

is considered, where Ac and Bc are the matrices associated with the spatial discretization using
the mesh Ωc. This algebraic problem has a smaller dimension than the initial one. To assembly
matrices Ac and Bc, besides the coarsening of the initial spatial discretization, the cross sections
must be homogenized. In each coarse cell the value of each cross section Σd is computed as a
volume average,

Σd =
1

Vd

m∑
i=1

VdiΣdi , (13)

where d is equal to the union of cells d1, . . . , dm, i.e. d = ∪m
i=1di and Σdi is the value of the cross165

section in cell di. Vd is the volume of the coarse cell d and Vdi the volume of the cell di.
To use the eigenvectors Xc as an initial guess for the problem associated with the finer grid

Ω f , we define a linear operator called prolongation operator, P, that interpolates vectors defined
on the coarse mesh onto the fine mesh. Similarly, to represent the vectors X f on the coarse
grid, Ωc, we use the restriction operator R. Both operators are the standard prolongation and170

restriction operators considered for finite element methods in other works (Janssen & Kanschat,
2011). They are performed with a stencil computed by interpolation on each coarse mesh cell
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by using interpolating polynomials of the same degree as the one used in the high order finite
element approximation.

The multilevel initialization is structured as follows: the coarse problem (12) is solved for the175

largest q eigenvalues and the eigenvectors obtained are projected onto the fine mesh to initialize
the block method. This strategy is implemented as it is shown in Algorithm 3.

Algorithm 3 Multilevel initialization
1: Construct the coarse problem AcXc = BcXcΛc

2: Solve AcXc = λcBcXc

3: Prolongate X f
0 = P(Xc)

4: Solve A f X f = B f X f Λ f using as initial guess X f
0 . Block method

3. Numerical results of block methods

This section studies the competitiveness of the BIFPAM and MGBNM methods on two dif-
ferent problems: a theoretical heterogeneous cuboid reactor and a version of the 3D NEACRP180

reactor (Finnemann & Galati, 1991). The diffusion equation for all cases has been discretized
using the high order finite element method with polynomials of degree 3. The number of eigen-
values computed has been q = 4 for each problem.

The solutions of linear systems needed to apply the MGBNM have been computed with
the GMRES method using the ILU preconditioner, and a previous reordering of the matrix to185

minimize the fill-in using the Cuthill-McKee method.
As block methods need an initial approximation of a set of eigenvectors, the multilevel ini-

tialization proposed in Section 2.3 is used to compare the block methods performance. However,
the multilevel initialization has been also compared with other initialization strategies to study
the effectiveness of this technique (Section 3.3).190

The stopping criteria for all solvers has been set equal of 10−6 in the global residual error,
defined as

res =

√ ∑
i=1,...,q

‖Axi − λiBxi‖
2 ,

where λi is the i-th eigenvalue and xi its associated unitary eigenvector. The criteria chosen is
related to the convergence of the eigenvectors because the eigenvalues converge in a faster way..

The methods have been implemented in C++ based on data structures provided by the library
Deal.ii (Bangerth et al., 2007), PETSc (Balay et al., 2016) and SLEPc (Hernandez et al., 2005).
The computer used for the computations has been an Intel R© CoreTM i7-4790 @3.60GHz×8 pro-195

cessor with 32Gb of RAM running on Ubuntu GNU/Linux 16.04 LTS.

3.1. Cuboid reactor
Even though this problem is completely theoretical, it is relevant to analyze the computational

improvement of the multilevel scheme proposed using a mesh that can be largely coarsened (8
cells in the fine mesh are joint to form 1 cell in the coarse one). The cuboid reactor has been200

designed with 8000 different cells with the same size (20 cm in each axis). The dimensions of
the reactor are 4 m × 4 m × 4 m. The geometry and the material distribution for one plane are
presented in Figure 1. This plane configuration is repeated from the 3rd to the 18th plane. The
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cells in the rest of planes are assembled with the material 1, modelling the reflector. The nuclear
cross sections of each material are given in Table 1. The average number of neutrons produced205

in each fission, ν, is assumed to be constant in each cell and equal to ν = 2.5. Zero flux boundary
conditions have been assumed to solve the problem.

The fine and coarse meshes considered in this problem are represented in Figure 2. Moreover,
the number of cells in each mesh (n. cells) is indicated. The neutron diffusion equation discretiza-
tion, by using polynomials of degree 3, provides a number of 453 962 degrees of freedom using210

the fine mesh and 59 582 degrees of freedom with the coarse mesh. The eigenvalues computed
are, in decreasing order, λ1 = 0.986215, λ2 = 0.939683, λ3 = 0.935521 and λ4 = 0.935521.
It means that the spectrum of these modes is very clustered. The third and fourth eigenvalue
are equal since they are degenerate due to the reactor radial symmetry (for more details, see
(Tommasi et al., 2016)).215
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Figure 1: Material distribution of the cuboid reactor.

Table 1: Macroscopic cross sections of the cuboid reactor.

Mat. D1 (cm) D2 (cm) Σa1 (cm-1) Σa2 (cm-1) Σ12 (cm-1) νΣ f 1 (cm-1) νΣ f 2 (cm-1)

1 1.6342 2.6400e-01 2.6660e-03 4.9363e-02 2.7596e-02 0.0000 0.0000
2 1.4239 3.5630e-01 1.0952e-02 9.1462e-02 1.7555e-02 6.4777e-03 1.1273e-01
3 1.4239 3.5630e-01 1.0402e-02 8.7662e-02 1.7555e-02 2.5910e-03 4.5093e-02
4 1.42531 3.5055e-01 1.0992e-02 9.9925e-02 1.7177e-02 7.5032e-03 1.3780e-01

First, we study the performance of the block inverse-free preconditioner Arnoldi method
(BIFPAM). Table 2, shows a comparison of the number of iterations (Iterations) and CPU time
needed to solve the problem with the BIFPAM using different dimensions, m, of the Krylov
subspace without preconditioner, with the ILU preconditioner and with the geometric multigrid
preconditioner (GMG). We observe that the BIFPAM without preconditioner does not reach the220

tolerance in the maximum number of iterations set to 100 iterations. If this value (or the value
of m) increases it can be observed that this method reaches a residual error of 10−7 and the rate
of convergence improves when the dimension of the Krylov subspace (m) is larger. Then, by
comparing the results obtained with the BIFPAM with preconditioner, it can be observed that
the number of iterations decreases as the dimension increases. However, the number of matrix-225
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(a) Fine mesh (n. cells = 8000) (b) Coarse mesh (n. cells =1000)

Figure 2: Meshes for 3D cuboid reactor

vector multiplications and applications of the preconditioner needed in each iteration increases
too. By using the ILU preconditioner, there are not big differences in the computational times
with the Krylov subspace dimensions m = 8 and m = 10. With the multigrid preconditioner, the
computational time does not significantly change when the value of m is increased. Furthermore,
if the preconditioners of BIFPAM are compared, the best results are obtained using the GMG,230

although there are not big differences with the best results obtained with ILU preconditioner
(m = 8, m = 10). This is because when we apply the GMG preconditioner, there are not big
differences in the number of iterations and it is expensive to apply. So, the best results are
obtained with m = 4. With ILU preconditioner, we have the opposite results because, this is
a cheaper preconditioner to apply, but the number of iterations with m = 6 differs a lot of the235

number of iterations needed when m = 8. Finally, note that the GMG preconditioner works
efficiently even when the dimension of the Krylov subspace is m = 4, which implies to use less
computational memory.

The convergence history for the MGBNM and BIFPAM methods, with the most efficient
configurations are shown in Table 2, and are represented in the Figure 3. In the MGBNM the240

subspace dimension used has been the same as the number of eigenvalues requested. In this Fig-
ure, we note the sawtooth convergence of the BIFPAM. For the first iterations, this convergence
is faster than the MGBNM one, but there is a point where the residual error increases and then
continues down. This makes that the MGBNM reaches the required tolerance in a faster way.

Finally, the Krylov-Schur method and the Generalized Davidson method implemented in the245

SLEPc library (Hernandez et al., 2005) have been analyzed and compared with the techniques
proposed in this paper. These methods are not initialized with any approximation to determine
which solver works better to obtain the solution in the multilevel initialization. The Krylov-Schur
method needs to solve linear systems to transform the generalized eigenvalue problem into an
ordinary eigenvalue problem. For this reason, two methods to solve linear system with non-250

symmetric matrices have been tested: the Generalized Minimal Residual method (GMRES) and
the stabilized version of BiConjugate Gradient method (BCGS) by comparing the computational
times. Both solvers have been implemented using the PETSc (Balay et al., 2016) library with the
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Table 2: Results of iterations and CPU times needed by the BIFPAM to solve the cuboid problem without preconditioner,
with the ILU preconditioner and with the GMG preconditioner and several dimensions of the Krylov subspace.

Krylov subspace dimension (m) Iterations CPU time (s)

BIFPAM without preconditioner
4 100* 558*

6 100* 770*

8 100* 992*

10 100* 1205*

BIFPAM with ILU preconditioner
4 82 607
6 39 407
8 22 294
10 17 284

BIFPAM with GMG preconditioner
4 14 261
6 10 282
8 7 264
10 6 279
* Note: The method does not reach the tolerance in the maximum number

of iterations set to 100.

0 50 100 150 200 250 300

CPU time (s)

10 -8

10 -6

10 -4

10 -2

10 0

10 2

re
s

BIFPAM-ILU (m=8)

BIFPAM-GMG (m=4)

MGBNM

Figure 3: Convergence history for the fourth dominant eigenvalues of the cuboid problem using the MGBNM and the
BIFPAM with the ILU and GMG preconditioners.

ILU preconditioner, Cuthill-McKee reordering and a tolerance in the residual of 10−8. The effi-
ciency of the Krylov-Schur method is very dependent on the dimension of the Krylov subspace255

used. Therefore, different values for the Krylov subspace dimension (m) are studied. In the same
way, the Generalized Davidson method depends on the maximum number of projected vectors
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(mpd) used. Then, different values of mpd were set to test the best configurations. The ILU
preconditioner is used with the Davidson method. The number of iterations and the CPU time
that the Krylov-Schur method and the Generalized Davidson method need to reach the tolerance260

(10−7) are presented in Table 3.
First, the differences between the linear system solvers used in the Krylov-Schur method

are analyzed. By comparing the computational times it can checked that the GMRES method
computes the solution of the linear systems in less time than BCGS method. If, now, we are
interested in comparing the dimensions of the subspace for both methods, we observe that the265

Krylov-Schur method needs a dimension of m = 24 or larger to obtain competitive results, while
for the Generalized Davidson, good results are obtained setting a maximum number of projected
vector (mpd) greater than 16.

Table 3: Results of iterations and CPU times needed by the Krylov-Schur and the Generalized Davidson to solve the
cuboid problem.

Dimension Iterations CPU time (s)

Krylov-Schur with GMRES
12 16 283
16 11 271
20 9 279
24 7 266

Krylov-Schur with BCGS
12 16 325
16 11 334
20 9 322
24 7 312

Generalized Davidson
8 606 164
12 283 120
16 199 107
20 186 103

3.2. NEACRP reactor
The NEACRP benchmark (Finnemann & Galati, 1991) is chosen to compare the proposed270

methodology with a more realistic benchmark. The reactor core has a radial dimension of 21.606
cm × 21.606 cm per assembly. Axially the reactor, with the total height of 427.3 cm, is divided
into 18 layers with height (from bottom to top): 30.0 cm, 7.7 cm, 11.0 cm, 15.0 cm, 30.0 cm (10
layers), 12.8 cm (2 layers), 8.0 cm and 30.0 cm. The boundary condition is zero flux in the outer
reflector surface. The material distribution is shown in Figure 4. The material cross-sections are275

displayed in Table 4.
Figure 5 shows the fine mesh used for the spatial discretization considered to solve the prob-

lem (Figure 5(a)) and the coarse mesh used to initialize the iterative methods (Figure 5(b)). The
fine mesh and the coarse mesh considered have 3978 and 1308 cells, respectively. In this way,
the problem associated with the fine mesh has 230 120 degrees of freedom and the one associated280

with the coarse mesh has 78 440 degrees of freedom because cubic polynomials have been used.
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The four dominant eigenvalues computed are λ1 = 1.00200, λ2 = 0.988620, λ3 = 0.985406
and λ4 = 0.985406, giving a dominance ratio of |λ2/λ1| = 0.986647. Figure 6 shows the power
distribution for the four dominant modes of this reactor.
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Figure 4: Geometry and distribution of materials of NEACRP reactor.

Table 4: Macroscopic cross section of the NEACRP reactor.
Mat. D1 (cm) D2 (cm) Σa1 (cm-1) Σa2 (cm-1) Σ12 (cm-1) Σ f 1 (cm-1) Σ f 2 (cm-1) νΣ f 1 (cm-1) νΣ f 2 (cm-1)

1 5.9264 8.2289e-01 2.5979e-04 1.7085e-01 2.7988e-02 0.0000 0.0000 0.0000 0.0000
2 1.1276 1.7053e-01 1.1878e-03 1.9770e-01 2.3161e-02 0.0000 0.0000 0.0000 0.0000
3 1.1276 1.7053e-01 1.1878e-03 1.9770e-01 2.0081e-02 0.0000 0.0000 0.0000 0.0000
4 1.4624 3.9052e-01 8.4767e-03 6.2569e-02 1.9686e-02 6.1479e-14 1.1515e-12 5.0150e-03 8.7712e-02
5 1.4637 3.9485e-01 8.8225e-03 6.9978e-02 1.9436e-02 6.9275e-14 1.3685e-12 5.6085e-03 1.0424e-01
6 1.4650 3.9851e-01 9.1484e-03 7.6850e-02 1.9196e-02 7.6811e-14 1.5694e-12 6.1819e-03 1.1954e-01
7 1.4641 4.0579e-01 9.0869e-03 7.7687e-02 1.8526e-02 6.8996e-14 1.3509e-12 5.5830e-03 1.0289e-01
8 1.4642 4.0946e-01 9.1738e-03 8.0302e-02 1.8223e-02 6.8913e-14 1.3433e-12 5.5741e-03 1.0232e-01
9 1.4642 4.1314e-01 9.2596e-03 8.2924e-02 1.7920e-02 6.8817e-14 1.3351e-12 5.5650e-03 1.0169e-01
10 1.4653 4.0919e-01 9.4097e-03 8.4462e-02 1.8288e-02 7.6530e-14 1.5501e-12 6.1564e-03 1.1807e-01
11 1.4655 4.1277e-01 9.4956e-03 8.7030e-02 1.7986e-02 7.6449e-14 1.5419e-12 6.1474e-03 1.1744e-01
12 5.5576 8.7013e-01 2.7375e-03 1.9644e-01 2.4796e-02 0.0000 0.0000 0.0000 0.0000
13 5.6027 8.6371e-01 2.4169e-03 1.9313e-01 2.5209e-02 0.0000 0.0000 0.0000 0.0000
14 1.4389 4.0085e-01 1.0954e-02 8.8157e-02 1.6493e-02 6.0265e-14 1.1145e-12 4.9122e-03 8.4889e-02
15 1.4413 4.0665e-01 1.1578e-02 1.0250e-01 1.6054e-02 7.5335e-14 1.5263e-12 6.0593e-03 1.1626e-01

Initially, the numerical results obtained with the BIFPAM by using the ILU and GMG precon-285

ditioners and without preconditioning for m = 4 and m = 8 are compared. Similar conclusions
to the ones obtained for the cuboid reactor for this problem are obtained. Figure 7 displays the
convergence histories for the BIFPAM with the configurations considered. It is observed that
the preconditioner improves the rates of convergence and attenuates the oscillations produced in
the convergence histories. Between the different preconditioners used, this Figure shows that the290

ILU preconditioner (with m = 8) and the GMG preconditioner (with m = 4) reach the tolerance
almost at the same time. The reason why the ILU preconditioner works better with higher di-
mensions and the GMG preconditioner with lower ones is the same as the explanation exposed
in the numerical results presented for the cuboid reactor. The use of these preconditioners with
the other values considered for the dimension (m) are less efficient.295

The convergence histories of the MGBNM and the BIFPAM with the ILU and GMG pre-
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(a) Fine mesh (n. cells = 3978) (b) Coarse mesh (n. cells =1308)

Figure 5: Meshes for NEACRP reactor.

conditioner are compared in Figure 8. For this reactor, it is deduced that the desired tolerance is
reached quicker with the MGBNM. We would like to highlight that the convergence behaviour
of BIFPAM-ILU is very similar to the one of BIFPAM-GMG and when the residual becomes
smaller the convergence of the Newton method becomes faster.300

3.3. Numerical results to test the multilevel initialization

In this section, we are going to compare the multilevel initialization proposed in the Section
2.3 with other two initialization alternatives for the block methods studied in this paper. The
NEACRP reactor has been used to make this study. The Generalized Davidson with mpd = 16
has been used to compute the solution in the coarse mesh, since we have checked in Section305

3.1 that this solver (with this configuration and without initialization) converges faster than the
Krylov-Schur method. The BIFPAM is used with the GMG preconditioner and m = 4.

We are interested in obtaining a good initial guess X0 = {x1, . . . , xq} (closer to the solution)
for the q dominant eigenvalues of the λ-modes problem at a computational cost as low as possi-
ble. The first initialization choice, that we denote as Random, is to generate the q vectors using310

random numbers on the interval [−1, 1]. The second one is to estimate the q vectors using the
Krylov subspace generated by the matrix L−1M acting on an initial vector (we use an all-ones
vector). The Arnoldi method has been used to obtain this subspace. The dimension of the sub-
space has been m = 10 for the initialization of 4 eigenvectors. We called to this strategy as
Krylov initialization. Before using both initializations, the resulting system of vectors are or-315

thonormalized by using the modified Gram-Schmidt process. Then, the Rayleigh-Ritz algorithm
for the generalized eigenvalue problem is applied.

Figure 9 shows the convergence histories for the BIFPAM and the MBGNM initialized in
several ways: the multilevel, the Random and the Krylov initialization. In the multilevel initial-
ization times, the CPU time to assemble and solve the eigenvalue problem in the coarse mesh,320

that is 21s, has been included. In the CPU times obtained with the Krylov initialization, the time
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to compute the subspace (18s) has been added. Both graphics reflect that the multilevel initial-
ization, although it takes more time to obtain the initial guess than the other initializations, is a
better strategy to initialize the block methods.

4. Block hybrid eigenvalue solver325

The previous numerical results show that the BIFPAM converges efficiently using the ILU
or the GMG preconditioner. However, the method for very accurate approximations exhibits a
slower convergence history or the convergence rate decreases after a certain number of iterations.
Theoretically, we know that the MGBNM converges quadratically. However, it needs a suitable
initial guess, otherwise in the first iterations has a slow convergence. Thus, it is proposed to use330

a hybrid scheme combining both methods. This hybrid scheme is based on using the BIFPAM
in the first iterations until a given tolerance of res = 10−3 is reached and then applying the
MGBNM. This cut off value for the tolerance is reactor dependent and it has been chosen by
observing the convergence history of the methods. The initial guess for this method is computed
with the multilevel technique. The implementation of this block hybrid multilevel method can335

be summarized in the Algorithm 4.

Algorithm 4 Block hybrid multilevel method
1: Apply the multilevel method to obtain the initial guess
2: while res ≥ 10−3 do
3: Apply the BIFPAM
4: end while
5: while res ≥ tol do
6: Apply the MGBNM
7: end while

4.1. Numerical results for the hybrid method

In this section, the same benchmark reactors as the ones presented in the Section 3 are used
to demonstrate the effectiveness of the hybrid multilevel method with respect to other eigenvalue
solvers. The BIFPAM has been set with the ILU preconditioner and dimension of the Krylov340

subspace m = 8. Even thought, similar results are obtained by setting the BIFPAM with the
GMG preconditioner and dimension m = 4.

First, we compare the hybrid scheme with the MGBNM and the BIFPAM with ILU precondi-
tioner. All methods have been initialized with the same initial guess obtained with the multilevel
technique. Figure 10 displays the results obtained. They show that the hybrid algorithm is the345

best scheme to compute several eigenvalues of the benchmark problems analyzed. Table 5 shows
the number of iterations and computational times that spend the BIFPAM and MGBNM in the
hybrid method. It can be observed that we need more iterations of BIFPAM than of the MGBNM
but the CPU time needed for each solver changes with the problem.

Finally, these methods are compared with the Krylov-Schur method and the Generalized350

Davidson for the NEACRP reactor. The same conclusions for the cuboid reactor are obtained.
The dimension of the Krylov subspace used in the Krylov-Schur method has been m = 24. The
solutions of the linear systems needed in the Krylov-Schur method have computed with GMRES
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Table 5: Number of iterations and CPU times of the hybrid method.

Benchmark Iterations CPU time (s)
BIFPAM MGBNM BIFPAM MGBNM

Cuboid 3 1 50.2 74.3
NEACRP 5 1 38.4 29.9

method, with the ILU preconditioner with a previous reordering of the matrix with the Cuthill-
McKee method. The maximum number of projected vectors for the Generalized Davidson is set355

equal to mpd = 16 and the ILU preconditioner has been used. Furthermore, the Generalized
Davidson can be initialized in block, by using the same initialization strategy as for the BIFPAM
and the MGBNM. Table 6 displays the total computational times obtained for different numbers
of eigenvalues. This CPU time includes the time needed to assemble the matrices and to obtain
the initial guess. From this Table, we deduce that the block methods (G. Davidson, BIFPAM,360

MGBNM and Hybrid) compute the eigenvalues faster than the Krylov-Schur method even in the
computation of one eigenvalue. If we compare the methods presented in this work (BIFPAM,
MGBNM and Hybrid), we observe than the strategy of using a hybrid method improves the
computational times obtained with the methods separately. Finally, it can be observed that the
computational times obtained with the Generalized Davidson and the hybrid method, are similar.365

Note that for 6 eigenvalues, the MGBNM does not reach the tolerance in the maximum number
of iterations, but if we use the MGBNM in the hybrid scheme, the method converges. This shows
that the methods studied in this work are an interesting alternative for the computation of λ-modes
to classical methods such as the Krylov-Schur method that, with the SLEPc implementation,
converges a block of eigenvectors separately or the Generalized Davidson method that needs a370

high dimension of the subspace to be competitive. Nevertheless, there are other implementations
of the Krylov-Schur method that allow a treatment of the eigenvalues in block (Baker et al.,
2009), but we have not studied them in this paper.

Table 6: Computational times (s) obtained for the NEACRP reactor using the Krylov-Schur method, the Generalized
Davidson, the BIFPAM, the MGBNM and the hybrid method for different number of eigenvalues.

n. eigs (q) Krylov-Schur G. Davidson BIFPAM MGBNM Hybrid

1 100 59 57 66 58
2 142 79 134 86 78
3 143 90 169 103 92
4 236 100 126 119 105
5 235 114 157 135 123
6 255 130 184 * 135
* Note: The method does not converge.
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(a) Radial 1st λ-mode (b) Axial 1st λ-mode

(c) Radial 2nd λ-mode (d) Axial 2nd λ-mode

(e) Radial 3rd λ-mode (f) Axial 3rd λ-mode

(g) Radial 4th λ-mode (h) Axial 4th λ-mode

Figure 6: Radial and axial power profiles for NEACRP reactor.
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Figure 7: Residual errors against CPU time (s) of the BIFPAM with different configurations for the NEACRP problem.

0 20 40 60 80 100 120

CPU time (s)

10 -8

10 -6

10 -4

10 -2

10 0

10 2

re
s

BIFPAM-ILU (m=8)

BIFPAM-GMG (m=4)

MGBNM

Figure 8: Convergence history for the fourth dominant eigenvalues of the NEACRP problem using the MGBNM and the
BIFPAM with the ILU preconditioner.
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Figure 9: Convergence histories for the BIFPAM and the MGBNM using different initializations for the computation of
the λ-modes of the NEACRP problem.
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Figure 10: Convergence history of the BIFPAM with ILU preconditioner, the MGBNM and the hybrid method.
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5. Conclusions

In this work, two block methods to solve the λ-modes problem obtained from the discretiza-375

tion of the neutron diffusion equation through a high order finite element method are studied.
Both methods are implemented for a generalized eigenvalue problem without transforming it
into an ordinary eigenvalue problem to apply them. The first method studied has been the block
inverse free preconditioned Arnoldi method (BIFPAM), where the efficiency of using a precondi-
tioner has been studied. In particular, the ILU preconditioner and a geometrical multigrid precon-380

ditioner (GMG) have been used. The second method studied has been the modified generalized
block Newton method (MGBNM). Moreover, a block multilevel technique has been proposed
to initialize the iterative methods for those cases where an initial approximation is not available.
The numerical results have shown that both block methods are very efficient to compute several
dominant eigenvalues and their corresponding eigenvectors associated with the neutron diffu-385

sion equation. The use of a preconditioner (ILU or GMG preconditioner) with the BIFPAM is
necessary to be competitive against the MGBNM. According to the initialization proposed, the
multilevel scheme is an efficient technique to obtain initial guesses close to the solution. This
improves the rate of convergence of the block methods over other kind of initialization strategies.
Furthermore, a hybrid scheme is proposed combining these methods that improves the robust-390

ness and the computational times with respect to the methods used. Our numerical tests also
indicate that the block hybrid method is more efficient than the Krylov-Schur method and it is
competitive against the Generalized Davidson method. In further studies, these methods will
be used for higher approximations of the neutron transport equation than the neutron diffusion
equation and the parallelization of the methods will be undertaken.395
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Ginestar, D., Marı́n, J., & Verdú, G. (2001). Multilevel methods to solve the neutron diffusion equation. Applied
Mathematical Modelling, 25, 463–477.

Golub, G., & Ye, Q. (2002). An inverse free preconditioned Krylov subspace method for symmetric generalized eigen-
value problems. SIAM Journal on Scientific Computing, 24, 312–334.
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