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ABSTRACT: With the advance of new technologies and emergence of the concept of 
the smart city, there has been a dramatic increase in available information. Water 
distribution systems (WDSs) in which databases can be updated every few minutes are 
no exception. Suitable techniques to evaluate available information and produce 
optimized responses are necessary for planning, operation, and management. This can 
help identify critical characteristics, such as leakage patterns, pipes to be replaced, and 
other features. This paper presents a clustering method based on self-organizing maps 
coupled with k-means algorithms to achieve groups that can be easily labeled and used 
for WDS decision-making. Three case-studies are presented, namely a classification of 
Brazilian cities in terms of their water utilities; district metered area creation to improve 
pressure control; and transient pressure signal analysis to identify burst pipes. In the 
three cases, this hybrid technique produces excellent results. 

 

KEYWORDS: water supply systems, classification, self-organizing maps, k-means 

clustering. 

 

1. INTRODUCTION 

To achieve sustainable development, cities should be able to plan, operate, and 

manage their infrastructure efficiently. With the growth of cities and scarcity of 

environmental resources, management must be re-thought to guarantee access to quality 

urban services for all citizens (Chouraby et al., 2012). Operations must be fine-tuned to 

this same purpose. Furthermore, planning of future government actions for urban water, 

such as investments to improve quality of water systems, expansion of existing systems, 

or reduction in energy consumption, should prioritize those cities with the worse 

indicators.  

Many cities are unable to satisfy the needs of their populations, and smart cities 

respond with an intensive use of technology, information, and data to improve quality in 

infrastructure services. Suitably handled, this new wealth will create an ideal scenario 

for economic growth with a higher quality of life for citizens and less damage to the 

environment (Kramers et al., 2014). To achieve this goal, it is necessary to suitably 



handle the available information about the systems, which is based on a high level of 

data acquisition, and thus create large databases. In water distribution systems (WDSs), 

these databases can integrate such variables as flow, pressure, water demand, pipe 

characteristics, water quality, climatic parameters, maintenance history, etc. Due to the 

size of the databases, computational tools are necessary to quickly identify problems 

and propose solutions. 

Dividing the available information into clusters is a mechanism that enables 

identifying patterns and the main features in databases. Among several other clustering 

techniques, self-organizing maps (SOMs), Kohonen (1982), based on the theory of 

neural networks (NNs), have gained space in environmental resource research. Kohonen 

et al. (2000) highlights the use of SOMs as a clustering tool for database operation. 

Izquierdo et al. (2016) uses SOMs for early data labeling for the application of 

classification tools. Kalteh et al. (2008) highlight its extensive use in water resources 

problems. More specifically, in WDSs, SOMs have been widely used for water quality 

analysis (Blokker et al., 2016), optimal design (Norouzi and Rakhshandehroo, 2011), 

and pattern analysis (Laspidou et al., 2015), among other uses. 

The application of data clustering in WDSs can help planning, operation, and 

management of these systems, since it is possible to identify anomalies, develop 

strategic operations for distribution, and evaluate the system through suitable indicators. 

In addition, in some cases, this classification enables the determination of interesting 

benchmarks which can be useful to establish quality standards and goals. We consider 

three situations, concisely introduced in the following three paragraphs. 

Cabrera et al. (2014) and Lima et al. (2015) present different proposals for WDS 

classification based on the energy consumption of pumping stations to create goals for 

systems with poor performances. Berg and Lin (2007), Thanassoulis (2000), and 

Scaratti et al. (2013) use data envelopment analysis (DEA) to classify cities in Peru, the 

United Kingdom, and Brazil respectively, in relation to the management of sanitation 

services, and identifying places where investment is urgently needed.   

Clustering applied to WDSs can also be useful to propose strategic divisions of 

the entire network into manageable pieces, called district metered areas (DMAs). 

Considering the large extension of systems and their complex interconnections, the 

process to divide WDSs into DMAs can be a difficult task and result in poor scenarios 

when partitions are developed without appropriate tools. Campbell et al. (2016) use 

social community algorithms to divide WDSs into DMAs to improve pressure control 



and reduce leakage. Herrera et al. (2016) apply graph theory to create DMAs to improve 

network resilience.  

Also, operational data, such as pressure or flow signals, can also be grouped to 

create specific strategies to suitably operate the system. Pressure signals can be used to 

identify burst pipes and locate anomalies in WDSs (Srirangarajan et al., 2010, Covas 

and Ramos, 2010). Taking one of the most important challenges for WDSs, Aksela et 

al. (2012) present a methodology based on flow signal analysis with SOMs to detect 

leaks in WDSs.   

The use of NNs and machine learning tools enables pattern extraction and 

classification of large databases. However, the number of resulting groups is usually too 

large. Classification methodologies for planning, operation, and management often 

require a small number of groups to ease and accelerate decision-making. SOMs are 

unable to create this reduced predefined number of groups, which is a drawback for 

their application in these cases. 

 When the number of groups can be predefined, the use of classical clustering 

methods, such as k-means algorithms, has been widely explored, since these 

methodologies can be faster than NN approaches. However, NN feature extraction 

combined with fast processing by k-means can be an interesting way to handle big data.   

 This paper proposes a classification method using SOMs as a pre-processing 

technique, coupled with the k-means algorithm to achieve groups that can easily be 

labeled and used in WDS decision-making. To exemplify the use of this methodology, 

three case studies are addressed. In the first, Brazilian cities are classified with respect 

to their water quality, operational efficiency, and economic performance, and this 

information can help the government plan investments to raise water quality. The 

second study applies the hybrid model to generate a scenario of DMAs in a fictitious 

water distribution network (WDN), C-town, which is frequently used as a 

benchmarking problem. This application enables water utilities to improve control 

efficiency, mainly for pressure management (which is closely related to water losses). 

Finally, in the third case, hydraulic transient pressure signals generated by pipe bursts 

and ruptures are processed with the proposed hybrid SOM+k-means algorithm to extract 

patterns and features in the data. This can help water companies to deal with anomalous 

events in WDSs, since knowledge of event groups can be associated with specific 

strategies to quickly solve the problems. 



 This paper is a substantial extension of Brentan et al. 2016, in which only a 

simplified version of the first case study was considered. 

 

2. CLUSTERING PROCESS 

2.1. Self-organizing maps (SOMs) 

Based on brain behavior under visual and memory stimulation, SOMs are a type 

of neural network with unsupervised training as proposed by Kohonen (1982). When 

stimulated, different regions of the brain can react according to the pattern of the 

stimulus. This behavior enables separating different stimuli and triggering more 

efficient reactions. With this inspiration, an SOM is a tool to process input data and find 

patterns to group similar data.  

SOMs have been applied in many research fields mainly because of their ability 

to learn from high-dimensional input data, resulting in a low-dimensional (usually bi-

dimensional) output layer (Kohonen, 2000). This property helps the visualization of 

topological correlations among data and leads to better understanding of a problem.  

A competitive learning process is responsible for the training of SOMs. 

Basically, this learning process is made of three steps: competition; cooperation; and 

synaptic update. The competition stage is responsible for identifying the map region 

most activated by a certain input data. Such a region can be defined by the 

neighborhood of the most activated neuron, the so-called winning neuron. In the 

cooperation stage, the influence of the winning neuron on its neighborhood is 

determined. Finally, in the synaptic update stage, the winning neuron increases its 

weight value, leading to new and similar input data to activate the neuron again 

(Haykin, 1990). 

The iterative process of mesh adjustment to represent the feature space requires 

that all samples are presented to the network; in each presentation the most excited 

region of the mesh is adjusted. This region can be identified through the neuron 

exhibiting the greatest similarity between an input datum ࢞ and a neuron	࢝௝. This 

means the minimal distance between ࢞ and a neuron	࢝௝ selects this neuron as the most 

excited and initiates the process of mesh adjustment. The Euclidian distance has been 

widely applied to determine this similarity.  

As suggested by the biological inspiration, the activation of the winner also 

defines a topological neighborhood that will be excited. The closer to the winning 



neuron, the more excited will be its neighborhood by the input ࢞. The activation power 

of a neuron inside the neighborhood may be written as a monotonically decaying 

function, ௝݄,௜ሺ࢞ሻ, centered on the winning neuron ݅ሺ࢞ሻ and containing the set of j neurons 

excited by such a winner. 

The influence on the neighborhood topology reduces with time to make the 

model more realistic. This means that from one iteration to the next, the influence of the 

winning neuron decreases, making the weight adjustment more stable. After completing 

an iteration, each weight (neuron position) is updated with its corresponding increment 

  :௝ defined by (1)ܟ∆

 

௝ܟ∆ ൌ ߟ	 ௝݄,௜ሺ࢞ሻ	ሺܠ െ  ௝ሻ  (1)ܟ

 

where ߟ is the forgetfulness rate, which represents the human-like learning process.  

Finally, the updating for each time step n can be written as: 

 

௝ሺ݊ܟ ൅ 1ሻ ൌ ௝ሺ݊ሻܟ	 ൅ ሺ݊ሻߟ	 ௝݄,௜ሺ࢞ሻ	ሺܠ െ  ௝ሺ݊ሻሻ (2)ܟ

 

The learning process finishes when either the mesh update is smaller than a pre-

defined threshold, or the number of iterations is reached. At this point, the mesh can 

represent the feature space in a lower dimension than that of the original space and 

some correlations between input data dimension can be observed. Furthermore, the 

input data can be classified by the nearest neuron, thus forming a set of clusters. 

The quality of an SOM is linked to the capacity to represent the feature space 

with as little distortion as possible. This quality is closely connected to the map 

structure. A high number of neurons enables the data to be adjusted – however, it makes 

the map too rigid, harms the classification of new data, and increases computational 

costs. On the other hand, a map with few neurons has cheaper training process but may 

distort the information of the feature space. In short, map architecture definition is a not 

simple task.  

A way to evaluate the final quality of an SOM is the quantization error that 

corresponds to the mean distance between the final winning neuron for each datum 

(Sun, 2000). This is a resolution measurement and is correlated with the number of 

neurons. To find an optimal configuration of the map, an index to evaluate the 



efficiency of the map is presented, using the quantization error and processing time. The 

optimal configuration should minimize both the quantization error and the processing 

time. A computational index (ܫ௘௙௙,௜ሻ is applied to evaluate the performance of an SOM 

(Eq. 5). The normal processing time and normal quantization error are summed, and the 

minimal value of this index provides the optimal configuration.  

 

௘௙௙,௜ܫ ൌ 	
ொா೔ିொாതതതത

ఙೂಶ
൅ ௧೔ି௧̅

ఙ೟
 .              (5)  

 

Here ݐ௜ is the processing time for a map ݅; ̅ݐ is the mean time for all maps with the 

standard deviation ߪ௧; ܳܧതതതത is the mean quantization error; and ߪொா is the standard 

deviation for the ܳܧ series. The quantization error, ܳܧ௜, corresponds to the mean 

representability of the input data ܠ௝	by the corresponding winning neuron ܟ௝, and can 

be written as:  

 

௜ܧܳ ൌ 	
ଵ

௡
∑ ฮ࢐ܠ െ ௝ฮܟ
௡
௝ୀଵ .              (6) 

  

However, for certain practical applications, the number of neurons obtained 

through SOMs can be much higher than the desirable number of clusters. To reduce the 

number of clusters, while taking advantage of the pre-clustering performed via SOMs, 

the k-means algorithm is applied. 

 

 

 

2.2. k-means algorithm 

Its separation ability and easy implementation makes the k-means methodology 

applicable in many research fields (Herrera et al., 2010, Godin et al., 2005, Laerhofen, 

2001). In addition, as an unsupervised algorithm, the k-means algorithms require a 

previous definition of the number of groups to start the labelling data process.  

Given a number of groups, k, each group is represented by a centroid, which is 

initialized randomly in the feature space. For input data with m features, each centroid 

 :௞ can be represented as܋

 



௞܋ ൌ 	 ሾܿ௞ଵ, ܿ௞ଶ …	ܿ௞௠ሿ୘. (7) 

 

The data is labeled according to the distance to the centroids. The distance to 

each centroid is calculated for each input datum. The nearest centroid is assigned to the 

input datum. When all the data is labeled, the centroid position is updated. The average 

position of a group k is written in (8): 

 

௞܋ ൌ 	
∑ ೔ܠ
೙ೖ
೔సభ

௡ೖ
, (8) 

 

where ݊௞ is the number of elements belonging to group ܭ.  

It is expected that at the end of the process, all data is labeled and there is the 

maximal distance between the clusters and a minimal distance between the centroids 

and their corresponding data. 

The simplicity of the method of grouping the data by moving the centroids along 

the feature space flounders since the pre-definition of the group number k is a hard task. 

Another important point is that, in contrast to the learning process with labeled data that 

uses statistical error measurements to evaluate the quality of process, this clustering 

evaluation requires specific approaches (Maulik and Bandyopadhyay, 2002). 

As the definition of the number of groups is not simple, a common way to assess 

the quality of clustering is to apply the clustering method for different numbers of 

groups, and then use a quality index to evaluate the clustering performance. This quality 

evaluation usually considers the capacity to separate elements with maximal distance 

(inter-cluster criterion) and the capacity of the data to gather together around the 

centroids, generating maximal compact groups (intra-cluster criterion). The work by 

Maulik and Bandyopadhyay (2002) presents a set of validation and quality indexes. 

Among these indexes, an important quality indicator of clustering quality is that 

proposed by Calinski and Harabaz (1974) and called the ܪܥ index, written as: 

 

ܪܥ ൌ 	 ൤
∑ ௡ೖ.‖܋ೖି܋‖మ
಼
ೖసభ

௄ିଵ
൨ ቂ∑ ∑ ೖ‖మ܋೔ିܠ‖

௡ି௄
௡ೖ
௜ୀଵ

௄
௞ୀଵ ቃൗ , (9) 

 

where ݊௞ is the number of elements of cluster ܋ ,ܭ is the centroid of all input data, ܭ is 

the number of clusters, and n is the number of input data. This index takes into account 



analyses of the variance method (ANOVA) and calculates centroid distances and 

distances between data and centroids, by correlating internal and external distances. The 

CH index can be understood as a relation between centroid distances (external 

evaluation) and the data clustered around the corresponding centroids (internal 

evaluation). This calculation allows defining the best ܭ partition of data, the highest CH 

being linked to the best number of clusters.  

 

2.3. Hybrid methodology SOM+k-means 

The larger the mesh of neurons used in an SOM, the larger is the number of 

groups resulting from the clustering process. Merging the clusters from an SOM can 

reduce the number of final groups. However, it can also decrease the quality of 

clustering if this task is done manually. Considering the application of this work, 

namely, to improve planning, operation, and management of WDSs, a predefined 

number of groups is deemed necessary. 

The k-means algorithm is applied here to reduce the number of clusters, using 

the CH index to define the ideal number of clusters. At the end of the SOM process, all 

neuron positions are known and this enables a certain local representation of the data. A 

manner to visualize the final clustering of an SOM is the U-matrix (Siemon and Ultsch 

1990) because it represents the distance between the neurons and their neighborhood. A 

U-matrix allows the visualization of the final configuration of the map and helps 

investigate the previous number of macro clusters.  Figure 1a illustrates the U-matrix 

for the DMA creation data, a case study of this work. Light colors represent small 

distances between neurons, and the darker the color, the larger the distance between 

neurons. Even if an isolated neuron is highlighted, a clear cluster region is not evident.  

The final neuron positions in the output space (Figure 1b) can be used to re-cluster the 

data to explore features of the input space and create well defined clusters.  

 

a)  U-matrix for DMA creation data after the optimal architecture definition 



 

b)  Final neuron position after training for the optimal SOM.  

 

Figure 1. Final results after training an SOM that highlight the neuron  

positions and data 

  

Identification of the number of groups is not easy. However, considering the 

data and neurons in the feature space, it is possible to calculate the distance between 

neurons and data. This distance indicates how large is the similarity between a datum 

and a neuron. Small values for the distance between a neuron and an input datum 

indicate a good representativeness of the data by the neuron.  

The distance between neurons and data can be calculated and organized in a 

matrix (a dissimilarity matrix) which is a manner to interpret SOM results, since all 

distances between neurons and data are known. Furthermore, by using the dissimilarity 

matrix as input data for k-means, the predefined groups obtained from the SOM will be 

considered, resulting in a good option to merge SOM groups, and eventually reduce the 

final number of groups. The dissimilarity matrix may be written as: 

 

ܦ ൌ ൥
ଵݓ‖ െ ଵ‖ଶݔ … ଵݓ‖ െ ௜‖ଶݔ

⋮ ⋱ ⋮
௟ݓ‖ െ ଵ‖ଶݔ … ௟ݓ‖ െ ௜‖ଶݔ

൩.  (10) 

  Once the dissimilarity matrix is calculated, it is possible to apply k-means 

clustering for a range of clusters and evaluate the final results via the CH index. The 

best value for the CH index will define the number of groups and thus, the clustering 

scenario can be evaluated in terms of the features of each group. The flowchart in 

Figure 2 shows the entire hybrid process. 

 



 

Figure 2. Entire clustering process using the hybrid SOM+k-means model 

 

3. CASE STUDY 1: INDICATORS FOR WATER SUPPLY PLANNING 

3.1. Case study description 

The Brazilian National System of Sanitation Information (SNIS) is a large 

database on sanitation service performance. It is an important tool for planning public 

policies and management of the investments made. However, the large volume of 

information makes an assessment of the necessary improvements difficult. 

To improve the global quality of water services, the investment fields were 

divided and three major groups of indicators (namely: water quality, operational 

efficiency and economic performance) were created, each containing a set of relevant 

indicators for the global system quality evaluation described in Table 1.  

Although the fulfillment of SNIS is mandatory for water utilities in Brazil, some 

cities omitted information or presented data with errors, compromising the evaluation of 

all Brazilian cities. To obtain consistent results, the cities with these data problems were 

disregarded. The most recent available data, used in this work, is from 2014. Cities with 

missing information or wrong values for the indicators were disregarded at a pre-

processing stage. Most of the indicators used in this work are expressed in percentage 

values. As a result, 2231 cities are considered for the study, which represents 40% of 



the total number of cities in Brazil.  As many cities are disregarded due to missing 

information, it is possible that critical cities are not considered in this work. After 

applying the methodology proposed here, the data is normalized using the zscore 

function, which can set the data in a small range, while maintaining the distribution. 

 

Table 1. Indicators selected for water supply classification 

 Indicator Description 

WATER 
QUALITY 

- Does a wastewater service exist? 
IN055_AE Water service index (%) 
IN057_AE Water fluoridation index (%) 
IN079_AE Samples conformity - residual chlorine (%) 
IN080_AE Samples conformity - turbidity (%) 
IN085_AE Samples conformity - total coliforms (%) 

OPERATIONAL 
EFFICIENCY 

IN009_AE Micro metering index (%) 
IN011_AE Macro metering index (%) 
IN049_AE Leakage index (%) 
IN055_AE Water service index (%) 

QD003 Duration of stoppages (h/year) 
QD022 Duration of interruptions (h/year) 

ECONOMIC 
PERFORMANCE 

- Relation between investment and revenue (%) 
IN005_AE Water tariff ($/m3) 

IN019_AE 
Relation between active economies and employees 

(econ/empl) 
IN026_AE Exploitation expenses ($/m3) 
IN036_AE Expenses with employees (%) 
IN037_AE Expenses with electrical energy (%) 
IN038_AE Expenses with chemical products (%) 

 

 

3.2. Results and discussion 

The first clustering level, performed with an SOM, has the architecture defined 

by an optimal analysis of the computational index presented in equation (5). The 

variation in the number of neurons decreases significantly the quantization error 

because the larger the mesh, the smaller is the distance between the winning neuron and 

the datum. The size of the mesh is closely linked to the processing time, which increases 

with the number of neurons.  

The SOM is computed by varying the number of neurons from 9 to 900 and the 

size of the neighborhood from 1 to 5 neurons. The architectural test and performance 

evaluation were developed in Matlab. Figure 3a, presents the computational index for 

the three indicator groups, highlighting the optimal number of neurons. Taking these 



values for water quality: SOMs with 144 neurons (operational data), 169 neurons 

(economic data), and 81 neurons were implemented. The definition of neighborhood 

shows little importance in the final results in terms of improvement of quantization 

error.  

The final results of the SOMs are computed in the dissimilarity matrix. In this 

case, taking the 81 neurons and the 2231data, the dissimilarity matrix can be written as:   

 

ܦ ൌ ൥
ଵݓ‖ െ ଵ‖ଶݔ … ଵݓ‖ െ ଶଶଷଵ‖ଶݔ

⋮ ⋱ ⋮
ଵ଼ݓ‖ െ ଵ‖ଶݔ … ଵ଼ݓ‖ െ ଶଶଷଵ‖ଶݔ

൩.                    (11)  

 

This dissimilarity matrix D is the input for the k-means process. The number of final 

clusters is defined by the best value of the CH index for data quality – as shown in 

Figure 3b. Operational and economic data follows the same trends of quality analysis 

and also results in four groups. The evaluation of the best final number of clusters was 

made in the range of 2 to 7 groups, as indicated in Figure 3b. This a priori limitation of 

the number of groups avoided the generation of too many groups, which could spoil 

decision-making effectiveness about the management of the cities. 

 

 

a)  ܫ௘௙௙ to define the optimal architecture of SOM 



 

b) CH index for water quality data 

Figure 3. Computational evaluation of SOM+k-means algorithm to define the SOM 

architecture (a), and the number of groups for k-means (b) 

 

As the three groups have more than three dimensions, 3D representations of 

clusters are not completely accurate. However, it is possible to observe the main 

features of the clusters. The most representative figures for the three-dimensional 

plotting of clustered data are presented in Figure 4. Operational indicators (Figure 4-a) 

have the most mixed representation, while economic performance indicators (Figure 4-

c) have a very well defined scattering.  

 

 

a) Operational efficiency clusters 



 

b) Water quality clusters 

c) Economic performance clusters 

Figure 4. Final clustering for water supply performance considering the three main 
groups of indicators 

 

By calculating the average for each group (Table 2), some noticeable features 

can be observed: for water quality indicators, the best groups contain the majority of 

cities (which can be explained by the relation with health issues and recent investments 

to improve sewage collection and treatment aimed at reducing waterborne diseases) 

(Gonçalves, 2014). The other indicators follow a strict correlation with wastewater 

service availability. The larger the water service, the larger the mean of cities with 

wastewater services and the better the quality indicators. Furthermore, the fluoridation 

index also has an important correlation with the other quality indicators, such as the 

total number of coliforms. The worst cluster, Cluster 2, presents the lowest value for 

water services and includes most of cities without wastewater services, leading to 

alarming values for quality indicators.  

 



Table 2. Average values for each group 

 Group 1 2 3 4 

WATER 
QUALITY 

- 0.27 0.11 0.60 0.38 
IN055_AE 58.2 41.0 80.8 68.6 
IN057_AE 10.4 0.0 97.1 26.7 
IN079_AE 54.4 10.9 98.4 88.0 
IN080_AE 50.9 10.0 98.1 86.4 
IN085_AE 54.4 10.7 99.0 92.5 
Population 23,937 25,134 26,619 23,940 

Revenue [$] 2,313,207 914,278 6,632,448 3,047,526 
Number of cities [%] 15.22 13.45 37.31 34.03 

OPERATIONAL 
EFFICIENCY 

Group 1 2 3 4 
IN009_AE 94.1 90.0 89.9 84.7 
IN011_AE 72.9 62.7 62.7 57.1 
IN049_AE 34.8 30.9 29.8 30.3 
IN055_AE 72.3 71.2 70.1 68.1 

QD003 78 254 102 195 
QD022 45 617 243 665 

Population 35,048 40,840 35,092 42,215 
Revenue [$] 6,293,141 10,175,034 7,444,753 10,291,823 

Number of cities [%] 3.32 21.44 21.80 53.44 

ECONOMIC 
PERFORMANCE 

Group 1 2 3 4 
- 0.16 0.18 0.11 0.02 

IN005_AE 3.3 3.2 3.4 2.9 
IN019_AE 285 1,208 636 3,538 
IN026_AE 3.7 2.3 2.9 1.3 
IN036_AE 66.5 60.4 64.5 46.3 
IN037_AE 16.8 22.0 18.9 30.6 
IN038_AE 2.6 2.1 2.5 2.5 
Population 34,042 93,172 51,846 26,940 

Revenue [$] 6,784,361 24,699,491 14,320,835 3,753,564 
Number of cities [%] 59.61 8.02 32.23 0.14 

 

 Regarding the operational efficiency group, the best group found contains a 

minority of the cities. In both cases, it is observed that the best groups have higher 

revenues, but the size of the cities does not appear to influence performance. A 

correlation with the population (and consequently the size of the WDS) and stoppages 

and interruptions is also noted.  The best equipped group in terms of water metering 

(micro and macro) has the worst leakage index. This correlation, which sounds 

contradictory, can be linked to a better knowledge about leakage by water utilities, 

while the other groups, with lower metering indexes, are only estimating their leakage 

index, thus generating inaccurate values.  

Considering economic performance, it is clear that cities that have higher 

investments rates also have higher revenues and population. The indicators show that 

for this group, the amount collected is used efficiently in general expenses as 



employees, energy, and chemical products. However, these cities seem to be benefit 

from a favorable topology of their networks, as exploitation expenses are low. 

When best and worse groups are evaluated, it is observed that they contain a 

good distribution of cities of every size (Figure 5). Therefore, it is plausible to conclude 

that good planning and management depends mainly on short, medium, and long-term 

strategic actions, and efficiently using the available resources on priority areas, which 

can be defined by the presented clustering.  

 

  

(a) (b) 

Figure 5. Frequency of cities size: a) best groups; b) worst groups. 

 

4. CASE STUDY 2: DMA CREATION CRITERIA FOR PRESSURE 

MANAGEMENT 

4.1. Case study description 

 

WDSs are usually compounded by a large set of pipes and devices. The larger 

the network, the more complex is its management, since the topology and topography 

can change significantly, turning pressure management into a hard task.  

 Several authors have proposed methodologies to segregate WDNs into smaller 

pieces, called DMAs (Campbell et al., 2016; Di Nardo et al., 2011). The division of the 

entire network aims at the creation of DMAs with similar features, such as elevation and 

demand, to ease management by water utilities. Furthermore, DMA creation can help 

water utilities in an important point of management: leakage reduction. When a DMA is 

created, flowmeters and pressure reducing valves (PRVs) can be installed at the 



entrance to monitor the leakage level in the DMA and accurately control pressure 

(Araujo et al., 2006).  

After the grouping of nodes, the management of DMAs requires the installation 

of isolation valves and the closure of the pipes that interconnect different DMAs. The 

closure of pipes creates preferred ways to deliver the water from sources to sectors. The 

choice of entrances for the DMA can be looked on as an optimization problem, since 

PRV installation depends on the cost and operational conditions of the system (Galdiero 

et al., 2016). Brentan et al. (2017) present a multi-level optimization methodology to 

identify the optimal entrance of the DMAs and the optimal set-point for valves. The 

authors apply particle swarm optimization (PSO) combined with hydraulic simulations 

to reach the minimal cost for the controlling device installation. This methodology is 

applied in this work to the final result produced by the hybrid SOM+k-means clustering 

proposed in this paper.  

 

4.2. Results and discussion 

To this purpose, topological features (nodal demand and elevation) and the 

spatial position of the node are used as input data for SOM. The study is applied on the 

C-Town network, a benchmarking case study used in many WDS analyses, such as 

(Marchi et al., 2012, Brentan et al., 2017). The C-Town has 398 nodes linked by 458 

pipes. Users are supplied from a reservoir and seven tanks that use 13 pumps to 

distribute the water. The operational conditions from Wu et al. (2012) were considered 

for this study. To apply the hybrid SOM+k-means method, a database with the topology 

features of the nodes was created. The position of the node in the space, corresponding 

to the pair (x,y) coordinates, nodal demand, and elevation, formed the input matrix for 

SOM. In this case, the input matrix was also normalized by the zscore function, but the 

position data (x,y) was weighted after the normalization to increase the significance of 

this data in the clustering. This is important because for DMA creation, the 

neighborhood relationship of the nodes is paramount.  

 Following the procedure to find the optimal SOM architecture using the 

minimal computational index, an NN with 81 neurons was produced. The results of the 

clustering process are presented in Figure 5, considering the final  number of groups by 

the CH index evaluation, which varied from 280.27 for the worst case (two groups) to 

417.59 for the best case (four groups).  



It is possible to observe the generation of four DMAs, maintaining the 

neighborhood of nodes (Figure 6). However, the scenario resulting from the hybrid 

method is not the most common approach, since the striped scenario requires more 

investment to generate isolation areas. In this case, it is possible to identify 26 boundary 

pipes.  Table 3 presents the main features (elevation and demand) for each DMA and 

the number of nodes per DMA. Even if the number of nodes of each DMA is not 

similar, it is possible to observe the difference among the four elevations. 

The number of nodes per DMA and demand do not follow a linear correlation, 

pointing to a weighted segregation of the network in terms of demand and elevation. 

Demand appears with two main groups (DMA1 and DMA2 in a group, and DMA3 and 

DMA4 in another group).  Considering pressure management, it can be observed that 

elevation was an important parameter, which is good since DMAs with nodes with 

similar elevations are easily controlled with a pressure regulation at the entrance. 

 

 

Figure 6. Final scenario of DMA creation using hybrid method SOM+k-means 

 

Table 3. Average features for each DMA created using the hybrid methodology 

 DMA1 DMA2 DMA3 DMA4 
Mean elevation (m) 40.54 20.11 75.27 63.10 

Stand. dev. of elevation (m) 17.53 13.06 17.94 14.74 
Total  demand (l/s) 131.59 125.38 88.87 76.43 

Stand. dev. of demand (l/s) 0.68 0.71 0.87 0.69 
Number of nodes 127.00 104.00 66.00 101.00 

 

The pipes that separate DMAs, called boundary pipes, must be identified to 

allow the full isolation of DMAs. These boundaries should be manageable in order to 



close or open when required. Moreover, to maximize the benefits of WDS segregation, 

all the entrances of a DMA should be monitored and controlled (equipping all boundary 

pipes with monitoring and control devices is expensive).  

The result of the first optimization stage defined nine pipes with PRVs installed 

and 17 closed pipes (with an investment of $55,732). After defining the entrance of the 

DMAs, the control setting of the PRVs should be defined. In this case, the PSO is 

applied again while considering the nine PRVs with the aim of reducing the operational 

pressure of the system and so achieving the minimal required pressure (as observed in 

Table 4 where the pressure indicators are presented).  Moreover, these indicators enable 

defining three main pressure zones: one formed by DMA1 and DMA2 (where the 

pressure uniformity parameters are similar), and the other two zones integrated by 

DMA3 and DMA4 (which have different values for pressure uniformity). The last 

column of Table 4 presents the mean values for the pressure indicator for the original C-

Town network. A slight reduction of pressure uniformity and mean pressure in the 

network is observed. This reduction during the operation of the network can cause a 

significant reduction in leakage and the system thus becomes more sustainable.    

 

Table 4. Pressure indicators to evaluate the DMA scenario obtained from SOM+k-
means 

 DMA1 DMA2 DMA3 DMA4 Mean 
Mean 

 (Wu et al, 
2012) 

Pressure uniformity  1026.12 1161.61 914.16 627.42 932.32 972.85 
Mean pressure (m) 58.83 61.10 50.94 45.02 53.97 55.52 

Minimal pressure (m) 25.05 25.08 25.54 25.33 25.25 26.69 

 

 

5. CASE STUDY 3: PRESSURE SIGNAL OF HYDRAULIC TRANSIENT FLOW 

BY PIPE BURST AND RUPTURE 

5.1. Case study description 

Pipe bursts cause a pressure surge in the entire network. Monitoring the pressure 

signal in some points can help to quickly identify the area where the rupture occurred. 

This can be achieved with the classification of these signals, which will be different in 

two aspects: pressure amplitude, which is related to the intensity of the leakage flow 

resulting from the rupture; and, time delay for the sensor to receive this signal, which is 

related to the distance between the sensor and the rupture location. It is expected that 



each group in the classification has a characteristic pressure signal, which could be 

translated to the area and intensity of the rupture, helping ensure (for example) a rapid 

maintenance repair and protective operations for valves and pumps. 

The method of characteristics (MOC) was used to model this burst pipe scenario 

in WDNs. The continuity law is applied to a generic node and MOC positive and 

negative lines are used to calculate flow in convergent and divergent pipes respectively 

(Almeida and Koelle, 1992). To model a pipe burst, a sudden leakage flow is added to 

the nodal demand. To create a more realistic scenario, the model proposed by Van Zyl 

(2014) was used to simulate the leakage flow.  

The hybrid method for clustering was applied to a real Brazilian DMA with 118 

nodes and 153 pipes. This DMA, known as Campos do Conde II, is a part of a new 

system recently finished in the WDS of Piracicaba, in the State of São Paulo, Brazil. 

Figure 7 presents the network topology and the elevation of the nodes. Red circles 

highlight the monitored nodes (chosen following a pressure sensitivity analysis). 

  

 

Figure 7. Topology of the real DMA network Campos do Conde, Piracicaba, Brazil  

 

To create the database, simulations were performed, adding a leakage flow to 

each node one at a time. To create different leakage flows, the discharge coefficient was 

modified. Therefore, with 15 leakage conditions in each node, a total of 1,770 

simulations were made. 



The main objective of applying the hybrid SOM+k-means algorithm is to 

identify patterns within the set of monitored pressures in previously defined nodes. For 

each leakage scenario, the pressure signal of the four monitored nodes was collected 

during a period of 60 s and concatenated for classification with the proposed method. 

For this application, the data is normalized using the z-score function, which, in this 

case, has a salient feature because maintaining the signal shape is very important for a 

good segregation of transient pressure. 

  

5.2. Results and discussion 

The results of this case study were obtained with an SOM composed of 64 

neurons, corresponding to the minimal value of ܫ௘௙௙. The application of the CH index 

analysis in the k-means stage provides the optimal number of clusters, ten in our case, as 

shown in Figure 8. 

 

 

Figure 8. CH index for transient pressure analysis 

  

The ten groups of pressure signals are presented and described in Figure 9. Note 

that each cluster contains a set of leakage scenarios with a similar pressure signal shape, 

which is helpful to locate the event. Clusters 2, 4, 6 and 8 also have larger pressure 

surges, indicating potentially harmful events. Cluster 1 is the group with most events, 

but mainly with minor leakages and distant from monitored nodes; while cluster 4 refers 

only to leakages in node 79, located near one of the monitoring nodes (creating a unique 

shape for the pressure signal).   

 



 

Figure 9. Characteristic pressure signal for each final classification cluster 

 

The comparison presented in Figure 10 shows that for each monitoring node, the 

pressure signal is characteristic for each cluster. Therefore, it is expected that in near-

real time operation, when a certain response is observed, according to the cluster where 

it is classified, predefined optimized actions may be taken to quickly solve the problem 

and reduce economic, environmental, and social losses. 

 

 

Figure 10. Comparison of pressure signal in monitored nodes between clusters 1 and 4 

 

 

 



6. CONCLUSIONS 

This paper presents a clustering tool based on SOMs coupled with a k-means 

algorithm to achieve a predefined number of groups, taking into account the complex 

relationship among features. In general, clustering data is a hard task, since the size of 

the databases and unclear relationships among their variables can hide potential clusters, 

thus forcing the application of robust computational tools. SOMs find patterns and 

project high dimensional databases in (mainly) two-dimensional maps. However, for 

certain applications, those maps exhibit level of granularity that is too fine. In other 

words, they produce a detailed description that is not directly useful in some decision-

making processes and so some other procedure may be required. In this paper, we 

propose the hybrid use of SOMs as a preprocessing technique. Firstly, an SOM 

produces a feature map with the optimal architecture reached by the minimization of the 

efficiency index. Working on an SOM-based dissimilarity matrix, a k-means algorithm 

then coarsens the map to produce a smaller number of groups that is more suitable for 

various decision-making processes. Three case studies for different problems of WDSs 

are presented. 

For the WDS indicator case study, some cities had missing or incorrect 

information (which could generate inconsistencies in clustering and so were discarded), 

showing the importance of pre-processing to obtain a reliable database. With the 

database of clean data, the method clearly separated the best and worst cities into 

different groups, which is very helpful for governmental investment policies. In 

addition, it is interesting to observe that the size of the city does not appear to influence 

WDS quality. 

 The method also presented good results in the DMA creation case by creating 

groups with similar elevation, which is a major characteristic for pressure management. 

The process of finding optimal entrance pressures demonstrates the importance of DMA 

creation due to pressure regularization. After this process, it is observed that the groups 

created by the hybrid method can also be differentiated by the pressure uniformity 

indicator, which can be used in leakage problems (since leaks are directly related to the 

operational pressure). 

Finally, the third case study classified transient pressure signals generated by 

pipe burst simulations. Once again, the method presented good results, creating clusters 

of pressure signals with similar characteristics. It is possible to identify a class of 

rupture and estimate its location by just monitoring the pressure in some strategic 



points, thus enabling water utilities to develop specific alarm and emergency protocols 

to minimize the effects of pipe bursts. 

As shown in this work, management, operation, and planning of WDSs can be 

improved if the available data is suitably used. Moreover, the larger the database, the 

harder the task of applying this information from a practical point of view. The good 

results obtained with these three case studies (referring to planning, operation, and 

management of WDSs) suggests that the hybrid method proposed can also be useful to 

handle problems in other contexts – especially in environmental fields. 
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