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Abstract In this paper, we retrieve data about the frequent users of electronic
commerce during the period 2011- 2016 from the Spanish National Institute of
Statistics. These data, coming from surveys, have intrinsic uncertainty that we
describe using appropriate random variables. Then, we propose a stochastic
model to study the dynamics of frequent users of electronic commerce. The
goal of this paper is to solve the inverse problem that consists of determin-
ing the model parameters as suitable parametric random variables, in such a
way the model output be capable to capture the data uncertainty, at the time
instants where sample data are available, via adequate probability density
functions. To achieve the aforementioned goal, we propose a computational
procedure that involves building a nonlinear objective function, based on sta-
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tistical moment measures, to be minimized using a variation of the Particle
Swarm Optimization algorithm.
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1 Introduction

In the last years, many contributions have dealt with the study of ordi-
nary differential equations and difference equations whose input data (ini-
tial/boundary conditions, forcing term and/or coeffcients) are assumed to be
random variables [1-6], for instance. In most of them, it is assumed that the
probability distributions of the parameters are known and follow standard
patterns (Uniform, Gaussian, Exponential, etc.), and the aim is to see their
effect on the solution, which is a stochastic process. However, when we want
to model and study a real phenomenon, to assume that the probability distri-
bution of the parameters are known and standard, may be unreal. This fact
is even more apparent when dealing with a mathematical model designed to
describe phenomena in Social Sciences.

Therefore, to determine appropriate probability distributions of the model
parameters is becoming a key part of the problem when dealing with real ap-
plications. In other words, when we try to describe real phenomena, usually
it is not enough to build coherent models, but also consider and treat ade-
quately the uncertainty involved in both sample data and model parameters
as well as to control their effect on the solution. In this latter sense, a key issue
is the computation of the probability distributions of the model parameters
that make that the solution stochastic process of the model, at certain time
instants, capture the uncertainty embedded in sample data.

There have been several attempts to approach this problem. For instance,
in [7,6] the authors use inverse frequentist and least square parametric tech-
niques, respectively, to describe the data uncertainty because the lack of in-
formation about how the sample data were obtained and treated. In both ap-
proaches, strong assumptions about model parameters are implicitly assumed.
In [8], it is proposed a complete computational approach of the problem to ob-
tain the probability distribution of the model parameters, the solution stochas-
tic process and also to capture the data uncertainty via punctual (mean) and
probabilistic (confidence intervals) information. To do that, the probability
distributions of these data uncertainties need to be previously assigned.

In this paper we want to go beyond and, following the approach presented
in [8], we want to capture the data uncertainty via their distributions of proba-
bility rather than using the mean and confidence intervals only. That is, given
a model and the probability distributions of sample data, describing their
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uncertainty, we want to find out the probability distributions of the model pa-
rameters such that the probability density functions of the solution stochastic
process be as much similar as the probability density functions at the time
instants where sampled data are available.

We should say that there are two issues increasing the difficulty of this ap-
proach. On the one hand, the data themselves. The sources where we retrieve
the data do not always provide enough information to facilitate the assignation
of probability distributions that describe their uncertainty. Anyway, if we were
able to assign acceptable probability distributions using statistical techniques,
this would not guarantee that we were accurately describing the uncertainty
of the whole phenomenon. On the other hand, the model itself. Although the
model gains flexibility when its parameters are described via probability distri-
butions, we implicitly assume certain behavior once a specific model (pattern)
is chosen. Thus, the choice of the model always involves certain rigidities that
may prevent that the solution stochastic process does not capture successfully
the data uncertainty. Although the choice of a mathematical model can restrict
the subsequent analysis, often making this decision is necessary to perform the
corresponding study. Anyway, this choice must be based upon physical tenets
supporting the modeling process. Otherwise, heuristic methods can be applied.

The paper is organized as follows. In Section 2, we retrieve data about the
frequent users of e-commerce (EC) in Spain from 2011 until 2016. Then, we
will be able to assign probability distributions that capture the uncertainty
of each one of the data. In Section 3, we build a nonlinear stochastic model
that describes the dynamics of frequent users of EC in Spain. Also, we assign
probability distributions to the model parameters, discussing what distribu-
tions should be more flexible and appropriate. In Section 4 we describe the
computational procedures we implement with the aim to determine what prob-
ability distributions for the model parameters will allow the solution stochastic
process be as much similar as possible to the data probability density func-
tions at their corresponding time instants, using for this adjustment an inverse
optimization technique whose objective function involves statistical moment
measures. In Section 5, we describe relevant details of the implementation as
well as we show the obtained results. Section 6 is devoted to discussion of the
main conclusions derived from our study.

2 Available Data and e-Commerce Model

This section is devoted to present the available data about frequent users of EC
that will be used throughout the study. According to source [9], frequent users
of EC are those who have bought by the Internet in the last three months.
Table 1 shows available data from Spanish Statistics Institute (INE) [9]
about the average proportions (px) of people that use EC in Spain in Dec
2011 (k = 0), Dec 2012 (k = 1), Dec 2013 (k = 2), Dec 2014 (k = 3), Dec
2015 (k = 4) and Dec 2016 (k = 5), as well as the sample size (ny) of the
corresponding surveys. The time instants ¢, are given in months (see Table 1).
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Table 1 Proportion pi of Spanish people who have bought by the Internet at least once
in the last three months during the period 2011 — 2016 and the sample size njg of the
corresponding surveys [9]. The time instants are expressed in months from Dec 2011 (¢o) to
Dec 2016 (5).

Date ‘ Time instant (months) ‘ Proportion of users of EC ‘ Survey sample size
Dec 2011 to =0 po = 0.186936 no = 20647
Dec 2012 t1 =12 p1 = 0.218087 n1 = 20484
Dec 2013 to =24 p2 = 0.229510 ng = 20815
Dec 2014 tz = 36 p3 = 0.276636 n3 = 20786
Dec 2015 ty =48 pa = 0.321732 ng = 23887
Dec 2016 ts = 60 ps = 0.350582 ns = 24132

A key point to quantify the data uncertainty shown in Table 1 is to as-
sign adequate probability distributions of the data at each time instant g,
k = 0,1,2,3,4,5. To achieve this goal, we use the sample size of the sur-
veys collected in Table 1 and we assume that people interviewed each year
is different and, consequently, the survey outputs are independent. An in-
dividual can be a frequent user of EC or not, and these are two mutually
exclusive events. Therefore, it is natural to consider that in each time instant
ty, K = 0,1,2,3,4,5, the users of EC can be represented by a Binomial dis-
tribution, Bi(ng, pr), where ny is the corresponding survey sample size and
pr €]0, 1] is the proportion of frequent users of EC. For convenience, we will
work with the percentage of people who buy or not by the Internet. Thus, it
is necessary to scale the Binomial distributions to the interval ]0, 1] and we do
this dividing by the number of survey samples. In Table 2, we show the scaled
Binomial distributions Py for every time instant ¢y, £k = 0,1,2,3,4,5 and the
moments of first and second order. According to the statistical properties of
Scaled Binomial distribution, the first and second order moments of Py have
been calculated using the following expressions

1—
me=ER) = w=ER =2

Table 2 Scaled Binomial (Bi) distributions for Spanish EC data collected in Table 1 and
their moments of first (my) and second order (vy), k =0,1...,5, defined in (1).

Time Scaled Binomial Moment of Moment of
instants distribution 1st order 2nd order
to=0 Py = mBi(20647, 0.186936) | mo = 0.186936 | vo = 0.034950
t1 =12 | P, = mBi(20484, 0.218087) | mi = 0.218087 | v1 = 0.047570
to =24 | P = WilsBi(20815’0'229510) mo = 0.229510 | v2 = 0.052683
ts =36 | P3 = T%%Bi(20786,0.276636) ms = 0.276636 | vz = 0.076537
ty =48 | Py = WIMBi(QSSSZ 0.321732) | ma = 0.321732 | vg = 0.103522
)

ts =60 | Ps = 5ix5Bi(24132,0.350582
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3 Building a Model to Study the Dynamics of the Frequent Users
of e-Commerce in Spain

Now, we introduce the proposed model in order to describe the dynamics of the
frequent users of EC in Spain. First, we consider the following subpopulations:

— XtB denotes the percentage or proportion of people who do not use fre-
quently EC at the time instant ¢ (in months),

— X P denotes the percentage or proportion of people who use frequently EC
at the time instant ¢ (in months).

Therefore X2, X2 €]0, 1], for every t. In the period 2011 — 2016, according
to [10], the birth and death rates are very close, and consequently, we assume
constant population. Also, we are going to consider that non-users of EC may
become users by peer influence of the EC users [11], and this is modeled by the
term BXPXP, where 8 > 0 is the transmission parameter. People can leave
the users of EC subpopulation (X/), when they do not purchase any item by
the Internet in three months, at rate v > 0, and it is modeled by the term
vXP. The dynamics of people who use and do not use EC are described by
the following nonlinear system of difference equations

XPy = XxP - pxPXP +4XP, @
X5, =X +8XPXP X ]

In Figure 1, we show the model diagram corresponding to dynamic model

(2)-

BxEXP

xp xp

Fig. 1 Compartmental model for the dynamics of the proportion of Spanish frequent users
of EC. The boxes represent the subpopulations and the arrows the transitions between
subpopulations.

As X and X P are probabilities, then X+ X = 1, for every ¢. Therefore,
dynamic model (2) can be rewritten as:

{Xg'l =1 _thj-la
X5, =X +8xP(1-XP)—4XP.

Once we have formulated and simplified the proposed model, taking into
account the sampling errors in the surveys, it is natural to consider the model
parameters as random variables in order to describe data uncertainty. In a first
stage, we are going to consider the parameter § as a positive random variable
and ~ as a positive constant to be determined.

3)
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In [12], the authors show that a reasonable probability distribution for pa-
rameter - is the exponential. In the computer tests and simulations performed,
we realized that a small percentage of users of EC moves to the non-users state,
which agrees the observations collected in [9]. This means that the mean, and
consequently the variance, of the exponential distribution are very small and
it supports we can consider model parameter v as a deterministic constant,
rather than a random variable, to be determined.

We should say that transmission parameter S embeds social complex pro-
cesses involving the frequent use of EC habit. These social processes are usually
not studied in standard surveys, as it happens in [9]. Therefore, it is plausible
to consider  as a random variable. Then, we are going to assume that random
variable 8 follows a Beta Prime distribution Be, (51, 82) because it is positive
and flexible (biparametric) [13].

From [12, p. 352], parameter v can be interpreted as the average time a
user of EC becomes a non-user. Taking into account that the surveys consider
that a frequent user of EC changes his/her current state if he/she does not
buy by the Internet during three months and the model time step is a month,
the model parameter v will be upper bounded by 1/3 and should lie in the
interval (0,1/3).

Now, the goal is to seek the parameters $; > 0 and (2 > 0 of the positive
random variable 3, and the real number v > 0, such that the model output
of (3) fits the best the probability distributions at the corresponding time
instants shown in Table 2.

4 Procedure to Solve the Problem Using an Inverse Optimization
Technique

In this section, we propose a computational algorithm to find the values of the
parameters (31, 2 and 7 such that the probability distributions of the model
(3) in the time instants tg, t1, ta, t3, t4, t5, be as much close as possible to the
corresponding probability distributions in Table 2. To achieve this goal, a com-
putational method to minimize the nonlinear error function of the associated
inverse problem is proposed.

First, according to second equation of (3), we define the function

M(X,B,7) = X + X(1 - X) =X, (4)

that allows to calculate the frequent users of EC in a month depending on
the frequent users of EC in the previous month.

An important step in our procedure is to obtain the model output every
month given the model parameter estimates. This will be done by the out-
put function, say O(B1, B2,7,T), where T denotes the number of months to
calculate the model output mo, defined by the following steps

— Initialize the vector mo with size T + 1.
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— Let zyp be a value of the initial condition sampled according to scaled
Binomial distribution Py (see Table 2).

— Let b be a value sampled according to Beta Prime distribution 5 = Be, (51, 52).

Assign mo(1) = xg.

FORi=1TOT

— Calculate mo(i + 1) = M (mo(i), b,).

RETURN meo.

We will need to repeat several times the evaluation of the above function
O(B1,B2,7,T). Then, we define a function that performs this task. Let us
define the function S(f1, 52,7, N,T), where N is the number of times we
evaluate the function O, defined by

— Initialize the matrix OQUT of size N x T.
— FORi=1to N

— Calculate the row OUT (i) = O(B1, f2,7,T).
— RETURN OUT

The above algorithm returns a matrix of size N x T, where each row is the
vector-realization (model output) obtained with a given sampled values of z
and 3.

Now, we introduce the fitness function that will help us to determine the
best model parameters 3y, 82 and . The fitness function applies the above
algorithm to obtain a matrix OUT with N vector-realizations. However, we
do not need all the elements of the matix OUT, we need all the rows but only
in the time instants ¢, for k& from 0 to 5, where we have data and then we can
compare. Let us define the fitness function F(81, f2,7) as follows

— Let N be a fixed value, large enough.

Set T' = 60.

Calculate the matrix OUT = S(84, f2,v, N, T).

— FORk=0to5

— Take the column % of the matrix OUT, that is, the N model outputs

corresponding to the same time instant ¢, {OUT'(1,t),...,OUT(N,t;)}
and calculate My, its mean (moment of first order), and V4, its moment
of second order.

— Calculate

E =My —mqo|+ -+ |Ms —ms| + [Vo —vo| + -+ [V5 — vs].
— RETURN FE

The fitness function F(531, B2, ) is a positive real valued function defined
in the domain R* x R* x (0,1/3). The initial domain is too wide and, after
some runs, it will be reduced.

Now, to find the appropriate values of 31, 82 and -, we have to minimize
the fitness function F'. To do that, we use the Random Particle Swarm Opti-
mization (rPSO) presented in [14]. This optimization algorithm is a variation
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of the classical PSO algorithm where randomness is introduced in the calcu-
lation of the new velocity of the particles. rPSO has shown to perform well
fitting models with data uncertainty [15].

Then, we apply the above procedure to fit probabilistically the model to the
data distributions in Table 2. Now, we describe some extra features included
in our version of the rPSO algorithm:

1. We include 10% of mutation probability.

2. We apply rPSO with 90 particles. 60 of them follow the classical PSO up-
dating procedure. The remainder 30, called exzplorers, and their updates
are stored in a repository. Therefore, the number of explorers stored in the
repository increases as the times goes on. Thus, in each iteration (an iter-
ation corresponds to the evaluation of a whole generation of particles), we
calculate the center of mass of a sample of 1/3 of the particles in the repos-
itory and update the velocities of the explorers taking directions moving
away the center of mass.

Observe that the above features will allow us to explore more extensively
the space of parameters.

5 Results

For the evaluations of the fitness function F(81,f2,7), we have made the
decision of taking N = 1000 and the parameters search space limited to p; €
[1000, 10000], B2 € [50000,150000] and v € (0,1/3). The interval for v was
justified previously. The intervals for 5, and (2 have been chosen after some
runs and taking into account that the Beta Prime function has a big variance
if its parameters are small.

Respect to the rPSO algorithm, as we said before, we consider 90 particles
with a maximum number of 5000 iterations. The procedure was run in a PC
with Intel i5 CPU and 16GB of RAM under MS-Windows 10. The code was
implemented in Python 2.7 and the fitting procedure took 1 hour and 52
minutes.

The values of the parameters with best fitness have been

B1 = 1985.7534, B = 13820.0903,v = 7.02012261 x 1075, (5)
being the fitness

F(1985.7534, 13820.0903, 7.02012261 x 10~°) = 0.0435104687349.

Graphically, the result of the fitting can be seen in Figure 2. Here, we
evaluate the function S(f1, B2,7, 1000, 60) with 31, B2, v given in (5), and we
build the histograms of the N = 1000 model output values in the time instants
ti, {OUT(1,tk),...,OUT(N,t)}, for ¢, = 12,24, 36, 48,60 months (in blue).
We compare these histograms with the histograms of the data probability
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distributions Py, P, P3, Py, P5 of Table 2 (in red). Except for Dec 2013, the
similarity of the histograms in each time instant is remarkable because both
histograms share most part of their uncertainties.

Dec 2012 Dec 2013 Dec 2014
150 150

150 4
100 100
100 4
50 1 50
50 4
- - 0 b
0.20 0.22 0.20 0.25 0.250 0.275 0.300

Dec 2015 Dec 2016
150

100 - 100 -
50 50
m 0 m |
0.300 0.325 0.325 0.350 0.375

Fig. 2 Comparison between the histograms of the N = 1000 model outputs in the time
instants ¢t1 = Dec 2012, to = Dec 2013, t3 = Dec 2014, t4 = Dec 2015, t5 = Dec 2016 (in
blue) and their corresponding data histograms of the scaled Binomial distributions given in
Table 2 (in red).

In Figure 3, we can see the obtained probability density function of the
transmission parameter 3, the Beta Prime distribution of the random variable
B = Bep(1985.7534, 13820.0903).

As the fitting has been good, we can evaluate S(f1, 2,7, 1000, 108) with
B1, B2, v given in (5) and then build the histograms of the N = 1000 model
output values in the time instants t;, {OUT(1,t),...,OUT(N,tx)}, for t, =
72,84,96, 108 to perform model predictions of the probability distributions of
the frequent users of EC over Dec 2017, Dec 2018, Dec 2019 and Dec 2020,
respectively. Taking T' = 108 months, we reach Dec 2020. The graphical results
are illustrated in the Figure 4.

We conclude this section showing one more graph. In Figure 5, we show
the 95% confidence intervals of the data distribution (scaled Binomial ran-
dom variables in Table 2) represented by the red points, and the model 95%
confidence intervals represented by the green lines at every month from 2011-
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Probability density function of 3 parameter

1200

1000 -

800

600 -

400

200

0.012 0013 0014 0015 0.016 0017  0.018

Fig. 3 Probability density function of the random variable transmission parameter 8 =
Bep(B1, B2) where f1 = 1985.7534 and B2 = 13820.0903 are the values that provide the best
fitness. Note that the variability is quite small.

2016 (estimation) and from 2017-2020 (prediction). This is another form to
visualize the goodness-of-fit of the model and the prediction.

6 Conclusions

In this paper we have described a computational procedure to determine the
probability distribution we can assign to the model parameters in such a way
the solution stochastic process of a random dynamic discrete model can cap-
ture the data uncertainty expressed through probability distributions. The
study has been conducted via real data of the use of electronic commerce in
Spain. The obtained estimation has been validated and it allowed us to perform
reliable predictions over the next four years using histograms. Nevertheless, we
must say that the capture of the uncertainty related to the datum in Dec 2013
has not been good. This makes us return to the discussion in the Introduction
section: maybe, the data uncertainty follow different distributions to the ones
we proposed; or the model is not as flexible as we expected and it is not able
to capture accurately the whole data uncertainty; or something happened in
the year 2013 (something we do not know) such that the datum of Dec 2013,
and consequently its uncertainty, did not follow the same pattern as the other
data.
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50 Dec 2017 80 Dec 2018
60 60 -
40 - 40 4
20 201

0 0.

037 038 039 040 041 040 042 044  0.46
50 Dec 2019 50 Dec 2020
60 60 -

40 40 -
20 201
0- 0l

0.46 0.48 0.50 0.50 0.52 0.54

Fig. 4 Histograms of the N = 1000 model outputs in the future time instants Dec 2017,
Dec 2018, Dec 2019 and Dec 2020.

Also, we have to take into account that the proposed nonlinear stochastic
model has only two parameters, being one of them a random variable and
the other a deterministic value. Furthermore, previously to the application
of the optimization procedure, we had to narrow the space of parameters
and to determine the appropriate search area. Anyway, the search space has
been very wide. Then, if we want to extend this procedure to more complex
models, a suitable reduction of the area to seek the model parameters should
be considered.

In the future, we expect to design new computational techniques more
general where we can avoid the assignment of probability distributions to data
and/or model parameters and then, to obtain a solution stochastic process able
to completely capture the data uncertainty.
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