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Abstract In this paper, we propose a family of optimal eighth order convergent iterative methods for multiple
roots with known multiplicity with the introduction of two free parameters and three univariate weight functions.
Also numerical experiments have applied to a number of academical test functions and chemical problems for
different special schemes from this family that satisfies the conditions given in convergence result.
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1 Introduction

Newton’s method converges quadratically for every simple root of a nonlinear equation f(x) = 0. However, if
the root has multiplicity m, m > 1, it is necessary to include a damped parameter, that coincides with the
multiplicity, in order to preserve the quadratic convergence.

In past, it was very difficult to construct a higher-order optimal multi-point scheme for multiple zeros of the
given function with multiplicity m ≥ 1. Nowadays, with the digital computer, advanced computer arithmetic,
software and symbolic computation, the construction of higher-order optimal multi-point methods has become
easy. Many researchers presented optimal fourth-order iterative methods for multiple zeroes like Li et al. [11]
in 2009, Sharma and Sharma [16] and Li et al. [12] in 2010, Zhou et al. [21] in 2011, Sharifi et al. [15] in 2012,
Soleymani et al. [17], Soleymani and Babajee [18], Liu and Zhou [13] and Zhou et al. [22] in 2013, Thukral
[19] in 2014, Behl et al. [1] and Hueso et al. [9] in 2015 and Behl et al. [2] in 2016. In recent years, atmost
sixth-order convergence method has been given for finding multiple zeros that can be found in the available
literature. There are only three multi-point iterative schemes with sixth-order convergence for multiple zeros.
First one was proposed by Thukral [19] and other two were presented by Geum et al. [7,8]. In 2013, Thukral

This research was partially supported by Ministerio de Economı́a y Competitividad MTM2014-52016-C02-2-P and Generalitat
Valenciana PROMETEO/2016/089.

Fiza Zafar
Centre for Advanced Studies in Pure and Applied Mathematics,
Bahauddin Zakariya University, Multan 60800, Pakistan
E-mail: fizazafar@gmail.com

Alicia Cordero
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E-mail: acordero@mat.upv.es

Quratulain
Centre for Advanced Studies in Pure and Applied Mathematics,
Bahauddin Zakariya University, Multan 60800, Pakistan
E-mail: quratulainrana54@gmail.com

Juan R. Torregrosa
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[20] presented a multi-point iterative method with sixth-order convergence, which is given by:

yn = xn −m
f(xn)

f ′(xn)
,

zn = xn −m
f(xn)

f ′(xn)

3∑
i=1

(
f(yn)

f(xn)

) i
m

, (1)

xn+1 = zn −m
f(xn)

f ′(xn)

(
f(zn)

f(xn)

) 1
m

[
3∑

i=1

(
f(yn)

f(xn)

) i
m

]2

.

In 2015, Geum et al. [7], have given the following two-point sixth-order iterative scheme:

yn = xn −m
f(xn)

f ′(xn)
,m > 1,

xn+1 = yn −Q(pn, sn)
f(xn)

f ′(xn)
, (2)

where pn = m

√
f(yn)
f(xn)

, sn = m−1

√
f ′(yn)
f ′(xn)

and Q : C2 → C is holomorphic function in the neighborhood of origin

(0, 0). In 2016, Geum et al. [8], have again proposed a three-point iterative scheme with sixth-order convergence
for multiple zeros. The proposed scheme was based on weight functions, which can be seen in the following
expression:

yn = xn −m
f(xn)

f ′(xn)
,m > 1,

wn = xn −mG(pn)
f(xn)

f ′(xn)
, (3)

xn+1 = xn −mK(pn, tn)
f(xn)

f ′(xn)
,

where pn = m

√
f(yn)
f(xn)

, tn = m

√
f(wn)
f(xn)

and G : C → C is analytic in a neighborhood of 0 and K : C2 → C is

holomorphic in the neighborhood of (0, 0). All of the above three schemes (1)-(3) require four function evaluations
in order to produce sixth-order convergence. The iterative method (2) has one drawback that it does not work
for simple zeros (i.e. for m = 1).

Recently, Behl et al. [3] have developed a family optimal eighth order iterative methods given as:

yn = xn −m
f(xn)

f ′(xn)
,m > 1,

zn = yn − unQ(hn)
f(xn)

f ′(xn)
, (4)

zn+1 = xn − untnG(hn, tn)
f(xn)

f ′(xn)
,

where un = m

√
f(yn)
f(xn)

, hn = un

a1+a2un
, tn = m

√
f(zn)
f(yn)

and Q : C → C is analytic in a neighborhood of 0 and

G : C2 → C is holomorphic in the neighborhood of (0, 0).
Motivated by the research going on in this direction and with a need to give more optimal higher order

methods, we propose an optimal eighth-order convergent iterative method for multiple root of a nonlinear
equation. The main reason of this proposed method is to present a new higher-order optimal scheme for finding
simple as well as multiple zeros of nonlinear equations.

The rest of the paper is organized as follows: In Section 2, we propose a new family of optimal eighth-
order iterative methods to find multiple roots of nonlinear equation and discuss its convergence analysis. Some
special cases are given in the Section 3. In Section 4, numerical performance and comparison of the proposed
schemes with the existing ones are given. Academic test functions and nonlinear equations that appear in
different chemical problems such as Van der Waals equation, fractional conversion in a chemical reactor and the
isothermal continuous stirred tank reactor are used in this section. Concluding remarks are given in Section 5.
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2 Construction of the scheme

This section is devoted to the construction and convergence analysis of this proposed scheme with the main
theorem. So, we propose a new eighth-order scheme for a known multiplicity m ≥ 1 of the desired multiple zero
as follows

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −munH(un)
f(xn)

f ′(xn)
, (5)

xn+1 = zn − unvn(A2 +A3un)P (vn)G(wn)
f(xn)

f ′(xn)
,

where A2, A3 ∈ R are free parameters and the weight functions H : C → C, P : C → C, G : C → C are analytic
function in the neighborhood of 0 with

un =

(
f(yn)

f(xn)

) 1
m

, vn =

(
f(zn)

f(yn)

) 1
m

, wn =

(
f(zn)

f(xn)

) 1
m

,

are the weight functions. It is worthy to note that we will obtain well known King’s family of fourth-order
iterative methods for m = 1 with the help of first two substeps. In the next result, we demonstrate that the
order of convergence of the proposed scheme will reach at optimal eight without using additional functional
evaluations.

Theorem 1 Let x = α be a multiple zero with a multiplicity m ≥ 1 of the involved function f . In addition, we
assume that f : C → C is an analytic function in the region enclosing a multiple zero α. The proposed scheme
defined by (5) has an optimal eighth-order convergence, when it satisfies the following conditions:

A2 = 1, A3 = 2A2,

H0 = H(0) = 1, H1 = H ′(0) = 2, H2 = H ′′(0) = −2, H3 = H ′′′(0) = 36, (6)

P0 = P (0) = P ′(0), G0 = G(0) =
m

P0A2
, G1 = G′(0) =

2m

P0A2

and the error equation is given as:

en+1 =
1

48m7P0
c1c

2
2(11 +m)− 2mc2)((14(59 + 12m+m2)P0 − 3 (11 +m)

2
P2)c

4
1

−12m(4(7 +m)P0 − (11 +m))c21c2 + 12m2 (2P0 − P2) c
2
2 + 24m2P0c1c3)e

8
n

+O(e9n),

where en = xn − α and ck =
1

k!

f (k)(α)

f ′(α)
, i = 1, 2, . . .

Proof Let x = α be a multiple zero of f(x). Expanding f(xn) and f ′(xn) about x = α by the Taylor’s series
expansion, we obtain

f(xn) =
f (m)(α)

m!
emn

(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n +O(e9n)

)
, (7)

and

f ′(xn) =
f (m)(α)

m!
em−1
n

(
m+ c1(m+ 1)en + c2(m+ 2)e2n + c3(m+ 3)e3n + c4(m+ 4)e4n

+c5(m+ 5)e5n + c6(m+ 6)e6n + c7(m+ 7)e7n + c8(m+ 8)e8n +O(e9n)
)
, (8)

respectively. By using expressions (7) and (8) in the first substep of (5), we obtain

yn − α =
c1e

2
n

m
+

(2c2m− c21(m+ 1))e3n
m2

+

4∑
k=0

Bke
k+4
n +O(e9n), (9)
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where Bk = Bk(m, c1, c2, . . . , c8) are expressed in terms of m, c2, c3, . . . , c8, where the two coefficients B0 and
B1 can be explicitly written as B0 = 1

m3 {3c3m2 + c31(m+ 1)2 − c1c2m(3m+ 4)} and B1 = − 1
m4 {c41(m+ 1)3 −

2c2c
2
1m(2m2 + 5m + 3) + 2c3c1m

2(2m + 3) + 2m2(c22(m + 2) − 2c4m)}, etc. With the help of Taylor’s series
expansion, we obtain

f(yn) = f (m)(α)e2mn

[
( c1m )m

m!
+

(2mc2 − (m+ 1)c21)(
c1
m )men

c1m!
+

6∑
k=0

Bke
k+2
n +O(e9n)

]
. (10)

By using the expressions (7) and (10), we get

un =
c1en
m

+
(2mc2 − (m+ 2)c21)e

2
n

m2
+ τ1e

3
n + τ2e

4
n + τ3e

5
n +O(e6n), (11)

where,

τ1 =
1

2m3
[c31(2m

2 + 7m+ 7) + 6c3m
2 − 2c1c2m(3m+ 7)],

τ2 = − 1

6m4

[
c41(6m

3 + 29m2 + 51m+ 34)− 6c2c
2
1m(4m2 + 16m+ 17) + 12c1c3m

2(2m+ 5)

+12m2(c22(m+ 3)− 2c4m)
]
,

τ3 =
1

24m5

[
−24m3(c2c3(5m+ 17)− 5c5m) + 12c3c

2
1m

2(10m2 + 43m+ 49)

+12c1m
2{c22(10m2 + 47m+ 53)− 2c4m(5m+ 13)} − 4c2c

3
1m(30m3 + 163m2 + 306m+ 209)

+c51(24m
4 + 146m3 + 355m2 + 418m+ 209)

]
Expanding Taylor series of H(u) about 0, we have:

H(u) ≈ H0 +H1u+
H2

2!
u2 +

H3

3!
u3, (12)

where Hj = H(j)(0) for 0 ≤ j ≥ 3. Inserting expressions (9)-(12) in the second substep of scheme (5), we have

zn = α+
(−1 +H0)c1e

2
n

m
− (1 +H1 +m−H0(3 +m)c21) + 2(−1 +H0)mc2)e

3
n

m2

+
1

2m3

[
(2 + 10H1 −H2 + 4m+ 4H1m+ 2m2 −H0(13 + 11m+ 2m2))c31

+2m(−4− 4H1 − 3m+H0(11 + 3m)c1c2 − 6(−1 +H0)m
2c3)e

4
n

+z5e
5
n + z6e

6
n + z7e

7
n +O(e8n)

]
.

By selecting H0 = 1 and H1 = 2, we obtain

zn = α+
c31(9−H2 +m)− 2mc1c2

2m3
e4n + z5e

5
n + z6e

6
n + z7e

7
n +O(e8n), (13)

where

z5 = − 1

6m4

{
c41(125 +H3 + 84m+ 7m2 − 3H2(7 + 3m) + 6m(−3H2 + 4(7 +m))c21c2 + 12c22m

2 + 12c2c1m)
}
,

z6 =
1

24m5

{
1507 + 1850m+ 677m2 + 46m3 + 4H3(9 + 4m)− 6H2(59 + 53m+ 12m2))c51

−4m(925 + 8H3 + 594m+ 53m2 − 3H2(53 + 21m)c31c2 + 12m2(83− 9H2 + 13m)c21c3

−168m3c2c3 + 12m2c1(115− 12H2 + 17m)c22 − 6mc4)
}
,

and

z7 = −
{
12c21c3m

2(36β + 13m+ 11) + (37− 168c2c3m
3 + 4c31c2m(96β2 + 252β + 53m2

+18(14β + 5)m) + 12c1m
2(c22(48β + 17m+ 19)− 6c4m)

}
.
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Now, again by using the Taylor’s series expansion for (13), we have

f(zn) = f (m)(α)e4mn

2−m
(

c31(9−H2+m)−2mc1c2
m3

)m

m!
−

(
2−m

(
c31(9−H2+m)−2mc1c2

m3

)m−1

ρ0

)
3(m3m!)

en

+
7∑

j=0

Hje
j+1
n +O(e9n)

 , (14)

(15)

where ρ0 = c41(125 +H3 + 84m + 7m2 − 3H2(7 + 3m))c41 − 6m(−3H2 + 4(7 +m))c21c2 + 12m2c22 + 12c3c1m
2).

With the help of expressions (7) and (14), we have

vn =
c21(9−H2 +m)− 2mc2

2m2
e2n + ρ1e

3
n + ρ2e

4
n + ρ3e

5
n +O(e6n), (16)

where,

ρ1 = − 1

6m3
{c31(98 +H3 + 4m2 + 54m− 6H2(3 +m)− 12m(9−H2 +m)c1c2 + 12m2c3},

ρ2 =
1

24m4
899 + 1002m+ 313m2 + 18m3 + 4H3(8 + 3m)− 6H2(43 + 33m+ 6m2))c41

−12m(167 + 2H3 + 87m+ 6m2 −H2(33 + 10m)c21c2

+24m2(26− 3H2 + 3m)c1c3 + 12m2(c22(35− 4H2 + 3m)− 6mc4),

etc.
Also,

wn =

(
f(zn)

f(xn)

) 1
m

=
1

2m3

{
c31 (m−H2 + 9)− 2mc1c2

}
e3n +

4∑
i=1

σie
i+3
n +O(e8n) (17)

where σi = σi(m, c1, c2, ..., c8), 1 ≤ i ≤ 4, and the first two coefficients are

σ1 =
−1

6m4

[
c41

{
7m2 + 87m+H3 + 152− 3H2(3m+ 8)

}
− 6mc21c2 (4m− 3H2 + 29) + 12m2c22

+12m2c1c3
]
,

σ2 =
1

24m5

[
c51

{
46m3 + 711m2 + 2246m+ 2061 + 8H3(2m+ 5)− 12H2

(
6m2 + 30m+ 37

)}
−4mc31

{
53m2 + 624m+ 8H3 + 1123− 9H2 (7m+ 20)

}
+ 12m2c21c3 (13m− 9H2 + 87)

−168m3c2c3 + 12m2c1
{
c22 (17m− 12H2 + 121)− 6mc4

}]
Expanding weight functions P (v) and G (w) in the neighborhood of origin by Taylor’s series expansion as follows:

P (v) ≈ P0 + P1v + P2
v2

2
+ P3

v3

6

G(w) ≈ G+G1w +G2
w2

2
+G3

w3

6
(18)

By using expressions (7)-(18) in the proposed scheme (5), we have

en+1 =
1

2m4
(m− P0G0A2)

(
(9−H2 +m)c21 − 2mc2

)
c1e

4
n +O(e5n). (19)

For obtaining at least sixth-order convergence, we have to choose G0 = m
P0A2

, A3 = 2A2, P1 = P0 and get

en+1 = − 1

4m5
(2 +H2)

(
(9−H2 +m)c21 − 2mc2

)
c31e

6
n +O(e7n).
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Further, in order to obtain eighth order of convergence we choose the following values of parameters:

H2 = −2,H3 = 36, G1 =
2m

P0A2
(20)

which leads us to the following error equation:

en+1 =
1

48m7P0

[
(c1c

2
1(11 +m)− 2mc2)(14(59 + 12m+m2)P0 − 3 (11 +m)

2
P2)c

4
1

−12m(4(7 +m)P0 − (11 +m))c21c2 + 12m2 (2P0 − P2) c
2
2 + 24m2P0c1c3)e

8
n +O(e9n)

]
. (21)

The above asymptotic error constant (21) reveals that the proposed scheme (5) reaches to optimal eighth-
order convergence by using only four functional evaluations (viz. f(xn), f

′(xn), f(yn) and f(zn)) per iteration.
This completes the proof.

3 Some special cases of weight function

In this section, we will discuss some special cases of our proposed scheme (5) by assigning different kind of
weight functions. In this regard, please see following cases, where we have mentioned some different kind of
choices for the proposed scheme:

Case 1 Let us describe the following polynomial weight function directly from the proposed Theorem 1:

H(u) = 6u3
n − u2

n + 2un + 1, P (vn) = vn + 1, G(wn) =
2mwn

A2P0
+

m

A2P0
(22)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun(6u
3
n − u2

n + 2un + 1)
f(xn)

f ′(xn)
, (23)

xn+1 = zn −munvn(1 + 2un)(1 + vn)

(
2wn + 1

A2P0

)
f(xn)

f ′(xn)
.

Case 2 Now, we suggest mixture of rational and polynomial weight function satisfying the conditions as follows

H(un) =
1− 5u2

n + 8u3
n

−2un + 1
, P (vn) = vn + 1, G(w) =

3mwn +m

A2P0(1 + wn)
. (24)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun(
1− 5u2

n + 8u3
n

−2un + 1
)
f(xn)

f ′(xn)
, (25)

xn+1 = zn −munvn(1 + 2un)(vn + 1)

(
3wn + 1

A2P0(1 + wn)

)
f(xn)

f ′(xn)
.

Case 3 Moreover, a mixture of polynomial and rational function is given as:

H(un) =
1− 5u2

n + 8u3
n

−2un + 1
, P (vn) = vn + 1, G(wn) =

2mwn +m

A2P0
. (26)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun

(
1− 5u2

n + 8u3
n

−2un + 1

)
f(xn)

f ′(xn)
, (27)

xn+1 = zn −munvn(1 + 2un)(vn + 1)

(
2wn + 1

A2P0

)
f(xn)

f ′(xn)
.
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Case 4 Mixture of polynomial and exponential function as

H(un) = 6u3
n − u2

n + 2un + 1, P (vn) = evn , G(wn) =
me2wn

A2P0
(28)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun(6u
3
n − u2

n + 2un + 1)
f(xn)

f ′(xn)
, (29)

xn+1 = zn −munvne
vn(1 + 2un)

(
e2wn

A2P0

)
f(xn)

f ′(xn)
.

Case 5 Mixture of polynomial, exponential and rational function is given as:

H(un) = 6u3
n − u2

n + 2un + 1, P (vn) = evn , G(wn) =
2mwn +m

A2P0
(30)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun(6u
3
n − u2

n + 2un + 1)
f(xn)

f ′(xn)
, (31)

xn+1 = zn −munvne
vn(1 + 2un)

(
2wn + 1

A2P0

)
f(xn)

f ′(xn)
.

Case 6 Mixture of polynomials and rational function as

H(un) = 6u3
n − u2

n + 2un + 1, P (vn) = vn + 1, G(wn) =
3mwn +m

A2P0(1 + wn)
(32)

Thus, the corresponding optimal eighth-order iterative scheme is given by

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun(6u
3
n − u2

n + 2un + 1)
f(xn)

f ′(xn)
, (33)

xn+1 = zn −munvn(1 + 2.un)(vn + 1)

(
3wn + 1

A2P0(1 + wn)

)
f(xn)

f ′(xn)
.

4 Numerical experiments

This section is devoted to demonstrate the efficiency, effectiveness and convergence behavior of the presented
schemes. In this regard, we consider some of the special cases of the proposed scheme namely expression (23)-
(29) denoted by M1, M2, M3 and M4 respectively, with A2 = P0 = 1. In addition, we choose a total number of
four test problems for comparison given in the Examples 1-4. Now, we want to compare our methods with other
existing methods of same domain on the basis of error per iteration and computational order of convergence COC.
We compare the proposed methods with the family of two-point sixth-order methods, which were presented by
Geum et al. in [8], out of them we consider (2) and (3) denoted by GM1 and GM2 respectively, for Q(pn, sn) =
m(1+2(m−1)(pn− tn)−4pntn+ t2n), G(pn) = m(1+pn+2p2n), and K (pn, tn) = m(1+pn+2p2n+(1+2pn)tn)
and finally we choose a special case of the optimal eighth order method given by Behl et al. [3] for a1 = a2 = 1,

Q (hn) = m
(
1 + 2hn + 3h2

n

)
and G (hn, tn) = m

1+2tn+3h2
n+hn(2+6tn+hn)
1+tn

in (4) denoted by OM . In Table 1, we
choose first four test problems of weight functions for comparison: we display the number of iteration indexes n,
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Table 1: Results for test functions f1(x)− f4(x) for selected new method

Methods fi(x) n xn |f(xn)| |xn − a| |en/e8n−1| ρn

M1 f1 0 1.8
1 1.750388172 4.578821428(-9) 3.881723198(-4)
2 1.750000000 7.990332601(-35) 5.160856712(-17) 1.057651891(7) 5.551003268
3 1.750000000 1.054997370(-240) 5.930141567(-120) 1.001210272(11) 7.992771335

M2 f2 0 0.76
1 0.757396246 6.119297566(-9) 7.672103880(-11)
2 0.757396246 4.708676719(-69) 5.903530034(-71) 3.631744725(10) 7.963102504
3 0.757396246 5.787317358(-550) 7.255881828(-552) 4.918084433(10) 7.999999999

M3 f3 0 -3.0
1 -2.840827595 1.765950473(-4) 9.172404158(-3)
2 -2.850019022 7.599195264(-10) 1.902277880(-5) 7.279720405(-4) 2.212077357
3 -2.850000000 7.150328989(-83) 5.835168006(-42) 1.058646197(-12) 13.6085671491

M4 f4 0 1.0
1 0.739085163 1.263052195(-22) 2.997912648(-8)
2 0.739085133 4.433422964(-187) 4.556082715(-63) 1.395817915(-3) 7.873921103
3 0.739085133 1.021603664(-1502) 1.296500510(-501) 6.982964029(-3) 7.999999998

the error at each iterations |xn−α|, the functional value at xn, |f(xn)|, the asymptotic error constant |en/e8n−1|
and the computational order of convergence ρn. We use the formula by Jay [10] given as:

ρn ≈ log |f(xn+1)/f(xn)|
log |f(xn)/f(xn−1)|

,

in order to calculate ρn.
We have done our calculations with several number of significant digits (minimum 1000 significant digits) to

minimize the round off error. We calculate the values of all the constants and functional residuals up to several
number of significant digits but due to the limitations. We display the value of errors per iterations and absolute
residual errors in the function up to 9 decimal digits with exponent power in Tables 1–5. In Table 1, these four
typical methods have been successfully applied to the test functions f1 − f4 below:

f1(x) = x3 − 5.22x2 + 9.0825x− 5.2675,m = 2, α = 1.75,

f2(x) =
x

1− x
− 5 ln

(
0.4 (1− x)

0.4− 0.5x

)
+ 4.45977, m = 1, α = 0.757396246,

f3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875, m = 2, α = −2.85,

f4(x) = (cos (x)− x)3, m = 3, α = 0.739085133.

We see that these examples have different applications in Chemistry. Let us describe the phenomena as follows:

Example 1 Van der Waals Equation of State, whose expression is(
P +

a1n
2

V 2

)
(V − na2) = nRT,

explains the behavior of a real gas by taking in the ideal gas equations two more parameters, a1 and a2, specific
for each gas. In order to determine the volume V of the gas in terms of the remaining parameters, we are
required to solve the nonlinear equation in V.

PV 3 − (na2P + nRT )V 2 + a1n
2V − a1a2n

3 = 0.

Given the constants a1 and a2 of a particular gas, one can find values for n, P and T , such that this equation
has three real roots. By using the particular values, we obtain the following nonlinear function

f1(x) = x3 − 5.22x2 + 9.0825x− 5.2675, (34)

having three roots out of which one is a multiple zero α = 1.75 of multiplicity of order two and other one simple
zero ξ = 1.72. However, our desired zero is α = 1.75. We considered initial guess x0 = 1.8 for this problem.
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Table 2: Comparison of methods for f1(x)

f1(x), x0 = 1.8, m = 2, α = 1.75

|xn − α| |x1 − α| |x2 − α| |x3 − α| ρn

GM1 3.077732689(-3) 1.439104082(-6) 1.091883839(-19) 3.914835182
GM2 1.050232397(-3) 4.705856570(-11) 4.992888939(-55) 5.977919826
OM 5.700719507(-4) 1.356336629(-15) 1.675463909(-108) 7.990284720
M1 3.881723198(-4) 5.160856712(-17) 5.930141567(-120) 7.992771335
M2 4.097456687(-4) 9.751215264(-17) 1.191072740(-117) 7.992231302
M3 4.030985318(-4) 8.578320923(-17) 4.272545051(-118) 7.992383207
M4 3.180624956(-4) 6.347458544(-18) 1.812641621(-127) 7.994648047

In Table 2 we show the numerical results obtained by applying the different methods for approximating the
multiple solution of f1(x) = 0. The obtained values confirm the theoretical results.

Regarding the dynamical behavior of function f1(x), it can be observed in Figures 1 and 2 that, for some
methods the only basin of attraction is that of the multiple root. The dynamical planes that appear in this
section have been generated by using the routines published in [4]. We have used a mest of 400× 400 points in
the region of the complex plane [−100, 100]× [−100, 100]. We paint in orange the points whose orbit converges to
the multiple root and in black whose points whose orbit converges to another thing (strange fixed points, cycles,
etc.) or diverges. We work with a tolerance of 10−3 and a maximum number of 80 iterations. The multiple root
is represented in the different figures by a white star.
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Table 3: Comparison of methods for f2(x)

f2(x), x0 = 0.76, m = 1, α = 0.757396246

|xn − α| |x1 − α| |x2 − α| |x3 − α| ρn

GM1 6.746046923(-7) 3.258788383(-21) 1.774563094(-78) 3.999998137
GM2 5.354140101(-9) 4.610283706(-43) 1.879123364(-247) 5.999999990
OM 6.001645913(-11) 5.072586488(-72) 1.320998094(-560) 7.999999999
M1 5.114097140(-11) 1.600842565(-72) 1.475658388(-564) 7.999999999
M2 7.672103880(-11) 5.903530034(-71) 7.255881828(-552) 7.999999999
M3 7.658677908(-11) 5.821386344(-71) 6.486454366(-552) 7.999999999
M4 2.967992578(-11) 1.141632108(-74) 5.470576454(-582) 7.999999999

Example 2 Fractional Conversion in a Chemical Reactor.
Let us consider the following expression (please, see [14] for more details)

f2(x) =
x

1− x
− 5 log

[
0.4(1− x)

0.4− 0.5x

]
+ 4.45977. (35)

In this equation x represents the fractional conversion of species A in a chemical reactor. Since, there will be
no physical meaning of above fractional conversion if x is less than zero or greater than one. So, x is bounded
in the region 0 ≤ x ≤ 1. Our required simple root to this problem is α = 0.75739624625375387945. Moreover,
it is interesting to note that f(x) is undefined in the region 0.8 ≤ x ≤ 1 which is very close to our desired
root. Furthermore, there are some other properties to this function which make the solution more difficult. The
derivative of the above expression will be very close to zero in the region 0 ≤ x ≤ 0.5 and there is an infeasible
solution for x = 1.098. So, the initial approximation is taken as x0 = 0.76.
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Table 4: Comparison of methods for f3(x)

f3(x), x0 = 0.76, m = 1, α = 0.757396246

|xn − α| |x1 − α| |x2 − α| |x3 − α| ρn

GM1 2.191617424(-3) 2.388130175(-7) 1.868020089(-29) 5.578713509
GM2 4.434881447(-3) 2.040917706(-6) 1.003474537(-37) 9.382151166
OM 5.957397881(-3) 5.050121091(-6) 2.869820096(-46) 13.10205586
M1 9.172403924(-3) 1.902277775(-5) 5.834785506(-42) 13.60857768
M2 9.169540439(-3) 1.900995429(-5) 5.803772849(-42) 13.60853336
M3 9.172404158(-3) 1.902277880(-5) 5.835168006(-42) 13.60856714
M4 1.966472933(-2) 2.173523392(-4) 8.533280914(-34) 15.03163215

Table 3 shows the numerical results obtained for f2(x). We can observe the similarity among all the results
of the eighth-order schemes and that COC approaches very good the theoretical order of convergence, except
for the scheme GM1. Figures 3 and 4 show the basins of attraction of the different methods on f2(x). In this
example, we can observe that the set of good initial approximations is small in all cases.

Example 3 Continuous Stirred Tank Reactor (CSTR)

Consider the isothermal continuous stirred tank reactor (CSTR). Components A & R are fed to the reactor
at rates of Q and q-Q respectively. The following reaction scheme develops in the reactor (see [5]):

A+R → B

B +R → C

C +R → D

C +R → E.

The problem was analyzed by Douglas [6] in order to design simple feedback control systems. In the analysis,
he gave the following equation for the transfer function of the reactor:

KC
2.98 (x+ 2.25)

(s+ 1.45) (s+ 2.85)
2
(s+ 4.35)

= −1,

where KC is the gain of the proportional controller. The control system is stable for values of KC that yields
roots of the transfer function having negative real part. If we choose KC = 0 we get the poles of the open-loop
transfer function as roots of the nonlinear equation:

f3 (x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875 = 0 (36)

given as: x = −1.45, −2.85, −2.85, −4.35.

So, we see that there is one multiple roots with multiplicity 2. We take m = 2 and x0 = −3.

Table 4 shows the numerical results for this example and in Figures 5 and 6 the corresponding basis of
attraction are painted.

Example 4 We assume another standard test problem involving trigonometric function as:

f4(x) = (cos(x)− x)3. (37)

The above function has a multiple zero at α = 0.73908513321516064165 of multiplicity 3 with initial guess 1.0.

Finally, Table 5 shows the numerical results for the equation f4(x) = 0 and in Figures 7 and 8 the corre-
sponding basis of attraction are painted.
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Fig. 5: Basin of attractions for function f3(x)
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Table 5: Comparison of methods for f4(x)

f4(x), x0 = 0.76, m = 1, α = 0.757396246

|xn − α| |x1 − α| |x2 − α| |x3 − α| ρn

GM1 1.566592682(-4) 4.132424869(-17) 2.001658027(-67) 3.999980164
GM2 2.55308875(-6) 6.835881397(-36) 2.518668789(-213) 5.999999784
OM 8.481354394(-8) 4.488396982(-59) 2.761212765(-469) 7.999999994
M1 4.905393922(-8) 4.062521585(-61) 8.990216944(-486) 7.999999996
M2 5.525400401(-8) 1.249500760(-60) 8.545133533(-482) 7.999999995
M3 5.512544243(-8) 1.226431201(-60) 7.361599398(-482) 7.999999996
M4 2.997912648(-8) 4.556082715(-63) 1.296500510(-501) 7.999999998
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Fig. 8: Basin of attractions for function f4(x)

5 Conclusion

In this paper, we have proposed a family of iterative methods for solving nonlinear equations for multiple
roots with known multiplicity. The family of methods include two free parameters and three weight functions
involving function-to-function ratio. The methods involve only one derivative evaluation. The selection of the
parameters and weight functions yields optimal eighth order convergent methods for multiple roots. In addition,
the numerical results of some chemical problems show that the proposed methods namely M1-M4 have better
performance as compared with other similar methods. The dynamical planes of the operators that describe
the methods on these problems give us information about the set of initial approximations with guarantee of
convergence
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