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Abstract There is a few number of optimal fourth-order iterative methods for obtaining the multiple roots of nonlinear equa-
tions. But, in most of the earlier studies, scholars gave the flexibility in their proposed schemes only at the second step (not
at the first step) in order to explore new schemes. Unlike what happens in existing methods, the main aim of this manuscript
is to construct a new fourth-order optimal scheme which will gives the flexibility to the researchers at both steps as well as
faster convergence, smaller residual errors and asymptotic error constants. The construction of the proposed scheme is based
on the mid-point formula and weight function approach. From the computational point of view, the stability of the resulting
class of iterative methods is studied by means of the conjugacy maps and the analysis of strange fixed points. Their basins
of attractions and parameter planes are also given to show their dynamical behavior around the multiple roots. Finally, we
consider a real life problem and a concrete variety of standard test functions for numerical experiments and relevant results
are extensively treated to confirm the theoretical development.

Keywords Nonlinear equations · Multiple roots · Complex dynamics · Dynamical and parameter plane · Stability

1 Introduction

High-order multipoint iterative schemes [5,10,16] are always required for obtaining the multiple roots with multiplicity m
of a nonlinear equation f(x) = 0, which partake of scientific, applied science, engineering and various other models. So,
multi-point iterative methods overcome from the theoretical limitation of one-point iterative methods which concern about the
order of convergence and computational efficiency. Further, they are also capable to generate approximated root of of higher
accuracy with in a small number of iterations without requiring the evaluations of second-order derivatives.
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In the text of Traub [16], we can find the well-known modification of Newton’s method due to Schöder [12], with second
order of convergence

xn+1 = xn −m
f(xn)

f ′(xn)

and also the sequence, designed by Traub, of iterative methods of increasing order of convergence. This order was independent
of the known multiplicity m.

In 2009, Li et al. [9] presented the following optimal (according to Kung-Traub conjecture [7]) fourth-order multi-point
iterative method 

yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn − f(xn)

2f ′(xn)

[
m(m− 2)

(
m

m+2

)−m
f ′(yn)−m2f ′(xn)

f ′(xn)−
(

m
m+2

)−m
f ′(yn)

]
.

(1)

This method was designed as a Jarratt-type scheme, whose coefficients depend on the multiplicity m, by using two functional
evaluations of f ′(x) and one of f(x).

Again in 2010, Li et al. [8] gave a total number of six multi-point iterative methods of fourth-order with closed formulas
for obtaining multiple roots. Out of them, only two were optimal, which are given as follows:

yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn − θ1
f(xn)

f ′(yn)
− f(xn)

θ2f ′(xn) + θ3f ′(yn)
,

(2)

where

θ1 =− 1

2

(
m

m+2

)m

m(m4 + 4m3 − 16m− 16)

m3 − 4m+ 8
,

θ2 =− (m3 − 4m+ 8)2

m(m4 + 4m3 − 4m2 − 16m+ 16)(m2 + 2m− 4)
,

θ3 =
m2(m3 − 4m+ 8)(

m
m+2

)m

(m4 + 4m3 − 4m2 − 16m+ 16)(m2 + 2m− 4)

and 
yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn − θ4
f(xn)

f ′(xn)
− f(xn)

θ5f ′(xn) + θ6f ′(yn)
,

(3)

being

θ4 = −1

2
m2 +m, θ5 = − 1

m
, θ6 =

1

m
(

m
m+2

)m .

Later, in 2011, Zhou et al. in [18], presented a more general optimal family of fourth-order iterative methods based on the
weight function approach which require only three functional evaluations per iteration, which is defined as follows:

yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −Q

(
f ′(yn)

f ′(xn)

)
f(xn)

f ′(xn)
,

(4)

where Q(.) ∈ C2(R) is a weight function. One can also obtain the expressions namely, expression (1), expression (6),
expression (8), and expression (9) as special cases of scheme (4) just by considering suitable choice of weight functions.

In addition, in 2012, Sharifi et al. in [15], gave the following optimal scheme of fourth-order methods
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn +

(
m(m2 + 2m− 4)

4

f(xn)

f ′(xn)
−

m(m+ 2)2

4

(
m

m+ 2

)m f(xn)

f ′(yn)

)[
G

(
f ′(yn)

f ′(xn)

)
+H

(
f(xn)

f ′(xn)

)]
,

(5)
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where G(.) and H(.) are two real valued weight functions.
Moreover, in 2013 Soleymani and Babajee in [14] constructed another type of fourth-order optimal scheme, whose iterative

expression is 
yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
4m

(
m

m+2

)m

f(xn)(
m

m+2

)m

(m2 + 2m− 4)f ′(xn)−m2f ′(yn)
H

(
f ′(yn)

f ′(xn)

)
,

(6)

being H(.) a real valued weight function.
On the other hand, Zhou et al. in [17] proposed a new optimal family of fourth-order methods which requires two-function

and one-derivative evaluation per iteration, that is given by
yn =xn −m

f(xn)

f ′(xn)
,

xn+1 =xn −mG(v)
f(xn)

f ′(xn)
,

(7)

where v = m

√
f(yn)
f(xn)

and G(.) ∈ C2(R) is a weight function. But, the problem with the application of this scheme is that when
you solve for even multiplicity then you may obtain a complex root while your desired root is real number (please see Table 4
in the numerical section).

Recently, in 2015, Hueso et al. in [6] presented the following optimal fourth-order scheme for multiple roots
yn =xn − 2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
(
s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)

2
) f(xn)

f ′(xn)
,

(8)

where h(xn, yn) =
f ′(yn)
f ′(xn)

and the values of these parameters can be seen in [6].
In 2016, Behl et al. in [1] presented a new optimal scheme of fourth-order methods based on some the arithmetic mean of

Chebyshev’s method [10] and Schröder’s method [10,12] with four free disposable parameters, which is given by
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
1

2

[
f(xn)((5m+ 2)b1f ′(xn)− (m+ 2)b2f ′(yn))

4m{f ′(xn)}2
+

2mb3f(xn)

(m− 2)f ′(xn)b4 + (m+ 2)f ′(yn)

]
,

(9)

where b1, b2, b3 and b4 are free disposable parameters and the values of these parameters can be seen in [1].
One can obtain the expresssions (1), (2), (3), (6), (8) and (9) as special cases of scheme (4), just by considering suitable

choice of weight functions.
It is straightforward to say from the above mentioned schemes that they have the flexibility (free parameters or weight

functions) only at second step, in order to obtain new iterative methods. We want to explore the idea that what will happen
if we make changes at first step as well as at the second one. Is it possible to get some faster version of optimal fourth-order
methods with simple body structure, smaller asymptotic error constants and smaller residual errors when we make changes
also in the first step?

Motivated and inspired by these questions, we propose a new fourth-order scheme based on weight function approach. The
beauty of this manuscript is to highlight the advantages of this new approach over the earlier studies that our proposed scheme
will give the flexibility to the scholars at both steps in order to construct new fourth-order iterative methods. In addition, our
proposed methods not only give the faster convergence but also have smaller residual error and asymptotic error constants. Our
proposed scheme only consumes three functional evaluations

(
f(xn), f ′(xn) and f ′(zn)

)
per full iteration which satisfies

the classical Kung-Traub conjecture. We have demonstrated the usefulness of the proposed methods by performing several
numerical examples and observed that our methods have better numerical results, in most of the examples, than some existing
methods available in the literature (in terms of smaller asymptotic error constants and smaller residual errors). Further, the
dynamical study of these methods also deeps into the stability aspects of the different elements of the proposed class.

In order to study the dynamical behavior of the iterative methods included in the proposed family, it is necessary to recall
some basic dynamical concepts. For a more extensive review of these concepts, see [2,4].
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Let R : Ĉ → Ĉ be an operator that results from applying an iterative method on a particular function, where Ĉ
is the Riemann sphere. The orbit of a point z0 ∈ Ĉ is defined as the set of successive images of z0 by the operator,
{z0, R(z0), . . . , R

n(z0), . . .}.
The orbit of a point on the complex plane can be classified depending on its asymptotic behavior. In this way, a point

z0 ∈ C is a fixed point of R if R(z0) = z0. A fixed point is attracting, repelling or neutral (parabolic) if |R′(z0)| is lower
than, greater than or equal to 1, respectively. Moreover, if |R′(z0)| = 0, the fixed point is superattracting. A periodic point z
of period p > 1 is a point such that Rp(z) = z and Rk(z) ̸= z, for k < p. A pre-periodic point is a point z that is not periodic
but there exists a k > 0 such that Rk(z) is periodic.

If z∗f is an attracting fixed point of operator R, its basin of attraction A(z∗f ) is defined as the set of pre-images of any order
such that

A(z∗f ) =
{
z0 ∈ Ĉ : Rn(z0) → z∗f , n → ∞

}
.

The set of points whose orbits tend to any attracting periodic point z∗f is defined as the Fatou set, F(R). The complementary
set, the Julia set J (R), is the closure of the set of pre-images of its repelling fixed points, and establishes the boundaries
between the basins of attraction.

The rest of the manuscript is organized in the following way: Section 2 is devoted to describe the new family of iterative
methods and to study its convergence, detailing some particular cases. Some of them are used in the dynamical numerical
sections. This dynamical analysis on polynomials of low degree with multiplicity 2 and 3 is made in Section 3. Different
numerical experiments to confirm the theoretical results are shown in Section 4. Finally, some conclusions and remarks are
presented.

2 Development of the optimal fourth-order scheme

This section is devoted to the main contribution of this manuscript. Here, we will propose the optimal fourth-order iterative
scheme which will gives the flexibility to the researchers at both steps in order to explore other new schemes (for the details
please see the special cases). According to our knowledge, this type of problem is not discussed in the earlier studies [1,6,8,
13–15,17,18]. Therefore, we propose the following new fourth-order structure

yn = xn − h(xn)
f(xn)

f ′(xn)
,

xn+1 = xn − f(xn)

f ′(xn)
Gf (un),

(10)

where the weight function Gf : C → C is an analytic function in a neighborhood of w =
(

m
m+2

)m−1

, un = f ′(zn)
f ′(xn)

,

zn = xn+yn

2 and h : C → C is also an analytic function in the region enclosing a multiple zero ξ of f(x).
In the next result, we prove that the order of convergence of the proposed scheme reaches fourth-order without using any

additional functional evaluation. It is interesting to observe that h and G have a key role in the construction of the desired
fourth-order convergence.

Theorem 1 Let x = ξ be a multiple zero with multiplicity m > 1 of an analytic function f : C → C in the region enclosing
ξ. Then, the family of iterative methods defined by (10) has fourth-order convergence when the following conditions hold

h(ξ) =
4m

m+ 2
, h′(ξ) = 0, h′′(ξ) = 0,

G(w) = m, G′(w) = −m3

4p
, G′′(w) =

m4

4p2
,

(11)

where p =

(
1− h(ξ)

2m

)m

and |G′′′(w)| < ∞.

Proof Let us consider en = xn − ξ the error at nth iteration. Expanding in Taylor’s series functions f(xn) and f ′(xn) about
the point xn = ξ leads us:

f(xn) =
f (m)(ξ)

m!
emn

(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)

)
, (12)

and

f ′(xn) =
fm(ξ)

m!
em−1
n

(
1 + (m+ 1)c1en + (m+ 2)c2e

2
n + (m+ 3)c3e

3
n + (m+ 4)c4e

4
n +O(e5n)

)
, (13)
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respectively, where ck = m!
(m+k)!

f(m+k)(ξ)
f(m)(ξ)

, k ≥ 1.
Now, expanding h(xn), we obtain

h(xn) = h(ξ) + enh
′(ξ) + e2n

h′′(ξ)

2
+O(e3n). (14)

From (12)– (14), we further yield

yn − ξ =

(
1− h(ξ)

m

)
en +

h(ξ)c1 −mh′(ξ)

m2
e2n (15)

+
m(4h(ξ)c2 −mh′′(ξ))− 2h(ξ)c21(m+ 1) + 2h′(ξ)c1m

2m3
e3n +O(e4n). (16)

Again, by using the Taylor’s series expansions, we have

f ′(yn) = emn

[
−2m2p

m!(h(ξ)− 2m)en
+

p{c1(h(ξ)2(m+ 1)− 2h(ξ)m(m+ 3) + 4m2(m+ 1))− 2h′(ξ)(m− 1)m2}
m!(h(ξ)− 2m)2

+
1

(2m)m!(2m− h(ξ))3
θ1en +

p

12m4m!(h(ξ)− 2m)2
θ2e

2
n +O(e3n)

]
,

(17)

where
θ1 = −2h′(ξ)c1m

2{h(ξ)2(m+ 1)− 2h(ξ)(m2 + 4m− 1) + 4(m3 +m)}+ 2h(ξ)c21m{h(ξ)2(m+ 1)− h(ξ)m(m+ 7) +
4m(m+1)}+ c2{h(ξ)4(m+2)− 8h(ξ)3m(m+2)+ 8h(ξ)2m2(2m+7)− 16h(ξ)m3(m+5)+ 16m4(m+2)}+2(m−
1)m3{h′′(ξ)(h(ξ)− 2m) + h′(ξ)2(m− 2)}, ,
θ2 = 6c1(m−1)(m+1)m3{m(h′′(ξ)(h(ξ)−2m)+h′(ξ)2(m−2))+2h′(ξ)c1(h(ξ)(−m)+h(ξ)+2m)+h(ξ)c21(3h(ξ)−4(m+

1))−4h(ξ)c2(h(ξ)−2m)}− 4(m−1)(h(ξ)−2m)

(2−h(ξ)
m )

3

[
3(h(ξ)−2m)2{2m2(3h(ξ)c3+2h′(ξ)c2)+c1m(h′′(ξ)m−2h(ξ)c2(3m+4))+

2h(ξ)c31(m+1)2−2h′(ξ)c21m(m+1)}+3(m−2)(h(ξ)−2m)(h(ξ)c1−h′(ξ)m){m(h′′(ξ)m−4h(ξ)c2)+2h(ξ)c21(m+1)−

2h′(ξ)c1m}+(m−3)(m−2)(h(ξ)c1−h′(ξ)m)3
]
−3m5(h(ξ)−2m)

(
2c1(m+1){m(4h(ξ)c2−h′′(ξ)m)−2h(ξ)c21(m+1)+2h′(ξ)c1m}

m3 −

4c2(m+2)(h(ξ)−2m)(h(ξ)c1−h′(ξ)m)
m3 + c3(m+3)

(
2− h(ξ)

m

)3
)
+6(m− 1)m2(h(ξ)c1 − h′(ξ)m){c2(m+2)(h(ξ)− 2m)2 +

2h(ξ)c21(m+ 1)− 2h′(ξ)c1m(m+ 1)}.
With the help of expressions (13) and (17), we get

un =
f ′(zn)

f ′(xn)
= − 2mp

h(ξ)− 2m
+

p[c1h(ξ){h(ξ)(m+ 1)− 4m} − 2h(ξ)′(ξ)(m− 1)m2]

m(h(ξ)− 2m)2
en

− p

2m2(h(ξ)− 2m)3

[
2c21h(ξ){h(ξ)2(2m2 + 3m+ 1)− 3h(ξ)m(m2 + 5m+ 2) + 12m2(m+ 1)}

− 2c1h
′(ξ)m2{h(ξ)2(m+ 1)− 8m(h(ξ)− 1)}+ c2h(ξ){h(ξ)3(m+ 2)− 8h(ξ)2m(m+ 2)− 48m3

+ 12h(ξ)m2(m+ 4)}+ 2(m− 1)m3
{
h′′(ξ)

(
h(ξ)− 2m

)
+ h′(ξ)2(m− 2)

}]
e2n +O(e3n).

(18)

It is clear from expression (18) that un = w + O(en), where w = − 2mp
h(ξ)−2m . Therefore, we expand the weight function

Gf (un) in the neighborhood of w:

Gf (un) = Gf (w) +G′
f (w)un +

1

2!
G′′

F (w)u
2
n +

1

3!
G′′′

f (w)u3
n +O(u4

n). (19)

By using expressions (12)–(19), in the last step of the proposed scheme, we obtain

en+1 =

(
1− G(w)

m

)
en +

4∑
j=2

Mje
j
n +O(e5n), (20)

where Mj = Mj (h(ξ), h
′(ξ), h′′(ξ),m, c1, c2, c3, c4), j = 2, 3, 4.

From expression (20), our scheme (10) reaches at least second-order of convergence if

Gf (w) = m. (21)
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By using the above value of Gf (w) in M2 = 0, we obtain the following two independent relations

m−
G′

f (w)h(ξ)p{h(ξ)(m+ 1)− 4m}
(h(ξ)− 2m)2

= 0,

2G′
f (w)h

′(ξ)(m− 1)m2p

(h(ξ)− 2m)2
= 0,

which further yield

h′(ξ) = 0, G′
f (w) =

m(h(ξ)− 2m)2

ph(ξ)(h(ξ)m+ h(ξ)− 4m)
. (22)

In order to obtain an optimal fourth-order convergence, we will use the above expressions (21) and (22) in M3 = 0. Then, we
have after some simplifications

h(ξ) =
4m

m+ 2
, h′′(ξ) = 0, G′′

f (w) =
1

4p2
m4. (23)

Finally, by using expressions (21), (22) and (23) in (20) in order to obtain asymptotic error constant, we get

en+1 =
(m+ 2)2(32p3G′′′

f (w) +m9 + 2m8 + 2m7 − 2m6 + 12m5)c31 + 3m11c3 − 3m9(m+ 2)2c1c2

3m10(m+ 2)2
e4n +O(e5n),

(24)
where |G′′′(w)| < +∞.

The above expression (24) demonstrate that our proposed scheme (10) reaches fourth-order convergence by consuming
only three functional evaluations per iteration. Hence, the scheme (10) have also reached the optimal order of convergence in
the sense of Kung-Traub conjecture. This completes the proof.

2.1 Some special cases

In this section, we will discuss some special cases of our proposed scheme (10) by assigning different h(x) and weight function
Gf . In this regard, please see Table 1 where we have mentioned some different kind of members of the family. In addition, we
choose arbitrary any h(x) and G(x) from the table in order to obtain new optimal methods of fourth-order.

Cases h(x) Gf (u)

Case-1 4m
m+2

m− m3

4p
(u− w) + m4

4p2
(u− w)2 +G3(u− w)3, G3 = G′′′(w).

Case-2 4m
m+2

−m(m(p−u)+2u)
2(p−u)

Case-3 4m
m+2

a2
u2 + 1

8
m((2+m)4p2−24a2)

(2+m)pu
+ 1

8
m3(m(2+m)3p2−8a2)u

(2+m)3p3

+ 3a2m
2

(2+m)2p2
− m

4
(m3 + 3m2 + 2m− 4), where a2 ∈ R.

Case-4 4m
m+2

+ f(xn)m
a2
u2 + 1

8
m((2+m)4p2−24a2)

(2+m)pu
+ 1

8
m3(m(2+m)3p2−8a2)u

(2+m)3p3

+ 3a2m
2

(2+m)2p2
− m

4
(m3 + 3m2 + 2m− 4), where a2 ∈ R.

Case-5 4m
m+2

cos(f(xn)) −m(m(p−u)+2u)
2(p−u)

Case-6 4m
m+2

esin(f(xn)) m− m3

4p
(u− w) + m4

4p2
(u− w)2 +G3(u− w)3, G3 = G′′′(w)

Case-7 4m
m+2

af(xn), a > 0 −m(m(p−u)+2u)
2(p−u)

Table 1: Some special cases of the the proposed scheme (10).

Let us remark that, observing the error equation 24, G3 = G′′′(w) = 0 and G3 = − m5

32p3 (m
4 + 2m3 + 2m2 − 2m+ 12)

reduce the expression of the asymptotic constant error. Case-1 is used in the dynamical analysis described in the next section
and cases 1 to 4 are used in the numerical experiments.

As the order of the methods does not depend on the value of G3, this element can be considered as a free parameter in
order to analyze the stability of the resulting class. This study will reveal which can be the better complex value to be assigned
to G3 and how the behavior of the elements of the class changes with increasing multiplicity.
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3 Dynamical analysis in the complex plane

Blanchard in [2] considered the conjugacy map (a Möbius transformation)

k(z) =
z − a

z − b
,

with the following properties:

i) k(∞) = 1, ii) k(a) = 0, (iii) k(b) = ∞,

and proved that, for quadratic polynomials, Newton’s operator is conjugate to the rational map z2. We use this map in order
to avoid the appearance of parameters a and b in the rational functions resulting from applying the fixed point operator of the
iterative method on a polynomial p(z) with roots a and b.

3.1 Study on a polynomial with double roots

In order to study the stability of the family on polynomials with double roots, the operator of the family on p(z) = (z −
a)m(z − b) with m = 2 is calculated, obtaining a rational function that depends, not only on the parameter G3, but also on
parameters a and b. In order to eliminate these parameters, the following transformation is usually applied.

Next we are going to analyze, under the dynamical point of view, the stability and reliability of the members of the
proposed family on p(z). Firstly, we will study the fixed points of the rational function that are not related with the original
roots of the polynomial and the free critical points, that is, the critical points of the associated rational function different from
0 and ∞.

For p(z), the operator associated to family (10) for Case-1 (see Table 1) is the rational function Mp(z,G3, a, b) depending
on the parameters G3, a and b. On the other hand, operator Mp(z,G3, a, b) on p(z) is conjugated to

Op(z,G3) = (k ◦Mp ◦ k−1)(z) = z4
−G3

(
−2− 2z + z2

)3
+ 48(2 + z)3s1(z)

s2(z) + s3(z,G3)
, (25)

where s1(z) = 64+152z+108z2+8z3+z4, s2(z) = 49152+196608z+307200z2+184320z3 and s3(z,G3) = 8(−8448+
G3)z

4+24(−6784+G3)z
5+12(−6528+G3)z

6− 16(192+G3)z
7− 6(−992+G3)z

8+6(64+G3)z
9− (240+G3)z

10.
Let us remark that, by means of this transformation, the original roots a and b have been obviated in Op(z,G3), becoming 0
and ∞.

However, it is possible to reduce this rational function to simpler one, for specific values of the parameter G3, as it is
presented in the following result.

Proposition 1 The degree of the rational function Op(z,G3) associated to family (10) on p(z) can be reduced in the following
cases:

– If G3 = 0, the rational operator is

Op(z, 0) = −z4
64 + 152z + 108z2 + 8z3 + z4

−128− 320z − 224z2 + 112z3 + 216z4 + 44z5 − 38z6 + 5z7
.

– For G3 = −15984, the fixed point operator is reduced to

Op(z,−15984) = z4
2152 + 8160z + 9084z2 + 1420z3 − 1482z4 + 348z5 + z6

2(−512− 2560z − 5760z2 − 7680z3 − 5644z4 + 48z5 + 2862z6 + 230z7 − 831z8 + 164z9)
.

Some of these values of G3 will appear again when we analyze the lowest number of strange fixed and critical points of
the rational function Op(z,G3).
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3.1.1 Fixed and critical points

Once we have obtained a rational function Op(z,G3) depending only of the free parameter G3, we must find its associated
fixed and critical points in order to analyze their asymptotic behavior. Strange fixed points are obtained from solving equation
Op(z,G3) = z, that is,

z(z − 1)r(z) = 0,

where

r(z) = 49152 + 245760z + 552960z2 + (712704− 8G3)z
3 + (549888− 24G3)z

4 + (239616− 12G3)z
5

(49152 + 16G3)z
6 + (2688 + 6G3)z

7 + (576− 6G3)z
8 + (288 +G3)z

9.

It is clear that Op(z,G3) has 0 and ∞ as fixed points (corresponding to the multiple and simple roots a and b, respectively),
but also different fixed points that do not correspond to the roots of p(z): z = 1 and the roots of r(z) that will be denoted by
ri(G3), i = 1, ..., 9 and are called strange fixed points. However, the complexity of the operator can be lower depending on
the value of the parameter, as we can see in the following result. By replacing parameter G3 by different values and after some
algebraic manipulations, we obtain the following result.

Theorem 2 The number of strange fixed points of operator Op(z,G3) is ten (including z = 1, for G3 ̸= −15984), except in
the following cases:

(i) For G3 = −15984, z = 1 is not a strange fixed point and the rational operator was presented in Proposition 1. So, the
strange fixed points are the specific roots of r(z) for this value of the parameter.

(ii) For G3 = 88992, z = 1 is a strange fixed point with multiplicity 3 and also there exist seven strange fixed points more of
the rational function

Op(z, 88992) = z4
−1854

(
−2− 2z + z2

)3
+ (2 + z)3

(
64 + 152z + 108z2 + 8z3 + z4

)
q1(z)

,

where q1(z) = 1024+ 4096z+6400z2 +3840z3 +13424z4 +41104z5 +20616z6 − 29728z7 − 11000z8 +11132z9 −
1859z10.

(iii) For G3 = 0, there are seven strange fixed points, z = 1 and the roots of polynomial 64+224z+336z2+248z3+64z4−
12z5 + 3z6, being the rational operator

Op(z, 0) = −z4
64 + 152z + 108z2 + 8z3 + z4

−128− 320z − 224z2 + 112z3 + 216z4 + 44z5 − 38z6 + 5z7
.

(iv) For G3 = −57888, there are nine strange fixed points: z = −1

2
, z = 1, z = 4 and the roots of 64 + 80z + 228z2 +

500z3 + 46z4 − 228z5 + 75z6, being the associated rational function

Op(z,−57888) = z4
−9136− 26960z − 11400z2 + 21632z3 + 8140z4 − 7068z5 + 1220z6 + z7

q2(z)

where q2(z) = 1024+4096z+6400z2+3840z3−11056z4−32336z5−16104z6+19232z7+7360z8−7228z9+1201z10.

As important as the number of strange fixed point is their asymptotic behavior, as in the most of cases their stability depend
on the parameter of the family. The expression of the differential operator, needed to analyze this stability and to obtain the
critical points, is

O′
p(z,G3) = 48z3(2 + z)9

G3(−2− 2z + z2)2q3(z) + 48(2 + z)3q4(z)

(49152 + 196608z + 307200z2 + 184320z3 + q5(z,G3))2
, (26)

where q3(z) = −16−4z+36z2−26z3+z4, q4(z) = −512−944z−32z2+620z3−136z4+5z5 and q5(z,G3) = 8(−8448+
G3)z

4+24(−6784+G3)z
5+12(−6528+G3)z

6− 16(192+G3)z
7− 6(−992+G3)z

8+6(64+G3)z
9− (240+G3)z

10.
By definition, it is clear that z = 0 is always a superattracting fixed point, as it comes from the double root of the

polynomial. However, the stability of z = ∞ and the rest of fixed points depends on the value of parameter G3. In the
following results we establish the stability of these fixed points.

Theorem 3 The character of z = ∞ depends on G3 as follows:

(i) If |240 +G3| < 48, then z = ∞ is an attractor, being superattractive if G3 = −240.
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(ii) When |240 +G3| = 48, z = ∞ is a parabolic point.

(iii) If |240 +G3| > 48, then z = ∞ is repulsive.

Proof In order to analyze the stability of z = ∞, its inverse relationship with z = 0 (induced by Möbius transformation) is
used to define the associate rational function:

Inf(z,G3) =
1

Op(1/z,G3)
= z

G3

(
−1 + 2z + 2z2

)3
+ 48(1 + 2z)3q6(z)

48− ((−672 +G3)z + q7(z,G3))
,

where q6(z) = −5+38z−44z2−216z3−112z4+224z5+320z6+128z7 and q7(z,G3) = 6(1344+G3)z
2−6(−7232+

G3)z
3−16(−7008+G3)z

4+12(12288+G3)z
5+24(3968+G3)z

6+8(3072+G3)z
7. The rest of the proof is straightforward

as the stability function of the infinity is |Inf ′(0, G3)| = | 240+G3

48 |.

In Figure 1, the stability function of the infinity (as a fixed point) can be observed. It is worthy to notice that, all the
methods of the class defined by means of values of G3 out of the region of the complex plane where ∞ is attracting (the cone
presented in the figure), are not suitable to find the simple root of the original polynomial p(z), as it is a repulsive fixed point.
However, for values of G3 inside this stable area, both roots, simple and multiple, can be found with quartic and quadratic
order of convergence, respectively.

Fig. 1: Stability function of the infinity |Inf ′(0, G3)|

Theorem 4 The character of the strange fixed point z = 1 is as follows (except for G3 = −15984):

(i) If |G3 + 15984| > 104976, then z = 1 is an attractor and it cannot be a superattractor.
(ii) When |G3 + 15984| = 104976, z = 1 is a parabolic point.

(iii) If |G3 + 15984| < 104976, then z = 1 is a repulsor.

Proof It can be easily seen that

O′
p(1, G3) =

104976

15984 +G3
.

So, ∣∣∣∣ 104976

15984 +G3

∣∣∣∣ ≤ 1 is equivalent to 104976 ≤ |15984 +G3|.

Let us consider G3 = a1 + ia2 an arbitrary complex number. Then,

(a1 + 15984)2 + a22 ≥ 1049762.

Therefore,

|O′
p(1, G3)| ≤ 1 iff |G3 + 15984| ≥ 104976.

Taking into account that G3 ≠ 15984, for which z = 1 is not a fixed point, it will be repulsive if G3 satisfies |G3 + 15984| <
104976.
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(a) |O′
p(1, G3)| (b) |O′

p(r7(G3), G3)|

(c) |O′
p(ri(G3), G3)|, i =1,4,7,9 (d) Stability area

Fig. 2: Stability functions of the infinity and all the strange fixed points

The stability region corresponding to the strange fixed point z = 1 can be seen at Figure 2a. As it is repulsive inside
the disk |G3 + 15984| = 104976, and z = 1 comes from the divergence in the original performance of the problem, it
can be concluded that inside this disk, the methods of the family will converge. Now, the problem is to avoid pathological
convergence, as due to strange attracting fixed points or periodic orbits.

The analysis of the stability function of the rest of strange fixed points, |O′
p(ri(G3), G3)|, where i = 1, 2, . . . , 9 gives us

relevant information about their stability and, therefore, on the whole stability of the iterative methods of the class. In these
cases, the analytical expression of the strange fixed points is not available (as they are known as roots of a certain high-degree
polynomial) and, then, they are studied graphically. In Figures 2b and 2c, the stability functions of ri(G3), for i = 1, 4, 7, 9, are
plotted, presenting a big area in the region [20000, 90000]×[−30000, 30000] and a smaller one at [−600,−200]×[−200, 200]
of the complex plane where some of them are attracting. However, out of this region and inside the much bigger area of
repulsion of z = 1 (see Figure 2d for a global view), only the roots are attracting fixed points.

Regarding the critical points, they are calculated by solving O′
p(z,G3) = 0 and are presented in the following result. The

relevance of the knowledge of the free critical points is the following known fact: each invariant Fatou component holds, at
least, one critical point. So, the lower is the number of this kind of points, the lower number of basins of attraction is possible.

Theorem 5 The free critical points of operator Op(z,G3) are z = −2, that is a pre-image of the strange fixed point z = 1,
and the roots of polynomial

c(t) = −196608− 64G3 + (−657408− 144G3)t+ (−703488 + 112G3)t
2 + (−76800 + 248G3)t

3

+(250368− 204G3)t
4 + (100608− 140G3)t

5 + (−6528 + 140G3)t
6 + (−5088− 30G3)t

7 + (240 +G3)t
8,

denoted by ci(G3), i = 1, 2, ..., 8. So, the number of free critical points (including the pre-periodic one) is nine, except in the
following cases:

(i) For G3 = 0, the free critical points are z = −m = −2 and the roots of polynomial −512−944t−32t2+620t3−136t4+
5t5, being two of them complex conjugate.

(ii) For G3 = −3072, z = −2 and the roots of 4480 + 21824t + 17472t2 − 18272t3 − 11056t4 + 9096t5 − 1814t6 + 59t7

are the free critical points (four of them are conjugated).
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(iii) For G3 ≈ −2777.8, there are eight free critical points (including z = −2), four of them complex.
(iv) For G3 = −15984, there are three real free critical points, z = −2 and two roots of the polynomial −4304 − 17172t −

17052t2 + 4114t3 + 6993t4 − 2307t5 + 82t6, being the rest of them complex.
(v) If G3 ≈ −282.7, there exist eight free critical points, four of them real.

(vi) If G3 ≈ 14243.7, there are eight free critical points, two of them complex.

As we have seen, the number of free critical points is very high and only z = −2 is dependent (as pre-image of z = 1 it
can be only an image of the stability of z = 1) and can be avoided in the analysis. So, the parameter space is defined in C8,
and it is not possible to analyze it carefully. However, some projections can be plotted, using each one of these critical points
as starting guesses for the family of iterative methods. By using the routines appearing in [3], we make a mesh of 400 × 400
points for the values of parameter G3 and, for each of these values, the corresponding method is applied on polynomial p(z)
with the critical point as initial estimation. At the end, if the method has converged to zero or has a modulus greater than 106

in a maximum of 200 iterations, the point of the mesh is painted in red; if not, it is painted in black. In Figure 3 we can see
some of these parameter planes, corresponding to different critical points.
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(b) c1(G3), a detail
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Fig. 3: Some parameter planes by using ci(G3), i = 1, 2 as initial estimations

In Figure 3a, the disk corresponding to the stability function of z = 1 can be observed as a stable region to choose values
of the parameter. Moreover, many areas of alternate stable and unstable behavior seem to be generated in a region close to
the origin (the same happens in case of c2(G3) used as initial estimation see Figure 3c)). Specifically, Figure 3b is a detail of
the parameter plane where some black regions appear close to the origin. As we have seen in the analysis of the stability of
strange fixed points that they are all repulsive in this area, these black regions must correspond to values of G3 with attracting
periodic orbits, as will be confirmed in the following section.

3.1.2 Dynamical Planes

In this section we will show, by means of dynamical planes, the qualitative behavior of the different elements of the proposed
family by using the conclusions obtained in the analysis of the stability of strange fixed points.

These dynamical planes has been generated by means of the routines appearing in [3]. The dynamical plane associated to a
value of the parameter G3, that is, obtained by iterating an element of family, is generated by using each point of the complex
plane as initial estimation (we have used a mesh of 800 × 800 points). We paint in blue the points whose orbits converge to
infinity (absolute value greater than 0.8 · 106), in orange the points converging to zero (with a tolerance of 10−3), in green,
red, etc. those points whose orbits converge to one of the strange fixed points and in black if it reaches the maximum number
of 200 iterations without converging to any of the fixed points. The color is brighter for lower number of iterations needed to
converge. Moreover, each fixed point appears marked as a white circle in the figures, with a white star if the fixed point is an
attractor and with a white square if it is critical.

Some values of the parameter whose associate iterative method shows stable behavior with convergence only to the ”roots”
(multiple z = 0 or simple z = ∞) are presented in Figure 4. Depending on the value of the parameter, only the basin of
attraction of z = 0 is observed (global convergence to the multiple root, as is shown in Figures 4c to 4f), or both z = 0 and
z = ∞ appear (Figures 4a and 4b).
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(f) G3 = 1000

Fig. 4: Dynamical planes with stable behavior for m = 2

On the other hand, unstable behavior is found when we choose values of the parameter in the stability region of attracting
strange fixed points: in Figure 5a, z = 17.65 is an attracting strange fixed point (whose basin of attraction appears in green
color), a similar case is presented in Figure 5b, where z = 0.92± 0.58i are simultaneously attracting, or in Figure 5c, where
z = 1 has an immense basin of attraction. On the other hand, some attracting periodic orbits appear, as in Figure 5d, where
the real orbit {5.10,−42.75, 6.29,−36.17} can be observed. Also in Figures 5e and 5f, the dynamical plane corresponding
to G3 = 10 shows in black the basin of attraction of the periodic orbit {5.26,−42.36, 5.99,−38.15}. The periodic orbits are
marked with yellow lines, with yellow circles at the elements of the orbit.

3.2 Complex dynamics on cubic roots

For q(z) = (z − a)3(z − b), the operator associated to family (10) is the rational function Mq(z,G3, a, b) depending on
parameters G3, a and b. On the other hand, by means of Möbius transformation, operator Mq(z,G3, a, b) on q(z) is conjugated
to

Oq(z,G3) = (h ◦Mq ◦ h−1)(z) = z4
−96G3(−81− 90z + 15z2 + 20z3)3 + 1953125(3 + z)4u1(z)

u2(z) + u3(z,G3)
, (27)

where u1(z) = 38637+87804z+79191z2+30888z3+3363z4−404z5+9z6, u2(z) = 28025208984375+93417363281250z+
121442572265625z2 + 53974476562500z3 and u3(z,G3) = 472392(−91796875 + 108G3)z

4 + 65610(−1172265625 +
2592G3)z

5 + 65610(−721484375 + 2448G3)z
6 − 29160(419140625 + 1056G3)z

7 − 91125(−11421875 + 1248G3)z
8 −

12150(−119453125+2208G3)z
9+2025(131953125+12128G3)z

10+4500(−5546875+2016G3)z
11− 6750(2015625+

256G3)z
12 − 250(4984375 + 3072G3)z

13. Let us observe that again, parameters a and b have been obviated in the rational
function resulting from the Möbius transformation. Indeed, this rational function is highly simplified for G3 = 0, as

Oq(z, 0) = z4
38637 + 87804z + 79191z2 + 30888z3 + 3363z4 − 404z5 + 9z6

177147 + 354294z + 177147z2 − 157464z3 − 236925z4 − 95904z5 + 7749z6 + 13392z7 + 690z8 − 638z9
.
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(d) G3 = 0 periodic orbit
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(e) G3 = 10

z=5.2579+i-1.188e-38
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(f) G3 = 10 periodic orbit

Fig. 5: Dynamical planes with unstable behavior for m = 2

3.2.1 Fixed and critical points

As we have seen, the proposed fourth-order family of iterative methods, applied on the polynomial q(z), and after Möbius
transformation, gives rise to the rational function (27), depending on parameter G3. It is clear that this rational function has
0 and ∞ as fixed points, but also different strange fixed points (obtained in the same way as in case of multiplicity 2): z = 1
and the roots of the high-degree polynomial,

s(t) = 28025208984375 + 121442572265625t+ 242885144531250t2 + (290747126953125− 51018336G3)t
3

+(225342158203125− 170061120G3)t
4 + (113305394531250− 160613280G3)t

5

+(34211742187500 + 30792960G3)t
6 + (4456582031250 + 113724000G3)t

7

+(−433318359375 + 26827200G3)t
8 + (−131466796875− 24559200G3)t

9

+(37300781250− 9072000G3)t
10 + (14291015625 + 1728000G3)t

11 + (1263671875 + 768000G3)t
12,

that will be denoted by si(G3), i = 1, . . . , 12.
Nevertheless, the complexity of the operator can be lower depending on the value of the parameter, as we can see in the

following result, where we analyze when the number of strange fixed points decrease.

Theorem 6 The number of strange fixed points of operator Oq(z,G3) is thirteen (including z = 1, for G3 ̸= −495868),
excluding the following cases:

(i) If G3 = 0, the number of strange fixed points is nine, z = 1 and the roots of 177147+531441t+708588t2 +512487t3 +
187758t4 + 12663t5 − 10476t6 − 447t7 + 647t8, that are complex.

(ii) For G3 = 1765625
324 , there are eleven strange fixed points, z = 1, z = − 9

5 (double) and the eight complex roots of polynomial
13286025 + 41039055t+ 56529576t2 + 41862825t3 + 14979330t4 + 172665t5 − 1252800t6 − 33825t7 + 75325t8.
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(iii) For G3 = − 41281250
9 , the strange fixed points are z = 1, z = − 3

5 (double), z = 3
25

(
3± 8

√
6
)

and the (complex) roots of
the polynomial 4428675+3838185t+11626092t2+32057775t3+15658110t4−12474945t5−7325100t6+1911225t7+
1081775t8.

As we will see in the following, not only the number but also the stability of the fixed points depend on the parameter of the
family. The expression of the differential operator, necessary for analyzing the stability of the fixed points and for obtaining
the critical points, can be easily obtained from the fixed point iteration function, Oq(z,G3), so it will be obviated.

On the other hand, let us remark that 0 is a superattractive fixed point and, as in case m = 2, the stability of the other fixed
points change depending on the values of the parameter G3. In the following results we establish the stability of z = ∞ and
the strange fixed point z = 1, whose proofs are similar to that of Theorem 4, and they are omitted.

Theorem 7 The stability of the fixed point z = ∞ is defined as follows:

(i) If | − 623046875− 384000G3| < 17578125
2 , then z = ∞ is attracting and superattracting for G3 = − 4984375

3072 .
(ii) For | − 623046875− 384000G3| = 17578125

2 , z = ∞ is a parabolic point.
(iii) If | − 623046875− 384000G3| > 17578125

2 , then z = ∞ is repulsive.

Theorem 8 The character of the strange fixed point z = 1 is as follows (except for G3 = −495868, as in this case z = 1 is
not a fixed point):

(i) If |7308593750 + 14739G3| > 72 · 109, then z = 1 is an attractor (it cannot be a superattractor).
(ii) When |7308593750 + 14739G3| = 72 · 109, z = 1 is a parabolic point.

(iii) If |7308593750 + 14739G3| < 72 · 109, then z = 1 is repulsive.

Let us remark that the area of the complex plane where z = 1 is repulsive is even bigger than in case m = 2 (see Figure
6). This makes the family even more stable, as the study of the stability of the rest of strange fixed points establishes.

(a) |Inf ′
q(0, G3)| (b) |O′

q(1, G3)|

Fig. 6: Stability function of the fixed points z = ∞ and z = 1, for m = 3

Regarding the rest of strange fixed points, as it is not possible to get an analytical expression for them, we state both
numerical and graphically, some general aspects on their stability: si(G3), i = 1, 2, 3 are repulsive for all values of G3; the
case of s4(G3) is different, as it is superattracting for G3 = −3014.73±1507.35i, and attracting in small cardioid around these
values. Regarding s5(G3) and s6(G3), they are found also to be repulsive for any value of the parameter, meanwhile s7(G3) is
attracting in both cardioid around G3 = −3012.96±1504.96i, being superattracting at these values. Again s8(G3), s9(G3) and
s11(G3) are repulsive, whilst s10(G3) is attracting inside a big area of the complex plane [1·106, 4.5·106]×[−2·106, 2·106], and
superattracting at two points: G3 = 2.63009 ·106±370441i. Finally, s12(G3) is superattracting if G3 = −3052.6±1544.22i,
being attracting in close complex values. Summarizing, there are no real values of G3 where any of these strange fixed points
is attracting or superattracting and their stability regions are very far from the origin.

This global behavior of the strange fixed points can be observed at Figure 7a, where the stability regions of z = 1 and
z = ∞ are also included. It is clear that the area around the origin is completely stable for the methods (as far as it concerns
to fixed points of the rational operator), as the strange fixed points are repulsive. The rest of dangerous behavior is, moreover,
very far from the standard values of a parameter in real applications. A final study, by using dynamical planes, is needed in
order to see if the complex area surrounding the origin involves attracting periodic orbits for m = 3, as it happened in the
case of double roots. In order to understand more deeply the behavior of the elements of the family applied on polynomials
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(a) |O′
q(si(G3), G3)|, i = 2, 3, . . . , 12 (b) A detail

Fig. 7: Stability functions of the strange fixed points si(G3), i = 2, 3, . . . , 12 for m = 3

with cubic multiplicity, we analyze the number of critical points of the associated operator, as a lower number decreases the
number of attracting areas different from the roots. In the following result these items are discussed, from the analysis of the
equation O′

q(z,G3) = 0.

Theorem 9 The free critical points of rational function Oq(z,G3) are z = −m = −3 (which is pre-image of z = 1) and the
roots Ci(G3), i = 5, 6, ..., 18, of a 11th-polynomial, except in the following cases:

(i) If G3 = 0, the only free critical points are z = −3 and the roots of −231822 − 388071t − 126198t2 + 168885t3 +
110142t4 − 3885t5 − 8346t6 + 319t7.

(ii) For G3 = −103515625/864 ≈ 119810, there are eleven free critical points, z = −3 and the roots of 57572775 +
581868846t+944584983t2+55611036t3−725941116t4−283149756t5+154120320t6+73364940t7−14681451t8−
6637338t9 + 209129t10.

(iii) If G3 ≈ −3036.44 or G3 = −118489, there are eleven different free critical points, including z = −3, as C2(G3) =
C3(G3).

(iv) For G3 = − 7308593750
14739 ≈ −495868 there are ten free critical points, including z = −3.

(vi) If G3 ≈ −3341.1 or G3 ≈ 3609.71, the number of free critical points is eleven, one of them double.

These values of G3 are candidates to stable values, as the number of possible basins of attraction decreases with the number
of free critical points. So, the lower is this amount, lower is the probability to find stable behavior different from those of zero
and infinity.

3.2.2 Dynamical planes

In this section, some of the values of G3 that have appeared along this analysis are used to plot the respective dynamical planes
and observe the performance of the method. In the studied cases, convergence to the multiple root z = 0 or to both z = 0
and z = ∞ are observed, depending on the value of the parameter. For the first case, see Figures 8a to 8d where no attracting
periodic orbits appears although the values of G3 used are near the origin; regarding the former case, a dynamical plane for a
superattracting z = ∞ is shown at Figure 8e, with a detail at Figure 8f.

There have been also appeared some values of G3 corresponding to unstable behavior, under different circumstances: when
we have analyzed the stability region of attracting strange fixed points (Figures 9a and 9b for z = 1), pairs of simultaneous
attracting fixed points (z = 1 has bifurcated into z1 = 0.9859 + 0.3938i and z2 = 0.9859− 0.3938i appearing in Figure 9c),
or G3 being superattracting in Figure 9d; but also some of them correspond to attracting periodic orbits, as {0.8844±0.3098i}
that can be seen at Figures 9e, or the case of G3 = −3260 − 1500i, that has a black region as the basin of attraction of a
high-period orbit (see Figure 9f).

4 Numerical experiments

In this section, we will check the efficiency and convergence behavior of our proposed schemes:
In this regards, we consider a total number of four test problems: first one is the trajectory of an electron in the air gap

problem, second one is from the linear algebra; third and fourth are the concrete variety of standard test functions; fifth one is
Van der Waals equation of state; sixth one is population growth problem, which are mentioned in the examples (1)– (6).
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Fig. 8: Dynamical planes with stable behavior for m = 3

Cases Parameter Method denoted by

Case-1 G3 = − m5

32p3
(m4 + 2m3 + 2m2 − 2m+ 12)

)
OM1

Case-1 G3 = 0 OM2
Case-2 - OM3

Case-3 a2 = p2

192
m(m+ 2)4(m4 + 4m3 + 6m2 + 2m+ 8) OM4

Case-4 a2 = p2

192
m(m+ 2)4(m4 + 4m3 + 6m2 + 2m+ 8) OM5

Now, we will compare our proposed methods with optimal families of fourth-order methods which were given by Hueso
et al. in [6] and Li et al. [8], out of these families we shall choose expression (1) and expression (69), respectively called
by HMT and LCN . In addition, we compare them with fourth-order optimal schemes presented by Sharifi et al. [13] and
Soleymani and Babajee [14], out of them we consider expression (35) and expression (27), respectively denoted by SBS and
SB. Moreover, we also compare them with robust and optimal schemes of the same order given by Soleymani et al. [15] and
Zhou et al. [17], out of them we pick expression (18) and expression (27), respectively called by SBL and ZCS. Further, we
compare them with the optimal fourth-order family based on weight function approach presented by Zhou et al. [18], out of
them we choose expression (11), denoted by ZM . Finally, we also compare them with the third-order scheme given by Sbibih
et al. [11], out of them we choose expression (4.10)

(
for µ = 1

3

)
and (4.10)

(
for µ =

√
2
)

, called by SATZ1 and SATZ2,
respectively.

For better comparison, we have compared our methods with them on the basis of approximated zeros, residual error
of the involved functions, difference between the two consecutive iterations, asymptotic error constants. In Tables 2 – 7,
we displayed the number of iteration indexes (n), approximated zeros (xn), absolute residual error of the corresponding
function (|f(xn)|), error in the consecutive iterations |xn+1 − xn|,

∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣, the estimation of asymptotic error constant

η ≈ lim
n→∞

∣∣∣∣ xn+1 − xn

(xn − xn−1)4

∣∣∣∣ at the last iteration. We make our calculations with several number of significant digits (minimum

1000 significant digits) to minimize the round off error.
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(a) G3 = 5 · 106, z = 1 attracting
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(b) G3 = 4.5 · 106
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(f) G3 = −3260− 1500i

Fig. 9: Dynamical planes with unstable behavior for m = 3

As we mentioned in the above paragraph that we calculate the values of all the constants and functional residuals up to
several number of significant digits but due to the limited paper space, we display the value of xn up to 25 significant digits.
In addition, we also display

∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ and η up to 10 significant digits. Moreover, absolute residual error in the function
|f(xn)| and error in the consecutive iterations |xn+1 − xn| are displayed up to 2 significant digits with exponent power
which are mentioned in Tables 2 – 7. Furthermore, the approximated zeros up to 25 significant digits are also displayed in the
examples (1)– (6) although minimum 1000 significant digits are available with us.

For the computer programming, all computations have been performed using the programming package Mathematica 11
with multiple precision arithmetic. Further, the meaning of a(±b) is a × 10(±b) in the following Tables 2–7. Moreover, we
also mentioned the CPU time in Table 8 which are calculated on the HP-Laptop, Windows 7 ultimate, RAM 4.00GB with
64-bit operating system.

Example 1 In the study of the multi-factor effect, the trajectory of an electron in the air gap between two parallel plates is
given by

x(t) =x0 +

(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt+ α) + sin(ω + α)

)
, (28)

where e and m are the charge and the mass of the electron at rest, x0 and v0 are the position and velocity of the electron at time
t0 and E0 sin(ωt + α) is the RF electric field between the plates [6]. We choose the particular parameters in the expression
(28) in order to deal with a simpler expression, which is defined as follows:

f1(x) = x+ cos(x)− π

2
. (29)

The above function has one multiple zero at x = π
2 of multiplicity three.
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Example 2 Consider the following 5× 5 matrix

B =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8
7 4 3 1 −3

 .

The corresponding characteristic polynomial of this matrix is as follows:

f2(x) = (x− 2)4(x+ 1). (30)

It’s characteristic equation has one multiple root at x = 2 of multiplicity four.

Example 3 Let us consider the following nonlinear equation chosen from [1]

f3(x) =
(
cos

(πx
2

)
−
√

1− x2 + x+ 1
)3

. (31)

The above function has one multiple zero at x = −0.7285840464448267167123331 of multiplicity three.

Example 4 Let us pick a standard nonlinear test function from [6], which is given as follows:

f4(x) = exp(x)−
l−1∑
k=0

xk

k!
, (32)

where l = 20. The above function has a multiple root at x = 0 of multiplicity l.

Example 5 Van der Waals equation of state:(
P +

a1n
2

V 2

)
(V − na2) = nRT, (33)

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific for each
gas. The determination of the volume V of the gas in terms of the remaining parameters requires the solution of a nonlinear
equation in V,

PV 3 − (na2P + nRT )V 2 + a1n
2V − a1a2n

2 = 0. (34)

Given the constants a1 and a2 of a particular gas, one can find values for n, P and T , such that this equation has three simple
roots. By using the particular values, we obtain the following nonlinear function

f5(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (35)

which has three zeros and out of them one is the multiple zero x = 1.75 of multiplicity 2, and the other is the simple zero
x = 1.72. However, our desired zero is x = 1.75.

Example 6 Population growth problem:
Law of population growth is defined as follows:

dN(t)

dt
= γN(t) + η, (36)

where N(t) = population at time t, η= fixed/constant immigration rate and γ = fixed/constant birth rate of population. We can
easily obtain the following solution of the above differential equation (36)

N(t) = N0e
γt +

η

γ
(eγt−1), (37)

where N0 is initial population.
For a particular case study, the problem is given as: Suppose a certain population contains 1000000 individuals initially, that
300000 individuals immigrate into the community in the first year and that 1365000 individuals are present at the end of one
year. Find birth rate (γ) of this population.
To determine the birth rate, we must solve the equation

f6(x) = 1365− 1000ex − 300

x
(ex − 1). (38)

wherein x = γ and our desired zero of the above function f6 is 0.05504622451335177827483421.
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Remark 1 It is worthy to note from the Tables 2–7 that our proposed methods are efficient for determining multiple roots
of nonlinear equations and are competitive with other well recognized efficient and optimal fourth-order iterative methods,
being OM1 and OM4 those obtaining better results in the most of problems analyzed. In addition, our methods have not only
minimum residual error corresponding to considered test function f but also have small asymptotic error constant in most of
the considered test functions. Moreover, minimum error between the consecutive iterations corresponding to the considered
functions belongs to our proposed iterative methods. Hence, we confirm that our methods converge faster towards required
zero of the corresponding function as compared to other existing methods.

The comparison among different schemes can be made numerically, by using certain initial estimations as we have made
in Tables 2-5, or graphically by means of their basins of attraction. In them, we are going to obtain the set of converging initial
points for all the optimal methods considered and functions f1(x) and f2(x). As this suppose 24 images, we consider it is
enough with this two functions. As in Section 3, these dynamical planes have been obtained by using a mesh of 800 × 800
points, a tolerance of 10−3 and 200 as maximum number of iterations. In them, we paint in blue color the points whose orbits
diverge, in orange, green,... the convergent points to the roots and in black those initial guesses that do not converge with 200
iterations.

From the basins of attraction presented in Figure 10, it can be observed that LCN, SBL and OM3 methods do not present
divergent regions, that appears in the corresponding dynamical planes of HMT, ZCS, ZM, SB and OM2 with wide basins of
attraction of the multiple root. However, methods SBS and OM5 show smaller areas of convergence to the multiple root.

In Figure 11 the dynamical behavior of the compared methods on f2(x) appear. Many of them (HMT, SB, ZCS, ZM,
OM1, OM2, OM4) show global convergence (in the analyzed area of the complex plane), with slightly dark areas of slower
convergence, and again SBS and OM5 present worse results, with areas of divergence and small basins of attraction to the
multiple root.

5 Concluding remarks

In the earlier studies, several scholars proposed higher-order optimal fourth-order iterative methods for multiple roots when
the multiplicity m is known in advance. But most of these schemes have the flexibility only at the second step due to the
involvement of weight function/s or free parameter/s in order to explore other new schemes. Our mean to say that if a researcher
want to explore some more methods from the same scheme then he/she can make changes only at second step not at the first
step for example please see all the mentioned methods (whose first step is fixed) in the introduction section. Therefore, we
contribute further to the development of the theory of iteration processes and propose a new optimal fourth-order scheme in
a simple way based on mid-point and weight function approach. The main beauty of our proposed scheme is that they have
not only given the flexibility to the researchers at both steps in order to construct a new optimal fourth-order methods but also
give the faster convergence, small residual error corresponding to the involved function and asymptotic error constants.

The proposed scheme is optimal in the sense of classical Kung-Traub conjecture. We also compare our methods with the
existing robust methods of same order on a series of numerical examples. The results in Table 2 and 7 overwhelmingly support
that the minimum residual errors, minimum error in the consecutive iterations and small asymptotic error constants belongs
to our proposed methods. In addition, the study of dynamics of our methods also reflects that there are wide areas of stability
corresponding to values of G3 greater than two hundred units in absolute value, but it is also stable in other many cases. The
superiority of our methods over the existing robust methods may be due to the inherent structure of our methods with mid point
and weight function approach. The future work based on the weight function approach shall be devoted to the construction of
a new optimal higher-order methods.
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 1 3.0(−2) 5.7(−1)

1 1.570873296646599848130845 7.6(−14) 7.7(−5) 7.247057960(−4)

2 1.570796326794896619231318 5.8(−72) 3.3(−24) 9.309686833(−8)

3 1.570796326794896619231322 1.5(−362) 4.5(−121) 3.952137931(−27) 3.952137931(−27)

LCN

0 1 3.0(−2) 5.7(−1)

1 1.570873174238979227550361 7.6(−14) 7.7(−5) 7.235538937(−4)

2 1.570796326794896619231318 5.7(−72) 3.2(−24) 9.294881340(−8)

3 1.570796326794896619231322 1.4(−362) 1.3(−121) 3.920811670(−27) 3.920811670(−27)

SBS

0 1 3.0(−2) 6.2(−1)

1 1.616870294223802341069037 1.6(−5) 4.6(−2) 3.181864081(−1)

2 1.570796173901997451491397 6.0(−22) 1.5(−7) 3.392806624(−2)

3 1.570796326794896619231322 3.9(−104) 6.2(−35) 1.125657728(−8) 1.125657728(−8)

SB

0 1 3.0(−2) 5.7(−1)

1 1.570872980187187161201669 7.5(−14) 7.7(−5) 7.217277885(−4)

2 1.570796326794896619231318 5.5(−72) 3.2(−24) 9.271410313(−8)

3 1.570796326794896619231322 1.1(−362) 4.1(−121) 3.871557739(−27) 3.871557739(−27)

SBL

0 1 3.0(−2) 5.7(−1)

1 1.570873282324298463651858 7.6(−14) 7.7(−5) 7.245710178(−4)

2 1.570796326794896619231318 5.8(−72) 3.3(−24) 9.307954517(−8)

3 1.570796326794896619231322 1.5(−362) 4.5(−121) 3.948462294(−27) 3.948462294(−27)

ZCS

0 1 3.0(−2) 5.8(−1)

1 1.580185516 + 5.643239597(−3)i 2.2(−7) 1.1(−2) 9.666047943(−2)

2 1.570796292− 6.763923186(−8)i 7.3(−23) 7.6(−8) 5.270320098

3 1.570796327 + 9.874665011(−40)i 4.6(−118) 1.4(−39) 4.216567639(−11) 4.216567639(−11)

ZM

0 1 3.0(−2) 5.7(−1)

1 1.570873332024493686354515 7.6(−14) 7.7(−5) 7.250387150(−4)

2 1.570796326794896619231318 5.9(−72) 3.3(−24) 9.313965874(−8)

3 1.570796326794896619231322 1.6(−362) 4.6(−121) 3.961228952(−27) 3.961228952(−27)

SATZ1

0 1 3.0(−2) 5.7(−1)

1 1.567866295736378901239945 4.2(−9) 2.9(−3) 2.817654874(−2)

2 1.570796326422235906422354 8.6(−30) 3.7(−10) 5.056208048

3 1.570796326794896619231322 7.5(−92) 7.7(−31) 3.975416325(+7) 3.975416325(+7)

SATZ2

0 1 3.0(−2) 5.7(−1)

1 1.569081716959350346276960 8.4(−10) 1.7(−3) 1.634808047(−2)

2 1.570796326750487893968856 1.5(−32) 4.4(−11) 5.138153914

3 1.570796326794896619231322 7.7(−101) 7.7(−34) 1.983827413(+8) 1.983827413(+8)

OM1

0 1 3.0(−2) 5.7(−1)

1 1.570869165130719723566698 6.4(−14) 7.3(−5) 6.858255680(−4)

2 1.570796326794896619231319 2.5(−72) 2.5(−24) 8.809970141(−8)

3 1.570796326794896619231322 2.4(−364) 1.1(−121) 2.999362222(−27) 2.999362222(−27)

OM2

0 1 3.0(−2) 5.7(−1)

1 1.570873461348743074737537 7.6(−14) 7.7(−5) 7.262557026(−4)

2 1.570796326794896619231318 6.0(−72) 3.3(−24) 9.329607950(−8)

3 1.570796326794896619231322 1.8(−362) 1.4(−121) 3.994603733(−27) 3.994603733(−27)

OM3

0 1 3.0(−2) 5.7(−1)

1 1.570873139426480793294248 7.6(−14) 7.7(−5) 7.232262945(−4)

2 1.570796326794896619231318 5.6(−72) 3.2(−24) 9.290670685(−8)

3 1.570796326794896619231322 1.3(−362) 4.3(−121) 3.911938919(−27) 3.911938919(−27)

OM4

0 1 3.0(−2) 5.7(−1)

1 1.570869189427903515905001 6.4(−14) 7.3(−5) 6.860542268(−4)

2 1.570796326794896619231319 2.6(−72) 2.5(−24) 8.812908944(−8)

3 1.570796326794896619231322 2.5(−364) 1.8(−121) 3.004368150(−27) 3.004368150(−27)

OM5

0 1 3.0(−2) 5.7(−1)

1 1.585352159610620619427337 9.7(−15) 3.9(−5) 3.654802206(−4)

2 1.570796326794896619231322 2.0(−76) 2.5(−24) 4.693762169(−8)

3 1.570796326794896619231322 7.5(−385) 1.8(−128) 1.287544167(−28) 1.287544167(−28)

Table 2: Convergence behavior of different higher-order iterative methods on the test function f1(x)

5. Dong, C., A Family of Multipoint Iterative Functions for Finding Multiple Roots of Equations, Inter. J. Computer Math. 21(1987) 363–367
6. Hueso, J.L., Martı́nez E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53 (2015) 880–892.
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 1.5 1.6(-1) 5.0(-1)
1 2.000605976427265857393486 4.0(−13) 6.1(−4) 9.648762353(−3)

2 2.000000000000000674773199 6.2(−61) 6.7(−16) 5.004202823(−3)

3 2.000000000000000000000000 3.5(−252) 1.0(−63) 5007802704(−3) 5.007802704(−3)

LCN

0 1.5 1.6(−1) 5.0(−1)

1 2.000598258969828368317889 3.8(−13) 6.0(−4) 9.526467264(−3)

2 2.000000000000000632154766 4.8(−61) 6.3(−16) 4.934765741(−3)

3 2.000000000000000000000000 1.2(−252) 7.9(−64) 4.938271605(−3) 4.938271605(−3)

SBS

0 1.5 1.6(−1) 5.0(−1)

1 2.019404110787400172282947 4.3(−7) 1.9(−2) 2.666074196(−1)

2 1.999999999285862929544783 7.8(−37) 7.1(−10) 5.037401086(−3)

3 2.000000000000000000000000 7.6(−156) 1.3(−39) 4.854606300(−3) 4.854606300(−3)

SB

0 1.5 1.6(−1) 5.0(−1)

1 2.000580803698747068224322 3.4(−13) 5.8(−4) 9.249805665(−3)

2 2.000000000000000542909459 2.6(−61) 5.4(−16) 4.771005473(−3)

3 2.000000000000000000000000 8.9(−254) 4.1(−64) 4.774305556(−3) 4.774305556(−3)

SBL

0 1.5 1.6(−1) 5.0(−1)

1 2.000616459055436191733497 4.3(−13) 6.2(−4) 9.814851663(−3)

2 2.000000000000000737702294 8.9(−61) 7.4(−16) 5.108156426(−3)

3 2.000000000000000000000000 1.6(−251) 1.5(−63) 5.111882716(−3) 5.111882716(−3)

ZCS

0 1.5 1.6(−1) 5.6(−1)

1 2.058579987081456363563905 3.6(−5) 5.9(−2) 6.017380565(−1)

2 2.000000041266657660868987 8.7(−30) 4.1(−8) 3.504317381(−3)

3 2.000000000000000000000000 4.2(−128) 1.1(−32) 3.761573884(−3) 3.761573884(−3)

ZM

0 1.5 1.6(−1) 5.0(−1)

1 2.000606834142187230960775 4.1(−13) 6.1(−4) 9.662353244(−3)

2 2.000000000000000679634847 6.4(−61) 6.8(−16) 5.011821661(−3)

3 2.000000000000000000000000 3.9(−252) 1.1(−63) 5.015432099(−3) 5.015432099(−3)

SATZ1

0 1.5 1.6(−1) 5.0(−1)

1 1.99546183624086726798384 1.3(−9) 4.5(−3) 7.530765614(−2)

2 1.999999997900536487365499 5.8(−35) 2.1(−9) 4.949809464

3 2.000000000000000000000000 5.5(−111) 2.1(−28) 1.065757241(+7) 1.065757241(+7)

SATZ2

0 1.5 1.6(−1) 5.0(−1)

1 1.996865833985800502425354 2.9(−10) 3.1(−3) 5.142394482(−2)

2 1.999999999491570721895109 2.0(−37) 5.1(−10) 5.269177705

3 2.000000000000000000000000 6.6(−119) 2.2(−30) 3.240378726(+7) 3.240378726(+7)

OM1

0 1.5 1.6(−1) 5.0(−1)

1 2.000033487649437063732799 3.8(−18) 3.3(−5) 5.356588729(−4)

2 2.000000000000000000000000 1.3(−105) 4.6(−27) 3.634432827(−9)

3 2.000000000000000000000000 6.6(−543) 2.2(−136) 4.959442267(−31) 4.959442267(−31)

OM2

0 1.5 1.6(−1) 5.0(−1)

1 2.000612301010062421692316 4.2(−13) 6.1(−4) 9.748973916(−3)

2 2.000000000000000711227655 7.7(−61) 7.1(−16) 5.059979203(−3)

3 2.000000000000000000000000 8.5(−252) 1.3(−61) 5.063657407(−3) 5.063657407(−3)

OM3

0 1.5 1.6(−1) 5.0(−1)

1 2.000596167557409000156910 3.8(−13) 6.0(−4) 9.493322987(−3)

2 2.000596167557409000156910 4.5(−61) 6.2(−16) 4.915500737(−3)

3 2.000000000000000000000000 8.6(−253) 7.3(−64) 4.918981481(−3) 4.918981481(−3)

OM4

0 1.5 1.6(−1) 5.0(−1)

1 2.000042987177578592553261 1.0(−17) 4.3(−5) 6.875583612(−4)

2 2.000000000000000000000000 1.4(−105) 4.6(−27) 1.351547525(−9)

3 2.000000000000000000000000 5.7(−545) 6.6(−137) 1.452872236(−31) 1.452872236(−31)

OM5

0 1.5 1.6(−1) 5.0(−1)

1 2.001150840221343121297670 5.3(−12) 1.2(−3) 1.824488711(−2)

2 1.999999999999999999938591 4.3(−77) 6.1(−20) 3.500850225(−8)

3 2.000000000000000000000000 4.7(−402) 2.7(−101) 1.933187756(−28) 1.933187756(−28)

Table 3: Convergence behavior of different higher-order iterative methods on the test function f2(x)

7. Kung, H.T., Traub, J. F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21 (1974) 643–651.
8. Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59 (2010) 126–135.
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307541860524007798228250 2.6(−8) 2.2(−3) 6.303324668(−2)

2 −0.7285840462944663849955303 8.7(−30) 1.5(−10) 6.779262665

3 −0.7285840464448267167123331 9.6(−116) 3.4(−39) 6.564620567 6.564620567

LCN

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307410231568425088556431 2.5(−8) 2.2(−3) 6.265857938(−2)

2 −0.7285840462998300981367198 7.8(−30) 1.4(−10) 6.698474873

3 −0.7285840464448267167123331 6.0(−116) 2.9(−39) 6.488701515 6.488701515

SBS

0 −0.3 2.6(−1) 4.4(−1)

1 −0.7435562826197813060968027 8.3(−6) 1.5(−2) 3.868152117(−2)

2 −0.7285836390969679989218396 1.7(−19) 4.1(−7) 8.105344879

3 −0.7285840464448267167123329 1.4(−74) 1.8(−25) 6.454556778 6.454556778

SB

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307208210268841876594601 2.5(−8) 2.1(−3) 6.208336848(−2)

2 −0.7285840463078707273473289 6.6(−30) 1.4(−10) 6.569708234

3 −0.7285840464448267167123331 2.9(−116) 2.2(−39) 6.367386517 6.367386517

SBL

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307520405562654192284585 2.6(−8) 2.2(−3) 6.297218380(−2)

2 −0.7285840462952534902103386 8.5(−30) 1.5(−10) 6.770509459

3 −0.7285840464448267167123331 9.0(−116) 3.3(−39) 6.556601701 6.556601701

ZCS

0 −0.3 2.6(−1) 4.7(−1)

1 −0.7668910299− 2.477092481(−2)i 2.2(−4) 5.0(−2) 1.036631767

2 −0.7257871544 + 2.876282902(−3)i 1.7(−7) 4.0(−3) 666.2561452

3 −0.7285840474− 5.368971121(−12)i 2.3(−27) 9.7(−10) 3.733460864 3.733460864

ZM

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307580515956084366130089 2.6(−8) 2.2(−3) 6.314325758(−2)

2 −0.7285840462928719843464066 9.0(−30) 1.5(−10) 6.802551427

3 −0.7285840464448267167123331 1.1(−115) 3.5(−39) 6.586477782 6.586477782

SATZ1

0 −0.3 2.6(−1) 4.3(−1)

1 −0.6840561491117837743108155 2.5(−4) 4.4(−2) 2.038634112

2 −0.7284086567042481427919098 1.4(−11) 1.8(−4) 4.532433387(+2)

3 −0.7285840464286379883370366 1.1(−32) 1.6(−11) 1.710787836(+4) 1.710787836(+4)

SATZ2

0 −0.3 2.6(−1) 4.0(−1)

1 −0.7025172838401661250476173 4.8(−5) 2.6(−2) 9.919969134(−1)

2 −0.7285577320208117840558335 4.6(−14) 2.6(−5) 5.722687745(+1)

3 −0.7285840464447930174399782 9.8(−41) 3.4(−14) 7.028215223(+4) 7.028215223(+4)

OM1

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7302914840296724390574273 1.3(−8) 1.7(−3) 4.980739660(−2)

2 −0.7285840464099897145888508 1.1(−31) 3.5(−11) 4.098844016

3 −0.7285840464448267167123331 5.3(−124) 5.9(−42) 4.027093448 4.027093448

OM2

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307723533603045420743033 2.7(−8) 2.2(−3) 6.355020749(−2)

2 −0.7285840462868850837568170 1.0(−29) 1.6(−10) 6.887531010

3 −0.7285840464448267167123331 1.8(−115) 4.1(−39) 6.666147333 6.666147333

OM3

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7307373761527420768440273 2.5(−8) 2.2(−3) 6.255475510(−2)

2 −0.7285840463013044580708542 7.5(−30) 1.4(−10) 6.675395724

3 −0.7285840464448267167123331 5.3(−116) 2.7(−39) 6.466973456 6.466973456

OM4

0 −0.3 2.6(−1) 4.3(−1)

1 −0.7303054133977433599809357 1.3(−8) 1.7(−3) 5.020722652(−2)

2 −0.7285840464088168705689866 1.2(−31) 3.6(−11) 4.101355219

3 −0.7285840464448267167123331 7.9(−124) 6.8(−42) 4.027093448 4.027093448

OM5

0 −0.3 2.6(−1) 4.5(−1)

1 −0.7482654918792924180501645 1.9(−5) 2.0(−2) 4.874526327(−1)

2 −0.7285832914283975037429237 1.1(−18) 7.6(−7) 5.031086682

3 −0.7285840464448267167123318 5.7(−72) 1.3(−24) 4.027061336 4.027061336

Table 4: Convergence behavior of different higher-order iterative methods on the test function f3(x)

9. Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215 (2009)
1288–1292.
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 1 4.3(−19) 1.0

1 7.828587819539840468767779(−7) 3.1(−41) 7.8(−7) 7.828612334(−7) 7.235152913(−7)

2 2.717574459161567596486764(−31) 2.0(−630) 2.7(−31) 7.235153361(−7)

3 3.946149396364377930545280(−129) 3.4(−2587) 3.9(−129) 7.235152913(−7)

LCN

0 1 4.3(−19) 1.0

1 7.827308224966503817728439(−7) 3.1(−141) 7.8(−7) 7.827332732(−7) 7.234027376(−7)

2 2.715375644700673086402099(−31) 2.0(−630) 2.7(−31) 7.234027824(−7)

3 3.93278152676961481254200(−129) 3.2(−2587) 3.9(−129) 7.234027376(−7)

SBS

0 1 4.3(−19) 1.0

1 −0.008657778208344092130448359 2.3(−60) 8.7(−3) 8.364328644(−3) 7.222994193(−7)

2 4.294499850302673508998825(−13) 1.9(−266) 4.3(−13) 7.643403163(−5)

3 2.456787724624677403816207(−56) 2.6(−1131) 2.5(−56) 7.222994193(−7)

SB

0 1 4.3(−19) 1.0

1 7.813348181059581529335391(−7) 3.0(−141) 7.8(−7) 7.813372600(−7) 7.221778344(−7)

2 2.691490759489867342829191(−31) 1.6(−630) 2.7(−31) 7.221778790(−7)

3 3.789795075464724645722391(−129) 1.5(−2587) 3.8(−129) 7.221778344(−7)

SBL

0 1 4.3(−19) 1.0

1 7.953057268795634055950551(−7) 4.2(−141) 8.0(−7) 7.953082569(−7) 7.344359844(−7)

2 2.938261293075213048991021(−31) 9.5(−630) 2.9(−31) 7.344360311(−7)

3 5.474136259993639201367362(−129) 2.4(−2587) 5.5(−129) 7.344359844(−7)

ZCS

0 1 4.3(−19) 1.0

1 −6.637097701376525242035541(−8) 1.1(−162) 6.6(−8) 6.637095941(−8) 6.196562319(−8)

2 2.097669799615884912384601(−17) 1.1(−352) 2.1(−17) 1.080996486(−12)

3 −1.199773663528067231668232(−74) 1.6(−1497) 1.2(−74) 6.196562319(−8)

ZM

0 1 4.3(−19) 1.0

1 7.828588035110395222651694(−7) 3.1(−141) 7.8(−7) 7.828612550(−7) 7.235153103(−7)

2 2.717574829725725301121913(−31) 2.0(−630) 2.7(−31) 7.235153551(−7)

3 3.946151652168463694980538(−129) 3.4(−2587) 3.9(−129) 7.235153103(−7)

SATZ1

0 1 4.3(−19) 1.0

1 −4.536613753639024858789058(−5) 5.6(−106) 4.5(−5) 4.535790612(−5)

2 3.949491101460006849782129(−18) 3.5(−367) 3.9(−18) 9.324250216(−1)

3 −2.605976581155268321624286(−57) 8.6(−1151) 2.6(−57) 1.071040639(+13) 1.071040639(+13)

SATZ2

0 1 4.3(−19) 1.0

1 −4.266898516948512437472135(−5) 1.6(−106) 4.3(−5) 4.266170338(−5)

2 3.094789518979090264519079(−18) 2.7(−269) 3.1(−18) 9.336451857(−1)

3 −1.180833833979428889742517(−57) 1.1(−1157) 1.2(−57) 1.287254204(+13) 1.287254204(+13)

OM1

0 1 4.3(−19) 1.0

1 −1.477021135487271075665121(−6) 1.0(−135) 1.5(−6) 1.477012409(−6) 1.264783617(−6)

2 −6.019535391679813492511129(−30) 1.6(−603) 6.5(−30) 1.264783329(−6)

3 −1.660611802498010944223058(−123) 1.0(−2474) 1.7(−123) 1.264783617(−6)

OM2

0 1 4.3(−19) 1.0

1 7.828727502589454827059765(−7) 3.1(−141) 7.8(−7) 7.828752018(−7) 7.235275807(−7)

2 2.7178145827847979222793393(−31) 2.0(−630) 2.7(−31) 7.235276255(−7)

3 3.947611352630203067255450(−129) 3.5(−2587) 3.9(−129) 7.235275807(−7)

OM3

0 1 4.3(−19) 1.0

1 7.827193013402466467601844(−7) 3.1(−141) 7.8(−7) 7.827217519(−7) 7.233926061(−7)

2 2.715177748142894038690056(−31) 1.9(−630) 2.7(−31) 7.233926508(−7)

3 3.931580103641188032260615(−129) 3.2(−2587) 3.9(−129) 7.233926061(−7)

OM4

0 1 4.3(−19) 1.0

1 −1.477123319694082282842075(−6) 1.0(−135) 1.5(−6) 1.477114592(−6) 1.264783617(−6)

2 −6.021201353013852867532080(−30) 1.6(−603) 6.0(−30) 1.264783329(−6)

3 −1.662450923674687122831356(−123) 1.1(−2474) 1.7(−123) 1.264783617(−6)

OM5

0 1 4.3(−19) 1.0

1 −1.477123319694082282842075(−6) 1.0(−135) 1.5(−6) 1.477114592(−6) 1.264783617(−6)

2 −6.021201353013852867532080(−30) 1.6(−603) 6.0(−30) 1.264783329(−6)

3 −1.662450923674687122831356(−123) 1.1(−2474) 1.7(−123) 1.264783617(−6)

Table 5: Convergence behavior of different higher-order iterative methods on the test function f4(x).
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 1.8 2.0(−4) 4.7(−1)

1 1.752635974832068545325330 2.3(−7) 2.6(−3) 5.236740581(+2) 1.504525186(+4)

2 1.750000520632870976970862 8.1(−15) 5.2(−7) 1.079219272(+4)

3 1.750000000000000000001105 3.7(−44) 1.1(−21) 1.504525186(+4)

LCN

0 1.8 2.0(−4) 4.7(−1)

1 1.752523213564796124343964 2.1(−7) 2.5(−3) 4.965446191(+2) 1.388813078(+4)

2 1.750000409392763577418605 5.0(−15) 4.1(−7) 1.010662146(+4)

3 1.750000000000000000000390 4.6(−45) 3.9(−22) 1.388813078(+4)

SBS

0 1.8 2.0(−4) 4.7(−1)

1 1.752638728771643002591608 2.3(−7) 2.6(−3) 3.990317988(−1) 1.263474539(−2)

2 1.750000520807595366165174 8.1(−15) 5.2(−7) 1.166565670(−2)

3 1.750000000000000000001101 3.6(−44) 1.1(−21) 1.263474539(−2)

SB

0 1.8 2.0(−4) 4.7(−1)

1 1.752523213564796124343964 2.1(−7) 2.5(−3) 4.965446191(+2) 1.388813078(+4)

2 1.750000409392763577418605 5.0(−15) 4.1(−7) 1.010662146(+4)

3 1.750000000000000000000390 4.6(−45) 3.9(−22) 1.388813078(+4)

SBL

0 1.8 2.0(−4) 4.7(−1)

1 1.752523213564796124343964 2.1(−7) 2.5(−3) 4.355919298(−2) 1.276646091(−2)

2 1.750000409392763577418605 5.0(−15) 4.1(−7) 1.267632710(−2)

3 1.750000000000000000000390 4.6(−45) 3.9(−22) 1.276646091(−2)

ZCS

0 1.8 2.0(−4) 4.7(−1)

1 1.753077732689054788153803 3.1(−7) 3.1(−3) 6.346171766(+2) 2.545702314(+4)

2 1.750001439104082535103692 6.2(−14) 1.4(−6) 1.606871270(+4)

3 1.750000000000000000109188 3.6(−40) 1.1(−19) 2.545702314(+4)

ZM

0 1.8 2.0(−4) 4.7(−1)

1 1.752726454151483442238463 2.4(−7) 2.7(−3) 4.381618269(−2) 1.280504115(−2)

2 1.750000632399803226474600 1.2(−14) 6.3(−7) 1.271385203(−2)

3 1.750000000000000000002591 2.0(−43) 2.6(−21) 1.280504115(−2)

SATZ1

0 1.8 2.0(−4) 4.4(−2)

1 1.755680568432913874922503 1.2(−6) 5.6(−3) 1.455629472(+3) 9.012610049(+6)

2 1.750064562388692565624633 1.3(−10) 6.5(−4) 6.490352292(+4)

3 1.750000000156590253742911 7.4(−22) 1.6(−10) 9.012610049(+6)

SATZ2

0 1.8 2.0(−4) 4.6(−2)

1 1.753830359714441037125345 5.0(−7) 3.8(−3) 1.477114592(−6) 1.264783617(−6)

2 1.750009383638041526135206 2.6(−12) 9.4(−6) 1.264783329(−6)

3 1.750000000000161402863588 7.8(−28) 1.6(−13) 1.264783617(−6)

OM1

0 1.8 2.0(−4) 4.8(−2)

1 1.751713796508416879598061 9.3(−8) 6.4(−9) 3.152574793(+2) 3.439690471(−3)

2 1.750000006368346428936612 1.2(−18) 6.4(−9) 7.382375318(+21)

3 1.750000000000000000000000 9.6(−73) 5.7(−36) 3.439690471(−3)

OM2

0 1.8 2.0(−4) 4.7(−2)

1 1.752889533818870707034275 2.7(−7) 2.9(−3) 5.864419084(+2) 1.851626283(+4)

2 1.750000885938106677419627 2.4(−14) 8.9(−7) 1.272403807(+4)

3 1.750000000000000000011407 3.9(−42) 1.1(−20) 1.851626283(+4)

OM3

0 1.8 2.0(−4) 4.7(−1)

1 1.752523213564796124343964 2.1(−7) 2.5(−3) 4.296799492(−2) 1.265072016(−2)

2 1.750000409392763577418605 5.0(−15) 4.1(−7) 1.256323789(−2)

3 1.750000000000000000000390 4.6(−45) 3.9(−22) 1.265072016(−2)

OM4

0 1.8 2.0(−4) 4.7(−2)

1 1.751459743679674885454601 6.7(−8) 1.5(−3) 2.629467992(+2) 3.823958268(+4)

2 1.750000001524876992581441 7.0(−20) 1.5(−9) 3.358382919(+2)

3 1.750000000000000000000000 1.3(−79) 2.1(−39) 3.823958268(+4)

OM5

0 1.8 2.0(−4) 4.9(−2)

1 1.751459740956958601485950 6.7(−8) 1.5(−3) 2.629462497(+2) 3823923339(+4)

2 1.750000001524863069277435 7.0(−20) 1.5(−9) 3.358377310(+2)

3 1.750000000000000000000000 1.3(−79) 2.1(−39) 3.823923339(+4)

Table 6: Convergence behavior of different higher-order iterative methods on the test function f5(x).
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Cases n xn |f(xn)| |xn+1 − xn|
∣∣∣ xn+1−xn

(xn−xn−1)4

∣∣∣ η

HMT

0 0.06 6.0 5.0(−3)

1 0.05504622446911478013103692 5.4(−8) 4.4(−11) 7.345821216(−2) 7.450530186(−2)

2 0.05504622451335177827483421 3.5(−40) 2.9(−43) 7.345821216(−2)

3 0.05504622451335177827483421 6.0(−169) 4.9(−172) 7.450530186(−2)

LCN

0 0.06 6.0 5.0(−3)

1 0.05504622471136734450357120 2.4(−7) 2.0(−10) 3.288168938(−1) 3.320288128(−)

2 0.05504622451335177827483421 6.2(−37) 5.1(−40) 3.320288127(−1)

3 0.05504622451335177827483421 2.7(−155) 2.3(−158) 3.320288128(−11)

SBS

0 0.06 6.0 5.0(−3)

1 0.05504622446916535317059648 5.4(−8) 4.4(−11) 7.337423258(−2) 7.04399607(−2)

2 0.05504622451335177827483421 3.3(−40) 2.7(−43) 7.043996068(−2)

3 0.05504622451335177827483421 4.4(−169) 3.7(−172) 7.04399607(−2)

SB

0 0.06 6.0 5.0(−3)

1 0.05504622466828950617089380 1.9(−7) 1.5(−10) 2.572835137(−1) 2.588526722(−1)

2 0.05504622451335177827483421 1.8(−37) 1.5(−40) 2.588526721(−1)

3 0.05504622451335177827483421 1.6(−157) 1.3(−160) 2.588526722(−1)

SBL

0 0.06 6.0 5.0(−3)

1 0.05504622451504802142669122 2.1(−9) 1.7(−12) 2.816714497(−3) 2.736179928(−3)

2 0.05504622451335177827483421 2.7(−47) 2.3(−50) 2.736179928(−3)

3 0.05504622451335177827483421 8.7(−199) 7.2(−202) 2.736179928(−3)

ZCS

0 0.06 6.0 5.0(−3)

1 0.05504622479639067875813967 3.7(−4) 2.8(−10) 4.700033449(−1) 4.741058894(−4)

2 0.05504622451335177827483421 3.7(−36) 3.0(−39) 4.741058891(−1)

3 0.05504622451335177827483421 4.9(−152) 4.1(−155) 4.741058894(−4)

ZM

0 0.06 6.0 5.0(−3)

1 0.05504622462459516774941427 1.3(−7) 1.1(−10) 1.847264027(−1) 1.85676531(−1)

2 0.05504622451335177827483421 3.4(−38) 2.8(−41) 1.85676531(−1)

3 0.05504622451335177827483421 1.5(−160) 1.2(−163) 1.85676531(−1)

SATZ1

0 0.06 6.0 5.0(−3)

1 0.05504624898026988270253543 3.0(−5) 2.4(−8) 4.062960212(+1) 6.827507706(+22)

2 0.05504622451335177827483716 3.6(−21) 3.0(−24) 8.241081365(+6)

3 0.05504622451335177827483421 6.3(−69) 5.2(−72) 6.827507706(+22)

SATZ2

0 0.06 6.0 5.0(−3)

1 0.05504620943399314696361921 1.8(−5) 1.5(−8) 2.503988345(+1) 2.916428788(+23)

2 0.05504622451335177827483464 5.2(−22) 4.3(−25) 8.307994319(+6)

3 0.05504622451335177827483421 1.2(−71) 9.9(−75) 2.916428788(+23)

OM1

0 0.06 6.0 5.0(−3)

1 0.05504622447305622400664137 4.9(−8) 4.0(−11) 6.691320633(−2) 7.043996071(−2)

2 0.05504622451335177827483421 2.3(−40) 1.9(−43) 7.043996074(−2)

3 0.05504622451335177827483421 1.0(−169) 8.4(−173) 7.043996071(−2)

OM2

0 0.06 6.0 5.0(−3)

1 0.05504622479895957925655606 3.5(−7) 2.9(−10) 4.742691618(−1) 4.783810941(−1)

2 0.05504622451335177827483421 3.9(−36) 3.2(−39) 4.783810938(−1)

3 0.05504622451335177827483421 6.0(−152) 4.9(−155) 4.783810941(−1)

OM3

0 0.06 6.0 5.0(−3)

1 0.05504622453699903953651134 2.9(−8) 2.4(−11) 3.926771036(−2) 3.932425025(−2)

2 0.05504622451335177827483421 1.5(−41) 1.2(−44) 3.932425025(−2)

3 0.05504622451335177827483421 1.1(−174) 9.0(−178) 3.932425025(−2)

OM4

0 0.06 6.0 5.0(−3)

1 0.05504622447154416118757406 5.1(−8) 4.2(−11) 6.942407806(−2) 1.7043996071(−2)

2 0.05504622451335177827483421 2.6(−40) 2.2(−43) 7.043996072(−2)

3 0.05504622451335177827483421 1.8(−169) 1.5(−172) 1.7043996071(−2)

OM5

0 0.06 6.0 4.9(−3)

1 0.05509861525531043184190827 6.4(−2) 5.2(−5) 9.077763231(+4) 6.953744528(+12)

2 0.05504622457595169612771086 7.6(−8) 6.3(−11) 8.309169974(+6)

3 0.05504622451335177827483421 1.3(−25) 1.1(−28) 6.953744528(+12)

Table 7: Convergence behavior of different higher-order iterative methods on the test function f6(x).
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Cases Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

HMT 0.4898 0.144 1.145 0.895 0.705

LCN 0.3966 0.1438 0.783 0.627 0.5684

SBS 0.5676 0.143 1.061 0.983 0.7486

SB 0.3652 0.1434 0.6802 0.5646 0.4836

SBL 0.4148 0.1622 0.7706 0.6308 0.5306

ZCS 0.58 0.156 0.9924 0.6492 0.652

ZM 0.5114 0.15 0.8734 0.674 0.5458

SATZ1 0.5022 0.1562 0.6808 0.8112 0.7896

SATZ2 0.5088 0.1434 0.7088 0.8362 0.8114

OM1 0.3274 0.1596 0.7736 0.7364 0.4054

OM2 0.3443 0.1498 0.939 0.7304 0.621

OM3 0.3806 0.1497 0.6518 0.6086 0.5586

OM4 0.4276 0.1374 0.974 0.7428 0.4114

OM5 0.4618 0.125 1.008 0.8144 0.6804

Table 8: CPU Time
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Fig. 10: Dynamical planes of the different methods on test function f1(x)
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Fig. 11: Dynamical planes of the different methods on test function f2(x)


