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Abstract

Detecting where and when a contaminant entered an aquifer from observations downgradient of the source

is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distri-

bution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the

restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant

source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing

estimates of the spatial location, initial release time, the duration of the release and the mass load of a

point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assess-

ment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers

exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in

time both piezometric head and concentration observations from an array of observation wells. The method

is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal

and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific

implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of

recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient

number of state variable observations. The proposed approach is an important step towards contaminant

source identification in real aquifers, which may have logconductivity spatial distributions with either Gaus-

sian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters,

the external sinks and sources and the initial and boundary conditions are assumed known.
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1. Introduction1

Groundwater movement is slow and often a contamination plume may reach a water supply well when2

the source has disappeared; or a contaminant may enter an aquifer unnoticed, i.e., from a leaky underground3

storage tank, and when the contaminant is detected, nobody knows exactly its origin. Could the source4

be identified from the time series of concentrations observed in one or several downstream wells from the5

release point? This is a question that many researchers have posed and which has been studied in the6

past decades. The vast majority of all previous approaches are based on some sort of optimization of an7

objective function that measures deviations between model predictions and observations, with the source8

location and release time as the parameters to identify. For example, Gorelick et al. [1] used least-squares9

regression and linear programming combined with contaminant transport simulation to identify a pollutant10

source location; Sun et al. [2] proposed a constrained robust least squares approach (CRLS) for contami-11

nant release history identification and then used the CRLS estimator combined with a branch-and-bound12

global optimization for iteratively identifying source release histories and source locations [3]; Aral et al.13

[4] proposed a progressive genetic algorithm in the context of nonlinear optimization; Yeh et al. [5, 6] com-14

bined simulated annealing and tabu search; Mirghani et al. [7] employed a simulation-optimization approach15

that uses an evolutionary search algorithm; Dokou and Pinder [8] developed an optimal search strategy16

for source location identification; Amirabdollahian and Datta [9] designed an optimal source identification17

model using Adaptive Simulated Annealing to identify the contaminant source; Ayvaz [10] proposed a hybrid18

simulation-optimization approach for solving the areal groundwater pollution source identification problem.19

Some approaches are not based on optimization; for instance, Butera et al. [11], Cupola et al. [12] employed a20

Bayesian geostatistical approach to identify the source location, after a preliminary delineation of a probable21

source area; and Gzyl et al. [13] used a quasilinear geostatistical methodology to identify the source location22

from some suspect contamination sources.23

All the studies mentioned above mainly focus on the identification of source location information in a de-24

terministic aquifer where the aquifer properties are assumed perfectly known. There are a few studies carried25

out for the simultaneous identification of contaminant source information and aquifer properties. Wagner [14]26

used non-linear maximum likelihood combined with groundwater flow and contaminant transport simulation27

for the estimation of flow parameters in a two-zone aquifer and the source parameters. Sidauruk et al. [15]28

developed inverse procedures based on optimizing correlation coefficients to locate ground water contaminant29

sources and to identify transport parameters of a homogeneous aquifer. Mahar and Datta [16] used a nonlin-30

ear optimization model where the flow and transport equations are embedded as constraints to estimate the31
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magnitude, location and duration of a groundwater pollution source and later [17] they extended the method32

to include the simultaneous estimation of aquifer parameters in a homogeneous and isotropic aquifer system.33

Singh and Datta [18] utilized a trained artificial neural network to simultaneously estimate a groundwater34

contaminant source and to estimate the hydraulic conductivity, porosity, and dispersivity of a homogeneous35

aquifer. Datta et al. [19] presented a methodology using a combined optimization-simulation approach for36

simultaneously identifying a contaminant source and estimating aquifer homogeneous parameters, where the37

methodology links an optimization method to a groundwater flow and transport simulator as an external38

module. Koch and Nowak [20] combined a stochastic multiphase model and a reverse transport formulation39

within an inverse Bayesian methodology for the joint inversion of contaminated source zone architectures40

and aquifer parameters.41

However, with the exception of the work by Koch and Nowak Koch and Nowak [20], in all of those42

studies, the aquifers analyzed are either homogeneous, or, at most divided in a few homogeneous subzones.43

In a previous paper [21], we proposed the use of the ensemble Kalman filter (EnKF) —more precisely, its44

variant, the restart normal-score EnKF (NS-EnKF), which has proven to be a very efficient inverse modeling45

algorithm [e.g., 22, 23, 24, 25]— for contaminant source identification in a heterogeneous but deterministic46

aquifer, and we ended the paper with the conclusion that although the NS-EnKF performed very well for47

contaminant source identification, its application to a deterministic aquifer was unrealistic since detailed48

aquifer heterogeneity will never be available in a practical case. In this paper, recognizing the importance of49

proper characterization of conductivity for solute transport prediction [e.g., 26, 27], we move one step further50

and we demonstrate the applicability of the NS-EnKF for the simultaneous identification of a heterogeneous51

conductivity field and the parameters defining the source of a point contamination by assimilating in time52

piezometric heads and solute concentrations. We must recognize upfront, that the rest of parameters and53

variables controlling flow are assumed known, i.e., initial conditions, boundary conditions, and external54

stresses, as well as the parameters controlling transport, which are considered homogeneous and known;55

yet, the proposed methodology brings us closer to its application in a realistic setting from what had been56

proposed in the past in the literature.57

Next, the paper describes the proposed algorithm and continues with an application of the restart NS-58

EnKF for three scenarios in two different heterogenous synthetic aquifers. The paper ends with a summary59

and discussion, followed by an Appendix in which an extra scenario is discussed.60
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2. Ensemble Kalman filter61

The EnKF proposed by Evensen [28] is the evolution of the Kalman filter to handle nonlinear transfer func-62

tions. It is based on using an ensemble of realizations to approximate the covariances and cross-covariances63

of parameters and state variables needed during the updating step of the Kalman filter. In recent years,64

the EnKF has received much attention for its efficiency and effectiveness in dealing with large dimensions65

and it has been widely applied in many fields, such as oceanography, meteorology, petroleum engineering,66

or hydrology [e.g., 29, 30, 31, 32, 23, 33].67

Briefly, recall that the Kalman filter is an assimilation technique that updates the state and the parameters68

of the system sequentially in time as new state data are collected. The update is proportional to the deviations69

between the state forecast and the state observations at a few locations; in the ensemble Kalman filter, this70

update is heterogeneous in space and different for each member of the ensemble of realizations. In our case,71

the state variables are piezometric head (H) and solute concentration (C), and the parameters to update are72

hydraulic conductivity (K) and contaminant source information including location (X for the x-coordinate,73

Y for the y-coordinate), initial release time (T ), release duration (∆T ), and solute mass-loading rate (M).74

Next, we detail the specific implementation of the restart NS-EnKF, which, like all the Kalman filter-based75

approaches, consists of two steps: forecast and analysis.76

In the forecast step, state variables are forecasted into the next time step. Commonly, this forecast is done77

from the state estimate after the last updating time step; however, for the contaminant source identification,78

as was explained by Xu and Gómez-Hernández [21], Camporese et al. [34, 35], Crestani et al. [36, 37], it is79

necessary to make the forecast from time zero, since the contaminant source parameters refer to the source80

at time zero. This restart of the simulation after each time step, which is mandatory for the purpose of81

identifying the contaminant source, gives the name of “restart” NS-EnKF to the algorithm. Therefore, at82

each time step, the forecast of piezometric heads and concentrations is done from time zero until the end83

of the tth time step (Ct, Ht) based on the concentrations and heads at time zero (C0, H0) and on the last84

updates of the source information and of the conductivity field at the (t− 1)th time step (Xt−1, Yt−1, Tt−1,85

∆Tt−1, Mt−1,Kt−1). The forecast uses a state transfer equation ψ, which is non other than a combined86

groundwater flow and contaminant transport model,87

(Ct,Ht) = ψ(C0,H0, Xt−1, Yt−1, Tt−1,∆Tt−1,Mt−1,Kt−1). (1)

In the demonstration examples, we assume that the system is under transient conditions (both for ground-88
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water flow and for contaminant transport) and that only advection and dispersion are considered as transport89

mechanisms. The governing equations of the transient groundwater flow and contaminant transport are given90

in Eq. (2) [38] and Eq. (3) [39], respectively:91

Ss
∂H

∂t
−∇ · (K∇H) =W, (2)

∂(θC)

∂t
= ∇ · [θ(Dm + αv) · ∇C]−∇ · (θvC)− qsCs. (3)

where Ss denotes specific storage [L−1] H is the hydraulic head [L]; t is time [T]; ∇· is the divergence92

operator; ∇ is the gradient operator; K is the hydraulic conductivity [LT−1]; W denotes sources and sinks93

per unit volume [T−1]. C is aqueous concentration [ML−3], θ is the effective porosity of the aquifer sediment94

[-]. Dm is the molecular diffusion coefficient [L2T−1], α is the dispersivity tensor [L], v is the flow velocity95

vector [LT−1], which is related to the specific discharge through, v = −K
θ ∇H; qs is the volumetric flow rate96

per unit volume of the aquifer representing fluid sources or sinks [T−1], and Cs is the concentration of the97

source or sink flux [ML−3].98

The groundwater flow simulator MODFLOW [40] is used to solve Eq. (2), and the resulting flow velocity99

field (v) is used as input in Eq. (3), which is solved with the transport simulator MT3DMS [e.g., 39, 41].100

Note that although the EnKF can handle nonlinearities, it still fails to characterize non-Gaussian param-101

eters. To solve this problem and take advantage of the optimality of the EnKF for parameter identification102

under Gaussian conditions, several techniques, such as Gaussian mixture model, reparameterization, and103

normal-score transform (also referred to in the literature as Gaussian anamorphosis) have been employed in104

combination with the EnKF [e.g., 42, 43, 44]. The normal-score EnKF (NS-EnKF), as described by Zhou105

et al. [44], is one of the alternatives based on the use of a Gaussian anamorphosis to transform the parameters106

being identified into (univariate) Gaussian deviates [e.g., 45, 46, 23]. In this paper, we use this approach to107

handle the non-Gaussian parameters.108

The source contamination parameters(Xt−1, Yt−1, Tt−1, ∆Tt−1,Mt−1) and the conductivities Kt−1 are109

all transformed into Gaussian deviates by using a specific normal-score transform for each parameter,110
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

X̃t−1

Ỹt−1

T̃t−1

∆̃T t−1

M̃t−1

K̃t−1


=



ϕX,t(Xt−1)

ϕY,t(Yt−1)

ϕT,t(Tt−1)

ϕ∆T,t(∆Tt−1)

ϕM,t(Mt−1)

ϕK,t(Kt−1)


, (4)

where ϕX,t, ϕY,t, ϕT,t, ϕ∆T,t, ϕM,t, ϕK,t are the normal-score transform functions.111

The prediction step in the NS-EnKF refers to the prediction of the normal-scored transformed vari-112

ables from the normal-scored updated values at the last time step. Such a prediction involves the back-113

transformation of the updated normal scores followed by the forward modeling of flow and transport using114

Eq. (2) and (3) and then the transformation of the model results into normal scores.115

In the analysis step, the EnKF will update the last estimate of the (normal-scored) parameters based116

on the discrepancy between the forecasted state variable values and the observed ones. The details of the117

normal-score EnKF can be looked up elsewhere [e.g., 44]. We simply summarize here that there is an118

ensemble of augmented vectors containing parameters and state variables, each vector of the ensemble can119

be split in two, a vector of parameters S (in our case, the normal-scored values in Eq. (5)), and a vector of120

states V (in our case, the piezometric heads and solute concentrations in Eq. (6)),121

S =



X̃

Ỹ

T̃

∆̃T

M̃

K̃


, (5)

V =

 C

H

 . (6)

From the ensembles of both vectors, compute the experimental state covariance (DV V ) for all pairs122

of locations with observational data, and the experimental state-parameter cross-covariance for all pairs123

of normal-scored parameter values and observational data (DSV ). Once the experimental covariances are124
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computed, the normal-scored parameters are updated using the following equation:125

St = St−1 +Gt(V
o
t + et − V f,o

t ) (7)

with126

Gt = DSV (DV V +Rt)
−1, (8)

where St contains the updated normal-scored parameters, Gt is the Kalman gain matrix, V o
t is the vector of127

observed concentrations and observed heads, V f,o
t is the vector of forecasted concentrations and forecasted128

heads at the observation locations, and et is an observation error with mean zero, standard deviation of 0.05,129

and diagonal covariance Rt. Notice that the update is proportional to the departure between observed V o
t and130

forecasted state variables V f,o
t (at observation locations), with the Kalman gain Gt being the proportionality131

factor. The Kalman gain (Eq. (8)) is proportional to the degree of correlation between state data and132

parameters as measured by the cross-covariance DSV , and inverse proportional to the redundancy of the133

observed states as measured by the auto-covariance DV V .134

After all the normal-scored parameters are updated, back transform them into parameter space using135

the inverse of the normal-score functions (see Equation Eq. (9)),136



Xt

Yt

Tt

∆Tt

Mt

Kt


=



ϕ−1
X,t(X̃t)

ϕ−1
Y,t(Ỹt)

ϕ−1
T,t(T̃t)

ϕ−1
∆T,t(∆̃T t)

ϕ−1
M,t(M̃t)

ϕ−1
K,t(K̃t)


. (9)

3. Application137

Two synthetic confined aquifers are built: one has a unimodal conductivity distribution; the other has a138

bimodal conductivity distribution with strong continuity of the values around the larger mode of the two,139

mimicking a channelized geology. Both aquifers are modeled as confined and discretized into 50 by 50 by140

1 cells. (No units are reported throughout the paper since the results are insensitive to the units used as141

long as all quantities have coherent units. Absolute magnitudes are not important, what is important are142

relative values, such as the number of orders of magnitude of variability of the conductivity, the relative size143
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of the heterogeneity features with respect to the aquifer size, or the size of the plume within the aquifer for144

the length of the simulation period. Physical dimensions are given in square brackets when a variable or145

parameter appears for the first time.) Each cell is 1 [L] by 1 [L] by 5 [L].146

Conductivities in both aquifers are heterogeneous. The reference log-conductivity field of the unimodal147

aquifer (see Figure 1) is generated with GCOSIM3D [47] from a Gaussian distribution with the parameters148

shown in the first row of Table 1. The channelized aquifer consists of 35% high conductivity channel149

values and 65% low conductivity non-channel medium. The procedure for the generation of the reference150

log-conductivity field is as follows: first, generate a binary facies map using the SNESIM code [48] with the151

training image in Figure 2, and then populate each facies with log-conductivity values from two multiGaussian152

distributions with the parameters shown in the last two rows of Table 1, each facies is generated independently153

with the code GCOSIM3D. The resulting reference log-conductivity field of the channelized aquifer is shown154

in Figure 1 with a global mean of -1.2 [ln(LT−1)] and a global standard deviation of 1.9 [ln(LT−1)].155

In both aquifers, boundaries are impermeable, and there are 2 injection wells, labeled #1 and #2 (near156

the west boundary), with injecting rates of 10.2, and 9.5 [L3T−1], respectively, and 3 pumping wells, labeled157

#3, #4, and #5 (near the east boundary), with pumping rates of 5.7, 5.5 and 8.8 [L3T−1], respectively.158

This setup induces a flow from left to right with the presence of three sinks which will act as attractors of159

the contaminant plume. The initial piezometric heads are set to 8 [L].160

There are also 25 observation wells (see Figure 3), which will be used during the updating step of the161

restart NS-EnKF. The observation wells labeled #6, #7 and #8 will be used to display the performance162

of the updated parameters in the forecast of piezometric heads and contaminant concentrations with the163

final updated parameters. The number of observation wells could seem large; but, at this point, we wish to164

test the feasibility of using the EnKF for the simultaneous source identification and conductivity estimation.165

In practice, the density of observation wells may not be as large prior to contaminant detection; but, after166

contamination has been detected, and if the solute is dangerous, the post-detection network could become167

as dense, if not denser, as the one we have used.168

Other parameters—which are considered as homogeneous for both aquifers—are: porosity of 0.3 [-],169

longitudinal dispersivity of 0.2 [L], transverse to longitudinal dispersivity ratio of 0.01, no molecular diffusion,170

and initial contaminant concentration of zero [ML−3]. Considering the transport controlling parameters as171

well as the initial conditions homogeneous, not subject to identification, and perfectly known makes the172

experiment less realistic than we would like, but introducing the identification of the spatially variable173

conductivity together with the contaminant source information is a big leap with respect to previous works174

8

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



on this subject and brings us closer to a potential contamination identification in more realistic cases.175

The total simulation time is 500 [T], discretized into 100 time steps of increasing size following a geometric176

series with ratio 1.01. For this geometric series, the initial step is 2.93 [T]. Concentrations and piezometric177

heads are observed during the first 60 time steps (for a total time of 239.5 [T]).178

The release of the contaminant always starts at time 30 (around the 10th time step) and ends at time179

100 (around the 30th time step). In the unimodal aquifer, the release is at location (X,Y ) = (11.5, 30.5) [L]180

with a mass-loading rate of 100 [MT−1]. We will refer to this case as scenario S1. In the channelized aquifer181

we consider two different situations: in the first one, the release happens at location (X,Y ) = (11.5, 30.5)182

in a high permeability zone; and in the second one, the release happens at location (X,Y ) = (11.5, 19.5) in183

a low permeability zone. The release load and timing is the same as for the other aquifer. We will refer to184

these cases as scenarios S2 and S3, respectively. (Scenarios are summarized in Table 2.)185

Two ensembles of 800 logconductivity realizations are generated, one for scenario S1 and another one for186

scenarios S2 and S3. The random function models used for the generation of these ensembles are the same187

as the ones used for the generation of the corresponding reference fields. They are unconditional realizations188

based on their marginal distributions and the training image for S2 and S3.189

Although in previous works we have shown that the impact of prior model selection is very limited [49, 50],190

the knowledge of the marginal distribution of logconductivity could be considered as too advantageous.191

For this reason, an additional scenario, referred to as S1b, is included in the Appendix. Scenario S1b is192

a duplicate of scenario S1 but using a non-informative uniform marginal distribution for logconductivity193

between -1 [ln(LT−1)] and 5 [ln(LT−1)] for the generation of the initial ensemble of 800 realizations. This194

scenario is not discussed within the main body of the paper. The reader is referred to the Appendix to195

understand the impact that a non-informative prior has in the performance of the approach.196

An ensemble of 800 7-tuplets for the source parameters is also generated, which will be used for the three197

scenarios. Each member of this ensemble is attached to the realization with the same sequence order in198

the initial ensemble of logconductivity fields. Employing 800 realizations in the ensemble helps in reducing199

filter inbreeding and spurious correlations generally associated with small ensemble sizes [22, 23]. The200

values of each 7-tuplet are generated, independently, from the following uniform distributions: initial release201

time T ∈ [10, 90], release duration ∆T ∈ [10, 110], mass-loading rate M ∈ [50, 140], and source location202

(X,Y ) ∈ [5, 15]× [25, 35] for scenarios S1, and (X,Y ) ∈ [5, 15]× [17, 35] for scenarios S2 and S3 (see Figure 1203

for the areas of the prior guesses of the release locations). Notice that we have chosen intervals not centered204

about the reference values, so that the means of the initial ensemble are biased with respect to the reference205
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values. Also notice that for the bimodal aquifer we initially allow that the source location be either in a low206

or high permeability area.207

4. Results208

Figure 4 shows the contaminant plume evolution at the 10th (30.68 [T]), 30th (102.02 [T]), 40th (143.38209

[T]), and 60th (239.53 [T]) time steps in the three reference scenarios. Figure 5 shows the evolution in time210

of the total contaminant mass in the reference aquifers. Recall that the injection wells are near the western211

boundary and pumping wells are near the eastern boundary, and that the contaminant release starts around212

the 10th time step and stops around the 30th time step. The contaminant plume spreads from west to east213

at different speeds and with different spreading rates depending on the scenario: in the unimodal aquifer214

the solute travels more or less horizontally following the mean head gradient, and the plume does not reach215

the pumping wells until about time 50; in the multimodal aquifer, the plume travels quickly in the high216

conductivity zone and reaches the pumping wells at about the time the contaminant injections ceases, while217

the plume moves very little in the low conductivity zone and has not reached the pumping wells at the end218

of the simulation.219

Figure 6 shows the ensemble mean and the ensemble variance of the updated log-conductivity fields after220

the 60th time step for the three scenarios. Recall that there are no conditioning data used for the generation221

of the initial log-conductivity fields, hence, the initial ensemble mean and initial ensemble variance are flat222

and the values are equal to their prior global mean and variance. After observed piezometric head and223

concentrations are assimilated, the ensemble mean of the updated log-conductivity fields can retrieve the224

main patterns of the references. The ensemble variance of scenarios S1 gets close to zero for the most part225

of the aquifer, whereas for scenario S2 and S3 the reduction is not as large, with still some uncertainties226

corresponding with the boundaries of the channels. These results, which are consistent with previous findings227

[23], indicate that the piezometric head information (the same for scenarios S2 and S3) is not enough228

to fully identify the strong channels; concentration data also carries information about the conductivity229

heterogeneity. In scenario S3 the plume has not traveled much and therefore the conductivity information230

on the concentration data is smaller than for scenario S3 and, as a result, the ensemble variances are, overall,231

larger than for S2.232

Before the analysis of the results regarding the source parameters, we wish to analyze the reproduction of233

the piezometric and concentration data at well locations #6, #7 and #8 (see Fig. 3) as well as of the spatial234

distribution of piezometric head at the end of time step 60, and the spatiotemporal evolution of concentration.235
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Figures 7 and 8 show the evolution of piezometric heads and concentrations, respectively, at the three wells236

as computed in each member of the initial ensemble for a simulation time of 500 (100 time steps), which goes237

beyond the assimilation time of 240 (60 time steps). The initial realizations of conductivity are unconditional238

and, consequently, the spread of the evolution of heads and concentrations through the ensemble is very large.239

Figures 9 and 10 show the evolution of piezometric heads and concentrations, respectively, at the same three240

wells, with the parameters updated after the 60th time step. We can observe that the reproduction of the241

piezometric heads in the updated ensemble is almost perfect, while the reproduction of the concentrations242

has improved considerably with respect to the predictions on the unconditional ensemble.243

Figure 11 shows piezometric information at the end of time step 60. We have chosen to show the spatial244

distribution of heads in the reference field, in a randomly selected realization (#29), the ensemble mean of245

the 800 realizations and the ensemble variance. The good reproduction of the observed piezometric heads246

at wells #6, #7 and #8, which were used in the assimilation steps, extends for the entire aquifer as it is247

indicated by the almost zero variance in most of the aquifer for all scenarios, and by looking at the similarity248

between the heads in the reference and the heads in a given realization or the ensemble mean. We have249

chosen to show the results only for time step 60 and for a single realization because the results for other250

time steps or other realizations are virtually the same.251

A similar analysis is performed for concentrations. Figures 12, 13 and 14 show the time evolution of252

concentration in three randomly selected realizations (#29, #537, and #695) for the three scenarios. When253

looking at any of the columns in these figures we are observing the variability across realizations for different254

time steps. While the plumes are similar, we can observe some differences for all scenarios and all time255

steps; yet, the shapes and topologies of the plumes when compared to the reference ones in Figure 4 are well256

reproduced. With the same observation wells for piezometric heads and concentrations, the reproduction257

of the concentrations is harder to achieve since the reference plumes are only ”seen” in a small number of258

observation wells.259

Notice also that each realization has associated a specific updated 7-tuple of contaminant source pa-260

rameters, which explains why, for instance, the plume appears earlier in realization #29 than in the other261

realizations because the starting time associated with that realization is smaller than 10.262

The concentration time evolution derived from the updated realizations after 60 time steps of data263

assimilation can be summarized by their ensemble mean and their ensemble variance displayed in Figures264

15 and 16, respectively. As with the individual realizations, the mean map captures well the sizes and265

topologies of the plumes in the reference, although it misses the reproduction of the maximum values.266
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The largest variances appear at the locations of the reference peak concentrations. We did not show the267

corresponding maps computed with the initial ensemble of realizations, prior to any assimilation of data,268

because in that case the mean plumes spread over the entire aquifer and the variances are very large. In our269

examples, the ensemble Kalman filter shows again its potential to characterize the spatial heterogeneity of270

hydraulic conductivity with the additional complication of not knowing, at the beginning of the simulation,271

the time or the location of the contaminant source.272

Finally, Figure 17 shows boxplots for the parameters that describe the contaminant source, i.e.,X,Y, T,∆T273

and M computed at different times during the assimilation process. Starting from an unknown spatial dis-274

tribution of hydraulic conductivities and an unknown contaminant source, the use of a restart NS-EnKF275

and the assimilation of piezometric heads and solute concentrations from a network of observation wells, we276

end with a reasonable characterization of the spatial variability of hydraulic conductivities (independently277

of whether the underlying reference follows a Gaussian —unimodal— distribution or not) and a reasonable278

identification of when, where and how much solute entered in the aquifer. Characterization that is duly279

quantified with an uncertainty derived from the analysis of the ensemble of realizations. Regarding the280

parameters describing the source, we can see that for almost all of them, at time step 60, the median values281

(red bars in the boxplots) are quite close to the reference ones. The exceptions are the initial time for S3282

(release in the channeled aquifer in a low conductivity zone) and the mass-loading rate for S1 (release in283

the unimodal aquifer). The result for the initial time in S3 can only be interpreted in view of the overall284

uncertainties of all source parameters for this scenario; while they have reduced with respect to their initial285

uncertainties at time zero, the reduction is not very large for many of them, and this is due to the little286

concentration information collected (refer to Figure 4, third row, to see the evolution of the plume in the287

reference field with respect to the observation locations), therefore the conclusion is that more concentration288

data would be needed for a better characterization of the source parameters in S3. In the cases of S1, the289

median values of all parameters converge very quickly to the reference values and after time step 30 they do290

not change much except for the mass loading, for which the median value keeps increasing as time passes291

and the remaining uncertainty is still large. The mass loading is, for all scenarios, the parameter that con-292

sistently gets the larger uncertainty at the end of the assimilation period for all parameters and this must293

be attributed to the dilution of the plume concentration, which makes that the absolute differences between294

the observed concentrations at the wells and the predicted values are small even for relatively large changes295

in the mass loading at the injection point.296

Each scenario behaves differently regarding the identification of the source parameters. In S1, the median297

12

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708



value for the X coordinate is close to the reference one, but the uncertainty is large; this large uncertainty in298

X could be explained by the same reason as the large uncertainty in the mass-loading rate: the dilution of299

the plume together with its longitudinal spreading makes that changes in X do not introduce large absolute300

changes of concentrations at the observation locations. The contrary happens with Y , its median value301

converges almost exactly to the reference value at time step 30 and remains there for the rest of the simulation;302

considering that transversal dispersivity is small, changes in Y will introduce noticeable modifications in the303

concentrations at observation wells, making it a more sensitive parameter for identification purposes. The304

median starting time T and the median injection time ∆T converge also quickly to the reference values,305

with residual uncertainties considerably smaller than their starting ones. In S2, the identification of Y , T306

and ∆T by their median values is remarkable, with very little uncertainty left; the value of X is also well307

identified but with larger uncertainty than the previous parameters; again, the explanation could be the308

same as for S1, a small sensitivity of concentrations to fluctuations of X about its reference value. The309

mass-loading rate is correctly identified by its median value, and the interquartile range is one third of its310

value at the beginning of the simulation, yet, with regard to the other parameters its uncertainty is still311

large; the explanation for this large uncertainty is again related to the small sensitivity of the concentrations312

at the observation locations to changes of the mass loading within its uncertainty interval. Finally, in S3,313

as it was already pointed out, the plume displaces very little during the 60 time steps and the amount of314

information carried by the solute concentrations at the observation locations is small; yet, the algorithm315

is able to identify the source coordinates X and Y by their median values, and their final uncertainty is316

not very large. Notice that for S3, contrary to S2, displacing vertically the release location does not have317

such a large impact in the plume movement for the duration of the assimilation period, therefore, the final318

uncertainty is larger than for S2. The release duration ends also with a large uncertainty, but this is due to319

the large uncertainty associated to the release initial time, and the mass-loading rate also ends with a large320

uncertainty for the same reasons discussed above for S1 and S2.321

5. Summary and conclusions322

In this work, we have removed one of the most critical limitations of our previous work [21], in which we323

demonstrated the application of the restart NS-EnKF for contaminant source identification but assuming324

that the spatial heterogeneity of hydraulic conductivities was perfectly known. The joint identification of325

hydraulic conductivities and contaminant source information has been performed for three different scenarios326

combining unimodal and bimodal conductivity distributions (with and without channeling) and releases in327
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high and low conductivity zones. The results show that such an identification is possible but that the uncer-328

tainty associated with the final ensembles of realizations is still significant, especially regarding concentration329

spatiotemporal evolution and some of the parameters identifying the source.330

The analysis was performed assuming that no information on conductivities is available except for their331

marginal distributions. (An additional scenario in which the marginal distribution is also unknown is included332

in the appendix showing the small impact that this knowledge has in the final results.) In practice, there are333

always some measurements of conductivity, which, if included as conditioning data, would help in improving334

the overall characterization as already shown elsewhere [23]. The analysis was also performed assuming that335

initial and boundary conditions are perfectly known, and that the transport parameters, such as porosity336

or dispersivity, are also perfectly known. In practice this will never be the case, and either they should be337

included in the identification process or they should be modeled accounting for their uncertainty.338

The final uncertainties on the conductivity spatial distribution and on the contaminant source parameters339

should not be considered as a failure of the method to solve the problem but as a measure of the information340

content of the available observations. Careful analysis of these uncertainties should be used to guide a341

possible redesign of the sampling network.342

In summary, we believe that the restart normal-score ensemble Kalman filter has the potential of helping343

in the joint identification of a contaminant source and the spatial heterogeneity of conductivity, and that we344

have advanced substantially from previous works in which the spatial heterogeneity of conductivity was not345

considered.346
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Appendix. Non-informative prior marginal distribution350

All scenarios in the main body of the paper have been generated assuming that the marginal distribution of351

the logconductivities is known. However, in reality, this will not be so and there always be some uncertainty352

about this distribution. To evaluate the impact of this uncertainty we have run an additional scenario,353

which we refer as S1b, as a duplicate of scenario S1 but using a non-informative prior marginal distribution354

of logconductivity: a uniform distribution between -1 [ln(LT−1)] and 5 [ln(LT−1)]. Such an analysis in the355

context of just logconductivity identification has already been performed by us in the past [49, 50] showing356
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that the prior model selection has little impact in the performance of the NS-EnKF. A conclusion that357

could be already anticipated by looking at the figures associated with the initial ensemble of unconditional358

realizations in the main body of the paper.359

Except for the marginal distribution used for the generation of the initial ensemble of realizations, all360

remaining parameters and the different steps of the analysis are exactly the same as for S1. Next, we show361

the same sets of figures as shown for scenario S1 in the body of the paper: in Figure 18 the ensemble mean362

and ensemble variance of the updated lnK, in Figure 19 the time evolution of the piezometric heads and363

concentrations at three well locations #6, #7 and #8 for the initial ensemble of parameters, in Figure 20364

the time evolution of the piezometric heads and concentrations at the same three well locations for the365

parameters updated after the 60th time step, in Figure 21 the piezometric heads at the end of the 60th time366

step, in Figure 22 the evolution of the contaminant plume in the 29th, 537th, and 695th realizations with367

the parameters updated after the 60th time step in Figure 23 the ensemble mean and ensemble variance of368

the contaminant plume evolution with the parameters updated after the 60th time step, and in 24 the box369

plots of the source parameters.370

A quick comparison of any of these figures with the corresponding ones for S1 shows small changes with371

a final performance of S1b very similar to S1. The final updated parameters are virtually the same in S1b372

and S1. The variance of the updated logconductivities is slightly larger towards the edge of the fields for373

S1b than for S1. The predicted piezometric heads and concentrations on the updated fields are almost the374

same in S1 and S1b. And the boxplots for the contaminant source parameters are also very similar when375

comparing S1 and S1b.376

In summary, the NS-EnKF is capable to update an ensemble of initial realizations with a prior distri-377

bution probability far from the true one into an ensemble of realizations that will be conditioned to the378

observation data and converge towards the reproduction of the reference logconductivity field as well as379

capture the parameters defining the unknown contamination source. These results are in line of previous380

analysis of the NS-EnKF that proved its updating power of an initial ensemble of realizations even when381

these initial ensemble is far from the reference field due to lack of information about the spatial variability382

of logconductivity [49, 50].383
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[36] Crestani, E., Camporese, M., Baú, D., Salandin, P.. Ensemble kalman filter versus ensemble466

smoother for assessing hydraulic conductivity via tracer test data assimilation. Hydrology and Earth467

System Sciences 2013;17(4):1517.468

[37] Crestani, E., Camporese, M., Salandin, P.. Assessment of hydraulic conductivity distributions469

through assimilation of travel time data from ert-monitored tracer tests. Advances in Water Resources470

2015;84:23–36.471

[38] Bear, J.. Dynamics of fluids in porous media. New York, 764pp: American Elsevier Pub. Co.; 1972.472

ISBN 9780444001146.473

[39] Zheng, C.. Mt3dms v5. 3supplemental users guide: Tuscaloosa, ala., university of alabama department474

of geological sciences. Tech. Rep.; Technical Report to the US Army Engineer Research and Development475

Center; 2010.476

[40] McDonald, M., Harbaugh, A.. A modular three-dimensional finite-difference ground-water flow model477

1988;.478

[41] Ma, R., Zheng, C., Zachara, J.M., Tonkin, M.. Utility of bromide and heat tracers for aquifer479

characterization affected by highly transient flow conditions. Water Resources Research 2012;48(8).480

[42] Apte, A., Hairer, M., Stuart, A., Voss, J.. Sampling the posterior: An approach to non-gaussian481

data assimilation. Physica D: Nonlinear Phenomena 2007;230(1):50–64.482

[43] Chen, Y., Oliver, D.S., et al. Parameterization techniques to improve mass conservation and data as-483

similation for ensemble kalman filter. In: SPE western regional meeting. Society of Petroleum Engineers;484

2010,.485
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Table 1: Parameters of the random functions describing the heterogeneity of lnK for the two aquifers. λx and λy are the ranges
in the x and y directions of an exponential covariance.

lnK Facies Proportion Mean Std. dev Variogram λx λy sill
type

Unimodal aquifer 2.0 1.5 exponential 20 20 1

Channelized aquifer
Channel 0.35 1.0 1.0 exponential 20 20 1

Non-channel 0.65 -2.5 0.6 exponential 20 20 0.35

Table 2: Definition of scenarios.

Scenario S1 S2 S3
Unimodal aquifer
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√ √
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Figure 1: Scenarios S1-S3. Reference fields of lnK. The black circle denotes the source location. The black quadrilateral is the
suspect area to be used in the identification step.
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Figure 3: Distribution of wells. Red triangles are measurement wells; blue diamonds are injection wells near the west boundary
and pumping wells near the east boundary.
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Figure 4: Scenarios S1-S3. Contaminant plume evolution at the 10th (beginning of solute injection), 30th (end of solute
injection), 40th and 60th time steps in the reference aquifers. White triangles mark the measurement wells.
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Figure 5: Scenarios S1-S3. Time evolution of the total solute mass in the aquifer.
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Figure 6: Scenarios S1-S3. Updated ensemble mean (top row) and updated ensemble variance (bottom row) of lnK after the
60th time step.
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Figure 7: Scenarios S1-S3. Time evolution of the piezometric heads at the three wells #6, #7 and #8 for the initial ensemble of
source information parameters and lnK. The red line is the evolution of the piezometric head in the reference. The black lines
correspond to the 5 and 95 percentiles of all realizations, and the green line corresponds to the median. The vertical dashed
lines mark the end of the assimilation period.
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Figure 8: Scenarios S1-S3. Same caption as previous figure but regarding solute concentration.
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Figure 9: Scenarios S1-S3. Same caption as previous figure but regarding piezometric heads computed on the updated ensembles
after the 60th assimilation time step.
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Figure 10: Scenarios S1-S3. Same caption as previous figure but regarding solute concentrations computed on the updated
ensembles after the 60th assimilation time step

27

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



Reference Realization #29 Ensemble mean Ensemble variance
t60: piezometric head (S1)

Easting

N
o

rt
h

in
g

.0 50
.0

50

7.6

7.8

8

8.2

8.4

R29_t60: piezometric head (S1)

Easting

N
o

rt
h

in
g

.0 50
.0

50

7.6

7.8

8

8.2

8.4

t60: mean of piezometric head (S1)

Easting

N
o

rt
h

in
g

.0 50
.0

50

7.6

7.8

8

8.2

8.4

t60: variance of piezometric head (S1)

Easting

N
o

rt
h

in
g

.0 50
.0

50

.0

.1

.2

.3

.4

.5

t60: piezometric head (S2, S3)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

R29_t60: piezometric head (S2)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

t60: mean of piezometric head (S2)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

t60: variance of piezometric head (S2)

Easting

N
o

rt
h

in
g

.0 50
.0

50

.0

.1

.2

.3

.4

.5

t60: piezometric head (S2, S3)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

R29_t60: piezometric head (S3)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

t60: mean of piezometric head (S3)

Easting

N
o

rt
h

in
g

.0 50
.0

50

5

6

7

8

9

10

t60: variance of piezometric head (S3)

Easting

N
o

rt
h

in
g

.0 50
.0

50

.0

.1

.2

.3

.4

.5

1

Figure 11: Piezometric heads at the end of the 60th time step for the three scenarios. From top to bottom, scenarios S1, S2
and S3. From left to right, heads in the reference aquifer; heads in realization #29; ensemble mean, and ensemble variance.
White triangles mark the measurement wells. Note that the scale bar for S1 is different from that for S2 and S3.
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Figure 12: Scenario S1. Contaminant plume evolution of the 29th (top row), 537th (middle row), 695th (bottom row) realizations
at the 10th, 30th, 40th and 60th time steps with the parameters updated after the 60th time step.
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Figure 13: Scenario S2. Contaminant plume evolution of the 29th (top row), 537th (middle row), 695th (bottom row) realizations
at the 10th, 30th, 40th and 60th time steps with the parameters updated after the 60th time step.
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Figure 14: Scenario S3. Contaminant plume evolution of the 29th (top row), 537th (middle row), 695th (bottom row) realizations
at the 10th, 30th, 40th and 60th time steps with the parameters updated after the 60th time step.
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Figure 15: Scenarios S1-S3. Ensemble mean of contaminant plume evolution at the 10th, 30th, 40th and 60th time steps with
the parameters updated after the 60th time step.
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Figure 16: Scenarios S1-S3. Ensemble variance of contaminant plume evolution at the 10th, 30th, 40th and 60th time steps
with the parameters updated after the 60th time step.
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Figure 17: Scenarios S1-S3. Box plots of the source location coordinates (X and Y ), initial release time (T ), release duration
(∆T ), and mass-loading rate (M) at the initial, 10th (30.68 [T]), 20th (64.57 [T]), 30th (102.02 [T]), 40th (143.38 [T]), 50th
(189.06 [T]) and 60th (239.53 [T]) time steps. The dashed horizontal black line corresponds to the reference value.
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Figure 18: Scenario S1b. Updated ensemble mean (left column) and updated ensemble variance (right column) of lnK after
the 60th time step.
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Figure 19: Scenario S1b. Time evolution of the piezometric heads (top row) and solute concentrations (bottom row) at the
three wells #6, #7 and #8 for the initial ensemble of source information parameters and lnK. The red line is the evolution of
the piezometric head in the reference. The black lines correspond to the 5 and 95 percentiles of all realizations, and the green
line corresponds to the median. The vertical dashed lines mark the end of the assimilation period.
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Figure 20: Scenario S1b. Same caption as previous figure but regarding piezometric heads and concentrations computed on the
updated ensembles after the 60th assimilation time step.
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Figure 21: Scenario S1b. Piezometric heads at the end of the 60th time step. From left to right, heads in the reference aquifer;
heads in realization #29; ensemble mean, and ensemble variance. White triangles mark the measurement wells.
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Figure 22: Scenario S1b. Contaminant plume evolution of the 29th (top row), 537th (middle row), 695th (bottom row)
realizations at the 10th, 30th, 40th and 60th time steps with the parameters updated after the 60th time step.
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Figure 23: Scenarios S1b. Ensemble mean (top row) and ensemble variance (bottom row) of contaminant plume evolution at
the 10th, 30th, 40th and 60th time steps with the parameters updated after the 60th time step.
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Figure 24: Scenarios S1b. Box plots of the source location (X and Y ), initial release time (T ), release duration (∆T ), and mass-
loading rate (M) at the initial, 10th, 20th, 30th, 40th, 50th and 60th time steps. The dashed horizontal black line corresponds
to the reference value.
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