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Abstract In this work, explicit expressions to estimate all the transversely

isotropic elastic constants of lamellar bone as a function of the volumetric bone

mineral density (BMD) are provided. The methodology presented is based on

the direct homogenization procedure using the finite element method, the con-
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tinuum approach based on the Hill bounds, the least-square method and the

mean field technique. Firstly, a detailed description of the volumetric content

of the different components of bone is provided. The parameters defined in

this step are related to the volumetric bone mineral density (BMD) consid-

ering that bone mineralization process occurs at the smallest scale length of

the bone tissue. Then, a thorough description provides the details of the nu-

merical models and the assumptions adopted to estimate the elastic behavior

of the forward scale lengths. The results highlight the noticeable influence of

the BMD on the elastic modulus of lamellar bone. Power law regressions fit

the Young’s moduli, shear stiffness moduli and Poisson ratios. In addition,

the explicit expressions obtained are applied to the estimation of the elastic

constants of cortical bone. At this scale length, a representative unit cell of

cortical bone is analyzed including the fibril orientation pattern given by Wa-

germaier et al. (2006) and the BMD distributions observed by Granke et al.

(2013) for the osteon. Results confirm that fibril orientation arrangement gov-

erns the anisotropic behavior of cortical bone instead of the BMD distribution.

The novel explicit expressions obtained in this work can be used for improving

the accuracy of bone fracture risk assessment.

Keywords Lamellar bone · Elastic constants · Volumetric bone mineral

density · Multi-scale approach
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1 INTRODUCTION

The assessment of fracture risk based on bone mineral density only is not

enough for predicting bone fracture (Ulrich et al., 1999; Roque et al., 2013;

Yang et al., 2014). This motivates the additional consideration of the apparent

elastic properties of bone besides morphological parameters as other factors

also determinant in the structural competence of bone (Roque et al., 2013). Nu-

merical models of bone can be created from segmented µCT (micro computed

tomography) images, and analyzed to obtain the apparent elastic constants of

bone structure. In this process, it is necessary to assign material properties

to the bone tissue and that is not a trivial issue. Usually, no direct influence

of the mineral content is taken into account and typical isotropic elastic con-

stants are considered (Ulrich et al., 1998; Roque et al., 2013; Daszkiewicz et

al., 2017).

Many authors have reported that a little increase in the mineral content

of bone has a direct consequence on the increase of its stiffness (Currey, 1986,

1988; Schaffler et al., 1988; Hernández et al., 2001a; Tommasini and Landis,

2008). In fact, some researchers have worked on the development of models

that include the mineral content in the estimations of elastic properties of bone.

In Currey (1986), a power law for the relationship between the BMD and the

apparent elastic modulus of cancellous bone is reported. In Mart́ınez-Reina

et al. (2011) a micromechanical multi-scale model is presented for calculating

the Young’s moduli of cortical bone as a function of porosity and mineral

content represented by the ash fraction. In that work, a detailed review of
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previous models can also be found. Nevertheless, the volumetric BMD map

can be obtained by dual-energy X-ray absorptiometry (DXA) (Yu et al., 1998;

Yang et al., 2014) or quantitative computed tomography (QCT) (Yu et al.,

1998; Grampp et al. , 1997; Majumdar et al., 1998; Barbour, 2010) in the usual

clinical practice instead of the ash fraction. In addition, there are significant

differences in BMD at the different skeletal sites and ages (Majumdar et al.,

1998; Barbour, 2010). To the authors’ knowledge, no explicit expressions have

been proposed for the estimation of the full stiffness matrix of lamellar tissue

as a function of the volumetric bone mineral density.

Results from a previous work of the authors (Vercher-Mart́ınez et al., 2015)

have been considered as starting point. In that work, a study about the in-

fluence of the geometrical mineral staggering on the elastic properties of the

mineralized collagen fibril was performed. These results concern exclusively

the transversely isotropic fibril assembly (fibres). In that work, no relation

between volumetric mineral fraction and Bone Mineral Density (BMD) was

established, extra-fibrilar matrix was not included and no higher scale level in

the hierarchical structure of bone was addressed. In the present work, all these

limitations have been overcome.

The main goal of this work is to provide explicit expressions for the estima-

tion of all the elastic constants of lamellar bone as a function of the volumetric

bone mineral density.
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Fig. 1 Summary scheme of the multiscale approach performed in the current work

In Sec. 2 a thorough explanation of the multi-scale approach is given. In

Sec. 3 the target expressions and other relevant results are provided. Finally

the conclusions and future works are presented in Sec. 4.

2 METHODS

2.1 Introduction

Considering the hierarchical structure of bone (Hamed et al., 2012), the work-

flow of the multiscale approach followed in this work is depicted in Fig. 1: from

the sub-nanoscale (50−150nm) to the microscale (10−500µm) where cortical

bone tissue is considered.

The direct homogenization (DH) procedure by means of the finite ele-

ment method (FEM), the continuum approach based on the Hill bounds, the
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least-square method and the mean field technique are the fundamentals of the

methodology of this analysis. Firstly, the volumetric content of the different

components in each phase is described. These parameters are related to the

volumetric bone mineral density (BMD) since the bone mineralization process

occurs at the smallest scale length of the bone tissue. The following definitions

have been considered:

– Fibril: staggered distribution of collagen molecules in a 5-D period ar-

rangement (Hodge et al., 1963; Landis et al., 1993; Silver and Landis, 2011).

Hierarchical mineralization takes place at the gap zones within the collagen

scaffold (Liu, 2011). In our work, the microfibrils (a pentameric collagen

molecules arrangement in a quasi-hexagonal pattern (Orgel et al., 2006))

are encompassed in the fibrils.

– Fibre or Fibrils assembly: Fibrils bounded to conform a major structure

with transversely isotropic behavior. The work of Rubin et al. (2003) has

been considered at this point.

– Fibre array: Combination of fibres (reinforcement) with extra-fibrilar ma-

trix. In this work an hexagonal distribution of fibres is assumed. Similar

notation is adopted in Reisinger et al. (2011).

2.2 Parameters description

In the subsequent procedure the term V phase
comp represents the volume of a com-

ponent comp in a phase per unit volume of bone tissue. If phase is not specified,

Vcomp represents the volume of the comp per unit volume of bone tissue. If
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comp is not specified, V phase represents the total volume of the phase per

unit volume of bone tissue. By analogy to structural composite materials,

two phases can be distinguished in lamellar bone tissue, the fibres (fibrils-

assembly) and extra-fibrilar matrix, therefore:

V fib + V mat = 1 (1)

Following Fritsch and Hellmich (2007) the volume of fibres per unit volume

of bone tissue is considered a fixed value V fib = 0.53.

Neglecting the volatile inorganic substances and cells, the main compo-

nents of bone tissue are Type I collagen molecules, Vcol (organic phase), min-

eral, Vmin (hydroxyapatite crystals and amorphous phase) and water, Vwater,

therefore:

Vcol + Vmin + Vwater = 1 (2)

Collagen, water and crystals of mineral are within the fibrils whereas the

main components of the extra-fibrilar matrix are amorphous mineral and water

(neglecting non-collagenous proteins).

In this work the content of collagen has been considered constant assuming

the value proposed by Yoon and Cowin (2008a) for cortical bone: Vcol = 0.354.

In Table 1 the distribution of the main bone tissue components (colla-

gen, mineral and water) in the phases (fibres and extra-fibrilar matrix) are

summarized.

The volumetric bone mineral density BMD (gr/cm
3
) represents the mineral

mass, mmin, per unit volume of tissue: BMD =
mmin

voltissue
. Hence, the volume
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Table 1 Distribution of the main bone tissue components (collagen, mineral and water) in

the phases (fibrils and extra-fibrilar matrix). The volume fraction per unit volume of bone

tissue of the phases is assumed constant in this work, V fib = 0.53 (Fritsch and Hellmich,

2007)

Phases

Fibres (V fib = 0.53) Extra-fibrilar matrix (Vmat = 0.47)

Components

Collagen —

Crystals of mineral Amorphous mineral

Water Water

of mineral per unit volume of bone tissue Vmin can be expressed in terms of

BMD by the following equation:

Vmin =
volmin

voltissue
=
BMD

ρmin
(3)

being ρmin = 3.12 gr/cm
3
the mineral density (Lees et al., 1979).

From Eq. 2, the volume of water per unit volume of tissue is:

Vwater = 1− Vcol − Vmin (4)

The following parameter α represents the ratio between intrafibrilar min-

eral and the mineral deposited in the whole lamellar bone tissue and will be a

fixed value in this work, α = 0.23 (Sasaki et al., 2002). Therefore, the volume

of mineral within the fibres V fib
min and the volume of mineral in the extrafibril-

lar matrix V mat
min , both of them per unit volume of tissue, will be provided by

the next equations:

V fib
min = αVmin (5)
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V mat
min = (1− α)Vmin (6)

Water is distributed within fibres and extrafibrilar matrix. Since all the

collagen is within the fibres, V fib
col = Vcol, the following parameters definition

arise:

V fib
water = V fib − V fib

min − Vcol (7)

V mat
water = Vwater − V fib

water (8)

As mentioned at the beginning of Sec. 2.2, the variable V always denotes

volumetric fraction per unit volume of bone tissue. Hereafter, the variable

ϕphasecomp represents the volume of the component present in the phase, comp,

per unit volume of the phase.

Up to this point, water has been considered explicitly. Subsequently, the

volumetric fractions, ϕ, of the “dry” constituents in the fibril-array are defined

as follow:

ϕfibwater =
volfibwater

volfib
=
V fib
water

V fib
(9)

ϕfibmin =
volfibmin

volfib
=
V fib
min

V fib
(10)

ϕfibcol = 1− ϕfibwater − ϕfibmin (11)

Following the work of Mart́ınez-Reina et al. (2011), from now on, water

will be added to the rest of constituents that become wet constituents (wet-

collagen and wet-mineral), which is a more realistic description. In this new

context, the volumetric fraction of water is assumed to be the same in both wet-

mineral and wet-collagen and equal to volumetric fraction of water within the
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fibres. Thus, considering the new phases wet-collagen (wcol) and wet-mineral

(wmin), this idea can be expressed:

ϕwcol
water = ϕwmin

water = ϕfibwater (12)

Accordingly, the ratio between the volumetric fraction of wet-mineral and

the volumetric fraction of wet-collagen within the fibres must be equal to the

same ratio expressed in dry components, thus the water within the fibres is

distributed in the wet components preserving the dry proportions:

ϕfibwmin

ϕfibwcol

=
ϕfibmin

ϕfibcol

(13)

and, additionally, the components of the fibres become wet-mineral and wet-

collagen:

ϕfibwmin + ϕfibwcol = 1 (14)

From Eqs. 13 and 14, the above two equations, the volumetric fractions of

the wet components within the fibril can be worked out:

ϕfibwmin =
ϕfibmin

ϕfibmin + ϕfibcol

(15)

and, by substitution:

ϕfibwcol = 1− ϕfibwmin =
ϕfibcol

ϕfibmin + ϕfibcol

(16)

The same approach can be considered for the extra-fibrillar matrix and its

water content: considering the extrafibrilar matrix as a mineral-water com-

posite, the volume fractions of the components within the extrafibrilar matrix

are:

ϕmat
min =

V mat
min

V mat
(17)
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ϕmat
water = 1− ϕmat

min (18)

where V mat
min is provided by Eq. 6.

At this point, a relationship between the BMD and the volumetric fraction

of wet-mineral within the fibril ϕfibwmin can be derived:

Deriving BMD from Eq. 3 and substituting Vmin from Eq. 5:

BMD = Vminρmin =
V fib
min

α
ρmin (19)

replacing V fib
min from Eq. 10:

BMD =
V fibϕfibminρmin

α
(20)

The volumetric fraction of collagen within the fibres is:

ϕfibcol =
V fib
col

V fib
(21)

Therefore, working out V fib from Eq. 21 and substituting in Eq. 20:

BMD =
V fib
col ρmin

α

ϕfibmin

ϕfibcol

(22)

Finally, from Eqs. 13 and 14:

BMD =
V fib
col ρmin

α

ϕfibwmin

1− ϕfibwmin

(23)

Note that V fib
col = 0.354 is assumed a constant value and α, the intrafibrilar

- mineral tissue ratio, is fixed in this work. Hence, the wet-mineral within the

fibre ϕfibwmin, that is considered in the finite element models of the fibril, is

directly related with the BMD.
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2.3 Sub-nano and nanoscale

At the sub-nanoscale length (50− 150nm), the main constituents of bone tis-

sue are: Type I collagen macromolecules, hydroxyapatite crystals of mineral

(platelet-shaped), amorphous mineral and water. At the nano-scale length

(300nm−1µm), two phases will be differentiated where the main constituents

cited above are distributed: (1) the mineralized collagen fibrils, that are as-

sembled into fibres (fibrils assembly), contain all the collagen, platelet-shaped

minerals and water, and (2) the extra-fibrilar matrix that contains amorphous

mineral and water.

2.3.1 Mineralized collagen fibril. Fibres

Following the work of Mart́ınez-Reina et al. (2011), the mineralized collagen

fibrils are composed by wet-collagen and wet-mineral. The isotropic elastic

constants for the wet components within the fibrils that are used in this work

are: Ecol = 1.2GPa, νcol = 0.35 for wet-collagen and Emin = 114GPa, νmin =

0.28 for wet-mineral.

Within the fibrils, adjacent collagen molecules are arranged in a D-periodic

sequence (D = 67nm) (Hodge et al., 1963) that provides the scaffold for

the further hierarchical intrafibrilar mineralization. The crystals of mineral

are platelet-shaped and the dimensions of the platelets are represented by

L×W ×T being the distance between them: dL, dW and dT . In this work, the

finite element method is used to analyze a parameterized unit cell of a fibril

of dimensions a × b × c, being a = L + dL, b = W + dW and c = 5(T + dT )
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z

x

y

a = 5D

b
c

L

W

T

dT/2

dW/2

dL

Collagen matrix

Crystals of mineral

Fig. 2 Three dimensional view of the mineralized collagen fibril unit cell (a × b × c) and

principal dimensions of the domain (reprinted from Vercher-Mart́ınez et al. (2015) with

permission of Elsevier)

Table 2 Ranges and averaged values for platelet dimensions L, W and T

Reference L W T

Landis et al. (1993) 40-170nm 30-45nm 4-6nm

Rubin et al. (2003) (normal bone) 50.7±9.1nm 27.2±3nm 1.5±7.7nm

Robinson et al. (1952) (cortical bone) 20-150nm 10-80nm 8-15nm

Rho et al. (1998) (average values) 50nm 25nm 3nm

(see Fig. 2). This model presents a period of 5D in the longitudinal direction

(Cowin, 2000). Collagen is modelled by a continuous matrix and the platelet-

shaped mineral are located in the gap collagen zones (Silver and Landis, 2011;

Fratzl et al., 1991) forming parallel layers. A detailed explanation of the nu-

merical model of the mineralized collagen fibril is given in Vercher-Mart́ınez

et al. (2015).

In literature, there is a wide range of values for platelet dimensions. A

summary is presented in Table 2.
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According to Bar-On andWagner (2013), the ratioW/(W+dW ) (see Fig. 2)

is usually considered approximately 1 because in many biological configura-

tions the platelets are tightly packed. Hence, in this work, the fixed values

W = 30nm and dW = 2nm are assumed. With these considerations and being

L + dL ≈ 5D, the volumetric fraction of wet-mineral within the fibril can be

estimated through the following equation (Akiva et al., 1998; Vercher et al.,

2014):

ϕfibwmin =
LW

5D(W + dW )
(
1 + dT

T

) (24)

According to the model of mineralized collagen fibril proposed in this work,

the volumetric fraction of wet-mineral in the gap collagen zone is obtained by

means of:

ϕfib,gapwmin =
T

c
=

1

5
(
1 + dT

T

) (25)

In this work, the minimum lateral distance is fixed in dT = −1nm which,

substituting in Eq. 25, leads to a ϕfib,gapwmin = 0.25, lower than the upper possible

limit established in Jäger et al. (2000). Therefore, in this study, the distance

dT is varied within the range [−1, 3]nm in increments of 1nm.

Regarding the platelet thickness, the fixed value T = 5nm is chosen in this

work in agreement with the values proposed in the literature.

Moreover, the platelets grow across the fibril forming grooves or channels

(Weiner and Traub, 1986; Landis et al., 1993). Hence, in order to avoid contact

between platelets, the maximum mineral length L should be constrained by the

lateral distance dT (see Fig. 3). Therefore, if dT ≤ 0 (lateral mineral overlap

exists), then, the maximum mineral length should be Lmax = 66nm to avoid
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Table 3 Maximum volumetric fraction of mineral within the fibril for different proportions

of platelet overlap. Models number

dT
T

-0.2 0 0.2 0.4 0.6

L [40, 50, 60,66]nm [40− 150]nm inc. of 10nm

Models 1-4 5-8 9-20 21-32 33-44

Maximum ϕfibwmin 0.231 0.185 0.350 0.300 0.262

mineral contact and if dT > 0 then Lmax should be 150nm (Robinson et al.,

1952).

As it was mentioned previously, the volumetric fraction of wet-mineral

within the fibril can be estimated by means of Eq. 24. In this work, the vari-

able parameters of this equation are L and dT because they are the most

influent in the estimation of the volumetric mineral fraction within the fibril,

the last as a consequence of the high and non-linear relationship and the former

because the large range of values reported in literature. Table 3 summarizes

the procedure followed to obtain the numerical models of the fibrils: the pa-

rameter dT

T varies from -0.2 to 0.6. For each value of dT

T , a range of values of L

is analyzed considering the geometrical restriction of avoiding mineral contact:

L has been varied in [40, 50, 60, 66]nm for dT ≤ 0 and in the range [40−150]nm

in increments of 10nm for dT > 0. All these combinations correspond to 44

numerical models. Then, for a given dT

T , the maximum volumetric fraction of

wet-mineral within the fibril can be estimated by means of Eq. 24 considering

the maximum length L within each range (marked in bolt in Table 3).
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Mineral: 40x30x5 nm, dW = 2 nm, dT variable

dT = 0

dT = -1

dT = 2

dT = 1
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Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

dT = 3

No lateral overlapping

Lateral overlapping

dT > 0

dT < 0

Fig. 3 Example of some unit volumes analyzed by the finite element method for different

lateral space between minerals, dT ∈ [−1, 3]nm. Dimensions W , T and dW remain constant.

In this figure, L = 40nm. The mineral is represented in blue and collagen in white

In Fig. 3 a sequence of some models analyzed by means of finite elements,

shows the increasing level of mineral compaction as dT is reduced and thus,

the volumetric fraction of mineral within the fibril. In this figure, the values

of L, W , T and dW are fixed.

On the other hand, some values of the maximum volumetric fraction of

wet-mineral within the fibril are provided in the literature: 0.238 (Mart́ınez-

Reina et al., 2011), 0.3 (Reisinger et al., 2011; Fritsch and Hellmich, 2007).

Accordingly, the maximum ϕfibwmin = 0.3 is assumed in this work, hence a total

of 42 models have been selected from the 44 models described in Table 3.

In order to estimate the stiffness matrix C of the mineralized collagen

fibril, six canonical load cases are applied with periodic boundary conditions

(see equations in Vercher-Mart́ınez et al. (2015)). These conditions allow to
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(a) (b) (c)

Fig. 4 Schematic representation of the load cases with periodic boundary conditions in

orthogonal directions of the elongation load cases (a), (b) and in the longitudinal direction for

the shear load case (c). In this work, the periodic boundary conditions have been generalized

for the three-dimensional problem

simulate an infinitely large fibril (see the schematic representation for the

bi-dimensional problem in Fig. 4). A total of 252 numerical analysis were per-

formed considering the 42 models that accomplish ϕfibwmin ≤ 0.3. The solution

is the monoclinic stiffness matrix of every numerical model of a single fibril.

Besides, the platelets can rotate around its own crystallographic c-axis

inside the fibril whilst the fibril orientation in the lamellar tissue does not nec-

essarily vary (angle Ψ2 in Fig. 5(b)). Considering the TEM (Transmision Elec-

tron Microscopy) observations reported by Rubin et al. (2003), the plateled-

shaped crystals rotate around the c-axis in a circular pattern of 100-200nm

(see Fig. 5(c)). This allows us to expect an averaged influence of Ψ2 for a given

set of unidirectional fibrils assembly (fibres). Hence, the monoclinic behav-

ior (Vercher et al., 2014) of a single mineralized collagen fibril (see Fig. 5(a))
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2 = 0 

3

2 = /2 rad

collagen fibril

(Monoclinic behavior)

2

3

2

c-

Fibre ( )
(T behavior)

00

Rubin et a. 2013

Mineral : 2

(a)

(b)

(c)

Fig. 5 (a) Hierarchical mineralization of single collagen fibril, (b) schematic representation

of the platelet rotation Ψ2 around its own c−axes, (c) schematic representation of the platelet

rotation within 200nm region. Subfigures (a) and (b) are reprinted from Vercher-Mart́ınez

et al. (2015) with permission of Elsevier. Subfigure (c) is reprinted from Rubin et al. (2003)

with permission of Elsevier

becomes a transversely isotropic behavior (Weiner and Wagner, 1998; Vercher-

Mart́ınez et al., 2015) for a fibre.

The upper and lower bounds (Hill, 1952) of the elastic properties of the

fibril assembly will be calculated by averaging the compliance matrices in the
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Ψ2 range [0, 2π]:

CUpper =
1

2π

∫ 2π

0

q (Ψ2)
T
Cq (Ψ2) dΨ2 (26)

SLower =
1

2π

∫ 2π

0

q (Ψ2)
T
Sq (Ψ2) dΨ2 (27)

where q (Ψ2) is the Lekhnitskii’s transformation matrix (Lekhnitskii, 1963), C

and S are the stiffness and compliance matrices of the mineralized collagen

fibril, obtained from the finite element analysis and Ψ2 is the angle that mineral

rotates about its own c-axis depicted in Fig. 5(b). This procedure has been

applied to every monoclinic stiffness matrix of a single fibril.

2.3.2 Extra-fibrilar matrix

In this work, the extra-fibrilar matrix is considered a mineral-water composite

(Mart́ınez-Reina et al., 2011). Non-collagenous matrix proteins are neglected.

The mineral present in the extra-fibrilar matrix is an amorphous phase that

contains more water than apatite. This amorphous mineral will transform into

a more compactly-packed apatite within the fibril (Liu, 2011). The isotropic

elastic properties for the amorphous mineral are: Young’s modulus Eamin =

80GPa and the Poisson’s ratio νamin = 0.28 (Yuan et al., 2011). The following

isotropic elastic properties for the water are considered: the bulk modulus

Kw = 2.3 × 109Pa and Poisson’s ratio νw = 0.4998 (almost incompressible)

(Mart́ınez-Reina et al., 2011).

Therefore, Hill bounds are estimated for the mineral-water composite through:

CV
mw = Caminϕ

mat
min +Cw(1− ϕmat

min) (28)
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SR
mw = Saminϕ

mat
min + Sw(1− ϕmat

min) (29)

where Cmw and Smw are the stiffness and compliance matrix of the mineral-

water composite. V and R represent the classical Voigt and Reuss bounds.

The upper and lower bound of the shear modulus and the bulk modulus,

(µV
mw,K

V
mw) and (µR

mw,K
R
mw) are then averaged. The volumetric fraction of

mineral in the matrix, ϕmat
min, is calculated by means of Eq. 17. Note that ϕmat

min

is a function of the BMD through Eq. 3 and 6:

ϕmat
min =

V mat
min

V mat
=

(1− α) BMD
ρmin

V mat
(30)

where V mat = 1− V fib = 0.47.

2.4 Sub-microscale

At the sub-microscale length (1 − 10µm), the lamellar bone is established.

This tissue is composed by fibres (mineralized collagen fibrils assembly) with

transversely isotropic behavior (see Sec. 2.3.1) and the isotropic extra-fibrilar

matrix (see Sec. 2.3.2). The procedure to analyze the sub-microscale length

in the multiscale approach is the following: a representative unit cell of the

lamellar tissue is modelled assuming a hexagonal regular packaging of the fibres

within the extra-fibrilar matrix (Rubin et al., 2003), see Fig. 6. The volumetric

fraction of the fibre in this model is 0.53 (according to Fritsch and Hellmich

(2007) as commented in Sec. 2.2). In the numerical analysis, a refined mapped

mesh of linear hexahedra has been considered.
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Fibres (Transverse isotropic behavior)

Extra-fibrilar matrix (Isotropic behavior)

Unit cellFibre array
(Lamellar tissue)

Fig. 6 Model of a unit cell of lamellar tissue. The fibres are distributed in a hexagonal

regular distribution with a volume faction of 0.53 (Fritsch and Hellmich, 2007)

Table 4 Values of BMD for which numerical results are obtained for the elastic constants

of lamellar tissue

BMD(gr/cm3)

0 0.36 0.73 1.10 1.23 1.4 1.57 1.8 1.9

Subsequently, the direct homogenization procedure is applied to estimate

the stiffness matrix of the unit lamellar tissue for the nine discrete values of

BMD shown in Table 4.

For each point, a numerical model of fibre array is analyzed. Then, the

least square method is used to provide the explicit expressions of the five

elastic constants of the lamellar tissue as a function of the BMD.
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2.5 Microscale

Lamellar tissue is the main structural unit of bone. Mature cortical bone is

composed by a calcified interstitial matrix and secondary osteons. In the latter,

the lamellar tissue is arranged in concentric layers around the Haver’s canal

forming the lamellae. Beside the rotation ψ2 described in Sec. 2.3.1, the crystals

of the mineralized collagen fibrils change their orientation (angle ψ1 in Fig. 7)

and, as a consequence, the longitudinal direction of the fibril also changes.

This occurs across the whole osteon. Note that this rotation is around a radial

axis of the osteon, hence the c-axis of the minerals is always contained in a

tangential plane. On the other hand, the outer layer of the osteon is the cement

line (∼ 2µm in thickness), that will be considered an isotropic material with

Ecl = 88.5MPa and νcl = 0.25 (Nobakhti et al., 2014).

Fig. 8 represents the orientation arrangement of the fibrils with the nor-

malized radial coordinate, ξ, from Wagermaier et al. (2006). This pattern has

been adopted in the current work. As described in Reisinger et al. (2011), the

origin for the angle θ in Fig. 8 is the longitudinal direction of the osteon, then

the rotation ψ1 is ψ1 = θ + 90◦.

Additionally, in the present work, the variation of the BMD described

in Granke et al. (2013) is considered as a particular case. In that work the

bone mineral density in an osteon was quantified by means of Synchrotron

Radiation-µCT. A lower BMD is observed in the inner layer (1.02±0.06 gr/cm
3
)

compared with the peripheral layer (1.16± 0.04 gr/cm
3
).
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1

2

3

1

c

Circumferential

direction

Osteon

Mineralized collagen fibril

-

Mineral rotation: 1

Fig. 7 Schematic representation of the ψ1 rotation

Fig. 8 Fibril orientation pattern across an osteon (normalized coordinate ξ) observed in

Wagermaier et al. (2006). Reprinted from Wagermaier et al. (2006) with permission of

Elsevier
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(a) (b)(b)

1 2 3 4

Fig. 9 (a) BMD distribution across an osteon, from Granke et al. (2013) (b) Straight lines

fitted to the Granke’s curve in this work

Table 5 Averaged values of BMD within each portion delimited by [ri − re]

Material [ri − re]µm BMD(gr/cm3)

1 [25-34.4] 1.02

2 [34.4-41.7] 1.13

3 [46.7-44.8] 1.19

4 [44.8-73] 1.15

In Fig. 9 (a) an illustration from Granke et al. (2013) is reprinted and in

(b) the treatment adopted in the current work is shown where four straight

lines are fitted to the Granke’s curve (see Table 5).

In order to estimate the elastic constants of the cortical bone, a unit cell is

modelled by the finite element method. In Fig. 10(a) a scheme of the region of

interest analyzed is shown. The diameter of the osteon is considered 150µm and

the Haver’s canal, 50µm (Cowin, 2001). In Fig. 10(b) a detail of the mapped

mesh (on the plane xy) is depicted. A total of 54 layers are generated with
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(b)

Interstitial 

matrix

(a)

25 m
73 m

150 m

Osteon

m

50 m

Fribril orientation pattern

Wagermaier et al. (2006)

Fig. 10 (a) Scheme of the unit cell of cortical bone (b) Mesh detail of the numerical model

of the cortical bone. User coordinate systems are used to define the elastic constants of

transversely isotropic lamellar tissue. Above illustration of the fibril orientations implicitly

modelled

user coordinate systems to define the transversely isotropic behavior of the

lamellar tissue (see Sec. 2.4).

In Fig. 11, the different colors in the osteon correspond to different material

properties, depending on the mineral content.

Finally, the interstitial matrix is assumed isotropic with Eimat = 13.73GPa

and νimat = 0.3 (Nobakhti et al., 2014). A direct homogenization procedure is

again applied to estimate the stiffness matrix of cortical bone.
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Fig. 11 Materials assignment into the numerical model

3 RESULTS

3.1 Nano-scale: fibres and extra-fibrilar matrix

The numerical model for fibrils assembly proposed in Vercher-Mart́ınez et al.

(2015) are considered as a starting point. In the present work the parameters

that define the distribution of the main constituents of bone are also included

(see Sec. 2.2). In addition, the statistical treatment of the results obtained from

the numerical models of the fibril has enabled to fit non-linear regressions that

predict the transversely isotropic behavior of the fibrils assembly as a function

of the BMD. Another contribution is that the extra-fibrilar matrix analysis is

also included.
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The following regressions provide the transversely isotropic elastic con-

stants of the fibrils assembly (fibre) for BMD < 2 gr/cm3. The axis definition

is depicted in Fig. 3. Note that the longitudinal direction of the fibres in these

equations corresponds with the x direction.

Efib
x = 109(5BMD1.8 + 1.2); R2 = 0.92 (31)

Efib
y = 109(1.36BMD0.73 + 1.2); R2 = 0.99 (32)

νfibxy = 0.049BMD2 − 0.121BMD + 0.34; R2 = 0.78 (33)

νfibyz = −0.03BMD2 + 0.093BMD + 0.35; R2 = 0.92 (34)

Gfib
zx = 108(4.85BMD0.93 + 4.44); R2 = 0.95 (35)

In Fig. 12, Eqs. 31-35 are represented in solid lines. The numerical results

for the 42 numerical models described in Table 3 that accomplish with the

condition ϕfibwmin ≤ 0.3, are depicted with square markers.

On the other hand, the isotropic elastic constants for the extra-fibrilar

matrix are estimated by means of Eqs. 28 and 29 were ϕmat
min is related with

BMD according to Eq. 30. The elastic constants are evaluated at the discrete

values of BMD shown in Table 4.

3.2 Sub-microscale: lamellar tissue

The proposed explicit expressions to estimate the transversely isotropic be-

havior of lamellar tissue based on BMD are here provided (see methods in
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BMD (gr/cm
3

) BMD (gr/cm
3

)

Y

Z

X

Transversely isotropic elastic constants for

fibrils assembly (fibre).

Numerical solutions and regressions.

Rubin et al. 2003

0        0.37       0.73        1.1       1.47      1.83         2.2

0        0.37       0.73         1.1       1.47      1.83        2.2

0        0.37      0.73       1.1       1.47      1.83       2.2

0        0.37      0.73       1.1       1.47      1.83       2.2

0        0.37      0.73       1.1       1.47      1.83       2.2

4

3.4

2.8

2.2

1.6

0

0.35

0.32

0.29

0.26

0.23

0.2

0.44

0.42

0.40

0.38

0.36

0.34

1.4

1.2

1.0

0.8

0.6

0.4

Gzx (GPa)

xy

yz
Ex (GPa)

Ey (GPa)

25

20

15

10

5

0

R2 = 0,95

R2 = 0,92

R2 = 0,78

R2 = 0,99

R2 = 0,92

Fig. 12 Numerical results and regressions for the transversely isotropic elastic constants of

the fibril assembly (fibre). The discrete finite element solutions are represented with square

markers. The regressions correspond to Eqs. 31-35

Sec. 2.4). In this case, the equations that fit better to the numerical results

obtained for Young’s moduli and shear modulus are power regression.

Elam
x = 107(770BMD0.8 + 1.54) R2 = 0.99 (36)

Elam
z = 108(130BMD1.2 + 6.4) R2 = 0.99 (37)

νlamxy =
0.6

(1.1BMD + 1)10
+ 0.38 R2 = 0.99 (38)
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νlamyz = 0.253BMD3 − 0.84BMD2 + 0.77BMD + 0.01 R2 = 0.82 (39)

Glam
yz = 106(3300BMD0.9 + 3) R2 = 1 (40)

In Fig. 13, the numerical results from the finite element analysis (marked as

points) and the regressions (solid lines) show the evolution of the transversely

isotropic elastic properties of lamellar bone with the BMD. Note the axis

represented in the schematic plot. As it can be observed, the influence of the

volumetric mineral content is noticeable for both Young’s moduli and shear

stiffness modulus being lower for Poisson’s coefficients that tend to a constant

value with increasing BMD.

The representative mean value of ratio between the Young’s modulus in

the longitudinal and transverse direction of the lamellar tissue is
Elam

z

Elam
x

= 1.86

(1.68 in Reisinger et al. (2010)). Following the procedure described in this

work, the isolated influence of the BMD (Granke et al., 2013) in the estimation

of the elastic constants of lamellar tissue (without the influence of the fibrils

orientation), has been evaluated (see Fig. 14). In addition the elastic properties

are also estimated considering a uniform value of BMD across the osteon

radius: BMD= 1.2324 gr/cm
3
that corresponds to a Vmin = 0.395 (Yoon and

Cowin, 2008a).

If we consider the BMD distribution given by Granke et al. (2013) given in

Fig. 9, the maximum variation of the mineral content can lead up to 3 GPa of

difference in the longitudinal elastic modulus, up to 1 GPa of difference in the

transversal elastic modulus, negligible influence in the Poisson’s ratios and less

than 1 GPa in the shear stiffness modulus. In case of considering the uniform
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Fig. 13 Numerical results from the finite element analysis (with markers) and the regres-

sions (in solid lines) of the transversely isotropic elastic constants of lamellar tissue as a

function of BMD, (a) Young’s moduli (Eqs. 36 and 37), (b) Poisson’s ratios (Eqs. 38 and

39) and (c) shear stiffness modulus (Eq. 40)

value BMD = 1.2324 gr/cm
3
as the maximum, the differences are higher. This

result highlights the dependency of the elastic constants of lamellar tissue with

BMD.
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Fig. 14 Evolution of the elastic constants of lamellar tissue with BMD. The solid lines

fit the discrete results corresponding with the different materials shown in Table 5 where

the BMD changes. The dashed lines represent the results for the uniform value BMD =

1.2324 (gr/cm3)

3.3 Microscale: cortical bone

The numerical procedure implemented allows us to apply the 6 canonical load

cases preserving the periodic response of a cortical bone unit cell. The full

stiffness matrix is then obtained. In this case, the cortical bone represented by

the region of interest described in Sec. 2.5 is under consideration.

In Fig. 15 a table summarizes the elastic constants that are directly ob-

tained from the numerical analysis. Influence coefficients and Chentsov’s co-

efficients are negligible. Note that there is a wide range of variation in the

elastic constant for cortical bone in literature. That can be observed even for
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Elastic constants for a representative cell of 

cortical bone

BMD (Granke et al. 2012) Uniform BMD *

Ex
3.26 GPa 3.26 GPa

Ey
3.26 GPa 3.26 GPa

Ez
13.00 GPa 13.76 GPa

xy
0.097 0.099

xz
0.067 0.063

yz
0.067 0.063

yx
0.097 0.099

zx
0.265 0.266

zy
0.265 0.266

Gxy
0.170 GPa 0.172 GPa

Gyz
1.072 GPa 1.072 GPa

Gzx
1.072 GPa 1.072 GPa

* BMD = 1.2324 gr/cm3

Fig. 15 Estimation of the elastic constants of cortical bone from the direct homogenization

procedure by means of the finite element method (table). Two scenarios are considered, first

the BMD distribution across the osteon observed by Granke et al. (2013) and second, the

uniform value BMD = 1.2324 gr/cm3. The figure illustrates the deformed shape for one of

the six load cases imposed, γxy

the same type of bone. In Ascenzi and Bonucci (1967) the longitudinal stiffness

is given for human osteons varying in the range: [4.81− 12.9]GPa.

The non-isotropic behavior of the cortical bone is noticeable, being almost

4 times stiffer in the longitudinal than in the transverse direction of the osteon.

As expected, the numerical results provide a transversely isotropic behavior of
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the cortical bone being the plane xy the isotropic plane. The elastic constants

obtained fulfill the thermodynamical restrictions (Lempriere, 1968; Gurtin,

1972; Vercher et al., 2014).

From these results, the BMD variation across the osteon does not seem

to be very influent on the elastic constants obtained for cortical bone (see

Fig. 15). Fibril orientation governs the anisotropic behavior of cortical bone

much more than the mineral content. This result is in agreement with Granke

et al. (2013).

However, the noticeable influence of the BMD on the elastic constants of

lamellar tissue highlighted in Sec. 3.2, suggests that other tissues like cancel-

lous bone, where lamellar tissue is formed in layers, would be more sensitive to

the BMD variation than cortical bone. In this context, it is possible to relate

the mineral content measured in cancellous bone with the BMD in lamellar

tissue by means the following equation:

BMDcancellous =
BV

TV
BMDlamellar (41)

where
BV

TV
represents the bone volume fraction. From Eq. 41 the BMDlamellar

can be worked out being function of the
BV

TV
and BMDcancellous which, in

turn, can be obtained from image analysis and µCT .

4 DISCUSSION AND CONCLUSIONS

In this work, explicit expressions to estimate the transversely isotropic behav-

ior of lamellar bone are proposed. To achieve this goal, a multi-scale approach
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is applied in accordance with the hierarchical structure of bone. The methods

considered are direct homogenization procedure by finite element methods,

continuum approach based on Hill bounds, least square method and mean

field technique. In a preliminary analysis of the distribution of the main com-

ponents of bone, the volumetric bone mineral density BMD is expressed as the

independent variable. The rest of the parameters are fixed in accordance with

the typical values found in literature. From this starting point, the results ob-

tained in a previous work (Vercher-Mart́ınez et al., 2015) for the transversely

isotropic fibril assembly (fibres) are considered. However, several limitations

of that work are currently addressed: the elastic constants of the fibre array

or lamellar tissue are estimated as a function of the BMD by including the

analysis of the extra-fibrilar matrix as a water-mineral composite. In addition,

the proposed explicit expressions for the lamellar tissue are applied to cortical

bone. In this case, the fibril orientation pattern described in Wagermaier et

al. (2006) and the BMD distribution across an osteon presented in Granke et

al. (2013) are considered.

It is remarkable that the transversely isotropic behavior of the fibrils assem-

bly and hence, the lamellar tissue, is due to consider the full mineral rotation

around its c-axis (Rubin et al., 2003) and the isotropic behavior of the extra-

fibrilar matrix. If this is not the case, lamellar tissue exhibits an orthotropic

behavior (Mart́ınez-Reina et al., 2011) or monoclinic (Vercher-Mart́ınez et al.,

2015).
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In the present study, a power regression for the Young’s moduli of lamellar

tissue as a function of BMD has been fitted. This result is in agreement with

Currey (1986) where a power law for the relation between the apparent elastic

modulus of cancellous bone and the BMDcancellous is reported. In addition,

we provide the regressions for the rest of the transversely isotropic elastic

constants.

From our results, a noticeable increment of the elastic moduli is observed

with the increment of BMD. Similarly, in Mart́ınez-Reina et al. (2011), the

orthotropic Young’s moduli of the lamellar tissue increase with the ash frac-

tion. It is worth pointing out that the volumetric BMD map is obtained by

dual-energy X-ray absorptiometry (DXA) (Yang et al., 2014) or computed

tomography (QCT ) (Majumdar et al., 1998) in the usual clinical practice,

instead the ash fraction.

Regarding the analysis of cortical bone, the main source of porosity of

cortical bone (Haver’s canals) is explicitly modelled in this work. Other sources

of porosity (canaliculi, lacunae, Volksmann’s canals) have been neglected.

From the results obtained for the elastic constants of cortical bone, it can

be concluded that the fibril orientation pattern across the concentric lamellar

tissue in the secondary osteons governs the anisotropic behavior of cortical

bone rather than the mineral content. However, the power regression for the

lamellar tissue properties with BMD suggests that in other tissues like cancel-

lous bone, the elastic constants may be more influenced by the mineral con-

tent. In this work, it is proposed a relationship between the BMD for lamellar
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tissue, the BMD for cancellous bone and the
BV

TV
ratio. Hence, transversely

isotropic elastic properties for lamellar tissue can be derived instead of the

typical isotropic elastic properties frequently assumed. We have verified that

the volumetric bone mineral content BMD is a relevant parameter in order to

improve the accuracy of the estimation of the lamellar bone elastic properties

and we provide explicit expressions that correlate them.

This work presents several limitations. It could be necessary to include

some weight factors in order to discerner what models of the fibrils are the

most probably in the living tissue. Moreover, no sensitivity analysis of the

parameters α (ratio between the intrafibrilar mineral content and the deposited

in the lamellar bone) and V fib (volume of fibres per unit volume of bone tissue)

has been performed. In addition, when the Haversian system is analyzed, the

isotropic elastic constants for the interstitial matrix can be substituted by more

realistic values, in concordance with its own microstructure, this limitation will

be overcome in a future work.

Currently, the authors are working on a model for the estimation of the

elastic constants of lamellar tissue and cortical bone that includes the influence

of the porosity due to osteoporosis. In addition, the proposed model for the

transversely isotropic lamellar tissue is being applied to estimate the apparent

elastic constants of cancellous bone.
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Phases

Fibres (V fib = 0.53) Extra-fibrilar matrix (Vmat = 0.47)

Components

Collagen —

Crystals of mineral Amorphous mineral

Water Water

Reference L W T

Landis et al. (1993) 40-170nm 30-45nm 4-6nm

Rubin et al. (2003) (normal bone) 50.7±9.1nm 27.2±3nm 1.5±7.7nm

Robinson et al. (1952) (cortical bone) 20-150nm 10-80nm 8-15nm

Rho et al. (1998) (average values) 50nm 25nm 3nm

dT
T

-0.2 0 0.2 0.4 0.6

L [40, 50, 60,66]nm [40− 150]nm inc. of 10nm

Models 1-4 5-8 9-20 21-32 33-44

Maximum ϕfibwmin 0.231 0.185 0.350 0.300 0.262

BMD(gr/cm3)

0 0.36 0.73 1.10 1.23 1.4 1.57 1.8 1.9

Material [ri − re]µm BMD(gr/cm3)

1 [25-34.4] 1.02

2 [34.4-41.7] 1.13

3 [46.7-44.8] 1.19

4 [44.8-73] 1.15


