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ABSTRACT 

Two different computer vision-based analytical chemistry (CVAC) methods were 

developed to quantify iron in the commercial pharmaceutical formulations Ferbisol® 

and Ferro sanol®. The methods involve using a digital camera or a desktop scanner to 

capture a digital image of a series of Fe2+ standard solutions and the unknown sample 

upon reaction with o-phenanthroline. The images are processed with appropriate 

software (e.g., the public domain programme ImageJ, from NIH) to obtain a numerical 

value (analytical signal) based on colour intensity. The fact that such a value is 

proportional to the analyte concentration allows one to construct a calibration graph 

from the standards and interpolate the value for the sample in order to determine its 

concentration. The results thus obtained were compared with those provided by a 

spectrophotometric method and the US Pharmacopoeia’s recommended method. The 

differences never exceeded 2%. The two proposed methods are simple and inexpensive; 

also, they provide an effective instrumental alternative to spectrophotometric methods 

which can be especially beneficial in those cases where purchasing and maintaining a 

spectrophotometer is unaffordable. 
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1. Introduction 

Iron plays a central role as an active site for proteins effecting O2 and electron 

transfer in enzymes (oxidases, reductases and dehydrases) in the biosphere. In 

fact, iron is an essential element for oxygen transport and storage through 

haemoglobin and myoglobin in higher animals [1–3]. As such, this element is an 

essential ingredient of human diet deficiencies in which are the source of a 

number of diseases, particularly during childhood, adolescence and pregnancy 

[4]. Thus, an iron-deficient diet can lead to a medical condition known as 

“ferropenic anaemia”. Correcting iron deficiencies entails using an effective iron 

supplement such as a multi-vitamin complex or a specific pharmaceutical 

formulation.  

A number of methods currently exist for determining iron most of which are 

based on volumetric [5], potentiometric [6], anodic stripping voltametric [7], 

graphite-furnace [8] or flame atomic absorption [9], inductively coupled plasma 

atomic emission spectrometry or inductively coupled plasma mass spectrometry 

[10], fluorimetric [10,11] or chemiluminescence [12, 13] measurements.  

Spectrophotometry is among the most simple, expeditious and inexpensive 

techniques for determining iron in a wide variety of samples. The process usually 

involves reacting the iron with a chromogenic chelating agent [14-24].  

In this work, we used the well-known spectrophotometric method for iron (II) 

based on its reaction with o-phenanthroline (at pH 3.5 by adding sodium acetate) 

to form a reddish orange complex [25].  

Keeping iron in its reduced state (Fe2+) requires using an appropriate reductant 

such as hydroxylamine. 

The resulting complex can be quantified spectrophotometrically by its 

absorbance at 508 nm. 

The decreasing cost and increasing performance of digital imaging hardware 

and software have promoted the increasing use of digital photography in 

colorimetric qualitative and quantitative tests which have given rise to an 

increasingly popular new analytical technique called “computer vision-based 

analytical chemistry” (CVAC) [26]. 

Digital imaging devices (e.g. digital cameras, desktop scanners) use either of 

two types of sensors, namely: Complementary Metal Oxide Semiconductors 



 
 

(CMOS) or Charge Coupled Devices (CCD). A CCD (or a CMOS) is an 

electronic device henceforward referred to as a “sensor” consisting of many cells 

called “pixels”. Each cell acts as a light-sensitive element and provides an 

electrical response to light; the combined responses of a sensor can be digitized 

and converted into an image [26-28].  

A sensor consisting of 8-bit pixels can respond to 28 = 256 different levels of 

grey from 0 (black) to 255 (white). Therefore, each pixel in a captured image can 

be assigned a value from 0 to 255 that can be used for calibration. This allows a 

digital imaging device to be used as an analytical detector to exploit the vast 

amount of information contained in a captured image [26]. 

The CVAC technique has been increasingly used in research laboratories and 

commercial laboratory equipment for more than two decades [26, 28-41]. Low-

cost commercial digital cameras and scanners have been gradually incorporated 

into the analytical laboratory, where they are being increasingly used for forensic 

[42, 43], telemedicine [27, 48] and, obviously, analytical purposes [26, 44, 46, 

47, 49, 50, 53-55]. 

Using a commercial digital camera in combination with the software ImageJ 

recently proved a simple, inexpensive choice for a variety of measurements [27, 

45].  

Webcams and mobile phone cameras have proved useful for chemical analysis 

[46, 47] and even for capturing and transferring the results of biological tests for 

glucose and proteins in telemedicine [48]. 

On the other hand, commercial scanners have been also used to develop 

colorimetric methods [49-53].  

In line with previous works [54, 55], the proposed method uses digital images 

of series of standard solutions in combination with imaging software (ImageJ) to 

assign a numerical value for colour intensity. Such a value is proportional to the 

concentration of the standard and can be used for calibration. Our method is 

similar to the classical spectrophotometric method for the same purpose but has 

the advantage that it uses much more simple and inexpensive hardware (viz., a 

low-cost digital camera or a desktop scanner) and public domain —and hence 

free— software (ImageJ). The results are compared with those provided by the 

classical spectrophotometric method and the official, cerimetric method 

recommended by the US Pharmacopoeia [56]. 



 
 

2. Material and methods 

2.1. General materials 

All reagents used were analytical-grade and obtained from the following 

suppliers: Panreac (hydroxylamine hydrochloride), J.T. Baker (1 mol L–1 

sulphuric acid, ammonium iron (II) sulphate hexahydrate (Mohr’s salt)) and 

Scharlab (o-phenanthroline monohydrate, sodium acetate trihydrate). The 

cerimetric titration in the USP method was performed with 0.1 mol L–1 cerium 

(IV) sulphate (in 0.5 mol L-1 H2SO4) from Scharlab and 0.025 mol L–1 ferroin 

from J.T. Baker. 

All solutions were prepared in water de-ionized to 18 MΩ⋅cm by reverse 

osmosis in a Sybron/Barnstead Nanopure apparatus furnished with a fibre filter of 

0.2 μm pore size.  

A standard solution containing 100 mg Fe(II) L–1 was prepared by dissolving 

0.7 g of Mohr’s salt in 1 mol L–1 H2SO4 and making to volume in a 1 L 

volumetric flask. 

The solutions were transferred to the supports by using a 1000 μL Labopette® 

micropipette. 

The commercial pharmaceutical formulations studied were Ferbisol® 100 mg 

(50 capsules; BIAL Industrial Farmacéutica, S.A.) and Ferro sanol® 100 mg (50 

capsules; UCB Pharma, S.A.). 

Absorbance measurements were obtained with a Spectronic Genesis 20 UV–

Vis spectrophotometer. Each image was captured by placing a blank consisting of 

a strip of two-sided inkjet paper near the standards and support.  

All images were processed by using the public domain software ImageJ for 

Windows developed by the National Institutes for Health and freely available for 

download at http://rsbweb.nih.gov/ij.  

2.2. Material for capturing images with the digital camera 

The standards and sample were held in a 11 × 9 cm white ceramic spot plate 

with 6 wells holding 3 mL each. 

All photographs were taken with a Nikon Coolpix E995 digital camera. 

Lighting was provided by two pairs of Philips Master TL-D 36W/840 fluorescent 

tubes 1.5 m above the plate. 

http://rsbweb.nih.gov/ij


 
 

In order to avoid reflections of the fluorescent tubes on the plate and the 

associated artefacts in the images, the camera–plate combination was placed 

inside a 40 × 25 × 35 cm white methacrylate box (Fig. 1). Reflections off the 

inner walls of the box were avoided by using a diffusion screen consisting of a 

420 × 520 mm piece of 60 g/m2 ALBET white filter paper (LabScience code 

RM2504252). Also, the plate was placed on a piece of NE 30K black cardboard 

(A4, 108 g) from Hermanos Cebrián (Valencia, Spain) for increased contrast. 

2.3. Material used for capturing images with the desktop scanner 

The standard solutions and sample were placed in a TTP® Zellkultur Testplatte 

containing 24 wells holding 3 mL each. 

Images were acquired with five different scanner models, namely: HP PSC 1510 All-

in-one, HP Photosmart C3180, Brother DCP-J132W, HP ScanJet 3100 and Acer S2W 

3300V.  

2.4. General procedure 

The experimental work was conducted under the typical chemical conditions of the 

well-known spectrophotometric method for determining Fe (II) with o-phenanthroline 

[25]. For this purpose, aliquots of 1–5 mL of the 100 mg Fe (II) L–1 standard and a blank 

(0 mL) were added to 100 mL volumetric flasks and successively supplied with 20 mL 

of water, 2 mL of hydroxylamine, 5 mL of o-phenanthroline and 5 mL of sodium 

acetate. These solutions were used to construct the calibration curve for iron (II). 

The samples were prepared by adding the contents of 5 capsules of either 

pharmaceutical formulation to a beaker containing 250 mL of 1 mol L–1 sulphuric acid 

and stirring for 24 h. The resulting suspension was passed through paper filter and made 

to 500 mL with more sulphuric acid in a volumetric flask. A 250 µL aliquot of this 

solution was made to 100 mL in another flask and reacted identically with the standards. 

The solutions were allowed to stand for 15 min, after which the concentration of iron 

in each was determined by digital imaging analysis.  

2.5. Procedure with the digital camera 

Obtaining useful images of the standards and samples required using an appropriate 

support in order to enhance the colour of the solutions without interference. A white 



 
 

ceramic plate with 3 mL wells proved suitable for this purpose as it allowed an image of 

all solutions (standards and sample) to be simultaneously obtained under identical 

lighting conditions. 

Each plate well was filled with 3 mL of a standard solution containing a 

concentration within the linear calibration range (0.5 mg L–1) and the plate 

photographed together with the white paper strip (Fig. 2a).  

The camera was operated in the manual mode in order to avoid the potential 

influence of its automatically choosing its own settings. Because using flash could have 

resulted in unwanted reflections on the solution surfaces, all lighting was supplied by 

the laboratory’s fluorescent strips. Also, any spurious signals due to reflections from 

other sources were minimized by placing the camera–plate combination inside a white 

methacrylate box lined with a diffusing screen on the inside. 

These diffuse lighting conditions allowed the optimum F-stop and shutter speed to be 

selected in order to avoid under- and overexposure. The camera was attached to a static 

support and photographs were taken at F/6 and a shutter speed of 1/4 s. 

2.6. Procedure with the scanner 

Accurately capturing the colour of the standards and samples with the scanner 

required using a support consisting of a transparent microplate with 24 wells holding 3 

mL of solution each. This support allowed an image of the standards and sample to be 

simultaneously obtained under identical lighting conditions. 

Each microplate well was filled with 2 mL of a solution of the standards or sample 

containing concentrations within the linear calibration range (0–5 mg L–1). 

The amount of light reflected was maximized by placing a sheet of standard white 

paper on the microplate lid. Also, spurious reflections were avoided by covering the 

microplate with a piece of thick black cloth prior to scanning the microplate–paper strip 

combination (Fig. 2b). 

2.7. Processing of images 

All images were processed with the software ImageJ. A standardized image not 

dependent on the colour temperature of the source of light (namely, two fluorescent 

strips or the scanner lamp) was obtained by calibration with a strip of standard white 

paper.  



 
 

The image was white-balanced by using an algorithm described elsewhere [27]. Each 

A>B>C operation involved selecting command B from menu A and then sub-command 

C from command B. First, the original image was split into three RGB images (Image > 

Color > Split Channels). Then a circular region of interest (ROI) in each RGB sub-

image was selected with the drawing tool in the toolbar and placed on the white paper 

strip to measure its Mean Brightness (MB) by using the Histogram command (Analyze 

> Histogram). Next, on the assumption that the white paper strip reflected 80% of 

incident light in each channel (255 × 0.8 = 200), each RGB image was corrected by 

multiplying its brightness by 200/MB (Process > Math > Multiply and then enter 

200/MB). The corrected sub-images were merged to obtain a new colour image 

mimicking one capture under ideally white lighting (Image > Colour > Merge 

Channels). This standard image was again split into RGB sub-images, that for the green 

channel being inverted and the level of neutral grey (NG) for each standard (or the 

sample) measured in the previously selected ROI (Fig. 2c). 

The NG level for each standard or sample was taken to be the analytical signal and 

used to calculate the corresponding absorbance from [49] 

𝑨𝑨𝑨 = 𝐥𝐥𝐥
𝑵𝑵
𝟐𝟐𝟐

 

which relates the absorbance of the analyte to its concentration. 

 

2.8. Optimization procedure 

The instrumental variables of the imaging process were optimized by using a 

univariate procedure. Each variable was examined at different values in order to 

establish that leading to the greatest sensitivity (highest slope of the calibration curve). 

For this purpose, iron (II) standards containing concentrations over the range 0–5 mg L–

1 were used to obtain three consecutive images that were processed with ImageJ in order 

to construct three calibration curves with their respective slopes and coefficients of 

determination (r2). The process was optimized in terms of the mean of both parameters 

and the standard deviation from the mean slope (N = 3). 

3. Results and discussion 

3.1. Digital camera 



 
 

The initial conditions for the capturing process were established in previous work 

[55]. A comparison of the calibration curves for the green and blue colour channels —

the red channel is useless owing to the colour of the iron complex— revealed that the 

former channel provided a more linear curve—at a similar deviation— and a greater 

slope. Therefore, the green channel was selected for subsequent measurements. 

The influence of the exposure time was examined by using the camera’s 

greatest available aperture (F/3) and a focusing distance of 20 cm at shutter 

speeds from the highest (1/30 s) to the lowest (1/4 s); as revealed by the 

histograms, the former speed resulted in underexposure and the latter in 

overexposure (see Table 1). The slope increased with increasing exposure time; 

however, the coefficient of determination declined beyond 1/8 s, so a shutter 

speed of 1/15 s was selected as a trade-off for subsequent work. 

In taking a photograph, the sensor can be exposed to identical amounts of light 

by using different combinations of aperture and exposure time. This phenomenon 

is called “reciprocity” and was used to identify the equivalent combinations of 

F/3 and a shutter speed of 1/15 s. As can be seen from Table 2, F/6 in 

combination with 1/4 s provided the best results in terms of slope and coefficient 

of determination, and were thus selected for subsequent work. 

The influence of ROI size was examined at three different levels, namely: 

20 000, 60 000 and 100 000 pixels. The optimum size was 60 000 pixels (see 

Table A in Supplementary material section). 

3.2. Scanner 

The performance of the scanner was compared with that of the digital camera 

by examining the potential influence of a number of instrumental and operational 

variables on the acquired images. 

Initially, we used five different desktop scanners, all in the “auto” mode, in 

order to identify that providing the best results for the intended purpose. Each 

scanner was used to acquire images in the green and blue channels that were 

processed by using an ROI of a size equivalent to that of a plate well (2500 pixels 

for the Brother scanner and 4500 pixels for all others) or, alternatively, a smaller 

area (50 pixels) of uniform colour containing no apparent artefacts. 

Discrimination was based on the slope and coefficient of determination of the of 

the calibration curve. As can be seen from Table 3, the best trade-off between the 



 
 

two was provided by the Brother DCP-J132W scanner. This model has the added 

advantage that, because it is a combo system, it continues to operated even if the 

printer runs out of ink.  

The influence of the volume of standard solution placed in each well was 

examined by using 1, 2 and 3 mL. A volume of 2 mL provided the best 

combination of slope and coefficient of determination (see Table B in 

Supplementary material section). 

A comparison of the measurements on the green and blue channels revealed 

that the former resulted in smaller deviations, so it was selected for further work.  

The optimum scanner allowed resolution, Gaussian blur, brightness and contrast, 

and the image format to be selected. This allowed us to examine the influence of 

these settings on the resulting calibration curves. Applying Gaussian blur led to 

similar coefficients of determination but reduced the slope of the curve, which 

excluded its use to improve the results. Also, using a small ROI (50 pixels) 

increased the slope (Table 4). 

Scanner resolution ranged from 100 × 100 to 1200 × 1200 dpi. Resolution had 

no significant influence on the mean results (N = 3). This led us to select the 

lowest available resolution in order to obtain as small and expeditiously 

processed files as possible —in fact, the images obtained at the highest 

resolutions were too large for processing with ImageJ (see Table C in 

Supplementary material section).  

As regards ROI size, a circle of 50 pixels led to a significantly greater slope 

than one of 2500 pixels, so NG was measured with the smaller size (see Table C 

in Supplementary material section). 

The influence of the brightness and contrast settings on the calibration curve 

was examined by using a range of values in 10 unit steps. Negative values of the 

two settings led to underexposed, difficult to process images. Also, the large 

differences between using a brightness setting of +20 and one of +30 led us to 

test +25 as well; however, we chose to apply +30 to subsequent images as the 

optimum trade-off (see Tables D and E in Supplementary material section).  

Regarding image compression, we tested the following choices: standard 

baseline (i.e., no compression, which is compatible with virtually any hardware 

and software), optimized baseline (compressed images) and progressive —which 

is useful for the Internet because images are viewed at a low resolution but 



 
 

downloaded at their actual resolution. All three formats led to similar results, so 

optimized baseline was selected in order to save space (see Table F in 

Supplementary material section). 

3.3 Analytical figures of merit 

3.3.1. Calibration curves. Limits of detection and quantitation.  

The theoretical limits of detection (CLD) and quantitation (CLQ) were calculated 

as 3σb/m and 10σb/m, respectively, σb being the standard deviation of the blank 

and m the slope of the calibration graph. 

The empirical limit of detection was determined by using standard solutions 

containing 0–5 mg L–1 and assuming the limit to coincide with the point where 

the calibration curve ceased to be linear and the analytical signal was 

indistinguishable from the blank signal.  

The theoretical and empirical limits are shown in Table 5. 

3.3.2. Within-day and between-day reproducibility.  

Within-day reproducibility was determined from images of five different sets 

of standard solutions containing 0–5 mg Fe L–1 that were obtained by the same 

operator using the same analytical equipment on the same day. The results are 

shown in Table 5. 

Between-day reproducibility was determined similarly to within-day 

reproducibility except that the sets of standards were prepared on different days. 

The results are also shown in Table 5. 

3.3.3. Determination of Fe (II) in real samples.  

Two different commercial formulations of iron (II) (Ferbisol® and Ferro 

sanol®) were analysed with the four analytical methods studied, namely: analysis 

of digital images obtained with a photographic camera or a desktop scanner, 

spectrophotometry [25] and redox titrimetry (cerimetry) [56] —the last is the US 

Pharmacopoeia’s recommended method and was used as reference for 

comparison. The manufacturers’ stated content in iron of both formulations is 100 

mg per capsule. 

As can be seen from Table 6, all four methods proved suitable for determining 

iron in both formulations, with errors less than 2% in all cases and standard 



 
 

deviations only slightly higher than those of the officially endorsed method in the 

other three. 

4. Conclusions 

The two proposed methods exhibited good between-day reproducibility (RSD 

< 5% with N = 5) that was slightly higher with a photographic camera than with a 

scanner. The coefficients of the determination of the calibration curves were 

always higher than 0.995 and also slightly better with the camera than with the 

scanner. 

The analytical results obtained with the two methods were comparable to those 

of the US Pharmacopoeia’s recommended method for determining iron (II) in 

commercial pharmaceutical formulations (errors less than 2%) and even better 

than those for Ferbisol® provided by the classical spectrophotometric method. 

Unlike a photographic camera, a scanner requires using no external lighting or 

diffusing screen. 

The proposed methodology is simple and inexpensive. Thus, it uses a digital 

camera or desktop scanner connected to a computer, which is much more 

affordable equipment than a conventional spectrophotometer. Also, acquired 

images can be processed with user-friendly, free software (ImageJ, developed by 

the National Institutes for Health).  

Given the current prevalence of increasingly sophisticated and expensive 

commercial instruments, the proposed methods provide a very interesting 

alternative for quantitative determinations in the absence of economic resources 

for purchasing and maintaining a conventional spectrophotometer. 
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Fig. 1. Equipment used to obtain digital images with a photographic camera (4). 
Support (1), black cardboard (2), spot plate (3), white methacrylate box (5) and 
fluorescent strips (6). 
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Fig. 2a.  Spot plate filled with standard solutions and strip of white paper on its left. 
 

 

 

 

 

 

 

Fig. 2b.  Microplate filled with standard solutions containing variable concentrations of 
Fe (II) (mg L–1) and strip of white paper on its right. 
 

 
Fig. 2c.  Microplate filled with standard solutions containing variable concentrations of 
Fe (II) (mg L–1) and the sample (S), and strip of white paper on its right (inverted 
image). 
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Table 1  
Slopes and coefficients of determination of the calibration curves obtained at different 
exposure times. 
 

Exposure time / s Slope r2  
1/4 0,0043 0,9949 
1/8 0,0571 0,9990 
1/15 0,0694 0,9975 
1/30 0,0924 0,9968 

 
 
 
 
 
Table 2  
Slopes and coefficients of determination of the calibration curves obtained at different 
apertures (F) and exposure times, and standard deviation of the slope (N = 3). 
 
Exposure time / s F Slope r2  

 
Standard 
deviation 

1/2 8,4 0,0668 0,9997 0,0004 
1/4 6 0,0691 0,9995 0,0005 
1/8 4,2 0,0676 0,9995 0,0008 
1/15 3 0,0719 0,9987 0,0007 
 
 

Table 3  
Mean values (N = 3) obtained with the five desktop scanners compared. 

 

 
* The values for the Brother DCP-J132W scanner were measured at 2500 pixels 

rather than 4500 because its images were of lower resolution. 
 

Scanner RGB 
channel 

Slope 
(ROI: 4500 
pixels)  

r2  

 (ROI: 4500 
pixels)  

Slope 
(ROI: 50 
pixels) 

r2  
 (ROI: 50 
pixels) 

ACER Green 9.9 0.9754 14.0 0.9729 
S2W 3300V Blue 14.0 0.953 19.9 0.9615 
BROTHER Green 14.2 0.947 17.9 0.9782 
DCP-J132W* Blue 16.5 0.8933 24.7 0.9406 
HP 1510 Green 10.9 0.9583 19.9 0.9726 
  Blue 10.2 0.92476 15.7 0.9756 
HP 3100 Green 4.5 0.9836 6.8 0.9488 
  Blue 7.8 0.9909 10.8 0.9652 
HP 4300 Green 7.9 0.9853 11.6 0.9917 
  Blue 14.0 0.9819 17.1 0.9862 



 
 

Table 4 
Influence of the amount of Gaussian blur applied to an image (green channel) with two 
circular regions of interest (ROI) of different size. 
 
Gaussian blur Calibration curve  

(ROI: 2500 pixels) 
Calibration curve  
(ROI: 50 pixels) 

0 y = 14.097x + 148.77 y = 18.343x + 108.57 
  r2 = 0.9539 r2 = 0.9569 

2.5 y = 13.087x + 150.03 y = 18.043x + 112.06 
  r2 = 0.9367 r2 = 0.9579 

5 y = 13.453x + 145.69 y = 17.8x + 117.16 
  r2 = 0.9567 r2 = 0.9608 

7.5 y = 12.51x + 143.9 y = 16.988x + 124.33 
  r2 = 0.9624 r2 = 0.957 

10 y = 11.154x + 144.42 y = 16.154x + 126.88 
  r² = 0.9596 r² = 0.978 
 

 
Table 5 
Analytical figures of merit of the proposed methods. 
 
Parameter Digital  

camera 
Desktop scanner 

Slope 0.067 29.886 
Origin of straight (y-intercept) 0.141 9.381 
r2 0.999 0.995 
Standard deviation of blank 0.008 1.999 
CLD (empirical CLD) / mg L-1 0.36 (0.2-0.4) 0.2 (0.4-0.6) 
CLQ / mg L-1 1.18 0.70 
Within-day reproducibility / % 3.0 (N=5) 3.6 (N=5) 
Between-day reproducibility / % 4.0 4.6 
 
 
 
 
 
 
Table 6 
Results for the quantification of Fe (in mg per capsule) for real samples, using the 
four analytical methods, as an average of three samples processed independently. 
 
Real 
sample 

Cerimetry SP* Desktop 
scanner 

Digital 
camera 

Ferbisol® 101 ± 1 104 ± 5 102 ± 3 103 ± 5 
Ferro sanol® 103 ± 1 103 ± 3 103 ± 2 103± 3 
 
SP = spectrophotometry. 


