

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121375

Real Sáez, JV.; Sáez Barona, S.; Crespo, A. (2018). Ravenscar Support for Time-Triggered
Scheduling. ACM SIGAda Ada Letters. 38(1):41-54.
https://doi.org/10.1145/3241950.3241957

http://doi.org/10.1145/3241950.3241957

Association for Computing Machinery

Ravenscar Support for Time-Triggered Scheduling∗

Jorge Real†, Sergio Sáez‡, Alfons Crespo†
† Instituto de Automática e Informática Industrial

‡ Instituto Tecnológico de Informática
Universitat Politècnica de València

Camino de vera, s/n, 46022 Valencia, Spain

E-mail: {jorge,ssaez,alfons}@disca.upv.es

Abstract

This position paper follows from a previous proposal to integrate a time-triggered scheduler in a priority-
based, preemptive scheduler such as that supported by Ada’s task dispatching policy FIFO Within Priorities . The
resulting combined scheduling carries the advantages of both time-triggered and priority-based scheduling,
and helps mitigating their drawbacks.

The paper presents a system model for the time-triggered subsystem that extends the original proposal,
and describes a Ravenscar implementation of the scheduler at the run-time system level, in the form
of a new package Ada.Dispatching.TTS. Multiple programming patterns can be implemented on top of this
scheduler. With respect to the previously proposed full-Ada implementation, only patterns that implied
the use of asynchronous transfer of control have been excluded. On the other hand, the extension of
the original model enables new patterns, not supported in our previous proposal, using the new types of
continuation and optional slots.

We hold that bringing the time-triggered paradigm to Ravenscar is both feasible and convenient for the
High-Integrity and Embedded application domains.

Keywords: Real-Time Systems. Time-Triggered Scheduling. Priority-Based Scheduling. Ravenscar Profile.
High-Integrity Systems. Embedded Systems

1 Introduction

Time-Triggered (TT) and Priority-Based (PB) scheduling are two approaches often taken in exclusion. In
previous publications [9, 8], we have proposed a model, and its corresponding Ada implementation, that combines
both scheduling techniques in such manner that a real-time application can be implemented by a combination
of TT and PB tasks. The TT subset of tasks is executed at the highest priority of a preemptive PB scheduler,
hence granting time slots for the TT workload over the PB subset of tasks. This separation allows one to keep
the advantages of TT scheduling (determinism, minimum jitter) for a selected subset of TT tasks, and to retain
the properties of PB scheduling (separation of logic/timing concerns) for tasks that do not require the extreme
predictability of a TT schedule. This approach was well received at a previous International Real-Time Ada
Workshop [6].

∗This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the
European Commission’s projects ENABLE-S3 and AQUAS (ECSEL-JU, Contracts 692455 and 737475).

1

In this paper we want to make this approach usable in the context of the Ravenscar Profile [2], hence making
it adoptable in the High-Integrity and Embedded Systems domains.

At the time of writing this paper, we have an ongoing submission [7] that presents the system model and a set
of patterns that can be supported by the TT scheduler in combination with the PB runtime of Ravenscar. We
will only briefly describe these aspects here. Quantitative results are also given in [7], showing a very tight and
predictable jitter for TT tasks; but we will not repeat them here. Instead, we will develop the discussion about
design and implementation details that are given in [7].

2 System Model: the Time-Triggered Plan

The description of our system model is limited to the aspects related with the TT workload. The PB subset of
tasks is scheduled at lower priorities than the TT level, hence causing no application interference on TT tasks.

Since we are after a Ravenscar implementation of the model, the priority-based subset will be scheduled using
a fixed-priority scheme such as Rate Monotonic or Deadline Monotonic [5, 4]; but nothing in our model precludes
the use of other algorithms for the PB tasks, such as EDF [5], or even a combination of schedulers using different
priority bands.

A TT plan is a cyclic sequence of actions to be executed at particular points in time. The plan is described
by an ordered list of time slots, each of its own slot duration. If a slot starts at time t, its lifetime goes from t to
t+Slot Duration. There are no gaps between slots: each slot starts just at the end of the previous slot in the plan.

Figure 1. A 12-slot time-triggered plan. Slots marked 2, 4 and 10 are regular slots for works 1 and 2, as
indicated; slots 0 and 6 are continuation slots for work 1; slot 8 is an optional slot for work 3; and slot11
is a mode change slot. The rest are empty slots.

Figure 1 shows a 12-slot example plan, with slots numbered from 0 to 11. Apart from its duration, each slot is
characterised by the actions to take during the slot lifetime. Each slot has a mark indicating its type (digits and
other symbols whose meaning will be described in a moment). Using the time scale in milliseconds at the bottom
of the plan, it can be seen that it has a duration of 80 ms, slot 0 has a duration of 5 ms, slot 11 takes 6 ms from
time 74 ms to 80 ms, etc.

Our system model defines five possible types of slots in a plan:

• A regular slot is a time slot reserved for the execution of a TT task (or work). It is denoted by a regular
Work Id, a strictly positive integer that identifies the particular work to execute during the slot. In Figure 1,
slots 2, 4 and 10 are regular slots corresponding to works 1 or 2 as indicated. The underlying TT scheduler
will make the work start to execute as soon as feasible after the start time of the slot.

The duration of a regular slot must be sufficient, by design, to accommodate the worst-case execution time of
the work it serves. If a work overruns its regular slot then the scheduler will resort to raising a Program Error,
since that would violate the schedulability assumptions of TTS. If, on the contrary, a work completes before
the end of the slot duration, then the rest of the slot remains available for PB tasks. A TT task must always
be ready to use its allocated regular slots in the plan. Failing this, the scheduler will raise Program Error
as well.

• An optional slot is like a regular slot except that it can be omitted, hence the associated work does not
need to be ready when the slot arrives. If the work is ready at the start of the slot, then the optional slot
has the same semantics as a regular slot, including overrun control. But if it is not ready, then this is not

2

considered an error and the slot duration is made available for PB tasks. In Figure 1, slot 8 is an optional
slot for work 3, indicated with parentheses.

Optional slots are useful for tasks that may or may not require to use their allocated slot, such as a commu-
nication task when it has nothing to say; or a sporadic task whose activation event has not occurred.

• A continuation slot is a special kind of regular slot. In Figure 1, slots 0 and 6 are continuation slots. They
are marked with a regular Work Id plus a letter ‘c’, indicating continuation.

What is special about them is that there is no overrun control: if a work does not complete by the end
of a continuation slot, then it it is held now and resumed when its next slots arrives. This hold/resume
mechanism is indeed to be taken very carefully, specially with regard to its interaction with protected actions;
but it is doable under certain restrictions as we will show later.

There may be consecutive continuation slots for a given work. Overrun will only be checked when the plan
reaches a regular slot for this work. We refer to the last, non-continuation slot of a series, as a terminal slot.
In Figure 1, regular slots 4 and 10 are terminal for work 1, given that they are preceded by continuation
slots 0 and 6, respectively.

Continuation slots are useful to split a large time-triggered task into smaller pieces in a way that is essentially
transparent to the task code.

The following two types of slots correspond do not have an associated TT task to execute.

• An empty slot defines an interval during which no TT activity is planned. This is useful for inserting gaps
in the TT plan to make the CPU available to PB tasks. In Figure 1, slots 1, 3, 5, 7 and 9 are empty slots.

• A mode-change slot defines the times in the plan where it is possible to substitute the current plan with
a new one. There is no TT task to execute during a mode change slot. This type of slot allows the designer
to determine the points where the system can admit a mode change. At the start of a mode-change slot, the
TT scheduler will check whether there is a pending mode-change request to process. If there is one, then
the new plan will start executing at the end of the mode-change slot. The change will be immediate if the
mode-change slot duration is defined to be zero. In Figure 1), slot 11 is a mode change slot, indicated with
a curved arrow.

For comparison with the TT plan model we defined in previous papers [9, 8], the model we have just defined
introduces the new types of continuation and optional slots. The former are motivated by feedback received from
participants at the 18th International Real-Time Ada Workshop [6].

Finally, we assume a single processor platform, although the model is applicable to multiprocessor systems
provided that they are fully partitioned, i.e., there is only one plan per processor and tasks statically fixed to
CPUs (no migration).

3 Time-Triggered Task Patterns

There are a number of possible patterns of TT tasks that can be supported by the model sketched in Section 2.
The paper [7] describes eight of them in detail and derives requirements for the TT scheduler to support them.
The following list is a summary of what is proposed there.

Simple TT Task Pattern A simple TT task. There is one regular slot in the plan for each full execution of
this type of work. The pattern implements an infinite loop with a call to the scheduler to wait for the
next regular slot marked with the task’s Work Id (Wait For Activation), and then the sequence of statements
implementing the work actions. At the beginning of the slot, the scheduler releases the task from its call to
Wait For Activation . At the end of the slot, the scheduler checks for overrun.

A simple TT task may have its own local state, since TT tasks are supported by regular Ravenscar tasks. It
can also share data with other simple TT tasks, because it executes in mutual exclusion with other simple
TT tasks (there are no overlapping slots). If the task needs to share data with preemptable PB tasks (or
sliced TT tasks, as we’ll see later), then it needs to do it via protected objects. In such case, the TT task
may experience blocking that must be taken into account when deciding the slot duration.

3

Initial-Final Pattern (I-F) This pattern is for TT tasks that can be subdivided in two parts, both with strict
jitter requirements. It is easily obtained by sequential composition of two simple TT patterns: an infinite
loop split in two parts, first the initial and then the final, both using the same Work Id when calling
Wait For Activation . Note that the slots for the initial and final parts need not have the same duration.
Overrun is checked for both parts.

Initial-Mandatory-Final Patterns (I-M-F and I-{M}-F) This pattern (I-M-F, for short) uses three consec-
utive regular slots to perform a logically related sequence of TT actions. This scheme is typical of embedded
control systems, with initial, mandatory and final parts performing data acquisition, processing and output,
respectively. I-M-F is obtained by concatenation of three simple patterns in the loop body: three calls to
Wait For Activation preceding the statements of the initial, mandatory and final parts. Overrun is checked for
each and every part of the task.

This pattern can be generalised to a form I-{M}-F, where there are one or more slots dedicated to execute
parts of the mandatory section, each part with overrun control. This requires explicit slicing of the mandatory
part in the task’s code.

Sliced TT Task Pattern This pattern allows us to distribute the execution of a long running TT task across
several slots. A sliced TT task uses one or more continuation slots, ending with a regular slot (the ter-
minal slot of the sliced sequence). Slicing occurs transparently, i.e., it does not require explicit calls to
Wait For Activation . If the task has not called Wait For Activation at the end of the slot, then it is held by the TT
scheduler and will be resumed at the start of its next continuation or regular (terminal) slot. The pattern
does not differ apparently from a simple TT task. The difference resides in the type of slots reserved for the
task in the plan.

Holding and resuming are not possible unless the TT scheduler is implemented at the runtime level, with
access to task control blocks and scheduler queues. Hence our proposal to include the TT scheduler at the
Ada library level, as a new package Ada.Dispatching.TTS.

Since a sliced task can be held asynchronously, data sharing with other tasks can only be via protected
objects for a sliced task, at a ceiling priority that effectively disables the scheduler, i.e., at the highest
interrupt priority. Only at this ceiling can it be guaranteed that the sliced task is not held in the middle
of a protected action. As a consequence, it is specially important that protected actions involving a sliced
TT task are as short as possible. If the protected action cannot be so short, then there are still alternatives.
One is to design the plan so that all continuation slots are followed by empty slots of sufficient duration to
absorb the potential blocking time. And if this is not possible, because the data exchange required is too
large, then the application code may resort to using multiple-buffering techniques to reduce the need for
mutual exclusion to the minimum.

A final consideration with sliced TT tasks is that mode change slots should not be inserted in the middle of
sliced sequences, because track of the sequence may be lost when switching from one plan to another.

Initial-Mandatory Sliced-Final Patterns (I-Ms-F and IMs-F) The I-Ms-F pattern is a variant of the I-M-
F pattern where the mandatory part is sliced. The IMs-F pattern (note the missing dash between the ‘I’
and ‘M’ parts) is a slight modification of the former that allows the mandatory part to start executing
immediately after the initial part, without waiting for the next slot in the plan. Both patterns have the
same representation in the plan, taking one regular slot for the initial part (so that it is subject to overrun
control), then several continuation slots for the mandatory part, and one regular slot for the final part.

The IMs-F pattern requires specific support from the TT scheduler. Since IMs-F allows the mandatory sliced
part to start as soon as the initial part is done, during the first regular slot, we are effectively transforming
the semantics of this particular regular slot into that of a continuation slot. The scheduler must therefore be
informed of the termination of the initial part so that, if the initial part is not done by the end of the slot,
then there is an overrun; but if it has completed, then the slicing regime has started and the hold/resume
mechanism has to apply to the already started sliced mandatory part. The procedure to inform the scheduler
of the start of the sliced mandatory part is called Continue Sliced .

TT Patterns with Non-TT Parts The patterns with non-TT parts are possible thanks to the scheduler func-
tionality represented by procedure Leave TT Level. With this function, a TT task running at the TT level

4

informs the scheduler that it wants to continue executing at a priority below the TT level, possibly in com-
petition with other, higher-priority PB tasks. This is useful to execute parts that are not subject to strict
jitter requirements and that may be difficult to integrate in the TT plan.

As an example, consider a control task with jitter-sensitive initial and final parts. An intermediate part tries
to improve a quick control action calculated in the initial part by means of an optimisation algorithm that
takes disparate execution times depending on changing environment conditions. If this middle part had to
be included in the TT plan, then it would require sufficient slots for its worst-case execution. But since we
can execute the optimisation part below the TT level, then we require slots in the plan, hence keeping it
simpler. At the end of the middle part, the task goes back to the TT level via Wait For Activation to execute
the final part with minimal jitter. Schedulability analysis must guarantee that the optimisation phase will
meet the start of the final slot.

The Leave TT Level mechanism requires changing the priority of the TT task at runtime, which, at first
sight, appears to be in contradiction with the Ravenscar model of fixed priorities. However, a Ravenscar
runtime has to actually support a limited form of dynamic priorities, because it is needed to implement
Ceiling Locking. Support to Leave TT Level can be implemented as well in Ravenscar, using this already
available runtime facility. The problem can be seen as if the task had a base priority in the PB level, at
which it runs its PB phase, and an active priority at the TT level when it runs in a TT slot. The mechanism
does not need to change the priority of a task other than the running task, as for Ceiling Locking case. And
the changes between base (PB) and active (TT) priorities occur only as a result of calls to Leave TT Level

and Wait For Activation executed by the same task that is affected by the priority changes, as is the case for
protected actions.

Leave TT Level can also be used to compose other patterns. For example P-F (for Priority-Based and Final), a
periodic PB task with one TT phase, to be executed during a regular slot in the plan. This slot can be used
for mutually exclusive communication or data exchange with other tasks, or for accessing a shared resource
in general, such as in a slot-based communication protocol.

Another case is the P-[F] pattern (a PB part followed by an optional final part), which uses a non-TT part
and an optional slot. This pattern fits a periodic, PB task, that may or may not use a slot at the end of an
iteration. At the TT level, the task requires just one optional slot per iteration. At the PB level, the task
executes as any other periodic or sporadic task. So this is a variant of P-F for tasks that could decide to
skip the TT slot without causing Program Error for that.

4 Design and Implementation Details

This section presents the design of the TT scheduler and some implementation details. The complete imple-
mentation of version 0.1 of the TT scheduler can be found in [10].

As it follows from the model described in Section 2 and from the services required by continuation slots and
non-TT parts as shown in Section 3, the proposed scheduler is provided as a runtime extension in the form of a
new package Ada.Dispatching.TTS, mimicking the position of the EDF package in Ada.Dispatching.

4.1 Scheduler Specification

For reduced memory footprint, we propose the package Ada.Dispatching.TTS to be generic, with one generic pa-
rameter specifying the number of regular Work Ids in the plan. This will allow the implementation to adjust
the number of data structures needed to keep track of all works in the plan to just the number required by the
application.

Listing 1 shows the visible part of the package specification, plus assignment of two deferred constants in the
private part. It gives definitions of types related to Work Ids, TT slots and the type Time Triggered Plan, representing
the plan as an array of slots. An access type allows to efficiently pass a plan as a parameter in procedure calls. The
specification then declares procedures Set Plan, needed to establish a new TT plan or to replace the current plan
(i.e., a mode change at the TT level), and procedures Wait For Activation , Continue Sliced and Leave TT Level, already
mentioned before. In this version, Wait For Activation includes an out parameter to inform the caller about the start
time of the slot, according to the plan. We have used this value to measure the release jitter of TT tasks.

5

Listing 1. Specification of the proposed generic package Ada.Dispatching.TTS

with Ada.Real Time;

generic

Number Of Work IDs : Positive;

package Ada.Dispatching.TTS is

−− Work identifier types
type Any Work Id is new Integer range Integer ’ First .. Number Of Work IDs;
subtype Special Work Id is Any Work Id range Any Work Id’First .. 0;
subtype Regular Work Id is Any Work Id range 1 .. Any Work Id’Last;

−− Special IDs
Empty Slot : constant Special Work Id ;
Mode Change Slot : constant Special Work Id;

−− A time slot in the TT plan
type Time Slot is record

Slot Duration : Ada.Real Time.Time Span;
Work Id : Any Work Id;
Is Continuation : Boolean := False;
Is Optional : Boolean := False;

end record;

−− Types representing/accessing TT plans
type Time Triggered Plan is array (Natural range <>) of Time Slot;
type Time Triggered Plan Access is access all Time Triggered Plan;

−− Set new TT plan to start at the end of the next mode change slot
procedure Set Plan (TTP : Time Triggered Plan Access);

−− TT works use this procedure to wait for their next assigned slot .
−− The When Was Released result informs caller of slot starting time
procedure Wait For Activation (Work Id : Regular Work Id;

When Was Released : out Ada.Real Time.Time);

−− TT works use this procedure to inform that the critical part
−− of the current slot has completed
procedure Continue Sliced ;

−− TT works use this procedure to inform the TT scheduler that
−− there is no more work to do at TT priority level
procedure Leave TT Level (Work Id : Regular Work Id);

private

Empty Slot : constant Special Work Id := 0;
Mode Change Slot : constant Special Work Id := −1;
...

end Ada.Dispatching.TTS;

The time-triggered plan is represented by an array of slot descriptors, each with one field to indicate the slot
duration and another three fields to characterise the slot as follows:

• Work Id - This field contains either a positive value identifying a TT task, or an indication of empty slot or
mode change slot, via the corresponding constants.

• Is Continuation - When this boolean is True, the slot is marked as a continuation slot.

• Is Optional - A boolean that marks the slot as an optional slot.

The slot descriptor contains relevant information for the scheduler. Another important source of information
is the current status of TT tasks. This part is however internal to the scheduler and hence a part of the package
body.

6

4.2 Scheduler body

The scheduler maintains a data structure, the work control block (WCB), that stores the work status to deter-
mine the actions to be taken during a slot switch. The status of a TT work is determined by the following boolean
fields of a WCB record:

• Has Completed - Indicates whether a single-slot work or a sliced work does not require more time at TT level:.
This is set to True when the TT task calls Wait For Activation or Leave TT Level.

• Is Waiting - Indicates whether the work task is waiting for a new slot or not. This flag is set to True when
the work calls Wait For Activation .

• Is Sliced - When this flag is True, it means that this work is currently running sliced, hence it may need
to be held/resumed. This flag is set to True when the work enters a continuation slot or when it invokes
Continue Sliced . It is set to False when the work is at the start of a terminal slot.

Listing 2 shows the complete structure of WCB, and the declaration of an array of the required size, depend-
ing on the value given to Number Of Work IDs in the instantiation of Ada.Dispatching.TTS. The other fields in the
Work Control Block record are Release Point, the suspension object where the work waits for its next activation;
Work Thread Id, a low level identifier of the runtime-level thread behind the task supporting the work; and Last Release,
the time of the last release of the work, the out parameter of Wait For Activation for jitter instrumentation.

Listing 2. First part of the body for package Ada.Dispatching.TTS, including the declaration of the Work
Control Block structure

with Ada.Synchronous Task Control; use Ada.Synchronous Task Control;
with Ada.Real Time; use Ada.Real Time;
with System.BB.Threads.Queues;
−− Other context clauses omitted ...

package body Ada.Dispatching.TTS is
use System.BB.Threads;

−− Run time TT work info
type Work Control Block is record

Release Point : Suspension Object;
Has Completed : Boolean := True;
Is Waiting : Boolean := False ;
Is Sliced : Boolean := False ;
Work Thread Id : Thread Id := Null Thread Id ;
Last Release : Time := Time Last;

end record;

−− Array of Work Control Blocks
WCB : array (Regular Work Id) of Work Control Block;
...

The TT scheduler is the handler of a recurrent timing event set to trigger at the start of each slot in the plan.
Hence it executes at the highest interrupt priority (ARM D.15 12/2 [3]). The protected object containing the
handler for this timing event, protects scheduler’s internal variables such as accesses to the current and the next
plan, current and next slot indexes for traversing the plan, and the start time of the next slot.

Based on the slot information and WCB, the scheduler decides the actions to take during a slot switch, i.e.,
the time when a slot starts and the previous slot finishes. Table 1 describes some of these actions. The top part
of Table 1 lists two cases of actions to take at the end of a regular or continuation slot. These actions can be
Hold task, to hold the running TT task when it exhausts a regular slot and must continue sliced in future slots;
and raise Program Error when overrun is detected, i.e., the task has not completed and it is not running sliced.
To support Hold, our implementation uses runtime operations (available from System.BB.Threads and its child unit

7

Queues to suspend the low-level thread behind the TT task and extract it from the ready queue. This is why a
sliced part can only use protected objects with priority ceiling at the highest interrupt priority, as mentioned in
Section 3 with regard to the Sliced TT Pattern, because Hold should not happen while the TT task is executing
a protected action.

The bottom part of Table 1 lists scheduler actions related to the immediately starting slot. The actions that
are common to most cases in this table (denoted CA) are to mark the work as sliced when it enters a continuation
slot (the WCB inherits this slot property), and to set the timing event handler to the end of this starting slot, at
the Next Slot Release time. Transferring the Is Continuation property of the slot to the Is Sliced attribute of the work
effectively propagates the sliced condition of the TT task until the terminal slot, for which Is Continuation is False.

Work status Actions at
END of slotHas Completed Is Sliced

False True Hold task

False False Raise Program Error

Work status Next Slot Actions at START
of a REGULAR slotHas Completed Is Sliced Is Waiting Is Optional

True True Common Actions (CA)*

True False True Release Task + CA*

True False False True CA*

True False False False Raise Program Error

False True Resume Task + CA*

*Common Actions ≡ Work. Is Sliced := Slot . Is Continuation ; Set Handler(Next Slot Release , Handler)

Table 1. Some actions taken by the scheduler at a slot switch. Actions with regard to the exhausted
slot (Actions at END of slot) are shown in the top part, Actions related to the immediately starting slot
(Actions at START of a REGULAR slot) are listed at the bottom part. The actions to take depend on
work status (in the WCB) and the type of slot.

The scheduler must also perform some actions upon calls to its public services, Wait For Activation , Continue Sliced

and Leave TT Level. These may affect the work status and the priority of the underlying threads of caller TT tasks.
It is the task itself who changes its own work status and priority, if needed, while running a scheduler protected
operation. Table 2 summarises these update operations. For example, when a TT task invokes Leave TT Level, its
work status is marked as completed and its priority demoted to the task’s base priority – so the base priority of
the task implementing the TT pattern must be determined according to the required priority level when it runs in
the PB level.

Invoked procedure
Changes to work status

Task prio set to
Has Completed Is Sliced Is Waiting

Wait For Activation True True Priority’Last

Continue Sliced True

Leave TT Level True Task’Base Priority

Table 2. How and when the work status and TT task priority are modified by the scheduler.

To end this description, Table 3 shows the actions taken by the scheduler at the start of special slots (empty
and mode change slots). When te slot is an empty slot, the scheduler just reprograms itself to take action at the

8

end of the slot. In case of a mode change slot, if there is a new plan pending to switch to, due to a previous call
to Set Plan, then the mode change is enforced, that is, the current plan is changed with the next and indexes in the
new plan are reset to start it from the beginning. This is achieved by a call to the scheduler’s internal protected
subprogram Change Plan. If there is no new plan set, then the mode change is treated as an empty slot.

Next Slot ∃ Next Plan
Actions at START
of a SPECIAL slotType

Empty Set Handler(Next Slot Release , Handler)

Mode Change False Set Handler(Next Slot Release , Handler)

Mode Change True Change Plan (Next Slot Release)

Table 3. Some actions to be taken by the scheduler at the start of special slots.

5 Conclusions

This paper has presented the results of transforming a full-Ada architecture for combined TT-PB scheduling [9, 8]
to make it Ravenscar-compatible. Our aim was to bring this scheduling strategy closer to a more appropriate pro-
gramming model for High-Integrity and Embedded systems. Compared to our previous full-Ada implementation,
this Ravenscar implementation does not support patterns that imply cancellation of TT works. This pattern
was supported in the full-Ada version using asynchronous transfer of control in the TT patterns, something that
can not be ported to Ravenscar. But the Ravenscar-compliant model we have proposed here supports the rest
of patterns we had previously proposed and the new continuation slots (via hold/resume) and non-TT slots (via
priority demotion), thus improving expressiveness and making room for more patterns. We have also introduced
the concept of optional slot, whereby no-show situations, where a TT task decides not to use a slot in the plan,
are now tolerable.

In addition, we have made Ada.Dispatching.TTS a generic package, where the number of regular work identifiers is
a generic parameter. This allows us to keep the size of data structures to the minimum necessary for the number of
TT tasks to be scheduled. The experimental results are encouraging, even better than those obtained in full-Ada
with a much faster processor. No doubt, the simplicity of the Ravenscar runtime has to do with these results.
Besides, Jitter is very predictable in the STMF32F4 Discovery board where we have tested our implementation,
which enables optimisations that keep release jitter for TT tasks in the order of a few microseconds [7].

References

[1] M. Aldea and M. González-Harbour. MaRTE OS: An Ada Kernel for Real-Time Embedded Applications.
Reliable Software Technologies - Ada Europe 2001, Lecture Notes in Computer Science, 2043:305–316, 2001.

[2] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar Profile in high-integrity
systems. Technical Report YCS-2017-348, University of York, June 2017.

[3] ISO/IEC-JTC1-SC22-WG9. Ada Reference Manual ISO/IEC 8652:2012(E). URL:
http://www.ada-europe.org/manuals/LRM-2012.pdf, 2012.

[4] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation (Netherlands), 2(4):237–250, 1982.

[5] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, 20(1):46–61, 1973.

[6] J. Real and P. Rogers. Session Summary: Experience. Ada Letters, 36(1):101–102, June 2016.
[7] J. Real, S. Sáez, and A. Crespo. Combined Scheduling of Time-Triggered and Priority-Based Task Sets in

Ravenscar. Submitted for publication - International Conference on Reliable Software Technologies - Ada-
Europe 2018.

[8] J. Real, S. Sáez, and A. Crespo. Combined Scheduling of Time-Triggeed Plans and Priority Scheduled Task
Sets. Ada Letters, 36(1):68–76, June 2016.

9

[9] J. Real, S. Sáez, and A. Crespo. Combining Time-Triggered Plans with Priority Scheduled Task Sets. In
M. Bertogna and L. M. Pinho, editors, Reliable Software Technologies – Ada-Europe 2016, volume 9695 of
Lecture Notes in Computer Science. Springer, June 2016.

[10] S. Sáez and J. Real. TTS Ravenscar runtime. https://doi.org/10.5281/zenodo.1168723, February 2018.

10

