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Estimating the Laplacian matrix of Gaussian mixtures for signal processing 

on graphs 

1. Introduction1 

1.1 Background 

Signal processing on graphs [1]-[3] is an emerging technique which combines concepts emanating from 

two largely consolidated areas: discrete signal processing and graph theory. From the perspective of 

discrete signal processing it leads to a more general definition of a discrete signal by assigning every 

sample value to the vertex of a graph. Conventional signals will simply be particular cases where sample 

values are assigned to a uniform (time or space) grid. From the graph theory perspective, new graph 

transformations can be defined that extend classical discrete signal processing concepts like filtering, 

prediction and spectral analysis [3]. 

Let us represent a graph in the form  , ,G V E W , where V  is a set of  N vertices or nodes, E is the set of 

edges connecting the  nodes and W is the so called adjacency matrix. The generic element nmw is the 

weight (assumed real and nonnegative) corresponding to the edge connecting node m to node n. A 

weight equal to zero means that there is no connection from node m to node n. We will consider 

undirected graphs, so nm mnw w . Clearly, the graph is characterized by the adjacency matrix although 

the Laplacian matrix is preferred [4], defined as L = D - W , where D  is a diagonal matrix having the 

generic element
1

N

nn nm

m

d w


 . Preference about L  is justified by its attractive spectral properties [5]. 

Therefore, a key aspect in signal processing on graphs is a proper computation of the Laplacian matrix. 

In specific contexts, it is possible to establish the weights by considering natural relationships between 

nodes, e.g., spatial proximity, but in a general statistical framework, it is most convenient to devise 

methods for estimating the Laplacian matrix from training data sets. Thus recent work in signal 

processing on graphs [6]-[9] has been driven to estimate the so called precision matrix and to use it as 

the graph Laplacian matrix. These works are related to statistical techniques for the general estimation 

of covariance or precision matrices [10]-[15].  The rationale under this idea is that the off-diagonal 

elements of the precision matrix (properly normalized) coincide with the partial correlations between 

every two elements of the random observation vector  1...
T

Nx xx . The partial correlation between two 

random variables nx  and mx n m  is defined as the correlation between the residuals obtained by 

subtracting from nx  and mx their linear least mean square error (LLMSE) estimates obtained from  the 

                                                           
1 Throughout the paper we will use the following notation: Matrix M; vector v; scalar s; probability density 

function  p  ; probability mass P ; expectation  E  ; any other function   f  or  F  ; k-th element of vector 

v(k); ij element of matrix ijm ; k-th column of matrix mk; matrix determinant M . 
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rest of variables. Thus, the partial correlation is a measure of the actual degree of linear linking between 

nodes n and m, not affected by the presence of the rest of variables. However, the linear estimator which 

is implicit in the definition of the partial correlation, is optimum if the underlying multivariate 

probability density function (pdf)  p x is Gaussian. But, if this is not a reasonable assumption, the 

influence of the rest of variables in nx  and mx is not totally removed and the partial correlation does not 

properly capture the actual dependence between node n and node m. Up to our knowledge, there is a 

lack of works dealing with the non-Gaussian case in the context of the Laplacian matrix estimation. So 

this will be the main focus of this contribution. 

1.2 Statement of the problem 

In this paper, we propose a more general definition of the partial correlation to account for the non-

Gaussian case. We propose to replace the LLMSE of nx  and mx by their respective conditional means   

 n nmE x x  and  m nmE x x , i.e., their respective (non-linear) LMSE estimates. As these later depend 

on the specific  p x  , we will consider a general non-Gaussian model for  p x which can fit to a variety 

of scenarios: a multivariate Gaussian mixture model (GMM) 

 
 

   11

2

1

1

2

T
k k k

K

k N
k

k

p P e


 






x b C x b

x

C
                 .              (1) 

Where 
kP , 

kC and 
kb are, respectively, the a priori probability, the covariance matrix and the mean 

value of the k-th  Gaussian mixture component. GMM is the most usual non-Gaussian parametric model 

due to its good balance between versatility and simplicity. It has been considered in a myriad of 

statistical and signal processing scenarios (see for example [16]-[23], to mention a few of some recent 

applications). Our focus will be on showing that better Laplacian matrix estimates can be obtained by 

assuming a more sophisticated model (GMM) than the multivariate Gaussian model which is implicit 

in the use of any estimated precision matrix. 

In the next section we formally define a generalized partial correlation coefficient and compare it with 

other related definitions in the statistical literature. Then in section 3 the generalized partial correlation 

coefficient is computed assuming a GMM for  p x . Firstly, the general method is considered, then an 

approximate method is proposed to alleviate the computational burden. Finally, in section 4 we include 

some experiments with simulated and real data to show that the new proposed methods may capture the 

actual partial correlation coefficients, i.e., may estimate the Laplacian matrix, in a better way than the 

usual methods based on the precision matrix. 
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2. Generalized partial correlation coefficient GPCC 

Let us define 
nmx as the vector obtained from vector x  after dropping the elements nx  and mx , 

 n nmL x x and  m nmL x x  the corresponding LLMSE estimates,  n n n nmr x L x   x  and 

 m m m nmr x L x   x  the corresponding residuals. The partial correlation coefficient (PCC) is given by 

                   
     

     
2 2

n n m m

nm

n n m m

E r E r r E r

E r E r E r E r


   


    
      

                                     .      (2) 

One interesting property of 
nm is that it can be estimated without explicitly computing the residuals. 

This is because it can be calculated from the inverse of the covariance matrix, the so called precision 

matrix, namely 

         nm
nm

nn mm

q

q q
                                        ,                        (3) 

where 
nmq is the nm element of matrix Q , being      1 T

E E E     
 

Q C x x x x . We propose a 

generalized partial correlation by substituting in (2) the linear residuals by the residuals obtained after 

subtracting from nx  and mx their respective conditional means    n nmE x x  and  m nmE x x , i.e., their 

respective (non-linear) LMSE estimates.  Let us call  G

n n n nmr x E x   x and  G

m m m nmr x E x   x

the generalized residuals, then the generalized partial correlation (GPCC) coefficient is defined as 

   

       
2 2 2 2

G G G G G G
n n m m n mG

nm
G GG G G G

n mn n m m

E r E r r E r E r r

E r E rE r E r E r E r


              

                            

               ,          (4) 

where we have taken into account that the conditional mean is an unbiased estimator, so 

0G G

n mE r E r        . GPCC so defined is related to other concepts already proposed to measure 

nonlinear dependences between two random variables. One is a local dependence function  ,n mH x x  

[24], which measures the dependence between two random variables conditioned to some (local) values 

of both. In the context of a random signal on graph, this may inspire a function  nm nmH x to measure 

the dependence between 
nx and 

mx at the local points 
nmx  in the form 

 
     

     
2 2

n n nm m m nm

nm nm

n n nm m m nm

E x E x x E x
H

E x E x E x E x

 



 

   
    
   

x x
x

x x

               ,          (5) 

where the expectations are computed with respect to the joint pdf  ,n mp x x so that it could be obtained 

the local measure  nm nmH x .  Another related concept is conditional correlation [25],  
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 
     

     
2 2

n n nm nm m m nm nm

nm nm

n n nm nm m m nm nm

E x E x x E x

E x E x E x E x


   



   

   
    
   

x x x x
x

x x x x

        .           (6) 

The difference with (5) is that the expectations are computed with respect to the conditional joint pdf 

 ,n m nmp x x x instead of  ,n mp x x . However we are interested in a unique number to assign to every 

edge of the graph. So, some integration of  nm nmH x or  nm nm x with respect to 
nmx  would be 

necessary. This is implicitly done in G

nm , because the expectations in (4) are defined with respect to all 

the involved random variables, i.e., with respect to    , ,n m nmp x x p x x . 

 

3. Computing the GPCC of a Gaussian Mixture Model 

In the Appendix A, we derive the conditional mean  n nmE x x  required to calculate the generalized 

residuals G

nr . From (A11), we can express the generalized residual in the form  

  ˆ
nm

G T

n n n nm n nm nr x E x x
    x p x ,                                            (7) 

where    1 ...
TT

nm nm nmP P K     p x x and the k-th element of  vector ˆ
nmn

x is given by 

   1ˆ 1...
nm nm nm nm

T

n kn k nm k knk b k K
   



   x c C x b  . Let us define the vector ˆ
nm nmn n n 
 e x x whose 

elements are the individual residuals corresponding to every component of the GMM (we have defined

 ...
T

n n n nx x x  x 1 ). We can write: 

 
nm nm

G T T

n n nm n n nm nr x
     p x e p e      ,                                       (8) 

because  
1

K
T

nm n n nm n

k

x k x 



 p x p . Now let us compute the correlation corresponding to the 

generalized residuals 

  
nm nm nm nm

G G T T T T

n m nm n nm m nm n m nmE r r E E
      

          
p e p e p e e p   .                         (9)     

Then we can express 

   
2 2

nm nm

nm nm nm nm

T TG G

nm n m nmn mG

nm
T T T TG G

nm n n nm nm m m nmn m

EE r r

E EE r E r

  

   

 

   

      
       

         

p e e p

p e e p p e e p

        .      (10) 

Notice that nmp can be calculated from 
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   
 

 

 

 
1

nm k nm k

nm nm K

nm
nm k

k

p k P p k P
k P k

p
P k P

 

 






  



x x
p x

x
x

         ,                (11) 

where  nmp kx can be obtained from equation (A7) . So the statistics in (10) are functions of 

, ,n m nmx x x  and the GMM parameters, then we could make sample means or numerical integration to 

get estimates of the expectations required to estimate the GPCCs.  However the computational burden 

will be much higher than the one required to estimate the PCCs from estimates of the precision matrix. 

We propose in the following a practical solution after considering a simplifying assumption. 

We can express from (9) 

          
1 ' 1

' '
nm nm nm nm

K K
G G T T

n m nm n nm m nm nm n m

k k

E r r E E P k P k k k
      

 

            
p e p e x x e e    .     (12) 

Notice that     , 'nm nmP k P k x x  are functions of just nmx  and that    , '
nm nmn mk k

 
e e  are prediction 

errors corresponding to linear predictions from the predicting variables nmx .  Hence 

   , 'nm nmP k P k x x are uncorrelated with    , '
nm nmn mk k

 
e e  and we can write: 

       
1 ' 1

' '
nm nm

K K
G G

n m nm nm n m

k k

E r r E P k P k E k k
  

 

          x x e e               .         (13) 

But 

      

   
 

 

 

 

 

 

 

 
 

   

 

'

'

'

'
'

'

'

nm k nm k

nm nm

nm nm

nm k nm k

nm nm

nm nm

nm nm

k k nm

nm

p k P p k P
E P k P k E

p p

p k P p k P
p d

p p

p k p k
P P d

p

 

 

 



 

 

 



 





 
     

  









x x
x x

x x

x x
x x

x x

x x
x

x

          .               (14) 

The integral in (14) can be simplified if we assume that the GMM components are “well separated” so 

that    ' 0 ´nm nmp k p k k k  x x . This is the most interesting case from the perspective of 

improving the performance of the PCC as a measure of the pairwise connectivity, as  the more separated 

the components are, the more we are away from Gaussianity. Separation could be defined in different 

ways, using a variety of distance measures between two normal pdfs (see for example [26] and 

references there in). However, in our context, “well separation” means that    ' 0nm nmp k p k x x for 

all nmx and ´k k , thus in the Appendix B we propose a practical procedure for measuring mixture 

component separation in terms of the GMM parameters by defining an “ad hoc” index of separation 

0 1sI  where 1 means perfect separation .  On the other hand, for 'k k , the “well separation” 

assumption leads to
   

 

   

 
1nm nm nm nm

nm nm

nm k nm k

p k p k p k p k
d d

p P p k P

 

   

 

  

 
x x x x

x x
x x

, so we can 

approximate  
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     
'

'
0 '

k

nm nm

P k k
E P k P k

k k
 


    

x x           .                   (15) 

Then considering (15) in (13)  

                   
1

nm nm

K
G G G G

n m k n m n m

k

E r r P E k k E r r
 



         e e                ,              (16) 

which means that the total residual correlation is approximated by the weighted sum of the individual 

residual correlation due to every GMM component, neglecting the cross-terms between different 

components.   Let us now compute    
nm nmn mE k k

 

 
 e e , notice that these residuals correspond to the 

assumption that the k-th component of the GMM is in force, hence 

         

         

ˆ ˆ

ˆ ˆ ˆ ˆ,

nm nm nm nm

nm nm nm nm

n m n n m m

k n m m n n m

E k k E x k x k

R n m E x k E x k E k k

   

   

         

             

e e x x

x x x x
   .       (17) 

Where    , ,k k kn kmR n m C n m b b   are the elements of the correlation matrix T

k k k k R C b b

corresponding to the component k of the GMM. 

But 

    

 

 

1

1 1

1

ˆ

ˆ

nm nm nm nm

nm nm nm nm nm nm nm

nm nm nm nm

T

n m n km k nm k km

T T

km k kn k kn kn km km k kn kn km

T

m n kn k km km kn

E x k E x b

b b b b b

E x k b b

   

      

   





 



         

    

    

x c C x b

c C r b c C c

x c C c

      ,           (18)  

where vector 
nmkn

r is formed by the elements of the n-th column of the matrix kR  dropping rows n and 

m. And 

         

   

     

1 1

1 1

1 1

ˆ ˆ
nm nm nm nm nm nm nm nm

nm nm nm nm nm nm

nm nm nm nm nm nm

T T

n m kn k nm k kn km k nm k km

T
T

kn k nm k nm k k km

T T

kn k nm k km km k nm k kn kn

E k k E b b

E

E b E b b

       

     

     

 

 

 

 

 

 

           

   
  

    

x x c C x b c C x b

c C x b x b C c

c C x b c C x b

1

nm nm nm

km

T

kn k km kn km

b

b b
  





 c C c

      .    (19) 

So finally  

     

 

1 1

1 1

,

,

nm nm nm nm nm nm nm nm

nm nm nm nm nm nm

T T

n m k kn km km k kn kn km kn k km km kn

T T

kn k km kn km k kn k km

E k k C n m b b b b b b

b b C n m

       

     

 

 

        

   

e e c C c c C c

c C c c C c
.          (20) 

In conclusion, given the GMM parameters, we can compute G G

n mE r r    from equations (16)-(20). Then 

an approximate GPCC (aGPCC) is defined as 
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   

  

     

1

1

2 2
1 1

1 1

,

, ,

nm nm nm

nm nm nm nm nm nm

K
T

G G k k kn k km
n maG k

nm
K K

G G T T
n m k k kn k kn k k km k km

k k

P C n m
E r r

E r E r P C n n P C m m


  

     





 

 


   

   
       



 

c C c

c C c c C c

    . (21) 

    

Figure 1 shows the Directed Acyclic Graph (DAG) of the Bayesian Network (BN) corresponding to a 

GMM. These kind of diagrams help to understand the role and dependences of the different variables 

and parameters, and to define learning algorithms (see for example [27]). Thus, in figure 1a we represent 

the compact model which factorizes the jointed pdf of the observed (x) and the latent (k) variables, as 

the product of the prior by the conditional pdf of the observed variables    , kp k p k Px x . Also in 

figure 1a (rectangular boxes), we include the parameters which are to be estimated for a complete 

characterization of the BN. In figure 1b we have split the compact graph to make explicit the 

dependences involved in the computations of the partial correlations. Then variables ,n mx x are separated 

so that the jointed pdf is now factorized in the form      1 2, , ,nm nm kp k p x x k p k P x x x . The 

parameters indicated in the rectangular boxes of figure 1b are obtained from the ones of figure 1a. 

Moreover, we have included at the bottom of figure 1, the values of the DAG respectively involved in 

the calculation of GPCC and aGPCC. 

With the aim of facilitating the understanding and the implementation, we include in the following a 

pseudocode description of the algorithms to estimate the GPCCs and aGPCCs. It can be appreciated the 

great simplification of aGPCC estimation, as no sample estimates are required (the loop l=1…L is not 

necessary). 

 
      

Algorithm 1: Computation of the GPCC 

 

1: Input: Training set 
   1...
l

l Lx  

2: Estimate GMM parameters , 1...k k kP k Kb C  

from the training set (EM algorithm) 

3: for n= 1 ... N -1  

4: for m = n+1 ... N  

5: for l=1…L     

6: Compute 
       1 ...

T
T

l nm l nm l nm
P P K

  
 
 

p x x , 

eq. (11) and (A7) 

7: Compute
 

ˆ
nml n

x  and 
 

ˆ
nml m

x , eq. (A11) 

8: Compute 
 
G

l n
r  and 

 
G

l m
r  , eq. (7) 

9: end for 

10: Estimate 
G

nm  (sample estimates in eq. (10)) 

11: Compute G G

mn nm   

11: end for 

12: end for 

13: Output:  1... 1...G

nm n N m M    

Algorithm 2: Computation of the aGPCC 

 

1: Input: Training set 
   1...
l

l Lx  

2: Estimate GMM parameters , 1...k k kP k Kb C  

from the training set (EM algorithm) 

3: for n= 1 ... N -1  

4: for m = n+1 ... N  

5: Estimate 
G

nm , eq. (21) 

6: Compute G G

mn nm   

7: end for 

8: end for 

9: Output:  1... 1...G

nm n N m M    
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Finally, table I indicates the computational complexity of the different methods in terms of the 

observation dimension N, the number of Gaussian components K and the size L of the training set. Only 

higher-order terms have been retained, which essentially relates to the computation of the required 

inverses. Thus PCC is  3O N because we must compute the inverse of the covariance matrix. However, 

aGPCC is  5O N  as the computations must be done for every pair nm. For a given N, the computational 

complexity of aGPCC depends linearly on K, as the computations must be done for every GMM 

component, while L has no influence. Finally GPCC is  5O N  as the computations are also required for 

for every pair nm. For a given N, the computational complexity of aGPCC depends linearly on K, but 

also on L, as the computations must be done for every member of the training set. This dependence on 

L is the main responsible of the increased computational complexity of GPCC with respect to aGPCC. 

 

4. Experiments 

4.1 Simulations 

Let us consider that  p x  is a mixture of two Gaussian components having identical covariance matrices 

and priors, but opposite constant mean values, i.e., 

 
 

       1 11 1

2 2
1

0.5

2

T T
b b b b

N
ep e



         
 






x C x x C 1x1 1 1

C

x           ,             (22) 

where  1...1
T

1 . First we have computed the Laplacian matrix in the form   

1

N
G G

nm nm nn nm

m

w d 


 L = D - W                     ,                (23) 

where G

nm has been calculated from (10) considering the true values of the parameters of the two-

component GMM . The expectations in (10) were calculated by using numerical integration.  Then, the 

obtained matrix is considered as the true Laplacian. In figure 2 and figure 3, we show the normalized 

error (defined as the quotient of the Frobenious norm of the difference between the true and the estimated 

Laplacian matrices, divided by the Frobenious norm of the true Laplacian) corresponding to respectively 

replacing in (23) the true G

nm   by ˆ
nm (PCC, eq.(3) with sample estimates of the precision matrix), ˆ aG

nm

(aGPCC, eq. (21), with EM estimates of the GMM parameters) and ˆ G

nm (GPCC, eq. (10) with EM 

estimates of the GMM parameters and sample estimates of  the expectations).  Then, in figure 2 we show 

the normalized estimation error for varying separation (b in (22) ) of the two GMM components. The 

observation dimension was 20N  , the training size 5000, and the covariance in (22) 

   , 1 , 0.5C n n C n m n m   . We see that for 0b   all the methods give similar error, actually this 

corresponds to the Gaussian case. When b increases GPCC is the best in approximating the true 
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Laplacian. Moreover, as expected, for small b, PCC yields less error than aGPCC, but after 1,5b  , 

aGPCC outperforms PCC and almost equates GPCC for 2b   . This is because of the “well separation” 

assumption considered in the derivation of aGPCC. In figure 3, we show the variation of the estimation 

error with increasing size of the training set. The GMM component separation was 5b  , the observation 

size and the covariance matrices were the same than before. We can see that GPCC yields always the 

best approximation to the true Laplacian, and that for a training size greater than 1600, aGPPC 

outperforms PCC while being reasonably close to GPCC. A general conclusion of both figures is that 

as PCC departs from the GPCC performance, then aGPCC better approximates GPCC. Hence, to some 

extent both methods may be considered a complementary pair of methods for efficient estimation of the 

partial correlation. Figure 4 shows the normalized error for an increasing number K of GMM 

components (from 2 to 10). The training size was 5000 in all cases; that is why the error increases with 

the number of parameters to be estimated. As in the previous experiments 20N   and 

   , 1 , 0.5k kC n n C n m n m   for all k. The mean value vectors corresponding to the GMM 

components were uniformly selected between  1 5 1K  b 1  and  5 1K K b 1  so that separation 

between the components is always a multiple of 5. We observe again the improved performance of 

aGPCC with respect to PCC for every value of k. Finally, figure 5 shows the computational time required 

by the different methods to estimate the Laplacian matrix for varying dimension N of the observation 

vector, 2 GMM components, b=5, training set size L=1000 and the covariance matrices were the same 

than before. This illustrates the dramatical reduction (some 3 orders of magnitude) of aGPCC respect to 

GPCC. On the other hand aGPCC is some 2 orders of magnitude above PCC, but this is not so relevant, 

as the required computational time is reasonably small: 0.04 seconds for N=4 to 5  seconds for N=50. 

 

4.2 A real data experiment 

We have applied the different methods for estimating the Laplacian matrix to a real data experiment. 

The framework is that of monitoring the sleep of a patient having some possible disorders like apnea or 

epilepsy [28]. These disorders are characterized by the regular appearance of an abnormal sleep stage, 

usually termed as “arousal”. The patient is monitored by 19 channels of EEG recordings.  Every signal 

channel is segmented in intervals of 1-3 seconds and a given feature is computed from every interval 

and averaged in epochs of 25 seconds. Associated to every epoch, we form an observation vector x with 

the feature extracted from all the channels (the same for all of them), thus 19N  . A total of 1000 epochs 

were considered, so this is the size of the training set.  

Broadly, the feature vectors so obtained correspond to two different classes: normal sleep or abnormal 

sleep. Hence, in a first approximation, the overall feature pdf may be considered as a two-component 

GMM, whose parameters can be estimated using the EM algorithm. Results are shown in table II for 6 

different patients having different levels of disorders. We have separately considered two different 

features. The first one is “amplitude” which correspond to the maximum amplitude in the corresponding 
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interval, the second one is the “alfa-slow-index” (ASI) which is the ratio of power in the alpha band 

(8.0–11 Hz) to the combined power in the delta (0.5–3.5 Hz) and theta (3.5–8.0 Hz) bands. For every 

patient and every feature we have computed the normalized error (as previously defined) of the 

Laplacian matrix estimates of aGPCC and PCC with respect to the estimates obtained with GPCC. 

Notice, that the Laplacian matrix is actually a measure of connectivity between the features associated 

to every channel so, improving its estimation can be relevant in the area of brain connectivity analysis 

and classification [29]. We have also computed the index of separation sI  as defined in Appendix B. 

We can see in table II that aGPCC method is always better than PCC when using the amplitude feature. 

In that case 1sI  , so the “well separation” assumption holds. However, sI  decreases when using the 

ASI feature, this produces that in most patients PCC is better than aGPCC for the estimation of the 

Laplacian matrix. 

 

5. Conclusions 

We have proposed new methods for estimating the Laplacian matrix of undirected graphs. By assuming 

that the underlying pdf is a mixture of Gaussians, the new methods capture the connectivity of the graph 

more completely than the precision matrix. The normalized elements of this matrix are the PCC, a 

measure of conditional pairwise linear dependence. We propose to compute the GPCC, thus capturing 

the conditional non-linear dependences implicit in any non-Gaussian model. The GPCC can be 

estimated from estimates of the GMM parameters and sample estimates or numerical integration. To 

overcome the computational burden of this later, we have also proposed aGPCC which is an approximate 

solution under the assumption of well separated components of the GMM. 

As the multivariate GMM is able to reasonably fit any non-Gaussian multivariate pdf, the proposed 

methods may have general applicability in any signal processing on graph problem where a Laplacian 

matrix is to be learned from training signals.  

Future research may be devised by considering more sophisticated non-Gaussian models, as those ones 

based on mixtures of independent component analyzers [30], [31]. Another issue of interest is the 

extension of the proposed methods to the complex case. The complex GMM has been considered 

elsewhere (see for example [22], [23] and references there in). However, while defining a complex 

GPCC is straightforward, the definition of a complex Laplacian is not so obvious. Depending on it, the 

well-known properties of a real Laplacian matrix (e.g., semidefinite positive, minimum eigenvalue equal 

to zero, …) could be preserved or not. Moreover, the meaning of the imaginary part (or the phase) of 

the complex weight assigned to an edge in the signal graph requires some interpretation. 
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Appendix A: Derivation of the conditional mean  

We start by  

   
 

 
1

n nm n n nm n n m n

nm

E x x p x dx x p dx
p

  



  x x x
x

           .              (A1) 

Where 
mx is the vector formed by all the elements of x except 

mx and  mp x is the corresponding 

marginal.  This later can be calculated by integrating  p x  in (1) over mx , that is 

   
 

   11

2

1 2

1

N

k

T
k k k

m m

K

m m k m
x x

k

ep p dx P dx








 

  
x b C x b

C

x x
               .    (A2) 

But any marginal of a multivariate Gaussian is also multivariate Gaussian. The marginal mean vector is 

obtained by dropping the m-th element from the mean vector 
kb . Similarly, the marginal covariance 

matrix is obtained from kC  by dropping the m-th row and the m-th column. Let us respectively call 
mk

b

and
mk 

C to the marginal mean and covariance. Then we can write: 

 
 

   

1

11

2

1 2

1

N

k

T

m k k m km m m

m

K

m k

k

ep P





   



 








x b C x b

C

x     .                   (A3) 

And substituting in (7) 

 
   

   

1

1

1

1

2

2

1 1

N

k

T

m k k m km m m

m

K

n nm k n n

knm

eE x P x dx
p 




   



  





  
x b C x b

C

x
x

 . (A4)          

Now, let us define the multivariate Gaussian pdf  

   
 

   

1

11

2

2

1
,

N

k

T

m k k m km m m

m

k m k n nm ep p x





   













 
x b C x b

C

x x    .    (A5) 

In (10) we have to compute 

     ,
n n

n k n nm n k nm n k n nm n
x x

x p x dx p x p x dx   x x x          ,      (A6) 

but 

 
 

   

2

11

2

2

1

N

k

T

nm k k nm knm nm nm

nm

k nm ep





   





  


x b C x b

C

x
     .               (A7) 
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Where 
nmk

b is obtained from 
kb by dropping the n-th and m-th elements, and

nmk 
C is obtained by 

removing the n-th and m-th rows and columns from 
kC . 

The last integral in (12) coincides with the conditional mean of 
nx with respect to 

nmx  assuming the 

multivariate Gaussian model (11), i.e., assuming that x has been generated by the k-th mixture 

component. Therefore, this conditional mean is the LLMSE estimate of 
nx from 

nmx , which can be 

obtained by the Wiener-Hopf equations 

   1

nm nm nm
n

T

n k n nm n kn k nm k kn
x

x p x dx b
  



    x c C x b               ,                  (A8) 

where vector 
nmkn

c is formed by the elements of the n-th column of matrix 
kC , dropping rows n and m, 

and 
knb is the n-th element of vector kb . So we have 

 
 

   1

1

1
nm nm nm

K
T

n nm k k nm kn k nm k kn

knm

E x P p b
p   



  



    
 x x c C x b

x
.    (A9) 

But, actually, we may express    k nm nmp p k x x as a class conditional pdf, then 

       k k nm k nm nm nmP p P p k P k p      x x x x                   .             (A10) 

Hence, finally 

     1

1
nm nm nm

K
T

n nm nm kn k nm k kn

k

E x P k b
  



  



   
 x x c C x b            .         (A11) 

Therefore notice that the (nonlinear) conditional mean is a weighted sum of K components. The k-th 

component is the LLMSE estimate of 
nx from 

nmx  assuming that the k-th mixture element is in force. 

So, the corresponding weight is the probability of the k-th mixture element to be in force, conditioned 

to the observation 
nmx . This weighting makes the conditional mean a nonlinear function of 

nmx . 

 

Appendix B: A measure of separation between the GMM components 

To simplify the procedure we consider that “well separation” between  p kx  and  'p kx implies “well 

separation” between  nmp kx  and  'nmp kx  for any nm. Then, let us define the function

     , , ' ' 'f k k p k p k k k x x x . In our context, “well separation” means that  max , , 'f k k x  for 

some small number  . Let define maxx  as the value which maximizes  , , 'f k kx  for a given pair , 'k k , 

i.e., 
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        

        

max

1 1

' ' '

max , , ' max ln , , ' max ln ln '

.max
T T

k k k k k k

f k k f k k p k p k

      

    



x x x

x

x x x x x

x b C x b x b C x b
            (B1) 

Deriving this last expression with respect to x and equating to zero we obtain  

       
1

1 1 1 1 1 1

' ' max ' ' '2 2 .0k k k k k k k k k k


           C x b C x b x C C C b C b                 (B2) 

Then 

 

         

max

1 1

' max max max ' ' max '

ln , , '

1 1
ln 2

2 2

N T T

k k k k k k k k

f k k

  



     

x

C C x b C x b x b C x b
  (B3) 

So  max ln , , 'f k kx can be obtained by computing (B3) for all pairs , 'k k and retaining the maximum. 

Notice that if 
'k kC C then 

 

       

max '

1

max ' '

1

2

1
ln , , ' ln 2

2

k k

N T

k k k k k kf k k   

 

  

x b b

x C b b C b b

                ,        (B4) 

which is closely related with the well-known Mahalanobis distance [26] between two multivariate 

normal densities having the same covariance matrix. Finally let us call  maxln , , 's f k k x  so that we 

can define an “ad hoc” normalized index of separability sI as 

 
1

s

s s

e
I

e







                                         .                         (B5) 

Clearly, 0 1sI   and, as separation increases, s  and  1sI  . 
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