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Abstract

In this paper, a random finite difference scheme to solve numerically the random Cauchy one-
dimensional advection-diffusion partial differential equation is proposed and studied. Through-
out our analysis both the advection and diffusion coefficients are assumed to be random variables
while the deterministic initial condition is assumed to possess a discrete Fourier transform. For
the sake of generality in our study, we consider that the advection and diffusion coefficients are
statistical dependent random variables. Under mild conditions on the data, it is demonstrated
that the proposed random numerical scheme is mean square consistent and stable. Finally, the
theoretical results are illustrated by means of two numerical examples.
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1. Introduction1

It is well-known, from the deterministic theory, that partial differential equations (PDEs) can2

seldom be solved in an exact manner. This motivates the development of numerical schemes3

to construct reliable approximations. Deterministic finite difference methods are a class of nu-4

merical schemes which are based on replacing the partial derivatives that appear in the PDEs by5

their finite difference approximations. This approach leads to a system of algebraic equations6

that can then be solved numerically by an iterative process in order to obtain an approximate so-7

lution of the PDEs. In the deterministic scenario, the finite difference method has demonstrated8

to be very useful to approximate the solution of PDE [1, 2, 3]. Nevertheless, modelling real9

problems require to make measurements of physical variables and this entails the introduction of10

randomness from both error measurements and the inherent complexity of the physical phenom-11

ena under study. Starting from this initial approach, it is then natural to study finite difference12
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numerical schemes for solving random/stochastic PDEs, which are mathematical representations13

of physical problems. It is important to highlight that the kind of randomness that is considered14

into the physical model formulation delineates the type of PDE. On the one hand, the consid-15

eration of uncertainty by means of a gaussian stochastic process termed white noise, the formal16

derivative of the Wiener process or brownian motion, leads to stochastic partial differential equa-17

tions (SPDEs), usually called Itô-type SPDEs. Solving analytically these equations requires the18

application of a special stochastic calculus, usually referred to as Itô calculus, whose cornerstone19

is the Itô’s lemma [4, 5]. The use of this stochastic calculus is required to handle SPDEs because20

the irregular behaviour of the sample trajectories of the Wiener process which are nowhere dif-21

ferentiable [4]. On the other hand, if uncertainty is considered through random variables (RVs)22

and/or stochastic processes (SPs) whose sample behaviour is milder, then one leads to random23

partial differential equations (RPDEs). The analysis and computing of these RPDEs are done24

using the so-called Lp-random calculus [6, 7]. This latter approach allows us the consideration25

of a wider kind of randomness because, apart from gaussian, other RVs like binomial, Poisson,26

uniform, beta, exponential, etc. can also be included in the mathematical model. Throughout27

this paper we will propose a random finite difference scheme (RFDS) to construct numerical28

approximations for the following advection-diffusion RPDE29

Ut(x, t) + βUx(x, t) = αUxx(x, t), t > 0, −∞ < x < ∞, (1)

with initial condition30

U(x, 0) = U0(x). (2)

In this random Cauchy or initial value problem (IVP), t and x denote the time and space variables,31

respectively, while Ut, Ux and Uxx stand for the first and the second derivatives with respect to32

t and x, as usually. The coefficients α and β are assumed to be positive absolutely continuous33

RVs, defined in a complete probability space (Ω,F ,P), and satisfying certain conditions that34

will be specified later (see hypothesis H2 in (23)). Henceforth, fα,β(α, β) will denote the joint35

probability density function (PDF) of the two-dimensional random vector (α, β). The initial36

condition, U0(x), is assumed to be a deterministic function such that it admits a discrete Fourier37

transform (see hypothesis H4 in (36)). Keeping the standard notation, throughout this paper the38

solution SP will be denoted as U(x, t) or U(x, t)(ω), indistinctly, when we want either to hide or39

emphasize its dependence on the sample parameter ω ∈ Ω, respectively.40

Remark 1. Using the usual operator notation, the RPDE (1) can be written as F [U] = G, where41

F [U] = Ut + βUx − αUxx and G ≡ 0. We now introduce this notation because it will be used42

later.43

The RPDE (1) arises in convection-diffusion transport problems. These problems appear in44

many applications in science and engineering such as in the transport of air and ground water45

pollutants, oil reservoir flow, in the modeling of semiconductors, and so forth [8, 9, 10]. The46

equation (1) is a parabolic PDE that combines the diffusion equation and the advection equa-47

tion. It describes physical phenomena where particles or energy (or other physical quantities)48

are transferred inside a physical system due to two processes: diffusion and convection. The49

parameters α and β are the heat diffusion coefficient and the convection velocity, respectively.50

The random nature of α and β can be attributed because the heterogeneity and impurity of the51

physical medium. The solution SP, U(x, t), represents species concentration for mass transfer or52

temperature for heat transfer [11].53

2



In the deterministic framework the solution of the Cauchy advection-diffusion PDE (1)–(2)54

has been approximated using a number of finite difference schemes and related techniques [12,55

13, 14]. Some of these numerical methods have been successfully extended to deal with its56

Itô-type SPDEs counterpart and their applications [15, 16]. In this paper, we propose a forward-57

time-backward/centered-space RFDS, inspired in its deterministic counterpart, to approximate58

the solution SP of the random Cauchy problem (1)–(2), that to the best of our knowledge has not59

been proposed yet. Then, we give sufficient conditions in order for the consistency and stability60

of the RFDS to be guaranteed in a random sense that will be specified later. Although most of61

the contributions have focussed on finite difference schemes for Itô-type SPDEs, some interesting62

studies dealing with random ordinary/partial differential equations by means of RFDSs can be63

found in [17, 18, 19, 20], for example.64

This paper is organized as follows: In Section 2, firstly a random finite difference scheme for65

the Cauchy problem (1)–(2) is proposed. Secondly, the main concepts, definitions and auxiliary66

results that will be required throughout this paper are presented. This include the introduction67

of the definitions of random mean square consistency and stability, as well as several Banach68

spaces that will play a key role to formalize our study. In Sections 3 and 4 sufficient conditions69

for the mean square consistency and stability of the proposed random finite difference scheme70

are given and proved, respectively. In Section 5, we show two examples in order to illustrate the71

theoretical results established in previous sections. Section 6 summarizes the main conclusions72

of the paper.73

2. Random finite difference scheme74

This section is addressed to introduce the numerical scheme that will be used later to con-75

struct approximations of the random IVP (1)–(2). It is important to point out that problem (1)–(2)76

will be numerically solved in the fixed station sense, namely, on the domain (x, t) ∈ R × [0,T ],77

being T > 0 fixed.78

With this aim, let us consider the grid points for the space variable x, −∞ = x−∞ < · · · <79

x−1 < x0 < x1 < · · · < x+∞ = +∞ and for the time variable t, 0 = t0 < t1 < · · · < tN−1 < tN = T ,80

N ≥ 1 integer. Henceforth, both the space step and the time step will be assumed constant and81

they will be denoted by ∆x and ∆t, respectively. Then, the following uniform space-time-lattice82

has been defined83

xk+1 = xk + ∆x, k ∈ Z, tn+1 = tn + ∆t, n = 0, 1, . . . ,N − 1, N ≥ 1,

where Z denotes the set of all integers. Let us denote by Un
k the approximation of the exact84

solution SP, U(x, t), of the problem (1)–(2) at the lattice point (xk, tn), i.e., Un
k ≈ U(xk, tn) and85

Un = (Un
−∞, . . . ,U

n
−1,U

n
0 ,U

n
1 , . . . ,U

n
+∞), the corresponding approximation at the n-time level. To86

formulate the random difference scheme, the following approximations for the partial derivatives87

will be considered88

Ut(xk, tn) ≈
Un+1

k − Un
k

∆t
, Ux(xk, tn) ≈

Un
k − Un

k−1

∆x
, Uxx(xk, tn) ≈

Un
k+1 − 2Un

k + Un
k−1

(∆x)2 . (3)

Substituting these approximations in the random IVP (1)–(2), one gets89 
Un+1

k = r(β∆x + α)Un
k−1 + (1 − rβ∆x − 2rα)Un

k + rαUn
k+1, r =

∆t
(∆x)2 ,

U0
k = U0(xk).

(4)
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Due to the finite differences used in (3) to approximate the corresponding partial derivatives, this90

RFDS is termed forward-time-backward/centered-space scheme. In the following, we will study91

the consistency and stability of the RFDS (4). Below, we give the definitions of consistency and92

stability of a RFDS. Both definitions are natural extensions of their deterministic counterparts93

using the ‖ · ‖2,Σ-norm introduced in (14). In order to account for the accuracy of the RFDS, we94

shall introduce a natural definition of the order of a RFDS in terms of the ‖ · ‖2,Σ-norm. With95

this purpose, firstly it is convenient to introduce several normed spaces that will play a key role96

throughout our analysis.97

Firstly, the Banach space (LRV
p (Ω), ‖·‖p,RV), p ≥ 1, of complex RVs Y : Ω −→ C with finite98

p-th absolute moment with respect to the origin is finite, i.e.,99

‖Y‖p,RV =
(
E

[
|Y |p

])1/p < +∞, p ≥ 1,

being E [·] the expectation operator. For every sequence Yn ≡ {Yn : n ≥ 0} such that E [|Yn|
p] <100

+∞ for each n ≥ 0, i.e., Yn ∈ LRV
p (Ω), the convergence inferred by the ‖·‖p,RV-norm is usually101

referred to as p-th mean convergence, and it is defined as102

Yn
‖·‖p,RV
−→

n→+∞
Y ⇐⇒ E

[
|Yn − Y |p

]
−→

n→+∞
0.

Special mention deserves the Hilbert space (LRV
2 (Ω), ‖·‖2,RV), corresponding to p = 2, which is103

made up for all complex RVs with finite variance. In this particular but still significant case, the104

norm is inferred by the inner product105

〈Y1,Y2〉 = E[|Y1Y2|], Y1,Y2 ∈ LRV
2 (Ω),

as106

‖Y‖2,RV = +
√
〈Y,Y〉 =

(
E

[
|Y |2

])1/2
< +∞, Y ∈ LRV

2 (Ω). (5)

These RVs are called second-order RVs. As a consequence of the following classical result:107

If Y,Z are independent RVs⇒ E[YZ] = E[Y]E[Z],

provided all involved expectations exist, together with the definition of the ‖·‖2,RV-norm, one108

derives the following identity that will be used later109

if Y,Z ∈ LRV
2 (Ω) are independent⇒ ‖YZ‖2,RV = ‖Y‖2,RV ‖Z‖2,RV . (6)

In the general case that Y and Z are not statistically independent, but possessing moments of110

higher order, one can establish the following inequality [21, p.415],111

‖YZ‖p,RV ≤ ‖Y‖2p,RV ‖Z‖2p,RV , p ≥ 1, Y,Z ∈ LRV
2p (Ω). (7)

As a consequence of Liapunov’s inequality,112

‖Y‖r,RV =
(
E

[
|Y |r

])1/r
≤

(
E

[
|Y |s

])1/s
= ‖Y‖s,RV , 1 ≤ r ≤ s, (8)

one deduces113

LRV
s (Ω) ⊂ LRV

r (Ω) 1 ≤ r ≤ s, (9)
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as well as the following relationship between the convergences in these spaces114

if Yn
‖·‖s,RV
−→

n→+∞
Y =⇒ Yn

‖·‖r,RV
−→

n→+∞
Y, 1 ≤ r ≤ s, (10)

whenever the sequence of RVs, {Yn} belongs to LRV
s (Ω), i.e., E [|Yn|

s] < +∞, for every n ≥ 1.115

Therefore, for RVs having finite variance the weakest p-th convergence corresponds to p = 2,116

namely, the mean square convergence defined in (LRV
2 (Ω), ‖·‖2,RV). Mean square convergence is117

very important because results established in this type of stochastic convergence are also valid118

for another type of relevant stochastic convergences such as convergence in probability and con-119

vergence in distribution. It is important to point out that the rigorous operational manipulation120

of mean square convergence requires the use of the relationships (9) and (10) often. Indeed, for121

instance, it can be seen that the following basic operational property122

Z ∈ LRV
2 (Ω),

Yn
‖·‖2,RV
−→

n→+∞
Y,

 =⇒ ZYn
‖·‖2,RV
−→

n→+∞
ZY

does not hold in general. However, this property can be legitimated assuming further hypotheses123

that involve information of the Banach space (LRV
4 (Ω), ‖·‖4,RV), [22]. Additionally, as it will be124

proved below, this basic operational property of the mean square convergence is still true when125

the RV Z is bounded, which is just the context that will be required throughout our subsequence126

analysis.127

Proposition 1. Let Z be a bounded RV in LRV
2 (Ω), i.e., there exist constants z1 and z2 such that128

z1 ≤ Z(ω) ≤ z2, ω ∈ Ω, and let us suppose that Yn
‖·‖2,RV
−→

n→+∞
Y. Then, ZYn

‖·‖2,RV
−→

n→+∞
ZY.129

Proof. Let us denote by ẑ = max{|z1|, |z2|} < +∞, then the result is straightforwardly inferred130

from the following sandwich-type inequality131

0 ≤
(
‖ZYn − ZY‖2,RV

)2
= E

[
|Z|2|Yn − Y |2

]
≤ |ẑ|2E

[
|Yn − Y |2

]
= |ẑ|2

(
‖Yn − Y‖2,RV

)2
−→

n→+∞
0,

where in the last step we have used that by hypothesis {Yn} is mean square convergent to Y as132

n→ +∞. �133

Now, we establish a crucial inequality involving ‖·‖p,RV-norms that will play a crucial role to134

study the stability of the RFDS (4). For that, let us observe that by inequality (7) with p = 2 one135

gets136 ∥∥∥Y2
∥∥∥

2,RV ≤ ‖Y‖4,RV ‖Y‖4,RV =
(
‖Y‖22,RV

)2
,

137 ∥∥∥Y3
∥∥∥

2,RV =
∥∥∥Y2Y

∥∥∥
2,RV ≤

∥∥∥Y2
∥∥∥

4,RV ‖Y‖4,RV ≤ ‖Y‖8,RV ‖Y‖8,RV ‖Y‖4,RV ≤ ‖Y‖8,RV ‖Y‖8,RV ‖Y‖8,RV =
(
‖Y‖23,RV

)3
,

where in the two first inequalities we have applied (7) with p = 2 and p = 4, respectively, while138

in the last bound Liapunov’s inequality (8) has been used for the last factor, ‖Y‖4,RV, with the139

identification r = 4 ≤ 8 = s. Reasoning recursively in the same manner it is easy to establish the140

following result141

Lemma 1. Let Y be a RV such that there exist and are finite its absolute moments with respect142

to the origin of order 2m, being m ≥ 1 integer, i.e., E
[
|Y |2

m
]
< +∞. Then,143

‖Ym‖2,RV ≤
(
‖Y‖2m,RV

)m
. (11)
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Let J ⊂ R, we secondly introduce the Hilbert space (LSP
2 (J ×Ω), ‖·‖2,SP) of complex-valued144

SPs whose second-order moment with respect to the origin is integrable145

LSP
2 (J ×Ω) =

{
Y(x) ≡ Y(x, ω) : J ×Ω −→ C :

∫
J

E
[
|Y(x)|2

]
dx < +∞

}
(12)

and146

‖Y(x)‖2,SP =

(∫
J

(
‖Y(x)‖2,RV

)2
dx

)1/2

=

(∫
J

E
[
|Y(x)|2

]
dx

)1/2

.

Thirdly, the approximations at the n-time level are elements of the Banach space (`2(Ω), ‖·‖2,Σ)147

being148

`2(Ω) =

U = (U−∞, . . . ,U−1,U0,U1, . . . ,U+∞) :
+∞∑

k=−∞

(
‖Uk‖2,RV

)2
< +∞

 (13)

and149

‖U‖2,Σ =

 +∞∑
k=−∞

(
‖Uk‖2,RV

)2
1/2

=

 +∞∑
k=−∞

E
[
|Uk |

2
]1/2

, (14)

where, as noticed, ‖·‖2,RV corresponds to the norm defined in (5), [23].150

Consistency and stability are main notions of the deterministic finite difference schemes the-151

ory that need to be translated into the random framework. Consistency means that the solution152

SP of the RPDE, if it is smooth enough, is an approximate solution of the RFDS. Stability can be153

interpreted as small errors in the initial conditions cause smalls errors in the solution. As it will154

shall be later, the definition of random stability permits the errors in the solution to grow, but lim-155

its them to grow not faster than exponentially. The following definitions are natural extensions156

of their deterministic counterparts and they are inspired in classical references like [1, 2, 3].157

Definition 1. The RFDS158

Un+1 = Q(Un) + ∆t Gn, (15)

being159

Un =
(
Un
−∞, . . . ,U

n
−1,U

n
0 ,U

n
1 , . . . ,U

n
+∞

)
,

Gn =
(
Gn
−∞, . . . ,G

n
−1,G

n
0,G

n
1, . . . ,G

n
+∞

)
,

is said to be mean square ‖ · ‖2,Σ-consistent with the RPDE F [U] = G (see Remark 1), if the160

solution SP, U, of the RPDE satisfies161

Un+1 = Q(Un) + ∆t Gn + ∆t τn, (16)

and162

‖τn‖2,Σ
∆x→0
−→
∆t→0

0, (17)

where the ‖ · ‖2,Σ-norm has been introduced in (14) and the k-th component of Un in (16) is163

Un
k = U(xk, tn).
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Definition 2. The RFDS (15) is said to be mean square ‖ · ‖2,Σ-stable if there exist positive con-164

stants ε, δ > 0, and non-negative constants η, ρ such that165

‖Un‖2,Σ ≤ η eρt ‖U0‖2,Σ, (18)

for 0 ≤ t = n∆t, 0 < ∆x ≤ ε, 0 < ∆t ≤ δ.166

Definition 3. In the context of Definition 1, the RFDS (15) is said to be of order (p, q) if167

‖τn‖2,Σ = O ((∆t)p) + O ((∆x)q) .

3. Consistency of the random finite difference scheme168

The goal of this section is to give sufficient conditions in order to guarantee the mean square169

‖ · ‖2,Σ-consistency of the RFDS (4) with the RPDE (1).170

With this purpose let us denote, only throughout this section, U(xk, tn) by Un
k , i.e., Un

k rep-171

resents the value of the exact solution SP evaluated at the lattice point (xk, tn). According to172

Definition 1 and the RFDS (4), let us perform the Taylor expansion of the k-th component of173

Un+1 − Q(Un) − ∆tGn with G ≡ 0 (see (15)) taking into account that r = ∆t/(∆x)2,174 (
Un+1 − Q(Un)

)
k

= Un+1
k − r(β∆x + α)Un

k−1 − (1 − rβ∆x − 2rα)Un
k − rαUn

k+1

= Un
k + ∆t(Ut)n

k +
1
2

(∆t)2Utt(xk, η)

− rβ∆x
(
Un

k − ∆x(Ux)n
k +

1
2

(∆x)2Uxx(ξk
1, tn)

)
− rα

(
Un

k − ∆x(Ux)n
k +

1
2

(∆x)2(Uxx)n
k −

1
3!

(∆x)3Uxxx(ξk
2, tn)

)
− (1 − rβ∆x − 2rα)Un

k

− rα
(
Un

k + ∆x(Ux)n
k +

1
2

(∆x)2(Uxx)n
k +

1
3!

(∆x)3Uxxx(ξk
3, tn)

)
(I)
= (1 − rβ∆x − rα − 1 + rβ∆x + 2rα − rα)︸                                              ︷︷                                              ︸

=0

Un
k

+ ∆t
(
(Ut)n

k + β(Ux)n
k − α(Uxx)n

k

)︸                             ︷︷                             ︸
=0

+ ∆t
(

1
2

∆t Utt(xk, η) −
1
2
β∆x Uxx(ξk

1, tn) +
1
3!
α∆x

(
Uxxx(ξk

2, tn) − Uxxx(ξk
3, tn)

))
,

(19)

where175

tn < η < tn+1, xk−1 < ξ
k
1, ξ

k
2 < xk, xk < ξ

k
3 < xk+1. (20)

Notice that in the second addend of step (I) of (19) we have used that at the lattice point (xk, tn)176

the RPDE (1) holds, hence (Ut)n
k + β(Ux)n

k − α(Uxx)n
k = 0. Furthermore, considering (16), from177

(19) one gets that the k-th component of τn is given by178

τn
k =

1
2

∆t Utt(xk, η) −
1
2
β∆x Uxx(ξk

1, tn) +
1
3!
α∆x

(
Uxxx(ξk

2, tn) − Uxxx(ξk
3, tn)

)
,

7



where η and ξk
i , 1 ≤ i ≤ 3, satisfy (20).179

Since Utt and Uxx depend on the RVs α and β, and using the definition of the ‖·‖2,RV-norm180

(see (5)), one gets181

(∥∥∥τn
k

∥∥∥
2,RV

)2
= E

[
|τn

k |
2
]

=

∫
R2

(
1
2

∆t Utt(xk, η) −
1
2
β∆x Uxx(ξk

1, tn)

+
1
3!
α∆x

(
Uxxx(ξk

2, tn) − Uxxx(ξk
3, tn)

))2

fα,β(α, β) dαdβ,

(21)

where fα,β(α, β) is the joint PDF of the random vector (α, β).182

Let us assume the following hypotheses H1–H3:183

H1 :
Uxx(·, t) = Uxx(·, t)(ω) and Uxxx(·, t) = Uxxx(·, t)(ω) are

uniformly bounded SPs for each t ≥ 0 fixed and∀ω ∈ Ω,
(22)

184

H2 :
α, β are positive bounded RVs:

0 < α1 < α(ω) < α2 and 0 < β1 < β(ω) < β2, ∀ω ∈ Ω,
(23)

and185

H3 :
Utt(·, t) = Utt(·, t)(ω) ∈ `2(Ω) for each t ≥ 0 fixed and,

Uxx(·, t) = Uxx(·, t)(ω), Uxxx(·, t) = Uxxx(·, t)(ω) ∈ LSP
2 (R ×Ω) for each t ≥ 0 fixed.

(24)
Now, bearing in mind the expression (16) involved in the definition of the mean square ‖ · ‖2,Σ-186

consistency together with the definition of the ‖ · ‖2,Σ-norm (see (14)), we deal with the following187

bound188

(
‖τn‖2,Σ

)2
=

+∞∑
k=−∞

(
‖τn

k‖2,RV

)2
=

+∞∑
k=−∞

E
[
|τn

k |
2
]

(I)
≤

+∞∑
k=−∞

2 (∆t)2
∫
R2

(Utt(xk, η))2 fα,β(α, β) dα dβ

+

+∞∑
k=−∞

2 (∆x)2
∫
R2

(
βUxx(ξk

1, tn)
)2

fα,β(α, β) dα dβ

+

+∞∑
k=−∞

2
32 (∆x)2

∫
R2

(
αUxxx(ξk

2, tn)
)2

fα,β(α, β) dα dβ

+

+∞∑
k=−∞

2
32 (∆x)2

∫
R2

(
αUxxx(ξk

3, tn)
)2

fα,β(α, β) dα dβ.

(25)

Note that in step (I) we have applied the following inequality (a+b+c+d)2 ≤ 23(a2 +b2 +c2 +d2),189
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a, b, c, d ∈ R to expression (21). Taking limits as ∆x,∆t → 0 in (25), one gets190

lim
∆t,∆x→0

(
‖τn‖2,Σ

)2
≤ 2

(
lim
∆t→0

(∆t)2
) +∞∑

k=−∞

∫
R2

(Utt(xk, η))2 fα,β(α, β) dα dβ

+ 2
(

lim
∆x→0

∆x
) +∞∑

k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
βUxx(ξk

1, tn)
)2

fα,β(α, β) dα dβ

+
2
32

(
lim

∆x→0
∆x

) +∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
αUxxx(ξk

2, tn)
)2

fα,β(α, β) dα dβ

+
2
32

(
lim

∆x→0
∆x

) +∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
αUxxx(ξk

3, tn)
)2

fα,β(α, β) dα dβ.

(26)

By hypothesis H3 (see (24)), Utt(xk, η) ∈ `2(Ω), hence
∑+∞

k=−∞ E
[
|Utt(xk, η)|2

]
< +∞. Then, using191

the definition of the expectation in terms of the joint PDF of the random vector (α, β) and, taking192

into account that Utt(xk, η) depends on α, β, one gets193

+∞∑
k=−∞

E
[
|Utt(xk, η)|2

]
=

+∞∑
k=−∞

∫
R2

(Utt(xk, η))2 fα,β(α, β) dα dβ < +∞, ∀η = η(ω) : tn < η(ω) < tn+1, ∀ω ∈ Ω.

In the following development we apply to the second term of the sum that appears in the194

right-hand side of inequality (26), firstly the hypothesis H2 (see (23)) in step (I), and secondly,195

the hypothesis H1 for Uxx(x, t) (see (22)) in step (II), this yields196

+∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
βUxx(ξk

1, tn)
)2

fα,β(α, β) dα dβ

(I)
≤ (β2)2

+∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
Uxx(ξk

1, tn)
)2

fα,β(α, β) dα dβ

(II)
= (β2)2

∫
R2

 lim
∆x→0

+∞∑
k=−∞

∆x
(
Uxx(ξk

1, tn)
)2
 fα,β(α, β) dα dβ

= (β2)2
∫
R2

(∫
R

(Uxx(x, tn))2 dx
)

fα,β(α, β) dα dβ

(III)
= (β2)2

∫
R

(∫
R2

(Uxx(x, tn))2 fα,β(α, β) dα dβ
)

dx

= (β2)2
∫
R
E

[
(Uxx(x, tn))2

]
dx < +∞,

(27)

where the commutation of the one-dimensional and two-dimensional integrals in the step (III)197

is legitimated by Fubbini’s theorem because α and β are bounded RVs and the two-dimensional198

integral exists [24]. This last assertion, that has been used to write the finiteness of the last199

integral, follows from hypothesis H3 (see (24)).200

It is straightforwardly to prove, following an analogous argument to the one exhibited in (27),201

that202
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+∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
αUxxx(ξk

2, tn)
)2

fα,β(α, β) dα dβ

≤ (α2)2
∫
R
E

[
(Uxxx(x, tn))2

]
dx < +∞,

and203

+∞∑
k=−∞

(
lim

∆x→0
∆x

) ∫
R2

(
αUxxx(ξk

3, tn)
)2

fα,β(α, β) dα dβ

≤ (α2)2
∫
R
E

[
(Uxxx(x, tn))2

]
dx < +∞.

(28)

Taking into account (27)–(28), from inequality (26) one follows204

lim
∆t,∆x→0

‖τn‖2,Σ = 0.

Summarizing, the following result has been established:205

Proposition 2. Under hypotheses H1–H3 given in (22)–(24), respectively, the RFDS (4) is mean206

square ‖ · ‖2,Σ-consistent with the RPDE (1).207

Remark 2. Taking into account the Definition 3, then by the previous development it is clear208

that the order of the RFDS (4) is (p, q) = (1, 1).209

4. Stability of the random finite difference scheme210

This section is devoted to establish the mean square ‖ · ‖2,Σ-stability of the RFDS (4) using211

the Von Neumann approach [1]. This method is based on the discrete Fourier transform. With212

this aim, we firstly need to extend the definition of this important transformation to the random213

context.214

Definition 4. Let U ≡ {Uk} = (U−∞, . . . ,U−1,U0,U1, . . . ,U+∞) be a sequence in the Banach215

space (`2(Ω), ‖·‖2,Σ) introduced in (13)–(14). The random discrete Fourier transform (RDFT) of216

U ≡ {Uk} is defined by217

Û(ξ) =
1
√

2π

+∞∑
k=−∞

e− i kξ Uk, i = +
√
−1, ξ ∈ [0, 2π[. (29)

As it shall see later, the RDFT Û : `2(Ω) −→ LSP
2 ([0, 2π[×Ω) is well-defined. Notice that218

(LSP
2 ([0, 2π[×Ω), ‖·‖2,SP) is just the Banach space introduced in (12) with J = [0, 2π[. Moreover,219

it can be proved by extending the deterministic techniques to the random framework that220

Uk =
1
√

2π

∫ 2π

0
ei kξ Û(ξ) dξ, (30)

which is an inversion formula for the RDFT.221

The following result shows that the norms ‖·‖2,RV and ‖·‖2,SP are compatible. It will be re-222

quired later.223
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Lemma 2. Let V ∈ LRV
2 (Ω) and w ≡ w(ξ) ∈ LSP

2 ([0, 2π[×Ω) such that V is statistically indepen-224

dent of w(ξ) for every ξ ∈ [0, 2π[. Then225

‖V w‖2,SP = ‖V‖2,RV ‖w‖2,SP . (31)

Proof. The result is a direct consequence of the definitions of both norms and the application of226

property (6) in the step (I):227

‖V w‖2,SP =

(∫ 2π

0

(
‖V w(ξ)‖2,RV

)2
dξ

)1/2
(I)
=

(∫ 2π

0

(
‖V‖2,RV ‖w(ξ)‖2,RV

)2
dξ

)1/2

= ‖V‖2,RV

(∫ 2π

0

(
‖w(ξ)‖2,RV

)2
dξ

)1/2

= ‖V‖2,RV ‖w‖2,SP .�

A key result that will be used later is that the Banach spaces (L2([0, 2π[×Ω), ‖·‖2,SP) and228

(`2(Ω), ‖·‖2,Σ) are isometric. This is a consequence of the following Parseval-type identity229

(∥∥∥Û
∥∥∥

2,SP

)2
=

∫ 2π

0

(∥∥∥Û(ξ)
∥∥∥

2,RV

)2
dξ =

∫ 2π

0
E

[
|Û(ξ)|2

]
dξ

=

∫ 2π

0
E

[
Û(ξ)Û(ξ)

]
dξ =

∫ 2π

0
E

 1
√

2π

+∞∑
k=−∞

e− i kξ Uk

 Û(ξ)

 dξ

=
1
√

2π

+∞∑
k=−∞

E
[
Uk

(∫ 2π

0
e− i kξ Û(ξ) dξ

)]
=

1
√

2π

+∞∑
k=−∞

E
[
Uk

(∫ 2π

0
ei kξ Û(ξ) dξ

)]

=

+∞∑
k=−∞

E

Uk

(
1
√

2π

∫ 2π

0
ei kξ Û(ξ) dξ

) =

+∞∑
k=−∞

E
[
UkUk

]
=

+∞∑
k=−∞

E
[
|Uk |

2
]

=

+∞∑
k=−∞

(
‖Uk‖2,RV

)2
=

(
‖U‖2,Σ

)2
,

(32)

or equivalently,230 ∥∥∥Û
∥∥∥

2,SP = ‖U‖2,Σ . (33)

Observe that in (32), the basic properties of the conjugate operator for complex numbers as231

well as the inversion formula (30) have been used. Moreover, as a consequence of the chain of232

identities exhibited in (32) and the fact that if {Uk} ∈ `2(Ω) (see(13)), one gets233

(∥∥∥Û
∥∥∥

2,SP

)2
=

+∞∑
k=−∞

(
‖Uk‖2,RV

)2
< +∞,

i.e.,
∥∥∥Û

∥∥∥
2,SP < +∞. Therefore the RDFT is well-defined in the Banach space (LSP

2 ([0, 2π[×Ω), ‖·‖2,SP)234

when acting over sequences {Uk} in the space `2(Ω).235

For convenience, let us rewrite the RFDS (4) in the following form236

Un+1
k = (1 − R − 2S )Un

k + (R + S )Un
k−1 + S Un

k+1, where R := β
∆t
∆x

, S := α
∆t

(∆x)2 . (34)
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Notice that under hypothesis H2 (see (23)) and the above definition of R ≡ R(ω) and S ≡ S (ω),237

ω ∈ Ω, both are positive bounded RVs for time step ∆t > 0 and space step ∆x > 0 fixed.238

Let ξ ∈ [0, 2π[ and let us take the RDFT (29) in the RFDS (34), then one obtains239

Ûn+1(ξ) =
1
√

2π

+∞∑
k=−∞

e− i kξ Un+1
k

(I)
=

1
√

2π

(1 − R − 2S )
+∞∑

k=−∞

e− i kξ Un
k + (R + S )

+∞∑
k=−∞

e− i kξ Un
k−1 + S

+∞∑
k=−∞

e− i kξ Un
k+1


= (1 − R − 2S )

1
√

2π

+∞∑
k=−∞

e− i kξ Un
k + (R + S )

1
√

2π

+∞∑
k=−∞

e− i kξ Un
k−1 + S

1
√

2π

+∞∑
k=−∞

e− i kξ Un
k+1

=
{
(1 − R − 2S ) + (R + S ) e− i ξ +S ei ξ

}
Ûn(ξ).

(35)

It is important to point out that in the step (I) of (35), we have applied Proposition 1 to legitimate240

the commutation between the infinite sum, which is ‖·‖2,RV-convergent, and the bounded factors241

1 − R − 2S , R + S and S , that depend on the bounded RVs R and S .242

If we assume that243

H4 :
The initial condition U0(x), which is assumed to be deterministic,

possess a discrete Fourier transform Û0(ξ),
(36)

then recurrence (35) can explicitly be solved in terms of the initial term244

Ûn(ξ) = GnÛ0(ξ), where G = (1 − R − 2S ) + (R + S ) e− i ξ +S ei ξ . (37)

As R and S depend on RVs α and β, the so-called amplification factor, G, also does. Now,245

we seek conditions in order for the random amplification factor G ≡ G(ω), ω ∈ Ω, has absolute246

value less or equal than the unit, i.e.,247

|G(ω)| ≤ 1, ∀ω ∈ Ω. (38)

With this goal, let us rewrite the expression of G given by (37) in the following equivalent form248

using the Euler’s identity ei x = cos(x) + i sin(x), x ∈ R,249

G = 1 − 2S − R
(
1 − e− i ξ

)
+ S

(
ei ξ + e− i ξ

)
= 1 − 2S − R (1 − cos(ξ) + i sin(ξ)) + 2S cos(ξ)
= 1 − 2S (1 − cos(ξ)) − R (1 − cos(ξ)) − i R sin(ξ)
= 1 − (R + 2S ) (1 − cos(ξ)) − i R sin(ξ).

As |G|2 ≤ 1 is equivalent to condition (38) and250

|G|2 = (1 − (R + 2S )(1 − cos(ξ)))2 + (R sin(ξ))2

= 1 − 2(R + 2S )(1 − cos(ξ)) + (R + 2S )2 (1 − cos(ξ))2 + R2(1 − cos(ξ))(1 + cos(ξ)),

then condition (38) is equivalent to251

(R + 2S )2 (1 − cos(ξ))2 + R2(1 − cos(ξ))(1 + cos(ξ)) ≤ 2(R + 2S )(1 − cos(ξ)). (39)
12



If ξ = 0, this inequality holds, while if ξ ∈]0, 2π[, 1 − cos(ξ) > 0, hence dividing each side of252

inequality (39) by this positive factor yields253

(R + 2S )2(1 − cos(ξ)) + R2(1 + cos(ξ)) ≤ 2(R + 2S ),
254

cos(ξ)
(
R2 − (R + 2S )2

)
≤ 2(R + 2S ) − R2 − (R + 2S )2. (40)

Since S ≡ S (ω) > 0 for all ω ∈ Ω, then R2 − (R + 2S )2 < 0 and from (40) one obtains255

cos(ξ) ≥
2(R + 2S ) − R2 − (R + 2S )2

R2 − (R + 2S )2 . (41)

Therefore, the following condition256

2(R + 2S ) − R2 − (R + 2S )2

R2 − (R + 2S )2 ≤ −1, (42)

guarantees that inequality (41) holds. Notice that condition (42) is equivalent to257

2(R + 2S ) − R2 − (R + 2S )2 ≥ −R2 + (R + 2S )2 ⇔ R + 2S ≥ (R + 2S )2,

and dividing by R + 2S (since R(ω) + 2S (ω) > 0 for all ω ∈ Ω), one concludes that the condition258

|G(ω)| ≤ 1 fulfils for all ω ∈ Ω if259

1 − R(ω) − 2S (ω) ≥ 0, ∀ω ∈ Ω, R = β
∆t
∆x

, S = α
∆t

(∆x)2 . (43)

On the other hand, it is clear that260

if |G(ω)| ≤ 1⇒ |G(ω)|2
n
≤ 1, ∀ω ∈ Ω,

then261

(‖G‖2n )n =
(
E

[
|G|2

n])n/2n

≤ 1, ∀n = 1, 2, . . . (44)

Taking the ‖·‖2,SP-norm in expression (37) and, applying firstly the inequality (31) of Lemma 2262

and secondly inequality (11) of Lemma 1 with the identifications, V ≡ Gn, w ≡ û0(ξ) and Y ≡ G,263

respectively, together with (44), one obtains264

‖Un(ξ)‖2,Σ
(I)
=

∥∥∥Ûn(ξ)
∥∥∥

2,SP =
∥∥∥GnÛ0(ξ)

∥∥∥
2,SP

(II)
= ‖Gn‖2

∥∥∥Û0(ξ)
∥∥∥

2,SP

≤ (‖G‖2n )n
∥∥∥Û0(ξ)

∥∥∥
2,SP ≤

∥∥∥Û0(ξ)
∥∥∥

2,SP
(III)
=

∥∥∥U0(ξ)
∥∥∥

2,Σ .
(45)

Notice that in the steps (I) and (III) we have used the identity (33) and, in the step (II) that265

by hypothesis the initial condition U0(x) is a deterministic function, then its RDFT Û0(ξ) is266

statistically independent of RVs α and β, and hence of Gn too.267

The relationship (45) proves the mean square ‖·‖2,Σ-stability of the RFDS (4) (see expression268

(18) with η = 1 and ρ = 0). However, our previous reasoning relies on condition (43) which is269

not completely satisfactory since it is stated in terms of RVs R and S rather than the input RVs α270

and β of the RPDE (1). Therefore, it still remains to establish an explicit condition in order for271

the stability of the RFDS (4) can be stated in a useful manner. With this aim, let us observe that272

(43) writes273

1 − β(ω)
∆t
∆x
− 2α(ω)

∆t
(∆x)2 ≥ 0, ∀ω ∈ Ω,
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or274

1 ≥
β(ω)∆x + 2α(ω)

(∆x)2 ∆t ⇔ ∆t ≤
(∆x)2

β(ω)∆x + 2α(ω)
, ∀ω ∈ Ω.

Taking into account the domain of RVs α and β assumed in hypothesis H2 (see (23)), one gets275

β(ω)∆x + 2α(ω) ≤ β2∆x + 2α2 ⇒
(∆x)2

β(ω)∆x + 2α(ω)
≥

(∆x)2

β2∆x + 2α2
, ∀ω ∈ Ω.

Summarizing the following result has been established276

Proposition 3. Let us consider the random IVP (1)–(2) where RVs α and β satisfy hypothesis277

H2 (see (23)) and the initial condition U0(x) satisfies hypothesis H4 (see (36)). Then, under the278

following condition279

∆t ≤
(∆x)2

β2∆x + 2α2
, (46)

the RFDS (4) is mean square ‖·‖2,Σ-stable.280

Remark 3. It is very important to emphasize that the hypothesis H2 assumed on the input data281

RVs α and β (see (23)) to conduct our stability analysis is not very restrictive regarding appli-282

cations. In fact, this assertion can be supported by the Chebyshev-Markov inequality [25]. This283

significant result legitimises the accurate probabilistic approximation of second-order unbounded284

RVs by means of the truncation of their domain. For example, this inequality guarantees that the285

interval [µX − 10σX , µX + 10σX] contains the 99% of the probability of any second-order RV,286

say X, i.e. X ∈ LRV
2 (Ω) with mean µX and variance σ2

X . This assertion holds regardless the287

distribution of X. The larger truncated interval the better probabilistic approximation, although,288

naturally the diameter of the above interval can be reduced if the probabilistic distribution of the289

RV X is known. For example, if X is gaussian RV, hence unbounded, X ∼ N(µX;σ2
X), then the290

truncation of X over the domain [µX − 3σX , µX + 3σX] comprises the 99.7% of the probability of291

the RV X.292

5. Some illustrative numerical examples293

This section is addressed to illustrate the main results proved in Sections 3 and 4 by means of294

two examples for which reliable approximations for the expectation and the standard deviation295

functions of the solution SP of the random IVP (1)–(2) are constructed. Numerical approxima-296

tions of these two statistical functions are computed via the RFDS (4). In order to check the297

accuracy of these approximations, we will compare them with the corresponding exact values.298

This verification is possible since input data of the IVP (1)–(2) has been devised in such a way299

that expressions for the expectation and the standard deviation of the solution SP are available.300

In the second example, we illustrate the effect of truncating adequately the input RVs in order301

to get accurate approximations of the mean and the standard deviation of the solution SP to the302

random IVP (1)–(2).303

Example 1. Let us consider the random Cauchy problem (1)–(2). For the random coefficients α304

and β will be assume that α is an exponential RV of parameter λ = 1 truncated at the interval305

[0, 6], α ∼ Exp[0,6](1), and β is a beta RV of parameters (a; b) = (2; 3), β ∼ Be(2; 3). Notice306

that hypothesis H2 (see (23)) holds with α2 = 6 and β2 = 1. Hereinafter, we will assume that α307
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and β are independent RVs. While for the initial condition, we take u0(x) = exp(−(x/6)2) which308

admits a DFT, [26] (see hypothesis H4). Likewise, we point out that it is not difficult to check309

that hypotheses H1 and H3 (see (22), (24)) hold but cumbersome, thus we will omit here the310

details. Then, it can easily checked that the exact solution SP of (1)–(2) is given by the SP311

U(x, t) =
3 e−

(x−βt)2

4(αt+9)

√
αt + 9

.

We will construct numerical approximations to the expectation and the standard deviation of the312

solution SP, U(x, t), of the random Cauchy problem (1)–(2) on the space interval −15 ≤ x ≤ 15.313

This will done by applying the RFDS (4).314

In order for the mean square ‖ · ‖2,Σ-stability of this scheme to be guaranteed, we firstly fix315

the space step ∆x and taking into account that α2 = 6 and β2 = 1, in accordance with condition316

(46) of Proposition 3, the time step ∆t must satisfy the following condition317

∆t ≤
(∆x)2

∆x + 12
. (47)

The numerical approximations of the expectation and the standard deviation of the solution318

SP U(x, t) at the lattice point (xk, tn) are computed in two steps, firstly by applying iteratively the319

RFDS (4) and, secondly, taking the expectation operator. The numerical results obtained by this320

procedure have been compared with the exact values that are computed from321

E[U(x, t)] =

∫ 1

0

∫ 6

0

3 e−
(x−βt)2

4(αt+9)

√
αt + 9

fα(α) fβ(β) dαdβ (48)

for the mean, and322

σ[U(x, t)] =

√√∫ 1

0

∫ 6

0

9 e−
(x−βt)2
2(αt+9)

αt + 9
fα(α) fβ(β) dαdβ − (E[U(x, t)])2 (49)

for the standard deviation, being323

fα(α) =
exp(−α)∫ 6

0 exp(−α) dα
, 0 < α < 6, and fβ(β) = 10β(1 − β)2, 0 < β < 1, (50)

the PDFs of the RVs α and β, respectively.324

In Fig. 1, we compare, at the time instant T = 2 (time fixed station), the exact mean function325

of the solution SP calculated by (48) and the numerical approximations of the expectation ob-326

tained by means of the RFDS (4) over the spatial domain [−15, 15]. This comparative analysis327

has been carried out considering different values for the spatial step (∆x) and time step (∆t)328

collected in Table 1. Fixed ∆x, then ∆t has been computed so that condition (47) holds. As a329

measure of the accuracy of the approximations, we have also included in Table 1 the mean per-330

centage absolute error for the mean (MAPE(µ)) and the standard deviation (MAPE(σ)) at the331

time fixed station T = 2. Specifically, if µ̂k denotes the approximation of the expectation of the332

solution SP to the random initial value problem (1)–(2) using the RFDS (4) at the spatial lattice333

point xk, then334

MAPE(µ) =

 1
2K + 1

K∑
k=−K

∣∣∣∣∣ µ̂k − E[U(xk, 2)]
E[U(xk, 2)]

∣∣∣∣∣
 × 100%, (51)
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where E[U(xk, 2)] is given by (48), and K = 15/∆x for a given value of ∆x. The value of335

MAPE(σ) has been calculated analogously. The values of both MAPEs are detailed in Table 1.336

Observe that these figures are in agreement with the order of the numerical method. Furthermore,337

the less the spatial step (and hence the time step), the less the MAPE.338

∆t ∆x MAPE(µ) MAPE(σ)
1/58 15/32 2.27% 2.15%

2/58 = 1/29 30/32 = 15/16 4.70% 4.31%
4/58 = 2/29 60/32 = 15/8 10.17% 8.84%

Table 1: The two first columns collect the values of the time step (∆t) and space step (∆x) satisfying the mean square
‖·‖2,Σ-stability condition (47) in the context of Example 1. The two last columns show the values of the mean percentage
absolute error (MAPE) according to expression (51).

In Fig. 2, we shown an analogous comparative analysis for the standard deviation at the time339

instant T = 2.340

In Fig. 3 and Fig. 4 we have represented graphically the relative errors for the approxi-341

mations of the expectation and standard deviation taking as spatial and time steps the figures342

collected in Table 1, respectively. From these graphical representations one observes that as ∆x343

is halved, the relative error is also approximately also divided by 2. This confirm the order of344

convergence of the random numerical scheme.345

Example 2. As it has been discussed in Remark 3, the hypothesis H3 of boundedness (see (24))346

imposed over the input random data α and β is not restrictive in practice. To justify this assertion,347

we now assume that the input RV α has an exponential distribution (hence α is an unbounded348

RV), of parameter λ = 1 and we keep β ∼ Be(2; 3) and u0(x) as in Example 1. For sake of clarity349

in the subsequent notation, henceforth this unbounded RV will be denoted by α̂ ∼ Exp(1). Then,350

we have computed the exact mean and standard deviation of the solution SP using the expressions351

(48) and (49), but taking fα̂(α̂) = exp(−α̂), α̂ > 0 instead of the PDF fα(α) defined in (50). These352

exact values have been compared with the ones obtained by the approximation of the unbounded353

RV α̂ ∼ Exp(λ = 1) using the truncated (hence bounded) RV α ∼ Exp[0,6](1), which contains354

more than 99% of the probability mass of α̂, since
∫ 6

0 fα(α) dα = 0.997521. In Table 2, it is355

reported the values of the MAPE for both the mean and the standard deviation of the solution356

SP. From these figures we can see that the proposed RFDS (4) gives accurate approximations in357

the case that there exist unbounded input RVs. In such case, it is enough to approximate them by358

means of bounded RVs resulting from appropriating truncation.359

∆t ∆x MAPE(µ) MAPE(σ)
1/58 15/32 1.87% 2.90%

2/58 = 1/29 30/32 = 15/16 4.24% 4.34%
4/58 = 2/29 60/32 = 15/8 9.61% 7.80%

Table 2: The two first columns collect the values of the time step (∆t) and space step (∆x) satisfying the mean square
‖·‖2,Σ-stability condition (47). The two last columns show the values of the mean percentage absolute error (MAPE)
according to expression (51) in the context of Example 2.
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Figure 1: Comparison of the expectation of the exact solution SP and the approximations at the time instant T = 2 for
different values of ∆x and ∆t over the spatial domain −15 ≤ x ≤ 15 in the context of Example 1.
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Figure 2: Comparison of the standard deviation of the exact solution SP and the approximations at the time instant T = 2
for different values of ∆x and ∆t over the spatial domain −15 ≤ x ≤ 15 in the context of Example 1.
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Figure 3: Relative errors at the time instant T = 2 for the approximations of the expectation for different values of ∆x
and ∆t over the spatial domain −15 ≤ x ≤ 15 in the context of Example 1.
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Figure 4: Relative errors at the time instant T = 2 for the approximations of the standard deviation for different values of
∆x and ∆t over the spatial domain −15 ≤ x ≤ 15 in the context of Example 1.
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6. Conclusions360

In this paper we have proposed a random finite difference scheme to construct reliable ap-361

proximations of the one-dimensional advection-diffusion Cauchy problem with random coeffi-362

cients and a deterministic initial condition. This random scheme extends the classical forward-363

time-backward/centered-space to the random context. We have investigated sufficient conditions364

on the input data (coefficients and initial condition) in order for the mean square consistency and365

stability of the random scheme be guaranteed. The obtained conditions are mild and they ex-366

tend their deterministic counterpart in the general case that diffusion and advection coefficients367

are statistical dependent bounded random variables with an arbitrary joint probability density368

function. This latter fact is a remarkable feature regarding the present contribution since it is369

usual to embrace statistical independence for input random variables as well as assuming their370

probabilistic nature is of gaussian-type. Furthermore, it is important to point out that bound-371

edness hypothesis on the random coefficients is not restrictive from a practical point of view372

since the probabilistic truncation method based on classical Chebyshev’s inequality enables us373

to approximate unbounded RVs with a degree of accuracy previously fixed. This issue has been374

illustrated by means of an example where reliable numerical approximations of the mean and375

the standard deviation of the solution stochastic process has been computed from the proposed376

random numerical scheme. We have been able to check the accuracy of these approximations377

since we have considered a test example for which the corresponding exact values are available.378

In this manner, we validate the proposed method to be applied to other random one-dimensional379

advection-diffusion Cauchy problems whose exact solution is not available, which, of course, is380

the usual case in real problems. Finally, we point out that the approach considered in this paper381

could be carefully adapted to study another important random partial differential equations in382

future works.383
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[7] L. Villafuerte, C. A. Braumann, J. C. Cortés, L. Jódar, Random differential operational calculus: Theory and appli-405

cations, Computers and Mathematics with Applications 59 (1) (2010) 115–125. doi:10.1016/j.camwa.2009.08.061.406

[8] F. Yang, Progress in Applied Mathematical Modelling, Nova Science Publishers, New York, 2008.407

[9] J. Bear, A. H.-D. Cheng, Modeling Groundwater Flow and Contaminant Transport, Vol. 23 of Theory and Appli-408

cations of Transport in Porous Media, Springer, New York, 2003.409

[10] P. A. Markowich, P. Szmolyan, A system of convection-diffusion equations with small diffusion coefficient aris-410

ing in semiconductor physics, Journal of Differential Equations 81 (2) (1989) 234–254. doi:10.1016/0022-411

0396(89)90122-8.412

[11] W. M. Kays, M. E. Crawford, B. Weigand, Convective Heat & Mass Transfer, Mcgraw-Hill Series in Mechanical413

Engineering, McGraw-Hill Science/Engineering/Math, New York, 1993.414

[12] R. Anguelov, J. M. S. Lubuma, S. K. Mahudu, Qualitatively stable finite difference schemes for advection-415

reaction equations, Journal of Computational and Applied Mathematics 158 (1) (2003) 19–30. doi:10.1016/S0377-416

0427(03)00468-0.417

[13] D. Lesnic, The decomposition method for Cauchy advection-diffusion problems, Computers and Mathematics with418

Applications 49 (4) (2005) 525–537. doi:10.1016/j.camwa.2004.10.031.419
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[19] J. C. Cortés, L. Jódar, L. Villafuerte, R. J. Villanueva, Computing mean square approximations of ran-432

dom diffusion models with source term, Mathematics and Computers in Simulation 76 (2007) 44–48.433

doi:10.1016/j.matcom.2007.01.020.434

[20] M. Khodabin, M. Rostami, Mean square numerical solution of stochastic differential equations by fourth order435

Runge-Kutta method and its application in the electric circuits with noise, Advances in Difference Equations 62436

(2015) 1–19. doi:10.1186/s13662-015-0398-6.437

[21] L. Villafuerte, J. C. Cortés, Solving random differential equations by means of differential transform method,438

Advances in Dynamical Systems & Applications 8 (2013) 413–425.439
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