

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121577

López Rodríguez, PJ.; Baydal Cardona, ME. (2018). Teaching high-performance service in a
cluster computing course. Journal of Parallel and Distributed Computing. 117:138-147.
https://doi.org/10.1016/j.jpdc.2018.02.027

http://doi.org/10.1016/j.jpdc.2018.02.027

Elsevier

Teaching High-Performance Service in a Cluster

Computing Course

Pedro Lópeza,∗, Elvira Baydala

aDISCA Department
Universitat Politècnica de València

Camino de Vera, 14
46022 Valencia (SPAIN)

Abstract

Most courses on cluster computing in graduate and postgraduate studies

are focused on parallel programming and high-performance/high-throughput

computing. This is the typical usage of clusters in academia and research

centres. However, nowadays, many companies are providing web, mail and,

in general, Internet services using computer clusters. These services require

a different “cluster flavour”: high-performance service and high availability.

Despite the fact that computer clusters for each environment demand a dif-

ferent configuration, most university cluster computing courses keep focusing

only on high-performance computing, ignoring other possibilities. In this pa-

per, we propose several teaching strategies for a course on cluster computing

that could fill this gap. The content developed here would be taught as a

part of the course. The subject shows several strategies about how to con-

figure, test and evaluate a high-availability/load-balanced Internet server.

∗Corresponding author
Email addresses: plopez@disca.upv.es (Pedro López), elvira@disca.upv.es

(Elvira Baydal)

A virtualization-based platform is used to build a cluster prototype, using

Linux as its operating system. Evaluation of the course shows that students

knowledge and skills on the subject are improved at the end of the course.

On the other hand, regarding the teaching methodology, the results obtained

in the yearly survey of the University confirm student satisfaction.

Keywords: Linux clusters, computer engineering education,

high-performance service, load balancing, high-availability

1. Introduction

A cluster is a type of parallel or distributed processing system which con-

sists of a collection of interconnected stand-alone computers working together

as a single, integrated computing resource [7]. Although the idea of using

clusters to improve system reliability dates back to the 60s [25], its usage to

improve system performance is more recent [6].

The excellent price-performance ratio of clusters has led to their widespread

usage. They fit the needs of multiple environments, from small servers to

Small and Medium Enterprises (SME) and large Internet servers. Popular

Internet services are provided by large scale clusters, usually located in dif-

ferent places to provide resilience against natural disasters. On the other

hand, the largest supercomputers are also based on computer clusters [32].

Computer engineering curricula may include some subjects on clusters

[15]. Among the topics to be taught, we can mention system architecture,

networking, operating systems, parallel programming and applications. Clus-

ters come in several major flavours depending on their purpose [14]: High

Performance Computing (HPC), High Throughput Computing (HTC), High

2

Availability (HA) and High Performance Service (HPS). Most cluster com-

puting courses are oriented towards HPC and HTC, usually ignoring HA and

HPS. However, most cluster installations, especially Internet data centers, fit

into these latter categories. In [22], we described the contents of a master-

level cluster computing course that already addresses HPS/HA issues. In

this paper, being aware of the growing importance of these kind of servers,

we propose an updated version of the course with additional material on

HPS/HA at the expense of sacrificing parallel programming topics, that can

be taught in other subjects on programming. We describe in detail those top-

ics related to HA and HPS clusters that should be included in the syllabus.

A distinguishing feature of the proposed course is that it includes several

hands-on sessions to easily assimilate the learned concepts. In particular, we

propose building a computer cluster in the lab, installing the operating sys-

tem, services and required packages. The cluster may be configured taking

into account one or more of the aforementioned flavours. In this paper, we

propose configuring and deploying a small cluster-based Internet server that

provides web service.

As stated in [22], the use of virtualization environments allow students

to build their own cluster on the computers of the lab or even on their own

laptops. The computing power and memory available on current off-the-shelf

computers are high enough to deploy a cluster composed of several virtual

machines. Machine management (boot, reset, power-off or replication) is

easy to achieve, without interfering with the work of other students. Root

privileges are easily fulfilled.

The main contributions of this paper are i) the proposal of selected top-

3

ics on High Availability and High Performance Service to be included in a

cluster configuration and administration course; ii) considering a practical

and hands-on approach where students build, configure, test and evaluate a

cluster-based web server; iii) using packages and tools used in real installa-

tions; and iv) that it tries to fill the gap observed in many cluster computing

courses.

The rest of the paper is organized as follows. Section 2 briefly describes

the syllabus of the subject. Section 3 includes well-known and established

concepts related to high performance service and high availability that should

be taught in the subject. Some of these concepts are applied in Section 4,

describing the steps followed to build, configure, test and evaluate a small

cluster proving web service. Section 5 discusses some issues on teaching the

subject and Section 6 gives pointers to some related work. Some conclusions

finish the paper.

2. A subject on computer clusters

As cluster computing is an advanced subject [16], the proposed course is

aimed to graduate or advanced undergraduate students in Computer Science

or Computer Engineering. Expected student previous knowledge includes

topics usually covered in these studies as programming, computer organiza-

tion and architecture, computer networks and operating systems.

We have taught a course with quite similar content for several years in a

Master postgraduate course [23], lectured by the Computer Engineering De-

partment at the Universitat Politècnica de València. Lately, we have updated

and extended the content related to HPS, trying to improve the student skills

4

in this important area, with the aim of better preparing them to enter the

labour market.

2.1. Syllabus

This section summarizes the lecture topics. A more detailed explanation

can be found in [22]. Comparing the subject proposed in this paper with that

course, the content about parallel programming has been eliminated, since

it is already developed in other courses. This allows us to extend the time

devoted to High Performance Service, including new topics. The proposed

subject is composed of the following lessons:

1. Introduction to clusters. What they are, why they are useful and

popular. Cluster classification.

2. Selection of cluster components. Main components of nodes, in-

terconnection network, storage system, auxiliary components.

3. System infrastructure. Fast review of useful network services for

clusters (DHCP, NTP, DNS, NIS, SSH, NAT). Efficient IP address

assignment. Improving network performance (channel bonding and

jumbo frames).

4. System installation. Criteria to select the most appropriate Linux

distribution. Boot process and boot loaders. PXE.

5. Storage systems. Alternatives for disk array management (LVM,

RAIDs, DRBD). Protocols to connect computers and storage, directly

(SCSI, SAS) or through a network (Fibre Channel, ISCSI, FCoE, In-

finiBand).

5

Storage architectures: Network Attached Storage (NAS) and Storage

Area Networks (SANs). NFS protocol. Cluster file systems (OCFS2,

PVFS2 and GlusterFS).

6. Running applications on a cluster. Batch execution systems (HT-

Condor, Slurm) and support for running parallel applications (Open-

MPI, OpenMP).

7. Internet server cluster (I): Load balancing. Load balancing basics

(topologies, operation at levels 4 and 7). Case studies: IPVS and

HAProxy. Packet routing. Load balancing algorithms. Sticky sessions.

8. Internet server cluster (II): High Availability (HA). How to

get HA in a cluster. HA with HAProxy. Keepalived and corosync.

Problems in case of failure: split-brain, fencing and stonith. Cluster

Resource Managers: pacemaker.

In this paper we will focus on the content related to the last two topics.

The course aims at a deep learning approach as it is considered in [10],

where students are interested and try to understand what they are studying.

In order to achieve this goal, main concepts explained in theory sessions are

applied to a case study that students develop as a lab project. This hands-on

part will be described in section 4.

3. Alternatives to configure a High-Performance Service cluster

This section describes the main contents about load balancing and high

availability explained in lessons 7 and 8 of the course.

Access to clusters is usually done through a director or load balancer

(LB), which is responsible for distributing the client requests among a set of

6

servers that are actually implementing the offered services. These nodes are

usually referred to as the real servers. It is also critical to assure the proper

operation of the LB, which otherwise would become a single point of failure

in the system. For this reason, the LB is usually replicated.

The LB can be implemented as a specific purpose hardware device or

by software on a general purpose computer. While hardware devices offer

high performance, they are often expensive and, above all, closed solutions.

Alternatively, good open software solutions exist in the market to perform

load balancing and high availability. This section describes some relevant

possibilities.

3.1. Load Balancing

Load balancers can work at layer 4 or layer 7 of the OSI Model. Load

balancing at layer 4 uses only information about IP addresses and trans-

port ports to make its decisions. Working at layer 7 allows the LB to use,

additionally, information of the application layer, enabling more specific de-

cisions. To this end, application proxies are usually used. Besides the OSI

layer, two more parameters allow to characterise the load balancers. First,

the minimum number of network interfaces required by the LB and, second,

how the packets are redirected between the LB and the real servers. Both

parameters are related to each other.

Clients usually gain access to the cluster through a Virtual IP address

(VIP), associated to the LB network interface. This VIP is set in addition

to the real IP address bound to the interface. The VIP can float between

both LBs when high availability is used. When the LB requires two network

interfaces, a pair of VIPs, external and internal, must be used.

7

At this time, the two most important software projects for load balanc-

ing are Linux Virtual Server Project (LVS), and in particular, its module

IP Virtual Server (IPVS) [17] and HAProxy [11]. Both of them are fast,

reliable and very scalable solutions that can accept thousands of connections

simultaneously.

3.1.1. IPVS

IPVS has been part of the Linux kernel for several years. It provides

a level 4 solution to load balancing, simple and efficient, for services based

either on TCP or UDP.

IPVS allows us to redirect the packets towards the real servers using three

different methods: NAT, Direct Routing (DR) and across IP encapsulated

tunnels. All of them have an important advantage, they allow the real servers

to see the IP address of the client.

NAT is the simplest way to configure IPVS and permits the real servers

to use private IP addressing. With this configuration, both incoming and

returning traffic must traverse the LB in order to translate the IP addresses

(from the external VIP to the real server address and vice versa). For this

reason, it is the routing method that puts the greatest pressure on the LB.

Moreover, it requires that the real servers have configured the LB as their

network router. However, it is one of the most used due to its simplicity.

For this reason, we have used it in the lab project. NAT mode is usually

deployed connecting the LB to two different IP subnets.

With the second option, Direct Routing (DR), only incoming traffic has

to traverse the LB. Afterwards, the real servers can answer directly to the

clients. This behaviour can improve performance but requires that not only

8

the LBs but also the real servers have the VIP as an alias. When an incoming

packet reaches the LB, it changes the destination MAC address of the packet

by the selected real server MAC. Then, the packet is sent. Thus, the LB has

only to modify link level information, which is simple and fast. Moreover, in

this configuration, the LB and the real servers are in the same subnet and

need only one network interface. However, the main disadvantage is that

the real servers should not answer the ARP requests for the VIP. Otherwise,

incoming packets may not traverse through the LB. The solution to the ARP

problem [27], [2] depends on the operating system and may not be friendly.

For the sake of simplicity and time, we will neither test this nor the following

configuration in the lab project.

Finally, the IP tunnels are usually the least used strategy. In this case,

the LB encapsulates the incoming packet adding the destination IP of a real

server. Therefore, the real servers may be in a different LAN than the LB.

The answer is sent directly to the client as in DR.

3.1.2. HAProxy

HAProxy restricts its scope to TCP-based services. It has a great repu-

tation [12] as a fast, efficient and flexible solution. For this reason, HAProxy

is used in many professional environments with a large number of customers.

In addition, it provides high availability services for the real servers.

Usually, HAProxy is configured to work at level 7 but can also operate at

level 4. In either of the two levels, as it is a reverse proxy, the client access

to the offered services requires two TCP connections. One from the client to

the LB and another between the LB and the real server. That is why the real

servers can not see the source IP address of the client. If the real servers need

9

to know this address, there are several solutions. Only for HTTP traffic, an

X-Forwarded-For header can be added by the LB. Other possibilities are the

use of the transparent proxy mode or the PROXY protocol [26].

However, proxies have advantages regarding network configuration. Since

the TCP connection is always established between the LB and the real server,

the LB will always receive the answer of the real server. In this way, it is not

necessary to configure the LB as the router in the real servers. In fact, the

LB may even be on a different subnet than the real servers and may have

one or two network interfaces. In the lab project, we will use a configuration

with two network interfaces, since for the sake of simplicity, the same LB will

host both IPVS, working in NAT mode, and HAProxy.

3.1.3. Load Balancing Algorithms

Both IPVS and HAProxy support several load balancing algorithms.

Among them, we can mention round-robin, least-connection and source or

destination hash. Both of the first algorithms have weighted versions that

distribute the requests proportionally to each real server weight. In this way,

real servers with different hardware configurations can be used.

All the enumerated algorithms and their advantages are briefly explained

in the lectures. For example, source hash is usually used when affinity is

desired while destination hash is useful in proxy-cache server clusters.

3.1.4. Persistence and Affinity

Some application protocols work being spread over several TCP connec-

tions. HTTP is a well known example. In some cases, for the session to work

properly, the server must be aware of the information about all the TCP con-

10

nections. For example, in sessions where the user has to be authenticated.

This requirement can be a problem when a load balancer is used but can be

avoided using different strategies.

With session replication, the session information is replicated to other

cluster nodes immediately. Another possibility is central storage. In this

case, session data are stored in shared storage where all the cluster nodes

have access. These two methods are the most robust against a possible

failure of the real server that is in charge of the session.

Finally, server affinity or persistence are the most general solutions. In

this case, the LB sends all the connections that come from a given user to

the same real server during a period of time (sticky sessions). The differ-

ence between affinity and persistence lies in the kind of information used.

Server affinity is supported by network and transport layer information. For

example, the IP address of the client and server port. It is simple but it is

not the most advisable way to get stickiness. Persistence uses information

of the application layer. Therefore, it can only be used with LBs working at

level 7. With HTTP, persistence that takes advantage of cookies is the most

frequently used. Its usage will be shown in the lab project.

3.1.5. High Availability

Broadly speaking, adding more real servers to the cluster will improve the

load that the system can accept and will increase its reliability. However, in

order to work properly, the load balancer needs to know the status of the

real servers. In this way, the LB can eliminate from the load distribution

those ones that are not longer available. The tools to know the health of the

servers can be part of the load-balancing software, as in HAProxy, making

11

administration easier. In other cases, they have to be added as additional

packages as it happens when IPVS is used.

Of course, given its central role, it is also advisable at least to duplicate

the LB so that it does not become a single point of failure. This is usually

done using an active-passive configuration of LBs and monitoring the status

of the active LB. Moreover, the active LB needs to have an additional IP

address (i.e., the VIP address) for each interface (internal and external).

Should a failure occur, both the VIP and the load balancing service will

migrate to the spare LB (or one of them in case there are several available).

The new owner of the service will bind its MAC to the VIP in the cluster

through an ARP announce.

Both HAProxy as well as IPVS require additional software to check the

health of the active LB. To this end, a simple and widely used possibility

in Linux systems is the keepalived facility. Keepalived [20] implements the

Virtual Redundancy Routing Protocol (VRRP) [33] in order to perform load

balancer failover.

In addition, keepalived may be used to monitor the status of the real

servers and modify the IPVS configuration to be consistent with the health

of such servers. Like HAProxy, keepalived incorporates different kind of

controls to check the servers.

Both characteristics of keepalived, VRRP and real server health monitor-

ing, can be used together or separately. In the lab project, when HAProxy is

used to handle a service, it will distribute requests to the real servers as well

as it will monitor their health. However, load balancer failover will be per-

formed using the implementation of VRRP offered by keepalived. In the case

12

of services managed by IPVS, both tasks will be controlled by keepalived.

In addition to the previous mechanisms, if you want to use more powerful

techniques like fencing and stonith, you will need some hardware (Power Dis-

tribution Units, PDUs) and specific high-availability software, more powerful

but more complex to configure. Typically, this software is known as a cluster

stack. It is structured in two layers, located between the application and the

transport layer: Cluster Communication and Cluster Resource Management.

At this point, in the lectures, characteristics and tasks performed by both

layers, Cluster Communication and Cluster Resource Manager, are detailed.

The concepts of quorum, split brain and fencing are also explained. Examples

in the Linux world are shown. As cluster communication software, corosync

[9] is mentioned, whereas as a cluster resource manager, pacemaker [24] scope

is presented.

4. Lab Project

In this section, we describe a case study of a small cluster providing High

Performance Service. In particular, a web server will be deployed. As stated

above, this academic project will be based on the use of virtual machines.

The students build from scratch a cluster of virtual machines, installing and

configuring all the required services.

Care must be taken to reduce the size of the cluster as well as the spec-

ifications of each node to be representative of actual requirements but also

keeping complexity under reasonable limits. The virtual nodes of the cluster

will be run either on the desktop computers of the lab or on the students’

own laptops. At the time of writing, machines with a 4-core processor, 4 or 8

13

GB of RAM and more than 500 GB of disk storage are common. We propose

a cluster composed of 6 nodes: two LBs, three real servers and one storage

node. As stated above, the two LBs provide high availability. The real servers

specifically provide the required service. The number of real servers could be

increased if more resources are available on the host machine. Finally, the

storage node provides a shared storage for user and system data.

Concerning the specifications of each node, it depends on the require-

ments of the operating system and applications. As the cluster is only used

for academic purposes, we only consider the minimal requirements of the

operating system. At the time of writing, for Ubuntu 16.04 Server LTS, a

minimum 128 MB (512 MB recommended) of RAM and 2 GB of storage are

required for a system without desktop. We have successfully worked with

uniprocessor configurations with 512 MB of RAM at the LBs and 256 MB

of RAM at the real server and storage nodes. An 8 GB virtual disk is used

in all nodes but the storage one, where 10 GB are provided.

The lab project consists of several steps. First, the virtual machines that

will become the nodes of the cluster will be created and configured. Next, the

operating system and basic services will be installed on the cluster. Once the

cluster is configured and working, we install and configure the corresponding

software tools to provide load-balancing and high-availability that allow the

cluster to work as a web server. This paper only deals with this latter part of

the project. Please see details for operating system installation and system

configuration in [22].

Regarding load balancing, we will consider both HAProxy and IPVS

based approaches. As stated in Section 3, we will consider only NAT mode

14

Internet 192.168.1.0/24

Test

S1

S2

S3

10.0.1.0/24
LB1

LB2

NFS

Figure 1: Block diagram of the cluster

in the lab project. It must be noticed, though, that advanced students could

extend the project with other configurations.

Figure 1 shows the block diagram of the Internet server.

As it can be seen, the cluster-based server consists of two load balancers

(LB1 and LB2), three real servers (S1, S2, S3) and one storage node (NFS).

All the nodes are attached to the same “internal” subnet. Storage node

provides shared access to all cluster nodes. Notice that LB1 and LB2 have

two network interfaces to allow communication between the cluster and the

external world. In an actual cluster site, the “external” subnet could be

located behind the firewall. Nodes LB1 and LB2 are configured as active–

passive, sharing the VIPs that will be up only on the active node. To test

different alternatives, we will configure three external VIPs to the system:

• VIP-H1: 192.168.1.200. HAProxy-based load balancer working in http

mode.

• VIP-H2: 192.168.1.201. HAProxy-based load balancer working in tcp

mode.

15

Node IP Address
LB1 192.168.1.110 VIP-H1: 192.168.1.200

10.0.1.110 VIP-H2: 192.168.1.201
VIP-IPVS: 192.168.1.202
VIP-INT: 10.0.1.200

LB2 192.168.1.111 VIP-H1: 192.168.1.200
10.0.1.111 VIP-H2: 192.168.1.201

VIP-IPVS: 192.168.1.202
VIP-INT: 10.0.1.200

S1 10.0.1.10
S2 10.0.1.20
S3 10.0.1.30

NFS 10.0.1.100

Table 1: IP addresses of the cluster nodes.

• VIP-IPVS: 192.168.1.202. IPVS-based load balancer.

In addition, as real server answers must return through the LB, another

internal VIP address (VIP-INT) is also required.

To better differentiate both subnets, we have chosen address block 192.168.1.0/24

for the external network and 10.0.1.0/24 for the internal network. Table 1

shows the assigned IP addresses.

4.1. HAProxy installation and configuration

Both LBs must run HAProxy [11]. HAProxy is a very powerful load-

balancing package, which can be configured with a lot of options. In the lab

project, we configure basic services with demonstrative purposes. Figure 2

shows the proposed configuration in the lab project.

The configuration file is composed of several sections. The most impor-

tant ones are detailed below:

16

frontend These sections define the services that will be handled by HAProxy.

Each frontend section defines a service that will be handled by a set of

servers identified in the “backend” section indicated here. For each de-

fined service, the socket address, the load balancing mode (http, layer

7 or tcp, layer 4) and the associated backend must be specified. In this

case, we define two services:

• haproxy-http with socket address 192.168.1.200:80, which distributes

requests in “http” mode. As the LB understands the application

protocol, requests can be modified. The “forwardfor” option in-

structs HAProxy to store the client IP address in a field of the

http request that is forwarded to the real servers.

• haproxy-tcp with socket address 192.168.1.201:80, which distributes

requests in “tcp” mode.

backend These sections define sets of servers that will be in charge of the

service offered in frontend sections. In this case, we define two server

sets (“http-servers” and “tcp-servers”) that are composed of all avail-

able real servers. The first server set cyclically distributes requests

among the real servers. In this case, to deal with session persistence,

cookies are used. The second server set uses the client IP address to

enforce server affinity.

listen This section allows grouping frontend and backend definitions. In this

case, it is used to configure the HAProxy stats page.

17

4.2. Keepalived installation and configuration

Both LBs must run keepalived service [20]. As we have stated before,

in the lab project, we configure basic services with demonstrative purposes.

Figure 3 shows the proposed configuration in the lab project. It corresponds

to LB1 node.

The configuration file is composed of several sections:

vrrp instance This section configures a virtual interface. Virtual interfaces

will allow LB failover using VRRP protocol. One or several VIP ad-

dresses are assigned to the virtual interface. In this case, we define the

two virtual interfaces, “VI E” and “VI I”, corresponding to the exter-

nal and internal networks, respectively. The associated physical net-

work interface is also specified. The configuration shown corresponds

to LB1, which will be initially in charge of services (state MASTER).

Node LB2 is configured with state BACKUP, and will activate VIP

addresses only if LB1 fails. In case both nodes are active, the one with

more “priority” will be promoted to MASTER.

vrrp sync group In case of MASTER LB failure, all the configured VIP

addresses should failover to the BACKUP LB node. In our configu-

ration, this includes both external and internal VIP addresses. This

section groups virtual interfaces whose VIP addresses will be jointly

migrated in case of failover.

virtual server Keepalived package also includes a wrapper to configure

load-balancing using IPVS. Services are configured in this section, spec-

ifying the socket of the service (192.168.1.202:80 in our case), the rout-

18

ing method (NAT), the load balancing algorithm (round-robin) and the

pool of real servers.

4.3. Additional Configuration

Having an operational cluster involves manipulating different services and

their associated configuration files. For the sake of brevity, we will only

describe those ones that either can be tricky or specially oriented to the

HPS cluster. Of course, network interfaces of all cluster nodes should be

configured, and services like DNS or NFS should also be working.

HAProxy process will be started on both LBs at boot time. However,

only one (the MASTER) will have the VIP addresses configured. This

may generate a problem in the BACKUP LB node, as HAProxy wants

to bind to a non-existent IP address. This is easily solved by setting the

“net.ipv4.ip nonlocal bind” kernel variable, which allows a running load bal-

ancer instance to bind to an IP that is not local for failover.

Although HAProxy does not require NAT service (in fact, the load bal-

ancer is a proxy), the chosen configuration of IPVS does. Therefore, both

LB1 and LB2 should allow NAT. It is configured by setting the “net.ipv4.ip forward”

kernel variable and correctly configuring the nat table with iptables com-

mand.

Real servers must have configured the provided service (web in our lab

project). We use the well known apache package, which is easy to configure.

To access the “X-Forwarded-For” header, the apache remoteip module must

be enabled.

19

4.4. Testing the system

To test the HPS cluster, we will issue some requests to the system. In

an actual system, the requests would be issued from any computer to the

public IP address of the server. In the lab project, though, we have a cluster

of virtual machines that is behind the virtualization environment. Although

this environment could be configured to forward requests to the virtual ma-

chines, we propose to add a new node to the cluster: the Test node. This

new machine will be attached to the external network (please see Figure 1).

Therefore, we will issue requests to the HPS cluster from the Test node.

Among the advantages of this approach, we are free of installing and config-

uring whatever benchmark programs we want, and the fact of being so close

to the HPS cluster allows the possibility of performing its evaluation under

heavy traffic.

In order to verify the correct system behaviour, the following tests should

be performed:

• The web server works without any component failure. The active LB

distributes the requests among the real servers.

• The web server works when one or several real servers fail. The survivor

real servers will be in charge of the service.

• The web server works when the active LB node fails. The backup LB

node takes charge of the load-balancing task.

4.4.1. System without failure

As the first test, we will check that only one LB has the VIP addresses

configured. The ip command (ip addr) does the work. When the system has

20

just booted up, only LB1 will have the VIP addresses configured.

Next, we will perform some tests to check load balancing. We propose to

write a short PHP program (see Figure 4) that shows the current date and

time, the server IP address, the client IP address and the X-Forwarded-For

header. All this information is available in the PHP $ SERVER variable. In

addition, the set of cookies (PHP $ COOKIE variable) can be also displayed.

Once the program is installed on the system, we will issue some requests with

the help of a browser. We use the w3m text-based browser.

The results should be the following:

• 192.168.1.200. HAProxy, http mode. Although the load-balancing al-

gorithm is set to round-robin, as cookie-based persistence has been set,

all the requests are assigned to the same real server. The assigned

server is shown in the SERVERID cookie. The active LB is the client

seen by the real servers, and the true client IP address is shown in the

X-Forwarded-For header, as HAProxy is working in http mode and the

forwardfor option is set.

• 192.168.1.201. HAProxy, tcp mode. As the load balancing algorithm

is set to “source”, all the requests are also assigned to the same real

server, chosen as a function of the client IP address. The active LB

is the client seen by the real servers, and the true client IP address is

unknown as HAProxy is working in tcp mode.

• 192.168.1.202. IPVS. As the load balancing algorithm is set to round-

robin, each request is handled by a different real server. The true client

IP address is correctly seen by the servers.

21

As an alternative, the HAProxy status page can be also displayed to

check that all real servers are working and the applied load balancing algo-

rithm. For IPVS-based service, the ipvsadm utility shows its status. Finally,

students are also encouraged to explore log files as they are very instructive.

4.4.2. System with real server failure

A real server failure can be easily forced by (virtually) disconnecting the

network interface. After the failure, the server node will not longer receive

any request. New requests will be assigned to any of the survivor real servers.

HAProxy stat page will clearly show that the real server is “DOWN”. On the

other hand, the ipvsadm utility will not longer show the failed real server.

Service will continue, provided that there is at least one real server avail-

able. A fallback real server could also be configured.

4.4.3. System with LB failure

Likewise real servers, failure of the LB could be easily forced by discon-

necting one of its network interfaces. As both interfaces are grouped in the

keepalived configuration, failover of both external and internal VIP addresses

will occur. Once the fault is forced, it is easy to check VIP address migration

by issuing the ip command in both LB nodes. The formerly BACKUP LB

node will now assume the MASTER role. Log files will also store the failover.

If we issue again some requests to the VIP addresses, everything should

be fine. The operating LB is now in charge of the load-balancing.

4.5. Evaluation of the web server

The HPS cluster is built with virtual machines. Therefore, it is not

expected to achieve high performance results as in a real system. However,

22

it is a goal of the subject to teach the students how to evaluate such a

system. Usually, HPS servers are characterized in terms of their throughput,

measured in processed requests per second. Response time of each request is

also useful.

As in other cases, performance is ultimately limited by the bottleneck

of the system. In an Internet server, the bottleneck could be located at

the real servers, the storage, the LB or the network. System optimization

alternatives depend on the bottleneck location. In the lab project, we work in

an scenario where the bottleneck is located at the real servers. This scenario

is compatible with the implementation of the cluster as virtual machines,

and, as we will see, it justifies the use of a cluster to improve performance.

4.5.1. Evaluation model

Benchmarks are often used to evaluate system performance. In the web

server evaluation arena, there are several options, like apache benchmark

[1], siege [29] or JMeter [18]. In the lab project, we propose using apache

benchmark because it is easy to use.

Apache benchmark is a tool for benchmarking an HTTP server. The

benchmark basically issues a given number of concurrent requests to the

server, waiting for the response. This cycle is repeated until a given number

of requests have been processed or an amount of time has elapsed. The faster

the server, the higher the number of requests per second obtained.

The benchmark is launched to a test page. In an actual system evalu-

ation, a set of tests containing different scenarios should be evaluated. In

general, a data access application where storage and database accesses and

also some computing are required could be used. However, to keep the anal-

23

ysis simple, as stated above, in the lab project, we use a test page that puts

the pressure on the real servers. In particular, we prepared a PHP test page

that performs some compute-intensive task. We have used with success the

code shown in Figure 5, which computes the π constant by numerical integra-

tion (π =
∫ 1

0
4

1+x2dx) using the midpoint rectangle rule. The client requests

pass the number of considered rectangles to the URL, therefore adjusting the

computational complexity of the page.

4.5.2. Evaluation results

As a first step, we will analyse the execution time of the π constant

compute program using numerical integration as a function of the number

of rectangles. We will select a number of rectangles high enough to put real

servers under pressure. In our experiments, 106 rectangles required roughly

0.6 secs. This means that one real server (with one core) will serve only

1
0.6

= 1.67 requests per second.

Then, apache benchmark is used to test the system. For instance, 100

requests with concurrency levels of 1, 2 and 3 are issued. Remember that

our cluster has 3 real servers. Another test where the number of concurrent

requests is twice the number of CPUs (6 in our case) is also issued. For

comparison purposes, the performance of only one node is also evaluated.

To do so, all the real servers but one are shut down and the same tests are

performed. Figures 6 and 7 show the obtained results.

As we can see, the cluster is able to scale up throughput with the number

of concurrent requests, up to the number of real servers. From this point

onwards, throughput does not grow any more. Regarding response time, it

is kept constant with the increase of the number of concurrent requests, up

24

to the number of real servers. If more concurrent requests are present, some

nodes will be assigned more than one request. In particular, for twice the

number of real servers, each real server has to deal with two requests, and

response time grows to twice the initial one.

The results obtained with only one node confirm this behaviour. As soon

as there are several concurrent requests, the real server processing power

is shared among them, thus linearly increasing response time. Throughput

does not grow, as the real server is saturated with just one request.

This experiment clearly justifies how computer clusters allow server scal-

ing for high performance service. Remember, though, that the pressure is

put on the real servers, as handling the requests requires some processing

time.

The experiment could be repeated by requesting the same page but with

a lower number of integration rectangles. The lower this number, the lower

the processing requirements at the real servers. As a consequence, response

time will be reduced and throughput will be accordingly increased. As the

number of requests per second increases, the pressure on the load balancer

also increases. In fact, the load balancer may become the bottleneck of the

system. Load balancer performance can be improved in several ways, but it

is out of the scope of the subject. Interested students may analyze in depth

this issue in their master thesis.

5. Teaching Discussion and Assessment

The proposed lab project is challenging for students as they have to tackle

a quite real problem: installation, configuration and evaluation of their own

25

computer cluster. Although we provide the students with a complete docu-

mentation to achieve this goal, problems usually arise. Students are encour-

aged to try solving the problems by themselves, carefully analyzing system

error or warning messages, log files, and also browsing specialized Internet

sites ([30], [21], [28], [11]) to look for solutions. This latter source of infor-

mation is very valuable, as when looking for some particular question, some

related topics that may draw student attention are discovered. On the other

hand, despite the fact that each student works in his/her cluster, they usually

help each other, which allows teamwork among them.

The authors have been teaching a similar subject [23] for several years in

a Master postgraduate course. The subject is targeted to bachelors in Com-

puter Science, Computer Engineering or Telecommunication Engineering. It

has 40 assigned hours in the syllabus, spread over 16 sessions of 2.5 hours

each. We reserve six complete sessions throughout the course to install and

configure the computer cluster using virtual machines. A total of 15 class-

room hours is devoted to deploy the computer cluster by the students. As

stated above, the contents developed in this paper extend the HPS part of the

subject. In this way, we are adapting its contents to fill the detected gap re-

garding High Performance Service in high performance computing education

curricula, trying to adapt the contents taught to actual market reality.

Student feedback over years has been really good, as students love solving

practical problems. They are very motivated in the hands-on project. As

the project starts from scratch and ends with a completely operating cluster

offering High Performance Service, they are very proud of their work as they

feel that they had a complete control of all the involved steps, overcoming

26

all the arisen problems. In particular, students are very excited when they

understand the importance of load balancing on server throughput and re-

sponse time, analysing how HTTP requests are being balanced or a failover

is produced in the LB. Overall, student opinion is that they have learned

practical and useful issues of today servers.

We have evaluated the course considering two different aspects: contents

and methodology. Regarding to the former, students are asked to complete a

survey before starting the course in order to know their previous knowledge

about the subject. Then, at the end of the course, they have to take a

written exam (30%). The topics of the exam include all the contents taught

during the course, making special emphasis on the lab project aspects. In

addition, the deployment of the computer cluster over the virtual machines

is also considered in the assessment (35%). Table 5 shows the initial survey

results for the questions related to load balancing and high availability. In

this table, 1 (-) value means “I don’t know anything about it” and 5 (+)

means “I absolutely know them in depth”. As we can see, most of the

students know nothing or have little knowledge about these concepts. None

of them have ever installed or configured this kind of tools. However, all

them had their cluster working correctly at the end of the term. Moreover,

regarding the final exam, the results of the questions related to these topics

were very good. More than 80% of the students got marks of at least 70% of

the question values (equivalent to level B mark). As an example, 55% of the

students answered perfectly the questions about fencing. As table 5 shows,

none of them knew nothing about it at the beginning of the course. Other

questions about high availability and load balancing (topics A and C in the

27

previous survey) got 82% answers with the maximum score.

Concerning the methodology assessment, the results obtained in the yearly

survey of the University confirm student satisfaction. A five-point Likert

scale was used in the questionnaire, with the typical format (Strongly Agree,

Agree, Undecided, Disagree, Strongly Disagree). Table 5 shows the results

in some of the questions related to methodology and teaching materials. As

we can see, most of the results had highly positive scores with percentages

approaching 80% of Strongly Agree.

Statement 1 (-) 2 3 4 5 (+)
% % % % %

A. I can explain in depth the tasks performed by a load balancer 37 63 0 0 0
B. I know some load balancing software tool 87 13 0 0 0
C. I can explain in depth the concept of high-availability 25 75 0 0 0
D. I can explain in depth the purpose of fencing techniques 100 0 0 0 0

Table 2: Survey conducted to the students about previous knowledge.

Statement Strongly Disagree Undecided Agree Strongly
disagree agree

% % % % %
A. Teaching methodology and classroom 0 0 0 30 70
activities help the learning process
of the student
B. There is a good working environment 0 0 0 20 80
in the classroom
C. The contents of the course seem 0 0 11.11 11.11 77.78
interesting to the students
D. Teaching materials are very helpful for 0 0 0 22.22 77.78
learning and reaching the subject goals

Table 3: Survey conducted to the students about methodology satisfaction.

28

6. Related Work

Although several papers have already addressed how to teach cluster com-

puting in university courses, to the best of our knowledge, none of them is

focused on load balancing or high availability. However, since the beginning,

we find authors like Baker and others [5] underlining its importance in a

cluster system. It is also true that there is a wide set of topics that may be

covered in a cluster computing course [3]. For this reason, the topics finally

chosen will depend on the course objectives.

In [3], several authors present a selection of possible topics for cluster

computing courses, based on their experience teaching this subject in differ-

ent universities in USA and Australia. The proposed material is pretty wide

and covers many different aspects of cluster computing. This allows other

instructors to select the contents best suited to their course objectives. The

paper underlines the importance of students can see how computers in a clus-

ter work together to provide a service. Furthermore, among the typical topics

that can be covered in a course, systems like IPVS are included. However, in

the actual courses shown as examples in the paper, we find that frequently

an important part of the course is focused on parallel programming.

Later works proposed to build clusters to use them in different courses.

In [4], [8], [13] and [19], those clusters are implemented using real hardware

while [31] and [34] choose virtualization. In general, most courses build the

clusters pursuing two goals. First, it allows the students learning how to

make and test an HPC cluster [8], [19]. Moreover, in second place, many

courses take advantage of the cluster built to run parallel programs [4], [13],

[31], [34].

29

Two of the courses are not addressed to students in computer science or

computer engineering. [8] is intended for students in engineering or sciences

while the course described in [19] is aimed at business school students. That

is why, neither of them include parallel programming. They are more in-

terested in how to build a cluster and in its performance evaluation, since

their students may have to develop clusters in their workplaces. In [8] cluster

evaluation is performed by running MPI test programs. [19] focuses on the

best resource allocation, for example, reallocating RAM between nodes and

evaluating cluster performance with each configuration. Additionally, this

course includes also some useful contents about systems security.

All the clusters developed in these courses are based in Linux operating

system apart from [34]. Overall, they use quite basic configurations that do

not represent real life installations. Regarding to the cluster usage, they are

intended for high performance computing usually ignoring the high perfor-

mance service. However, this latter usage represents a very high percentage

of cluster installations [14]. Internet servers that handle a high demand on a

given service (web, mail, file transfer, database, videos, etc.) are everywhere

and are usually based on clusters. Finally, almost no course addresses high

availability or advanced cluster storage.

On the contrary, the course proposed in this paper considers both high

performance/high throughput computing and high availability/high perfor-

mance service flavours of computer cluster usage. In addition, load balancing

and high-availability are widely developed during the lectures as well as, tak-

ing a hands-on approach, in the lab project.

30

7. Conclusions

Nowadays, the use of clusters has widely spread both among companies

and in the academia. Most university cluster computing courses are fo-

cused on High Performance Computing, the most common type of clusters

in universities. However, big servers on the Internet usually rely on High

Performance Service-High Availability (HPS-HA) clusters.

In this paper, we propose a master course on cluster configuration and

administration, that tries to fill this gap. It is the updated version of the

previous course presented in [22] that has been taught for several years. In

this edition, the topics about HPS-HA have been updated and extended. To

this end, we selected some of the most interesting alternatives, that are pre-

sented in the lectures. In this paper, they have been summarized in Section

3. Moreover, these contents are reinforced through the lab sessions. There,

students, starting from scratch, install, configure and test an HPS-HA clus-

ter providing a web service. In order to train the students for their working

life, the whole process uses packages and tools widely used in companies.

In addition, the lab project allows students to reinforce several important

issues. First, how to check if the cluster will work properly after a failure.

Next, how clusters allow to scale up the server load. And finally, how the

performance bottleneck can be in different points of the cluster.

Students remain highly motivated during all the project but, specially,

at the end, when HPS and HA tests show cluster performance improvement

and resilience, respectively.

31

Acknowledgements

This work was supported in part by the Spanish Ministerio de Economı́a

y Competitividad (MINECO) and by FEDER funds under Grant TIN2015-

66972-C5-1-R.

[1] ab - Apache HTTP server benchmarking tool,

https://httpd.apache.org/docs/2.4/programs/ab.html (Accessed 10-06-

2017).

[2] ARP problem in VS/TUN and VS/DR,

http://www.linuxvirtualserver.org/docs/arp.html (Accessed 25-07-

2017).

[3] A. Apon, R Buyya, H Jin, J Mache. Cluster computing in the classroom:

topics, guidelines, and experiences. In: IEEE/ACM Int. Symposium on

Cluster Computing and the Grid, pp. 476-483, (2001).

[4] S. Aydin and O.F. Bay. Building a high performance computing cluster

to use in computing course applications. Procedia - Social and Behavioral

Sciences, 1(1): pp. 2396-2401, (2009).

[5] M. Baker, A. Apon, R. Buyya and H. Jin. Cluster computing and appli-

cations. Encyclopedia of Computer Science and Technology. New York:

Marcel Dekker, Aug. 2001, vol. 45.

[6] D.J. Becker, J. Salmon, T. Sterling and D.F. Savarese, How to Build a

Beowulf: A Guide to the Implementation and Application of PC Clus-

ters, (MIT Press, 1999).

32

[7] R. Buyya, High Performance Cluster Computing: Architectures and Sys-

tems, Vol. 1, (Prentice Hall, 1999).

[8] M-H. Chen and T-L. Li. Construction of a High-Performance Computing

Cluster: A curriculum for Engineering and Science Students. Computer

Applications in Engineering Education 19(4), pp. 678-684. (2009).

[9] Corosync. The Corosync Cluster Engine,

http://corosync.github.io/corosync/ (Accessed 20-06-2017)

[10] D. H. J. M. Dolmans, S. M. M. Loyens, H. Marcq and D. Gijbels. Deep

and surface learning in problem-based learning: a review of the litera-

ture. Advances in Health Sciences Education, 21(5): 10871112. (2016)

DOI: 10.1007/s10459-015-9645-6

[11] HAProxy, http://www.haproxy.org/ (Accessed 30-05-2017)

[12] HAProxy. The Reliable, High Performance TCP/HTTP Load Balancer,

https://www.haproxy.org/they-use-it.html ((Accessed 25-07-2017)

[13] V. Holmes and I. Kureshi, Developing High Performance Comput-

ing Resources for Teaching Cluster and Grid Computing courses. In:

ICCS International Conference On Computational Science (2015). doi:

10.1016/j.procs.2015.05.310

[14] D.C. Hyde, M. Baker, editor. Cluster Computing White Paper pp. 110-

119, (2000). Available from http://arxiv.org/pdf/cs/0004014.pdf.

[15] Computer Engineering Curricula 2016 (draft). Association

for Computing Machinery (ACM)/IEEE Computer Society.

33

(2015) https://www.computer.org/cms/Computer.org/professional-

education/curricula/ComputerEngineeringCurricula2016.pdf

[16] Prasad, S. K., Chtchelkanova, A., Dehne, F., Gouda, M., Gupta,

A., Jaja, J., Kant, K., La Salle, A., LeBlanc, R., Lumsdaine, A.,

Padua, D., Parashar, M., Prasanna, V., Robert, Y., Rosenberg,

A., Sahni, S., Shirazi, B., Sussman, A., Weems, C., and Wu, J.

2012. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Dis-

tributed Computing - Core Topics for Undergraduates, Version I, Online:

http://www.cs.gsu.edu/ tcpp/curriculum/index.php, 55 pages.

[17] IP Virtual Server https://en.wikipedia.org/wiki/IP Virtual Server (Ac-

cessed 30-05-2017)

[18] Apache JMeterTM, http://jmeter.apache.org/ (Accessed 10-06-2017)

[19] F.L. Kitchens, S.K. Sharma and T. Harris, Integrating IS Curriculum

Knowledge through a Cluster-Computing Project - A successful Exper-

iment. Journal of Information Technology Education, 3, pp. 263-278,

(2004).

[20] Keepalived, http://www.keepalived.org/ (Accessed 07-06-2017)

[21] https://www.loadbalancer.org/resources/deployment-guides (Accessed

26-07-2017)

[22] P. López, E. Baydal, On a course on computer cluster configuration and

administration, in: J. Parallel Distrib. Comput. 105 (2017) 127-137.

http://dx.doi.org/10.1016/j.jpdc.2017.01.009

34

[23] Master’s Degree in Computer and Network Engineering,

https://www.upv.es/titulaciones/MUIC/index-en.html (Accessed

15-05-2017).

[24] Pacemaker, http://clusterlabs.org/ (Accessed 20-06-2017).

[25] G.J. Pfister, In Search of Clusters, (Prentice Hall, 1998).

[26] The PROXY protocol. Versions 1 & 2,

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

(Accessed 20-06-2017)

[27] Direct routing,

https://access.redhat.com/documentation/en-

US/Red Hat Enterprise Linux/4/html/Virtual Server Administration/s2-

lvs-directrouting-VSA.html

(Accessed 25-07-2017)

[28] Red Hat: Customer portal, https://access.redhat.com/ (Accessed 25-

07-2017)

[29] Siege Home, https://www.joedog.org/siege-home/ (Accessed 10-06-

2017).

[30] serverfault, https://serverfault.com/ (Accessed 25-07-2017).

[31] G.K. Thiruvathukal et al. Virtualization for Computational Scientists,

Computing in Science & Engineering, 12(4), pp. 52-61, (2010).

[32] Top500 Supercomputer Lists, http://www.top500.org/lists (Accessed

12-06-2016)

35

[33] Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and

IPv6, https://tools.ietf.org/html/rfc5798 (Accessed 7-06-2016)

[34] R.L. Warrender, J. Tindle and D. Nelson, Development of a Virtual

Cluster, In: Int. Conf. on High Performance Computing and Simulation

(HPCS), pp. 545-551, (2013).

36

global
...

defaults
...

frontend haproxy-http
mode http
option httplog
option forwardfor
bind 192.168.1.200:80
default_backend http-servers

frontend haproxy-tcp
mode tcp
option tcplog
bind 192.168.1.201:80
default_backend tcp-servers

backend http-servers
mode http
balance roundrobin
cookie SERVERID insert
option httpchk
server www server1:80 cookie S1 check
server www server2:80 cookie S2 check
server www server3:80 cookie S3 check

backend tcp-servers
mode tcp
balance source
option httpchk
server www server1:80 check
server www server2:80 check
server www server3:80 check

listen stats
bind 0.0.0.0:8000
mode http
stats show-desc LBx node
stats refresh 5s
stats uri /haproxy?stats
stats realm HAProxy Statistics
stats auth admin:passwd
stats admin if TRUE

Figure 2: HAProxy configuration file.

37

vrrp_sync_group VG1 {
group {

VI_E
VI_I

}
}

vrrp_instance VI_E {
state MASTER
interface eth0
virtual_router_id 51
priority 150
authentication {

auth_type PASS
auth_pass mypasswd

}
virtual_ipaddress {

192.168.1.200
192.168.1.201
192.168.1.202

}
}
vrrp_instance VI_I {

state MASTER
interface eth1
virtual_router_id 52
priority 150
authentication {

auth_type PASS
auth_pass mypasswd

}
virtual_ipaddress {

10.0.1.200
}

}
virtual_server 192.168.1.202 80 {

delay_loop 3
lb_algo rr
lb_kind NAT
protocol TCP

real_server 10.0.1.10 80 {
weight 1
TCP_CHECK {

connect_timeout 3
}

}
real_server 10.0.1.20 80 {
weight 1
TCP_CHECK {

connect_timeout 3
}

}
real_server 10.0.1.30 80 {
weight 1
TCP_CHECK {

connect_timeout 3
}

}
}

Figure 3: Keepalived configuration file for LB1.

38

<?php
header("Refresh: 10");
echo "Date: " . date ("Y/m/d") . "
";
echo "Time: " . date ("H:i:s") . "
";
echo "Server IP: ". $ SERVER[’SERVER ADDR’] . "
";
echo "Client IP: ". $ SERVER[’REMOTE ADDR’] . "
";
if (isset($_SERVER[’HTTP X FORWARDED FOR’])) {

echo "Forwarded-For: ". $ SERVER[’HTTP X FORWARDED FOR’] . "

";
} else {
echo "Forwarded-For: ". "Unknown" . "

";
}

echo "Cookies:
";
print r($ COOKIE);
?>

Figure 4: PHP code for testing load-balancing

<?php
$t1=microtime(true);

$n=$_GET["n"];
$area=0.0;

for ($i=0; $i<$n; $i++)
{
$mid=($i+0.5)/$n;
$area=$area+4.0/(1.0+$mid*$mid);
}

$result=$area/$n;

$t2=microtime(true);
$exectime=$t2-$t1;

printf ("Computed PI, n = %d, is equal to %f
", $n, $result);
printf ("Execution time = %.5f secs
", $exectime);
?>

Figure 5: PHP code to compute π constant

39

Figure 6: Evaluation of the cluster: requests per second

Figure 7: Evaluation of the cluster: response time

40

