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Abstract 

The aim of this study was to compare the performance of the well-known genetic algorithms 
and tabu search heuristics with the financial problem of the partial tracking of a stock market 
index. Although the weights of each stock in a tracking portfolio can be efficiently determined 
by means of quadratic programming, identifying the appropriate stocks to include in the 
portfolio is an NP-hard problem which can only be addressed by heuristics. Seven real-world 
indexes were used to compare the above techniques and results were obtained for different 
tracking portfolio cardinalities. The results show that tabu search performs more efficiently with 
both real and artificial indexes. In general, the tracking portfolios obtained performed well in 
both in-sample and out-of-sample periods, so that these heuristics can be considered as 
appropriate solutions to the problem of tracking an index by means of a small subset of stocks. 
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1. Introduction 

Tracking a stock market index consists of creating a portfolio which replicates the performance 
of the index. The portfolio created is known as tracking portfolio and the index being tracked is 
often called benchmark. How well the tracking portfolio performs is usually quantified in terms 
of the tracking error, a measure of the difference between the index performance and the 
tracking portfolio performance.  

Index tracking has attracted attention from both academics and investment managers. In fact, 
according to Frino et al. [21], assets benchmarked against the S&P index exceed US$1 trillion. 
Advocates of this investment strategy as Fama [18] point to the efficient market hypothesis, 
according to which it is not possible to beat the market in terms of both return and risk 
simultaneously. In other words, it is not possible to create a portfolio which provides higher 
returns than the market without taking greater risks than those implicit in market operations. 
Moreover, it is not feasible to create a portfolio with less risk than the market, without being 
penalized in terms of lower returns. According to this hypothesis, a rational investor can do no 
better than track the market and thereby obtain the same return while subject to the same risk.  

The strategies employed by portfolio managers can be divided into two large groups: active and 
passive management strategies. Managers who take an active approach try to beat the market 
creating portfolios which are balanced in a different way than the index. The aim is to obtain 
greater returns while taking the same or lesser risks than those of the market, or to take a lesser 
risk for the same or a greater return than the market. This has been achieved by the Berkshire 
Hathaway investment fund run by Warren Buffet. In its 50 years of existence it has achieved a 
mean annual return of 21.6%, significantly more than the 9.9% achieved by the S&P index 
(including dividends) and with less volatility than the index. This fact proves that in practice the 
market is not necessarily efficient. 

Passive management strategies define portfolios that replicate the index to be tracked. They 
implicitly assume that it is not possible to beat the market’s return-risk combination. Therefore, 
the approach to the problem is different than the one applied by the traditional mean-variance 
model by Markowitz [33], where portfolio composition is calculated by means of an 
optimization model. Passive managers seek to minimize the number of changes to their 
portfolios and only perform operations to rebalance them to follow the composition and 
structure of the index. Conversely, active managers usually conduct more trades in an attempt to 
take advantage of short-term market opportunities. These managers must bear greater 
transaction costs deriving from the high number of sale and purchase operations, with an impact 
upon the strategy’s net return.  

The index tracking problem with cardinality constraint has been extensively analyzed in the 
literature (Beasley et al. [7]; Ni and Wang [35]; Filippi et al. [19]; Ruiz-Torrubiano and Suárez 
[37]; Sant’Anna et al. [38]; Mezali and Beasley [34]; Canakgoz and Beasley [9]; Li et al. [27]), 
as has been the mean-variance model with cardinality constraint (Lwin and Qu [31]; Woodside-
Oriakhi et al. [43]; Streichert et al. [40]; Chang et al. [11]; Aouni et al. [4]; Cesarone et al. [10]; 
Maringer and Kellerer [32]). Some of these papers approach the problem from a traditional 
optimization perspective, but the most recent studies deal with the problem using heuristics to 
find solutions in a reasonable computing time which are closed to the optimal solution. 

Applying the mean-variance model with cardinality constraint, Woodside-Oriakhi et al. [43] 
compare genetic algorithm (GA), tabu search (TS) and simulated annealing (SA). They 
conclude that SA is not competitive with GA and TS, having higher errors and requiring higher 
computation time; whereas GA and TS errors can be considered similar. 

We have found no study which compares the performance of different heuristics on the index 
tracking problem with cardinality constraint, and which analyzes both the accuracy of the 
solutions obtained, as well as the computing time required. 
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Portfolios obtained applying the mean-variance model or index tracking can differ significantly. 
In the mean-variance model the global portfolio risk is minimized, while in the index tracking 
approach only the unsystematic component of risk is minimized. Therefore, it is interesting 
studying the performance of GA and TS heuristics on the index tracking problem with 
cardinality constraint. Moreover, it is useful to compare their performance with the one obtained 
in the mean-variance problem with cardinality constraint. In the latter case, as proved by 
Woodside-Oriakhi et al. [43], GA and TS performance is similar and superior to SA. 

The motivation of this paper is twofold: 1) to compare the efficiency of GA and TS heuristics to 
solve the index tracking problem with cardinality constraint, analyzing and comparing their 
ability to find solutions which are optimal or closed to the optimum; 2) to compare the 
efficiency of both heuristics regarding their computational cost to find proper solutions. 

Index tracking is mainly used by investors applying a passive strategy and can be performed in 
two ways: 1) full replication, or 2) partial replication. In the first case, the tracking portfolio has 
the same cardinality as the benchmark, making the calculation of the weights assigned to the 
different stocks a trivial matter as probed by Roll [36]. In the second case, tracking is 
implemented using a subset of stocks and the calculation of their weights is no longer 
unimportant [7, 9, 14, 16, 37]. The latter approach leads to a loss of tracking accuracy, but 
provides considerable advantages over a full replication approach: 1) savings on rebalancing 
costs, as the portfolio only contains a smaller set of stocks, 2) savings arising from not having to 
include in the portfolio assets whose relative weights are very small, and 3) the possibility of 
handling some market indices that are too large in nature, e.g. S&P500. These have little impact 
on the tracking error, but give rise to transaction costs every time the composition of the index 
changes, as the tracking portfolio needs to be rebalanced.  

Any attempt to implement partial tracking faces two problems. The first is selecting the stocks 
to be included in the tracking portfolio. The second concerns determining the weight of each of 
the selected stocks. The first problem is NP-hard, as has been pointed out by Ruiz-Torrubiano 
and Suárez [37]. Therefore, heuristic algorithms must be used to find practical solutions close to 
the global optimum but which are also computationally feasible. As we show below, the second 
problem can be efficiently solved by quadratic programming.  

The aim of this study is to compare the performance of two well-known heuristics in solving the 
partial index tracking problem: genetic algorithm (GA) and tabu search (TS). For this purpose, a 
set of simulations is carried out to estimate the distribution of the computing time necessary to 
obtain tracking portfolios in two different scenarios. The first scenario deals with the tracking of 
artificial indices which composition is known and so the optimal solutions which the heuristics 
have to find. The second scenario uses real indices, whose exact compositions are not known, 
nor are the optimal tracking portfolios. The simulation is performed using different stock market 
indices and different cardinalities for the tracking portfolios. As a result, the performance of the 
two heuristics regarding parameters can be compared in each of the two scenarios. 

When undertaking index trading, it must be considered that an index is not a portfolio. Usually, 
indices are classified into 3 groups depending on the methodology applied to calculate them, as 
stated by Shoven and Sialm [39]. (1) Price-weighted indices (PWI), are those for which the 
value of the index for period t is calculated weighting the i stocks by their price: 𝑃𝑊𝐼$ =
&
'(
∑ 𝑃*,$* . The denominator 𝑑$ varies over time, avoiding discontinuities in the index every time 

a stock undertakes a split, pays out a dividend or the composition of the index is changed. 
Investors seeking to track such an index have to rebalance their portfolio each time the 
denominator is changed. An example of a price-weighted index is the DJIA, which denominator 
at the time of writing this paper has a value of 0.14602128.; (2) Value-weighted indices (VWI), 
are calculated so that every stock has a weight in the index proportional to its market 
capitalization, so the value of the index for period t is 𝑉𝑊𝐼$ = 𝑉𝑊𝐼$.& ∑ /𝑤*$

12(
12(34

5* , been 

𝑤*$ =
12(62(
∑ 12(62(2

 and where 𝑁*$ is the number of shares outstanding of company i in period 𝑡. 
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Therefore, investors tracking a VWI rebalance their portfolios every time a company issues new 
shares or repurchases shares. This methodology is the most widely used at present. As an 
example we can mention the S&P500 index; (3) Equally weighted indices (EWI), are calculated 
following the expression 𝐸𝑊𝐼$ = 𝐸𝑊𝐼$.&

&
:
∑ 12(

12(34* . 

In the case of value-weighted indices, they can be compared to portfolios in which weights 
continuously change. 

Finally, the contribution of this paper is closely related with its motivation. To our best 
knowledge, there is no previous study which compares the performance and the efficiency of 
GA and TS heuristics in the field of index tracking with cardinality constraint. We use a 
database employed in several academic studies to compare the tracking performance on both 
artificial and real indices. Our research shows that TS improves GA in all indices analyzed. This 
result is opposite to the findings by Woodside-Oriakhi et al. [43] for a similar problem, the 
comparison of TS and GA on the mean-variance model with cardinality constraint. 

The rest of this paper is structured as follows: Section 2 presents a formal description of the 
problem of partial index tracking. Section 3 reviews the recent literature, while the fourth 
section summarizes the functioning of the two heuristics applied: genetic algorithms and tabu 
search. The results obtained after using the two heuristics in different scenarios and databases 
are presented in the fifth section. Finally, the main conclusions are presented in Section 6.  

 

2. Partial index tracking 

This section provides a formal definition of partial index tracking, together with the explanation 
of the notation employed. 

The simplest strategy for partial index tracking consists of selecting those stocks included in the 
index that have the highest market capitalization. However, this does not guarantee optimal 
tracking due to the effect of the stocks’ covariance on the tracking index. The stocks with the 
highest market capitalization will probably include some from the same sector which are 
therefore highly correlated with each other. On the other hand, other sectors with a lower market 
capitalization will not be represented in the tracking portfolio precisely because of the low 
relative weight of such stocks. For that reason, choosing stocks on the basis of their market 
capitalization is a generally inefficient partial tracking method. 

In order to propose a more accurate strategy, it is necessary to introduce some specific notation 
to the problem. Henceforth vectors and matrices are written in bold style and scalars in italic 
style. Let the series of prices over time be {𝑝*(𝑡)}*@&:A , with 𝑡 = 1…𝜏 and 𝑛𝑏 the cardinality of 
the index. The return of stock 𝑖 at time 𝑡 is calculated by means of equation (1): 

 

 𝑟*(𝑡) =
I2($).I2($.&)

I2($.&)
,			𝑖 = 1…𝑛𝑏,			𝑡 = 2…𝜏 (1) 

 

Similarly, we can calculate the return from index 𝑟A(𝑡) at time 𝑡. The return of all the stocks at 
time 𝑡 can be expressed as: 

 

 𝐫M(𝑡) = [𝑟&(𝑡) … 𝑟:A(𝑡)] (2) 

 

where 𝐫(𝑡)  is a 𝑛𝑏 × 1  vector. The return from tracking portfolio 𝑝  can be obtained by 
considering the percentage of the initial capital invested (the weight) in each of the stocks: 
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 𝐰M = [𝑤& … 𝑤:A] (3) 

 

where 𝐰 is a vector with 𝑛𝑏 rows, and 𝑤* represents the percentage of the capital invested in 
stock 𝑖. If full replication is the case, then ∀𝑖	𝑤* > 0;. If the tracking is partial, then at least one 
of the stocks will have a weight of zero in the tracking portfolio. Thus, the number of stocks in 
tracking portfolio 𝑝 with a weight other than zero will be 𝑛𝑝, with 𝑛𝑝 ≤ 𝑛𝑏; therefore, 𝑛𝑝 
represents the cardinality of the tracking portfolio. With values 𝑛𝑝 < 𝑛𝑏 a partial index tracking 
problem is faced, whereas in the case of 𝑛𝑝 = 𝑛𝑏 the problem takes the form of full replication. 

The return from the tracking portfolio at time 𝑡 is calculated as the product of the weight vector 
and the return vector of the stocks at time 𝑡: 

 

 𝑟I(𝑡) = 𝐰M𝐫(𝑡) (4) 

 

The set of returns from the tracking portfolio and the benchmark for the period [1… 𝜏] are 
expressed in (5)-(6) as 𝜏 × 1 vectors: 

 

 𝐫IM = [𝑟I(1) … 𝑟I(𝜏)] (5) 

 𝐫AM = [𝑟A(1) … 𝑟A(𝜏)] (6) 

 

The tracking accuracy during the period 1…𝜏 has been calculated in different ways in the 
literature. One such method is the calculation of the tracking error (𝑇𝐸), which is the difference 
between the tracking portfolio return and the benchmark return: 

 

 𝑇𝐸(𝑡) = 𝑟I(𝑡) − 𝑟A(𝑡) (7) 

 

This can also be expressed as a 𝜏 × 1 vector (8): 

 

 𝐓𝐄 = 𝐫I − 𝐫A (8) 

 

The tracking error variance (𝑇𝐸𝑉) is calculated as (9): 

 

 𝑇𝐸𝑉 = 𝑉𝑎𝑟\𝐫I − 𝐫A] (9) 

 

This measure was the first to be employed in the literature, in papers such as Connor and Leland 
[15], Francks [20], Lobo et al. [30], and Roll [36]. However, the tracking error variance has an 
important drawback, as noted by Beasley et al. [7]; a portfolio with a constant difference in 
returns from the benchmark will also have a constant 𝐓𝐄 vector. This will give a value of zero 
to the tracking error variance and yet it is obvious that the tracking portfolio will not be 
accurately reproducing the movement of the benchmark. 

In order to overcome this disadvantage, Beasley et al. [7] proposed the following as the overall 
measure (10): 
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 &
M
(∑ |𝑇𝐸(𝑡)|_M

$@& )& _⁄  (10) 

 

where the tracking error is taken as an absolute value. Using this expression, these authors 
propose using the mean squared error between the tracking portfolio returns and the benchmark 
returns: 

 

 𝑀𝑆𝐸\𝐫I, 𝐫A] =
&
M
∑ \𝑇𝐸(𝑡)]

cM
$@&  (11) 

 

The mean squared error can be expressed as a function of the weighting vector 𝐰: 

 

 𝑀𝑆𝐸\𝐫I, 𝐫A] =
&
M
\𝐫I − 𝐫A]

$\𝐫I − 𝐫A] =
&
M
\𝐫I − 𝐫A]

c
= &

M
(𝐫M𝐰 − 𝐫A)c (12) 

 

where 𝐫 is defined as the 𝑛𝑏 × 𝜏 matrix which includes the returns of all the stocks: 

 

 𝐫M = [𝐫& … 𝐫:A] (13) 

 

In this way, the problem of partial index tracking can be solved by means of a quadratic 
optimization model: 

 

 𝑀𝑖𝑛	(𝐫M𝐰 − 𝐫A)c (14) 

 𝑠. 𝑡.			𝟏M𝐰 = 1 (15) 

 										𝟏M𝐳 = 𝑛𝑝 (16) 

 

where 𝟏 is a 𝑛𝑏 × 1 vector and 𝐳 a 𝑛𝑏 × 1 indicator vector, whose component 𝑖 will have a 
value of 1 if stock 𝑖 is present in the tracking portfolio, and 0 if not. In (14)-(16) 𝐰 and 𝐳 are 
unknown. 

The objective function in (14) minimizes the mean squared tracking error. The constraint in (15) 
ensures that the investment is entirely distributed across the stocks which make up the tracking 
portfolio. The constraint in (16) limits the cardinality of the tracking portfolio to 𝑛𝑝 stocks. 

Notice that model (14)-(16) does not explicitly consider the risk of the portfolio. In the classical 
mean-variance optimization model, both return and risk are simultaneously considered. 
However, the index tracking problem is concerned about replicating a stock market index, hence 
obtaining the same or very similar return and risk. Although the total risk is not explicitly 
included in model (14)-(16), the model considers the systematic risk. In fact, the mean squared 
error defined in expression (11), which is minimized in the objective function of model (14)-
(16), is directly related with the systematic component of risk. In the case of perfect tracking the 
mean squared error will be zero, and hence the risk of the tracking portfolio will be equal to its 
systematic component. In the case that the tracking is not perfect, differences between the return 
of the index and the return of the tracking portfolio will be observed, and the mean squared 
error will be positive. This implies that both the systematic and non-systematic components will 
become also positive. 
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Minimizing the mean squared error between the tracking portfolio returns and the benchmark 
returns is tantamount to maximize the systematic component of risk. Hence, the models 
considered in the index tracking problems are focused on the maximization of the systematic 
risk (minimization of the unsystematic risk), regardless of the total risk of the portfolio. Indeed, 
the risk of the tracking portfolio will be constrained to be as close as possible to the risk of the 
replicated index. Further details on these components of risk ad how beta is related with the 
index tracking problem can be found in Roll [36]. 

This model would efficiently obtain an optimal and unique solution if no constraint on 
cardinality existed (16). Given this constraint, one way to solve the problem is to include this 
constraint in the objective function, with a consistent penalty, 𝑑, linked to non-compliance with 
the constraint on cardinality. In this case, the objective function is the following: 

 

 𝑀𝑖𝑛	(𝐫M𝐰 − 𝐫𝐛)c − 𝑑|𝟏M𝐳 − 𝑛𝑝| (17) 

 

and the only constraint is (15). Note how the problem ceases to be quadratic and becomes non-
linear, with cardinality deviations being penalized for being too high or too low. 

Unfortunately, (17) cannot be efficiently solved by means of optimization algorithms and the 
computational costs of the problem becomes unsustainable as cardinality increases as stated by 
Ruiz-Torrubiano and Suárez [37]. Including the cardinality constraint as a penalty within the 
objective function must therefore be rejected. It is more efficient to use heuristics which only 
evaluate feasible solutions. 

In contrast with the overall problem in (14)-(16), the model (14)-(15) can be efficiently solved – 
without a cardinality constraint – by using quadratic programming algorithms. To this end, it is 
necessary to further detail the objective function expression in (14): 

 

(𝐫M𝐰 − 𝐫A)c = 𝐰M𝐫𝐫M𝐰 − 2𝐰M𝐫𝐫A + 𝐫AM𝐫A 

 

As the third term is a constant, the expression is reduced as follows: 

 
1
2
𝐰M𝐫𝐫M𝐰 − 𝐰M𝐫𝐫A 

 

Doing this, the model (14)-(15) is transformed into an equivalent model (18)-(21). This new 
model can be efficiently solved by applying quadratic optimization algorithms: 

 

 𝑀𝑖𝑛	 /&
c
𝐰M𝐇𝐰− 𝐰M𝐠5 (18) 

 𝑠. 𝑡.			𝐰M𝟏 = 1 (19) 

 𝐇 = 𝐫𝐫M (20) 

 𝐠 = 𝐫𝐫A (21) 

 

In this way, the problem of partial index tracking can be tackled by dividing the problem into 
two sub-problems: 1) the first concerns the determination of which stocks to include in the 
tracking portfolio, while meeting the cardinality constraint, and will be solved using heuristic 



 8 

algorithms; 2) the second involves efficiently determining the weights of the tracking portfolio 
using a quadratic programming model (18)-(21). 

Finally, the former model implies a constant weight 𝐰 of the stocks in the portfolio. This is 
opposite to the popular value-weighted method, which has already been mentioned in the first 
section of this paper. The weight of the stocks in a value-weighted index varies constantly. 
Keeping a constant weight would mean to rebalance the portfolio constantly, as well. 
Surprisingly, this theoretical difference does not imply a big difference in practice. As an 
example, Figure 1 compares the evolution of two portfolios composed by randomly selecting 5 
stocks from Hang-Seng index. One portfolio has been calculated using constant weights and the 
other one with variable weights, using the public data available from the OR-Library designed 
by Beasley [6]. This database is employed again later in this paper, in the results section. 
Portfolios have been generated taking as base 100. At the start, the first 5 stocks of the Hang-
Seng are equally weighted. It can be observed that the two portfolios have a similar 
development over time, although their weighting design is different. 

 

[Here Figure 1] 

 

3. Recent literature on partial index tracking 

Solving the problem of partial index tracking is computationally infeasible for medium to large-
scale problems. For example, let us track an index composed of 𝑛𝑏 = 100 stocks using a 
tracking portfolio of 𝑛𝑝 = 10. If we search for the optimal solution for a portfolio composed by 
10 stocks, then around 2E+14 tracking portfolios need to be evaluated. Given a mean evaluation 
time of 0.0001 second, the search for all of the portfolios would take approximately 55 years.  

Figure 2 shows the number of portfolios to evaluate (y-axis) for different cardinalities (x-axis), 
given an index composed of 100 stocks. Panel A shows how the growth in the number of 
possible portfolios is exponential with respect to the cardinality of the tracking portfolio until it 
reaches its maximum when 𝑛𝑝 = 50. In panel B, the scale has been changed from linear to 
logarithmic in order to show the distribution more clearly. 

 

[Here Figure 2] 

 

Due to the computational cost of such a search, numerous studies have sought different 
approaches to the problem. A description of a number of relatively recent contributions is 
presented below. 

The study by Beasley et al. [7] is one of most widely cited in the academic literature. Their 
formulation explicitly considered transaction costs and the revision of an existing tracking 
portfolio (portfolio rebalancing), and explicitly limited the number of stocks to be included in 
the tracking portfolio. They addressed the partial index tracking problem using evolutionary 
heuristics with real-value chromosome representations. In addition, computational results were 
presented for five data sets drawn from major world markets. The authors made the databases 
they used with their heuristic available to the academic community, enabling other researchers 
to compare new methods and approaches for partial index tracking.  

Further research has also focused on using evolutionary algorithms. One noteworthy study was 
carried out by Chiam et al. [14], who proposed a multi-objective evolutionary index tracking 
platform that could simultaneously optimize both tracking performance and transaction costs 
throughout the investment horizon. To make their model comparable with others, the authors 
used the database provided by Beasley et al. [7]. 
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Ni & Wang [35] also made use of genetic algorithms. The mathematical model they proposed is 
based on a hybrid genetic algorithm with a self-adaptive evolving mechanism. In order to 
enhance the model’s efficiency, the authors optimized the original genetic algorithm by 
applying Pareto efficiency as a measure of utility and goal programming for the inevitable 
conflicts between multiple objectives or interests. 

The study by Andriosopoulos et al. [3] generated portfolios using a subset of shipping stocks 
selected from the Dow Jones Composite Average indices. The index tracking problem was 
addressed using a differential evolution algorithm and a genetic algorithm. To test the 
performance of the heuristics three different rebalancing scenarios were examined: annually, 
quarterly and monthly. Transaction costs were also considered. 

Li et al. [27] proposed a multi-objective optimization scheme for the enhanced index tracking 
problem, which maximized the extent to which the tracking index outperforms the benchmark, 
while minimizing the tracking error when underperforming the benchmark. The authors put 
forward an immunity-based multi-objective optimization algorithm to search for the solution of 
the enhanced index tracking problem. The problem of not only reproducing the behavior of the 
index, but also outperforming it in terms of returns, was also previously addressed by Roll [36] 
for full replication and by Canakgoz and Beasley [9] for partial tracking. 

Chavez-Bedoya and Birge [12] also examined the issue of enhanced index tracking and 
proposed a model with a parametric approach in which the portfolio weights were modeled as 
functions of asset characteristics. This approach applies nonlinear and nonconvex objective 
functions that are difficult to incorporate into existing index tracking and enhanced indexation 
models. Chen and Kwon [13] put forward a 0–1 integer model in order to maximize similarity 
between the selected stocks and the stocks of the index. Uncertainty is introduced in the 
objective function by using a computationally tractable robust framework that can control for 
the conservativeness of the solution. This protects against worst-case realizations of potential 
estimation errors and other deviations. 

Wang et al. [42] also used a linear 0-1 model, introducing CVaR for the measurement of risk. 
When a CVaR constraint is added into the general index tracking model, the resulting index 
tracking problem can be transformed into a mixed 0–1 linear programming problem. When the 
number of 0–1 variables is relatively small, the authors show that the resulting mixed 0–1 linear 
program can be efficiently solved using standard optimization software. 

The study by García et al. [22] also considered a new element of the partial tracking problem: 
the curvature of the tracking frontier. This criterion is not defined by a particular portfolio, but 
by all the portfolios that define the tracking frontier. The main implication is that a manager can 
satisfy different investment profiles with the same subset of stocks, and therefore reduce 
transaction costs, as all the portfolios on the frontier contain the same stocks. 

A different approach was taken by Guastaroba and Speranza [24], who put forward an improved 
Kernel Search for the partial index tracking problem. The improved variant was based on the 
detection of a set of the most promising items that were likely to be selected in the optimal 
solution of the original problem. This detection was carried out by exploiting the information 
collected from the application of the basic version of the algorithm. Once the set of the most 
promising items was determined, the original problem was solved after fixing the corresponding 
variables to a specific value. 

Two other papers have recently been published by Aguilar-Rivera et al. [1] and Berutich et al. 
[8] dealing with evolutionary algorithms, stock markets and portfolio selection. 

 

4. Proposed heuristics for partial index tracking  

This study compares the computational cost of two heuristics addressing the index tracking 
problem with cardinality constraint: a genetic algorithm (GA) and tabu search (TS). Similar 
techniques have been used in the past to solve financial problems such as predicting price 
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movements, as in Barak et al. [5], Dunis et al. [17], Hsu [26], Li et al. [28], Lindemann et al. 
[29] and Thenmozhi and Sarath Chand [41]. 

 

4.1 Genetic algorithms 

GAs are among the most widely studied and employed approaches in the evolutionary 
algorithm literature. GAs can be defined as an optimization technique based on the heuristic 
search for solutions. Holland [25] was inspired to design GAs by evolution in nature, which 
enables species to adapt to their environment. The concept was then applied to the creation of an 
artificial system. Unlike other classic optimization systems, GAs simultaneously examine a set 
of possible solutions. The candidate solutions are encoded as strings or chromosomes, in what is 
known as a population within a search space. The chromosomes compete with each other for 
survival, whereby only the strongest survive. Directed by selection pressures and information 
inheritance, after a number of generations of reproduction involving crossovers and mutation, 
the population finally reaches convergence. This occurs when all of the individuals in the 
population are essentially the same or are very similar to each other. Sometimes, a problem 
emerges when there is a premature convergence towards local optima, hindering the emergence 
of solutions closer to the global optimum.  

A fundamental concept of GAs is their fitness function, which enables the fitness of each 
individual for the objective function to be calculated. Fitter individuals have a greater 
probability of reproducing by exchanging their genetic information (known as crossover) with 
other highly fit individuals. This exchange produces “children” which inherit the genetic 
information from their “parents”, generating new individuals within the population. Mutations 
also frequently occur after a crossover, when one of the genes in the individuals’ strings 
changes. In this way new solutions are generated which add information to that of the 
individuals that gave rise to the children. These children may replace the whole population or 
only the unfit individuals. The process of crossover plus mutation is iterative, as it is repeated 
until a satisfactory solution is found. 

In our research the population size is 50. A uniform crossover operator is used in which two 
parents produce a single child. If a stock is present in the chromosomes of both parents, then it 
will appear as well in the chromosomes of the child. When a stock is not present in the 
chromosomes of none of the parents, the stock will not be present in the chromosomes of the 
child. If a stock is only present in the chromosomes of one of the parents, the probability of 
being present in the chromosomes of the child is 0.8. 

When the number of stocks in a child is less than the cardinality 𝑛𝑝, then the number of stocks 
is completed selecting them randomly among the stocks remaining. Similarly, if the number of 
stocks exceeds 𝑛𝑝, stocks are randomly removed until the desired cardinality is achieved. 
Mutation probability of the chromosomes has been set at 0.1. Figure 3 shows an example of the 
codification of individuals in the sample and how crossover and mutation have been generated. 

 

[Here Figure 3] 

 

In those experiments with no time execution limit, the maximum number of iterations has been 
set at 5,000. Finally, the Tournament method has been used to make the selection. 

 

4.2 Tabu Search 

TS is an algorithmic heuristic search method that employs a memory structure to undertake 
moves which enable the algorithm to escape from local optima, as stated by Glover [23]. The 
memory structure is known as a tabu search and stores the most recent moves in the search. 
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The initial search space of TS is the space of all possible solutions that can be included in the 
problem. As in the GA heuristic, we have codified each potential solution as a binary vector 
(Figure 3).  

At each iteration, the algorithm examines the neighbors of the current solution, and selects the 
best of those which are not on the tabu, or forbidden, list. This process consists of local 
transformations that can be applied to the current solution. Thus a set of neighboring solutions 
in the search space is associated to the current solution. In our configuration the number of 
neighbors to check at each iteration coincides with the cardinality of the index, and this enables 
to analyze more potential solutions when the index is composed from a large number of stocks. 

Recent moves are stored in a tabu list to prevent cycling when moving away from local optima 
through non-improving moves. The tabu list most commonly used involves recording the last 
movements performed on the current solution, and then prohibiting reverse transformations. We 
have used a tabu list with the last 9 transformations of the current solution. 

We have also used the intensification and diversification phases to search for the solution. The 
intensification phase consists of exploring the portions of the search space that seem promising, 
so assuring that the best solutions in these areas are found. This process is based on recency 
memory, which records the number of consecutive iterations where some solution components 
have been present in the current solution. In our case, the intensification phase is restricted to 
100 iterations. 

The diversification phase is a mechanism that tries to mitigate the problem of local optima, 
when the heuristic tends to spend most of their time in a constrained portion of the search space. 
This is done by forcing the search into previously unexplored areas. This process is based on 
frequency memory, which records the total number of iterations that some solution components 
have been present in the current solution or have been involved in some move. In our approach 
we have followed the restart diversification, which involves forcing a rarely used component in 
the current solution and restarting the search from this new point. 

The process is repeated until the maximum number of iterations is reached, or until the optimal 
solution is found, if this is known. The nature of the algorithm depends on the starting point at 
which the moves begin. The closer this point is to the optimum, the quicker the algorithm will 
converge with the optimal solution. As with GAs, the selection of the best neighbor takes place 
by means of evaluating a fitness function. In this study, the same fitness function was used for 
both algorithms, so the performance of GA and TS can properly be compared. 

 

5. Computational results 

5.1 Data sets 

Data from the OR-Library designed by Beasley [6] is used to compare the performance of GA 
and TS heuristics solving the partial index tracking problem. The OR-Library consists of an 
extensive collection of data available to the public for testing different statistical and 
optimization models. For index tracking, the OR-Library contains a set of weekly prices from 
1992 to 1997 of a number of indices from around the world. In order to obtain a group of 
indices with heterogeneous cardinality, we used the following indices for comparison: Hang 
Seng 32 (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P 100 (USA), Nikkei 225 
(Japan), S&P 500 (USA) and Russell 2000 (USA). 

Using this data, with the aim of comparing the performance of GA and TS in different 
scenarios, partial tracking of both artificial and real indices is undertaken following the 
procedure of Beasley et al. [7] and Ruiz-Torrubiano and Suárez [37]. 

In the first case, the global optimum is known, so the comparison focuses on the time required 
by each heuristic to find the global optimum. In the second case the global optimum is not 
known and so the analysis concerns 1) establishing the accuracy of the tracking error as a 
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function of the CPU time of each heuristic, and 2) calculating the tracking error of the solutions 
found in in-sample training and comparing it with the solutions in an out-of-sample test. The 
aim is to determine whether the tracking portfolios designed for a particular period maintain 
their tracking ability in later periods. The results detailed in the following sections are obtained 
on a 2.5 GHz Intel Core i5 processor with 4 GB RAM. 

 

5.2 Artificial indices 

The exact composition of the stock market indices is not shown in the OR-Library, making it 
impossible to know the optimal solution to the partial tracking problem. For that reason, some 
artificial indices are generated whose composition is known, for which the optimal solution to 
the problem is therefore also known. This makes it possible to precisely determine the 
computation time used by each heuristic to find the optimal solution.  

The artificial indices are created as follows: given an index cardinality 𝑛𝑏 and a tracking 
cardinality 𝑛𝑝, 𝑛𝑝 stocks are randomly selected from the index. The weights of each stock in 
the artificial index are also randomly generated using a uniform distribution (0, 1), normalizing 
the weight vector so the sum is 1. As a result, the precise composition of the index is known and 
therefore also the optimal solution which the heuristics have to find. This process is repeated 
500 times, in order to determine the distribution of the CPU time employed by each heuristic for 
this task. 

The simulation is undertaken for the cardinalities 𝑛𝑝 ∈ {5. .10} and for the indices referred to in 
the previous section. Both heuristics use the same fitness function, consisting of the model in 
(18)-(21), which minimizes the mean square tracking error with the only constraint that the 
weights of the stocks in the tracking portfolio must add up to 1. 

The pseudo-code used is shown in Figure 4. The algorithm is coded in R version 3.2.1, 
transforming the GA and tabuSearch libraries to adapt the heuristics to the problem in question.  

The code consists of three loops. The external loop enables the code to be repeated for each of 
the real-world indices mentioned in the previous section. The intermediate loop implements the 
code for the six cardinalities considered for the tracking portfolio. The internal loop undertakes 
the 500 simulations necessary to determine the distribution of the CPU time of each heuristic. 

As seven indices and six cardinalities are used for the tracking portfolio, the total number of 
simulations is 21,000. For each of these simulations an artificial index is created in which both 
the stocks and their weights are randomly determined.  

GA and TS heuristics use the artificial index as the benchmark in each simulation and search for 
the optimal solution using the same fitness function to minimize the mean square tracking error. 
The general rule for the implementation of these heuristics is to stop after a maximum execution 
time, or when the best solution found is not modified after a certain number of iterations. This 
latter is the case of the functions implemented for the GA and tabu search libraries in R. In this 
study, we modified this stopping rule, so that the algorithms are only stopped when the tracking 
error is zero, i.e. when the tracking portfolios coincide with the benchmark. So it was possible 
to determine the distribution of the CPU time for each heuristic across the 21,000 simulations 
performed. Thus the comparison of the heuristics is more precise than if it only considered the 
number of iterations undertaken by each one of them, given that the CPU time of each iteration 
can vary from one heuristic to another. The timeGA and timeTS variables reflect the CPU times 
employed by each heuristic. 

 

[Here Figure 4] 

 



 13 

The results of the use of the pseudo-code shown in Figure 4 on seven artificial indices are 
summarized in Figure 5. Box-and-whisker plots are used to represent the CPU times of the two 
heuristics for the cardinalities detailed above. The OR-Library does not record all of the stocks 
for each of the indices and so the tracking tests are carried out only with those that are available. 
For example, in the case of the Hang Seng 32 Index, the data available concern the returns of 31 
of the 32 stocks included in the index.  

The results show that TS is more efficient than the GA heuristic, since in all cases TS clearly 
solves the problem in shorter mean CPU times per execution. TS median time is always less 
than GA. The CPU times required by GA to find the optimal tracking portfolio displays greater 
dispersion. This indicates that TS is much more consistent in the search, while GA often 
requires a longer search time when the algorithm becomes stuck on a local solution and the 
mutations are unable to re-start the search for new solutions. 

As expected, CPU time per execution increases for both heuristics as the cardinality of the 
tracking portfolio does. Nevertheless, in both cases it is found that the growth is not 
exponential, as Figure 2 shows. Therefore, the use of either heuristic finds optimal solutions 
with low cardinalities in a reasonable timeframe. 

 

[Here Figure 5] 

 

The possibility that the CPU times for both heuristics might be linked to the complexity of the 
artificial index constructed is also explored. In fact, it is possible that some instances of the 
problem could be particularly difficult to solve and that this difficulty influences the 
computational time needed by both heuristics. When calculating the correlations between the 
CPU times, it is found out that none of these correlations is statistically significant. As an 
example, Figure 6 shows the CPU times for the GA and TS heuristics on the Russell 2000 Index 
with 𝑛𝑝 = 6. Each dot represents the CPU time needed by GA and TS to find the tracking 
portfolio using the pseudo-code shown in Figure 4. 

 

[Here Figure 6] 

 

5.3 Real-world indices 

The previous section concludes that TS performs best in the search for the global optimum with 
artificial indices. This section compares the performance of both heuristics with real-world 
indices. In this case, neither the composition of the index nor that of the optimal tracking index 
is known. Therefore, the comparison of the two cannot be approached as in the previous section. 
Now, the CPU time 𝑡 for the two heuristics is limited in order to determine the level of accuracy 
demonstrated by the tracking error for different values of 𝑡. For example, both heuristics seek 
solutions with the CPU time limited to 𝑡 = 0.025 seconds and their performance is then 
compared. Further solutions are then sought, limiting the CPU time to different values of 𝑡, and 
the tracking errors for the two heuristics are then compared.  

For each real-world index and each tracking portfolio cardinality 𝑛𝑝, a total of 10 values for the 
CPU time 𝑡 are tested. Based on the results obtained from the artificial indices, CPU times 
proportional to the 𝑛𝑝 cardinality are considered. The 10 CPU time values are not the same for 
all instances of the problem, but change according to the index tracked and the 𝑛𝑝 cardinality. 
They are determined by using the following expression (22): 

 

 𝑡 ∈ o0.025, 𝑚𝑒𝑑𝑖𝑎𝑛\𝐶𝑃𝑈	𝑡𝑖𝑚𝑒*:'tu,:I]/2w (22) 
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where 𝐶𝑃𝑈	𝑡𝑖𝑚𝑒*:'tu,:I represents the time vector for the artificial index and the cardinality of 
the tracking portfolio 𝑛𝑝. The minimum CPU time considered for all instances of the problem is 
always the same: 0.025 seconds. As the maximum computation time available, we have 
considered half of the median CPU time for the simulations undertaken on a tracking portfolio 
with a cardinality of 10. As the mean CPU time needed by GA is higher than that of TS, only 
those of GA are used to calculate this median. Once the minimum and maximum interval values 
are established (22), the interval is divided into 10 regularly spaced values for 𝑡. Doing this it is 
possible to analyze how the solutions obtained improve as more computing time is available. 

For each of the 10 values of 𝑡, 30 random simulations are carried out; and for each 𝑡 the best 
solution is identified by means of MSE. Doing this, the best solution found by the heuristics for 
each index, CPU time t and cardinality 𝑛𝑝 is determined. However, determining the accuracy of 
the heuristics regarding these parameters is not the only important issue to explore. Until this 
point, only the problem of how generating the tracking portfolio for the complete period [1… 𝜏] 
has been considered, yet the final objective of index tracking is to construct portfolios whose 
performance is optimal, not only with regard to the past [1… 𝜏], but, much more importantly, 
with regard to the future [𝜏 + 1…𝜏 + 𝐿]. Of course, the future behavior of assets is unknown, 
and so it is necessary to assume that the optimal solution obtained for [1… 𝜏] will continue to 
perform well for the period [𝜏 + 1…𝜏 + 𝐿]. As 𝜏 increases, it is reasonable to expect that this 
hypothesis is confirmed. It must be noted that this would depend on the assumption of 
stationarity, which may or may not hold for all index series and series components. In order to 
test this, we divide the database into two sub-periods of equal size. The first set of weeks 
[1…145] is taken as the training period, with the second set [146…290] being the test period. 
In this way it is possible to compare the performance of the first period (in-sample performance) 
with the second (out-of-sample performance). 

Due to space constraint, only the results for Hang Seng, Nikkei and Russell indices are shown 
(Figure 7). In this way, we present results for low, medium and high cardinality indices. First, 
we have computed the best (i.e. minimum) tracking error 𝑀𝑆𝐸  obtained for 30 random 
repetitions of each heuristic in the in-sample period, for different values of 𝑛𝑝 (𝑛𝑝 ∈ {5. .10}) 
and for each CPU time 𝑡 obtained through equation (22). Plots in Figure 7 do not include actual 
values of 𝑡, which vary according to the both cardinality of the portfolio and the index. We have 
simplified these plots by ordering computation time in the x axis from 1 to 10, instead of using 
actual computation time – different for each np –. Then, these optimal portfolios have been used 
in the out-of-sample period and its tracking error 𝑀𝑆𝐸 has been calculated. 

Regarding the in-sample period it can be observed that GA obtains better results than TS for 
lower values of 𝑡. This holds in general for all values of cardinality 𝑛. But as 𝑡 increases, TS is 
able to find better solutions than GA, regardless of cardinality. So we can conclude that GA can 
find good local optima solutions with short computation time, while TS needs more 
initialization time to find these solutions. However, once GA has achieved a local optimum it is 
difficult to pass this point and obtain new solutions that are closer to the global optimum. The 
diversification phase of TS gets over these local optima and finds new solutions closer to the 
global optimum, so improving the tracking error 𝑀𝑆𝐸 by exploring new areas in the search 
space. 

Despite the diversification phase makes TS solutions become superior to GA, it is also found 
that the differences in 𝑀𝑆𝐸 between the two heuristics are not as large as could be expected 
after the results obtained from the artificial indices. In fact, in the previous section TS proved to 
be notably superior to GA in terms of computation time; however, this did not translate into 
considerably better solutions when working with real-world indices. 

 

[Here Figure 7] 
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A particular strength of both heuristics is their performance in the out-of-sample period. The 
best tracking portfolios obtained for the in-sample period also perform well in the out-of-sample 
period with 𝑀𝑆𝐸 values of the same magnitude. Therefore, it can be concluded that both TS and 
GA are capable of finding tracking portfolios which maintain a stable relationship over time 
with the benchmark.  

For example, Figure 8 compares the performance of S&P100 with the best tracking portfolios 
obtained by GA and TS for 𝑛𝑝 = 10 and 𝑡 = 0.8242. It can be observed how the tracking 
portfolios closely follow the performance of the index in both the in-sample and out-of-sample 
periods. 

 

[Here Figure 8] 

 

6. Conclusions 

The aim of this study is to compare the performance of two well-known heuristics, genetic 
algorithms and tabu search, on the financial problem of partial tracking of stock market indices. 
The database used is composed of 290 observations with the weekly performance of seven real-
world indices in the OR-Library records. 

The partial tracking problem is approached by dividing it into two sub-problems: The first 
problem is determining which stocks should be included in the tracking portfolio. Two 
heuristics are employed for this purpose, TS and GA. The second problem concerns calculating 
the weight of each stock in the tracking portfolio, which can be efficiently solved by means of 
quadratic programming. 

The comparison of the two heuristics is implemented in two steps. First, artificial indices are 
constructed for which the optimal tracking portfolios are known. In this step, the CPU time 
needed by each heuristic to find a solution is compared. The second step applies real-world 
indices and the mean square error of the tracking portfolios is compared. 

After this analysis, it can be concluded that TS is more efficient in the search for solutions to the 
partial tracking problem than GA. It is able to find the optimal solution of the artificial indices 
with a much lower mean CPU time than GA. The mean performance of TS is also superior in 
the case of real-world indices. Indeed, when CPU time for both heuristics is limited, TS is able 
to find better solutions (having a lower mean square error) when considering realistic 
cardinalities for the tracking portfolios. However, both heuristics have a positive outcome, as 
the tracking portfolios generated during the in-sample period also perform well in the out-of-
sample period for TS and GA. 

Nevertheless, computing time might be a problem when tracking indices like Russell 2000, 
specially as the cardinality of the tracking portfolio increases. In our example, the highest 
cardinality in the tracking portfolio is just 10, but some portfolios may require higher 
cardinalities to optimally track the indices. If this is the case, the computing time will increase 
considerably for large indices especially with high cardinalities of the tracking portfolio. The 
search space does grow more than linearly. In such situation time computation can become an 
important issue to control for. 

Finally, we would like to emphasize that searching for heuristics that minimize computing time 
is itself an important task from the academic point of view. In our study, the computing time 
required for both heuristics to find optimal or quasi-optimal solutions is very short. Therefore, 
both heuristics can be used to solve the index tracking problem with cardinality constraint in the 
case of stock market indices with a small or medium number of stocks. 
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