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Abstract: We propose a new programmable integrated photonic device, the Field 
Programmable Photonic Array, which follows a similar rationale as that of Field 
Programmable Gate Arrays and Field Programmable Analog Arrays in electronics. This high-
level concept, basic photonic building blocks, design principles, and technology and physical 
implementation are discussed. Experimental evidence of its feasibility is also provided. 
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1. Introduction
Programmable Multifunctional Photonics (PMP) seeks the design of common integrated 
optical hardware configurations, which can implement a wide variety of functionalities by 
suitable programming [1–10]. Several authors [6,7,9,10] have reported theoretical work 
proposing different configurations and design principles for programmable circuits based on 
the cascade of either beamsplitters [7,9,10] or integrated Mach Zehnder Interferometers [6] 
(MZIs). These proposals offer versatile hardware solutions to the implementation of 
programmable circuits but none of them defines a complete architectural solution of a 
photonics device that could be programmed for the implementation of arbitrary simple, 
complex or even simultaneous circuits. 

In electronics, this concept is sustained by Field Programmable Gate Arrays (FPGAs) 
[11,12] and Field Programmable Analog Arrays (FPAAs) [13–16] and following a similar 
rationale behind the principles of these devices we propose here the implementation of a 
similar concept in integrated photonics, that can be realized by combining a set of 
Programmable Photonics Analog Blocks (PPABs) and a set of Reconfigurable Photonic 
Interconnects (RPIs) implemented over a photonic chip. This element, which we call Field 
Programmable Photonic Array (FPPA), can be able of implementing one or various 
simultaneous photonics circuits and/or linear multiport transformations by the appropriate 
programming of its resources (i.e. PPABs and RPIs) and the selection of its input and output 
ports. We first provide in Section 2 the high level description of the FPPA concept and the 
minimum basic functionalities that both building blocks, PPABs and RPIs need to provide. In 
Section 3 we provide a general discussion on the design flow and technology mapping of 
FPPAs. Physical implementation is addressed in section 4 showing that the main FPPA 
layouts can be implemented using integrated waveguide meshes. Section 5 provides some 
experimental results to support the proposed concept and finally Section 6 provides a 
discussion on limiting factors and concludes the paper. 

2. High-level concept and building blocks
2.1 High-level concept 

The high-level concept of the proposed FPPA is schematically shown in Fig. 1. It consists of 
a set of PPABs and RPIs implemented through an array of photonic waveguide elements 
grown on a photonic chip substrate. The waveguide elements that composed the RPIs have 
programmable features as well and can propagate light in both directions. Note that the layout 
in Fig. 1 does not presuppose any particular waveguide array geometry and that the square 
layout depicted there is just for illustration purposes. 
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Fig. 1. Schematic diagram example of the proposed FPPA device. The zoom shows a detail of 
the Programmable Photonic Analog Block as it pertains to the left-up to right-bottom direction 
of propagation. 

2.2 Programmable photonic building blocks 

Although several configurations can be considered for the PPAB, here we shall illustrate the 
concept with a reciprocal, lossless and time reversible 2x2 coupler (2 input ports/2 output 
ports PPAB units). The scheme of such PPAB is shown in the inset of Fig. 1 for a particular 
axis orientation and with no internal coupling paths. In general, we will consider 4 options 
obtained from this configuration by rotating 0°, 90°, 45° and −45° and denote them as type A, 
B, C, and D, respectively. Figure 2 shows these possible options. The high-level role of the 
PPAB is to provide tunable independent power coupling ratios and phase shifts as explained 
below. 

 

Fig. 2. Four types of 2x2 PPAB units considered and their internal signal coupling layouts 
shown in broken lines. 

The standalone operation of the PPAB is illustrated in Fig. 3 for the Type A case (the 
description for the other types follows the same line of reasoning). Figure 3 shows the layout 
of the Type A PPAB with indication of the optical fields at the input and output ports (b1, b2, 
b3, b4) and the external fields at the input/output RPI elements enclosing the PPAB (a1, a2, a3, 
a4). 

 

Fig. 3. Type A PPAB unit including the internal and external optical fields at its ports for the 
two directions of signal propagation. 

The PPAB is a 2x2 photonic component that is capable of independently setting a 
common tunable phase shift ∆PPAB and a tunable optical power splitting ratio K among its 
input optical waveguide input fields b1, b2 and its output optical waveguide output fields b3, 
b4. Two propagation directions are possible as shown in the figure, the first is from the Left 
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and up ports to the to Right and down ports and is characterized in the case of implementing 
the PPAB with a 3-dB tunable coupler by the following transmission matrix: 
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where both K = cos2θ and ∆PPAB can be changed by means of two external (electronic, 
mechanic, acoustic) control signals through a linear relationship. Note that other versions of 
the 2x2 matrix are possible for other implementations of the 2x2 unit, for example, using a 
tunable directional coupler. The second is from the Right and down ports to the to Left and up 
ports and is characterized by the following transmission matrix: 
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Figure 4 shows some examples of simple programming of the Type A PPAB leading to 
very basic operations required in photonic signal processing. 

 

Fig. 4. Different functionality programming, resulting transmission matrices and associated 
code colors for a Type A PPAB. 

Note that in addition to the functionalities displayed, the PPAB can operate in conjunction 
with an RPI as a phase shifter, as shown in the next section. Similar operation modes and 
color codes can be defined for type B, C, and D PPABs. 

2.3 Reconfigurable photonic interconnects 

The RPI elements are assumed to provide a lossless tunable phase shift and their combination 
with the PPAB elements provide an extra degree of flexibility in the 2x2 transmission matrix. 
Figure 5 shows this feature for a Type A PPBA element under propagation from Left and up 
ports to Right and down ports (similar procedure can be established for the reverse 
propagation direction and for PPBA types B, C and D). The optical waveguide RPI elements 
can provide independent and tunable differential phase shifting φ over a common value ∆RPI 
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in the two input and/or output waveguides accessing the PPAB. For instance, and referring to 
the upper part of Fig. 5: 
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Fig. 5. Combined operation of a PPAB and an RPI for operation as a phase shifter. 

The combined action of a PPAB element and its preceding RPI element can then be cast 
as follows: 
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where the common phase factor is given by ∆PPA = ∆RPI + ∆PPAB. 
In a similar way, the combined action of a PPAB element and its succeeding RPI element 

(shown in the lower part of Fig. 5) is given by: 

( )3 1

4 2

1

2

sin cos0

cos sin0 1

sin cos
.

cos sin

PPAB RPI

j
j

j j
j

a be
je

a b

be e
je

b

φ

φ φ

θ θ
θ θ

θ θ
θ θ

Δ +Δ

Δ

     = − =     −     
  

= −   −   

(5)

3. FPPA core architectures, design flow, and technology mapping
It is by adequate concatenation of successive RPI + PPAB and/or PPAB + RPI units into core 
architectures and subsequent programming that complex standalone and/or parallel photonic 
circuits and signal processing transformations can be implemented by the FPPA. This process 
entails a design flow stage and a technology mapping. 
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3.1 Core architectures 

Figure 6 depicts three generic layouts of FPPA cores built upon assembling RPI + PPAB 
and/or PPAB + RPI units. Figures 6(a) and 6(b) show the layouts of a square type FPPA 
design. Here, type A and type B PPAB elements are interleaved in every column and row of 
the device. We denote this design by class ABAB. A second class is obtained by combining 
columns of interleaved AB PPABs and columns of type C PPABs, we denote this class, 
shown in Fig. 6(c), by ABCC. Finally, Fig. 6(d) shows the layout of class ABDD obtained by 
combining columns of interleaved AB PPABs and columns of type D PPABs. More classes, 
which are not shown here, lead to non-uniform FPPA design patterns, defined by suitable 
combinations of different types of PPAB elements. In section 4 on physical implementation, 
we provide further discussion on these. 

 

Fig. 6. (a) and (b) Layouts of class ABAB FPPAs. (c) Layout of a class ABCC FPPA. (d) 
Layout of a class ABDD FPPA. 

3.2 Design flow and technology mapping 

The most general type of programmable devices consists of an array of uncommitted 
elements that can be interconnected according to a user’s specifications and configured for a 
wide variety of applications. An FPPA combines the programmability of the most basic 
reconfigurable photonic integrated circuits in a scalable interconnection structure, allowing 
programmable circuits with much higher processing density. Thus, processing complexity 
comes from the interconnectivity. 

The left part of Fig. 7 shows the main steps of the design flow process, which we now 
describe. The starting point for the design flow is the initial application entry or circuit 
configuration to be implemented. The specifications are then processed to optimize the area 
and performance of the final circuit. Then, specifications are transformed into a compatible 
circuit of FPPA processing blocks (technology mapping), optimizing attributes such as delay, 
performance or number of blocks. 

The technology mapping phase transforms the optimized network into a circuit that 
consists of a restricted set of circuit elements (FPPA processing blocks). This is done 
selecting a set from the available PPABs and specifying how these will be interconnected. 
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975 μm), 60 thermal tuners and 120 pads, and features 24 optical input/output ports mounted 
on a printed circuit board (PCB) that occupies a surface of 60 × 120mm2. We programmed 
the FPPA operation by acting over the bias currents of the MZIs. For further details on the 
chip, the reader is referred to [3]. For details on the measurement and characterization setup, 
the reader is referred to [4]. The silicon nitride chip occupies a surface of 5.5 x 11 mm2, and 
includes 40 3-dB MZIs (featuring a length of 1297 µm) with 80 thermal tuners. 

Due to the restricted number of cells in the waveguide mesh design, we did not dispose of 
enough PPBAs and RPIS to simultaneous implement the three circuits shown in Fig. 9. Here 
we show the results obtained in the programming of each circuit separately. 

Figure 14 shows the programming (a), equivalent circuit (b) as well as measured modulus 
(c) and phase (d) of the transfer function for an unbalanced (by 4x975 μm) Mach-Zehnder 
interferometer. Note that two PPABs implement the functionality of tunable couplers K1 and 
K2. In fact, the experimental results show different spectra corresponding to different values 
of K1 and K2. The free spectral range corresponds to the path unbalance. 

Figure 15 shows the programming (a), equivalent circuit (b) and measured modulus of the 
reflected (c) and transmitted (d) signals in a double coupler ring cavity (cavity length = 6x975 
μm) resonator. Again, two PPABs implement the functionality of tunable couplers K1 and K2 
with the experimental results showing different spectra corresponding to different values of 
K1 and K2. The free spectral range corresponds to the path unbalance. 

 

Fig. 13. (a) Layout of the ABCC class FPPA implemented by means of a 7-cell hexagonal 
waveguide mesh displayed in (b). Silicon (c) and Silicon Nitride (d) chips implementing the 7-
cell hexagonal waveguide mesh. 
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Fig. 14. Programming (a), equivalent circuit (b), as well as measured modulus (c) and phase 
(d) of the transfer function for an unbalanced (by 4x975 μm) Mach-Zehnder interferometer. 
The different curves in (c) and (d) correspond to different values of K1 and K2. 

 

Fig. 15. Programming (a), equivalent circuit (b) and measured modulus of the reflected (c) and 
transmitted (d) transfer functions for a double coupler ring resonator (cavity length = 6x975 
μm). The different curves in (c) and (d) correspond to different values of K1 and K2. 

Finally, in Fig. 16, we show the results corresponding to a 3x3 MIMO interferometer 
programmed to implement a 3x3 splitter (tritter) or a DFT. In this case, there is enough room 
left in the FPPA to accommodate a second circuit (a Hadamard gate), which we also 
programmed to show simultaneous circuit implementation. 
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Fig. 16. Programming (a), equivalent circuits (b) and measured bar chart (@1580 nm) and 
modulus of the transfer functions of a (c) 2x2 MIMO interferometer implementing a Hadamard 
gate and (d) a 3x3 MIMO interferometer implementing a tritter operation. 

The specific transformations are given in this case by: 
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6. Discussion, summary and conclusions 
The versatility of the FPPA is directly proportional to the number of PPABs and RPIs 
contained in the integrated chip. However, the scalability of these systems is limited by 
different factors: PPAB and RPI insertion losses, power consumption, optical crosstalk/signal 
leakage, footprint and the complexity of its control electronics. Of these, the dominant limit is 
the insertion loss, which is mainly generated by the inner coupling structures and phase-
tuning mechanisms. In order to compare them with conventional PICs, we can split the total 
insertion loss per PPAB and RPIs as the sum of the propagation loss and the additional losses 
(couplers and tuning mechanism). Even using state-of-the-art tunable couplers and fabrication 
procedures to implement the PPABs and RPIs, achieving a value below 0.2-dB additional loss 
unit is a current challenge. With these numbers, we can estimate that a programmed light-path 
crossing 50 PPABs + RPIs will introduce 10-dB additional loss, setting a scalability limit of 
the size of the programmed circuits and a miniaturization trade-off [17]. Eventually, these 
losses may be compensated by the incorporation of semiconductor optical amplifiers (SOAs) 
as peripheral high-performance blocks (HPB) outside the FPPA core. Regarding the power 
consumption per PPAB (Pπ,PPAB), and RPI (Pπ,RPI), exploring tuning mechanism approaches 
will be fundamental to find power-efficient, low-loss, reduced-size, focalized and low-
crosstalk phase shifters. In this sense, thermal tuners have been optimized in the last years to 
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open the path for either sub-milliwatts power consumptions [21] or reduced footprint 
structures [22]. For a FPPA with N active PPABs and M active RPIs, the average power 
consumption is less than N·Pπ,PPAB + M·Pπ,RPI. Additionally, low-loss alternatives enabling the 
speed increment of the tuners would open the path to a wider range of application in 
optical/quantum information processing. 

An additional concern is the non-desired side effects related to the use of non-ideal 
components like the optical crosstalk due to the drift in the configured coupling value and to 
fabrication or design errors. The optical crosstalk produces signal leaking through the FPPA 
core that causes reflections inside the circuits, creating ripples in the spectral responses and 
even lasing phenomena. This has been addressed in other kind of complex circuits [3,6]. 
Here, the unused PPABs and RPIs can be smartly configured to extract the leaked signal to 
drain optical ports to radically improve the system performance and relax the PPAB 
specifications to an optical crosstalk less than 20 dB to assure a good circuit performance. If 
ultra-low-loss, low-power PPABs and RPIs are obtained, future FPPAs will require an 
increment of the integration densities to further enlarge their performance in a similar way as 
the number of transistors per chip rate rises in electronic processors. To overcome the PPAB 
miniaturization trade-offs, three-dimensional Si photonics platforms can be considered [23]. 

In summary, we have proposed a new programmable integrated photonic device, the Field 
Programmable Photonic Array. This device is inspired by similar principles of those of Field 
Programmable Gate Arrays and Field Programmable Analog Arrays in electronics. We have 
described the main high-level concept of the device, together with a description of its basic 
constituents or photonic building blocks. These pertain to two different groups, the 
programmable photonics analog blocks or PPABs, mainly 2x2 tunable photonic components 
in charge of the basic operations over the amplitude and phase of the optical waveguide 
modes, and the reconfigurable photonic interconnects or RPIs, in charge of controlling and 
routing the signal flow between PPABs. We have shown how to assemble the different types 
of PPABs to form different FPPA classes and discussed general guidelines for design and 
technology implementation. The physical implementation of the FFPA, which is a key aspect, 
has also been considered and we have shown that the main FFPA classes can be implemented 
by means of integrated waveguide meshes. Finally, we have provided a simple experimental 
proof of concept to support the viability of this concept. The future evolution of this concept 
requires further investigation to address several issues. A very important one is scalability, 
which is required to implement FFPAs with enough PPAB and RPI elements to implement 
complex and simultaneous operations. The interface with electronic control signals is another 
important topic, together with the link of the latter to reconfiguration software. Last, but not 
least, the investigation on different alternatives to provide low power consumption PPAB 
elements should be seriously addressed in order to achieve low-power FFPA devices. 
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