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ABSTRACT: Herein, a general protocol for the preparation of a broad range of valuable 

N-heterocyclic products by hydrogenation of quinolines and related N-heteroarenes is 

described. Interestingly, the catalytic hydrogenation of the N-heteroarene ring is 

chemoselectively performed when other facile reducible functional groups, including 

alkenes, ketones, cyanides, carboxylic acids, esters and amides, are present. The key to 

successful catalysis relies on the use of a nanolayered cobalt-molybdenum sulfide 

catalyst hydrothermally synthesized from earth abundant metal precursors. This 

heterogeneous system displays a tunable composition of phases that allows for catalyst 

regeneration. Its catalytic activity depends on the composition of the mixed phase of 

cobalt sulfides, being higher with the presence of Co3S4, and could also be associated to 

the presence of transient Co-Mo-S structures that are mainly vanished after the first 

catalytic run. 
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INTRODUCTION 

Catalytic hydrogenation of N-heteroarenes is a fundamentally important reaction in the 

petrochemical industry and represents a promising method for organic synthesis.1,2 In 

particular, the hydrogenation of quinoline derivatives has drawn the attention of the 

synthetic chemists because of its practical simplicity and high atom efficiency for the 

production of 1,2,3,4-tetrahydroquinolines, a core structural motif present in many 

alkaloids and bioactive molecules used as drugs and agrochemicals.3 However, 

hydrogenation of these N-heteroarenes involves the challenging tasks of breaking 

aromaticity as well as overcoming catalyst poisoning by strong interaction with starting 

materials and their hydrogenated products.2c,4 Nonetheless, different homogeneous 

systems based on transition metals, such as Ir,5 Ru,5a,6 Rh,5a,7 Mo,8 Os,5a,9 Fe10 and Co11, 

have been applied for the hydrogenation of quinolines. Particularly worth mentioning 

since it represents a suitable route to valuable N-heterocyclic compounds, is a well-

defined homogeneous cobalt catalyst that allows the chemoselective hydrogenation of 

N-heteroarenes functionalized with other sensitive reducible groups (Scheme 1a).11b,12 

However, despite the good reactivity and selectivity exhibited by some of these 

homogeneous catalysts, the use of air-sensitive and/or expensive ligands, additives as 

well as the inherent recyclability issues hinder their industrial scale application. In 

contrast, heterogeneous catalytic systems offer a convenient alternative since catalysts 

can be easily recovered and reused. Different heterogeneous catalysts based on precious 

metals including Pd,13 Pt,14 Rh,14a,15 Ru,16 Ir14a,17 or Au13h,18 have been used for the 

hydrogenation of quinolines and its derivatives. In general, they are highly active but 

are not selective displaying low functional group tolerance. In fact, only a handful of 



these precious metal-based heterogeneous catalysts allow for the chemoselective 

hydrogenation of quinolines in the presence of other reducible functionalities. 

 

Scheme 1. Chemoselective hydrogenation of quinolines bearing other reducible 

functional groups 

In 2012, Cao and co-workers described that Au nanoparticles supported on high 

surface area (HSA) TiO2 can selectively hydrogenate the N-heteroarene ring of 

quinolines bearing olefinic and ketone groups (Scheme 1b).18-19 In 2013, the 

chemoselectivity was expanded to the presence of a carboxylic acid group using a Pt 

nanowire-type catalyst (Scheme 1c).14b More recently, Rh nanoparticles immobilized in 

a Lewis acid ionic liquid,15i as well as Ru and bimetallic AuPd nanoparticles supported 

on nanoporous 12CaO·7Al2O3
16k or CeO2 nanorods,13h respectively, have also been 

applied for the preparation of 1,2,3,4-tetrahydroquinolines functionalized with 

aldehydes or esters groups by hydrogenation of their parent quinolines (Scheme 1d-f). 

Despite their selectivity, it is today an important issue to replace precious metals by 

earth-abundant metal-based catalysts, and this is also the case for the hydrogenation of 

N-heteroarenes. 



Nowadays, heterogeneous approaches using non-noble metals for the synthesis of 

1,2,3,4-tetrahydroquinolines by hydrogenation of quinolines are scarce. They involve 

the use of traditional Raney®-Ni2b,20 or cobalt-based catalysts.21 In addition, these 

catalytic systems present a limited substrate scope, especially for quinolines 

functionalized with other reducible functional groups. A catalyst based on N-graphene-

modified cobalt nanoparticles supported on alumina, was applied for the chemoselective 

hydrogenation of a quinoline bearing an olefinic group (Scheme 1g).21a,22 However, this 

selectivity was only demonstrated at moderate conversion (61%), reached after long 

reaction time (48 h). Furthermore, the selectivity when other functional groups were 

present was not reported. Hence, heterogeneous catalysts based on non-noble metals 

with superior activity and chemoselectivity for quinolines hydrogenation are still highly 

desirable.   

Herein, we describe the hydrothermal preparation of nanolayered mixed cobalt-

molybdenum sulfide (Co-Mo-S) materials. We demonstrate that their application as 

catalysts for quinolines hydrogenation allows for the straightforward and general 

preparation of 1,2,3,4-tetrahydroquinolines with high tolerance to other sensitive 

moieties (Scheme 1h). Furthermore, we show that the non-noble metal-based catalytic 

system presented here is also applicable for the regioselective hydrogenation of other 

heteroaromatic nitrogen compounds. 

RESULTS AND DISCUSSION 

Preparation and Characterization of Catalysts 

Hydrogenation of the heteroaromatic ring of N-heteroarene compounds constitutes a key 

step of the overall reaction schemes involved in the hydrodenitrogenation (HDN) 

processes, routinely applied in petroleum refineries for removing nitrogen heteroatoms 

from crude feed-stocks.23 Promoted molybdenum sulfides, specifically by nickel, are the 



most commonly used catalysts for HDN processes, while molybdenum disulfide cobalt-

promoted materials are more widespread used for hydrodesulfurization (HDS).1,24 It is 

well-established that in these materials the Co-Mo-S (or Ni-Mo-S) structures, formed by 

adsorption of cobalt (or Ni) on the edge positions of MoS2 layers, plays a crucial role in 

their catalytic activity.25,26 Recently, Mavrikakis and co-workers using density 

functional theory (DFT) have shown that nitrogen-containing compounds, including 

quinolines, tend to be strongly adsorbed and activated on the “brim” sites of the Co-Mo-

S structure edges due to the presence of metal-like electronic states.25k,25n,27 This 

background suggests that cobalt-molybdenum sulfide-based catalysts could also be of 

interest for the efficient hydrogenation of N-heteroarenes. Nevertheless, so far, there are 

not general catalytic protocols for the hydrogenation of quinolines to 1,2,3,4-

tetrahydroquinolines by using these type of catalysts.24a,28  

Quite recently, we reported the hydrothermal preparation of nanolayered 

molybdenum disulfide cobalt-promoted materials and their application as catalysts for 

the chemoselective hydrogenation of nitroarenes.29 All prepared Co-Mo-S-X catalysts 

contained, as determined by ICP analysis, either lower or the same cobalt content with 

respect to molybdenum (X = Co/(Mo + Co) mole ratio ≤ 0.5). In contrast, in the present 

work we have adapted this synthetic methodology to obtain Co-Mo-S-X unsupported 

materials in which the content of cobalt is higher than that molybdenum (X = Co/(Mo + 

Co) mole ratio > 0.5). In this way, the preparation was performed at 180 ºC in an 

autoclave containing ammonium molybdate, sulfur, different amounts of cobalt(II) 

acetate, and an aqueous solution of hydrazine. In addition, the catalyst Co-Mo-S-0.39 

that contains more molybdenum than cobalt, molybdenum disulfide and two different 

molybdenum-free cobalt sulfide materials were also prepared (see reference 29 and the 

Supporting Information for characterization and preparation details). It should be noted 



that the catalyst Co-Mo-S-0.39 displayed high activity and selectivity for the 

chemoselective hydrogenation of nitroarenes.29 

X-ray diffraction (XRD) patterns of the prepared materials with different cobalt 

content are shown in Figure 1. All of them are dominated by the presence of diffraction 

peaks associated to cobalt sulfide species. Catalysts Co-Mo-S-0.58 and Co-Mo-S-0.66 

exhibit similar diffraction patterns with peaks at 2θ values of 28º, 32º, 36º, 40º, 46º, 55º, 

58º, 60º, 63º, 75º, 77º, 79º, 86º corresponding to the (111), (200), (210), (211), (220), 

(311), (222), (230), (321), (331), (420), (421) and (422) planes of CoS2 (PDF Card 00-

041-1471). Notably, most of these peaks are very sharp, indicating that CoS2 is present 

in the form of large particles. In addition, the broad diffraction peaks at 14º, 33º, 39º, 

58º characteristic of the (002), (101), (103) and (110) basal planes of MoS2 with very 

low crystallinity can also be detected. When a higher amount of the cobalt salt was used 

in the catalyst preparation, the obtained material Co-Mo-S-0.83 is constituted by 

different cobalt sulfide phases. Together with a significant decrease of CoS2 diffraction 

peaks, the XRD pattern shows the presence of peaks at 2θ values of 32⁰, 38⁰, 47⁰, 50⁰, 

55⁰ which can be indexed to the (311), (400), (422), (333) and (440) planes of the cubic 

phase of Co3S4 (PDF card 00-011-0121). These XRD peaks are much broader than 

those of CoS2 in catalysts Co-Mo-S-0.58 and Co-Mo-S-0.66, indicating that the surface 

area of the Co3S4 phase is larger than that of CoS2. Further increase of the initial cobalt 

salt amount leads to the formation of the Co9S8 phase in the material Co-Mo-S-0.91. It 

should be noted that the increase of Co content also affects the crystalline structure of 

the MoS2 phase. By comparing the XRD patterns in Figure 1, it can be seen that the 

intensity of the diffraction peak associated to the (002) plane, that is representative for 

the stacking of MoS2 layers, undergoes a significant decrease in materials Co-Mo-S-

0.83 and Co-Mo-S-0.91, thus revealing that MoS2 is present with a limited number of 



stacked atomic layers. In all prepared catalysts, XRD peaks of the ternary Co-Mo-S 

structure are indistinguishable from those of MoS2 because the Co-Mo-S structure 

consists of MoS2 decorated at the edges by cobalt atoms. Therefore, the XRD is totally 

determined by the MoS2 part.30 

 

Figure 1. X-ray diffraction patterns of mixed cobalt-molybdenum sulfide (Co-Mo-S) 

catalysts 

Microstructure details of prepared Co-Mo-S catalysts were analyzed by high–

resolution transmission electron microscopy (HRTEM) and the results are shown in 

Figure 2. Catalysts Co-Mo-S-0.58 and Co-Mo-S-0.66 exhibit the characteristic group of 

parallel fringes with an average number of stacked layers of 5-8 and with an interlayer 

distance of 0.63-0.64 nm, which correspond to the (002) plane of MoS2 (Figure 2a-d).31 

Free CoS2 particles of different sizes (Table S1 in the Supporting Information), that 

displays the characteristic lattice-fringes spacing of 0.27 and 0.25 nm, associated with 

the (200) and (210) planes respectively, are widely found in both catalysts. However, 

catalyst Co-Mo-S-0.66 displays more interlaced MoS2 and CoS2 phases assuring the 

strong interaction between them, and thus promoting a presumably higher formation of 

active Co-Mo-S structures. This is consistent with the metal distributions determined by 

Energy-dispersive X-ray (EDX) elemental mapping (Figures S1-S2 in the Supporting 



Information). HRTEM micrographs of catalyst Co-Mo-S-0.83 display the three 

obviously different lattice fringes with spacing of 0.63-0.64, 0.27 and 0.24 nm 

corresponding to (002), (200) and (400) planes of MoS2, CoS2 and Co3S4, respectively 

(Figure 2e-g). In contrast, the interlayer distances of 0.30 and 0.25 nm characteristic of 

(311) and (400) planes of Co9S8 phase are detected in catalyst Co-Mo-S-0.91 (Figure 

2h). Notably, MoS2 is hardly found as isolated layers, which is in concordance with the 

XRD analysis that revealed a depressed layer stacking with the increase of cobalt 

content. Component distributions of catalysts Co-Mo-S-0.83 and Co-Mo-S-0.91 were 

determined by EDX elemental mapping reveling that these materials are mostly 

constituted by cobalt and sulfur with low content of molybdenum but homogeneously 

distributed on cobalt sulfide phases (Figure 3 and Figure S3 in the Supporting 

Information).  

 

Figure 2. HRTEM micrographs of (a,b) Co-Mo-S-0.58, (c,d) Co-Mo-S-0.66, (e-g) Co-

Mo-S-0.83, (h) Co-Mo-S-0.91 



 

Figure 3. (a,b) High-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) images of Co-Mo-S-0.83. (c-h) EDX elemental mapping 

of cobalt, molybdenum and sulfur 

Further characterization of catalysts was carried out by nitrogen physisorption studies. 

The specific surfaces areas (SA), total pore volumes (PV) and pore size (PS) of catalysts 

containing different Co/(Mo + Co) mole ratios are summarized in Table 1. The SA and 

PV range from 80 to 44 m2/g and 0.18 to 0.07 cm3/g, respectively. Catalyst Co-Mo-S-

0.58 presents the highest values, but a progressive decrease in both SA and PV is 

achieved upon increasing the Co/(Mo + Co) mole ratio. This decrease can be attributed 

to the lower MoS2 content and the concomitant formation of cobalt sulfide phases with 

lower surface area but higher pore size.    

Table 1. BET surface area, pore volume and pore diameter of Co-Mo-S catalysts 

Catalyst 
Surface Area  

(m2/g) 

Pore Volume 

(cm3/g) 

Pore Diameter 

(nm) 

Co-Mo-S-0.58-180 79.4 0.18 9.2 

Co-Mo-S-0.66-180 63.4 0.15 9.6 

Co-Mo-S-0.83-180 48.9 0.07 10.3 

Co-Mo-S-0.91-180 44.4 0.08 13.2 



Catalytic Results 

The hydrogenation of quinoline (1a) to the corresponding 1,2,3,4-tetrahydroquinoline 

(2a) was investigated as the benchmark system to compare the catalytic activity of the 

prepared cobalt-molybdenum sulfide materials. Initial hydrogenation experiments were 

performed in a batch reactor using toluene as solvent, under 12 bar of H2, at 150 ºC and 

1000 rpm of stirring speed to avoid limitation by external diffusion (Figure S6 in the 

Supporting Information). As shown in Figure 4, the catalyst Co-Mo-S-0.83, mainly 

constituted by a mixture of MoS2, CoS2 and Co3S4 phases, proved to be the most active 

system achieving after 6 h almost full conversion of 1a with excellent regioselectivity to 

the desired hydrogenated product 2a. In the presence of catalyst Co-Mo-S-0.91, which 

contains a different cobalt sulfide phase of Co9S8, 1a undergoes lower conversion, thus 

revealing that the cobalt phase composition of the catalyst exerts a significant effect on 

its catalytic performance. Different activity is also observed for catalysts Co-Mo-S-0.39, 

Co-Mo-S-0.58 and Co-Mo-S-0.66, all of them formed by MoS2 and CoS2 as major 

phases. Apart from their different metal mole ratio, these catalysts present significant 

differences on the metal distribution, as it has been inferred by electron microscopy 

characterization (Figure 2, Figures S1-S2 in the Supporting Information and reference 

29). Catalyst Co-Mo-S-0.58, with more separated CoS2 phase, displays the lowest 

catalytic activity. However, conversion of 1a is enhanced in catalysts Co-Mo-S-0.39 

and Co-Mo-S-0.66 with metal sulfides more homogeneously distributed, as a result of 

the generation of Co-Mo-S active structures to a larger extent.25 It is noteworthy that the 

use of MoS2 or cobalt sulfides as catalysts leads to lower conversions of 1a than all 

prepared Co-Mo-S catalysts. Nevertheless, an excellent regioselectivity of the N-

heteroarene ring hydrogenation is achieved in all prepared materials with no detection 

of reaction intermediates or over-hydrogenated products (Figure S7 in the Supporting 



Information). As in the case of the so-called Nebula catalyst,24e,32 comparison of the 

catalytic activity per unit volume of catalyst between these unsupported Co-Mo-S 

catalysts and a conventional supported one reveals that our prepared unsupported 

catalysts display a larger population of active sites per unit volume (Figure S8 in the 

Supporting Information). Thus, despite of their higher cost, they allow for a higher 

throughput. 

 

Figure 4. (a) Catalytic performance of Co-Mo-S catalysts for the hydrogenation of 

quinoline (1a) to 1,2,3,4-tetrahydroquinoline (2a). (b) Yield of 1a and 2a versus 

reaction time for catalyst Co-Mo-S-0.83.  

Further optimization experiments were carried out with the most active catalyst (Co-

Mo-S-0.83). First, the influence of the solvent was investigated (Table 2, entries 1-8). In 

general, the use of other solvents different than toluene led to lower reactivity. At longer 

reaction time (10 h), excellent conversions of 1a were also achieved by using protic 

solvents, such as ethanol and methanol (Table 2, entries 1-2). Interestingly, in the 

absence of any solvent 2a is obtained in excellent yield in 2h (Table 2, entry 8). The 

catalytic hydrogenation of 1a could also be achieved at lower temperature affording 2a 

in a quantitative yield at 120 ºC or 87% yield at 100 ºC with after longer reaction time 



(Table 2, entries 9 and 10). When hydrogen pressure was halved, 1a was almost fully 

converted affording 2a in 90% yield (Table 2, entry 11). 

 

 

Figure 5. Catalyst recycling for the hydrogenation of quinoline (1a) to 1,2,3,4-

tetrahydroquinoline (2a) before and after reactivation 

Table 2. Regioselective hydrogenation of quinoline (1a) catalyzed by Co-Mo-S-0.83a 

 

Entry Solvent Conversion (%)b Yield (%)b 

1 EtOH 94 91 

2 MeOH 84 83 

3 1,4-dioxane 60 50 

4 CH3CN 20 14 

5 THF 21 11 

6 n-Bu2O 67 58 

7 Toluene >99 98 

8c - 99 98d 

9e Toluene 99 99 (92) 

10f Toluene 87 87 

11g Toluene 92 90 

aReaction conditions: 1a (0.25 mmol), catalyst (6.5 mg), solvent (1.6 mL). bDetermined by GC using 

dodecane as an internal standard; yield of isolated product on a 10 mmol scale in parentheses. c2 h.            
dAverage value for 6 catalytic reactions: (97.8 ± 1.1). e120 ºC, 12 h. f100 ºC, 18 h. g120 ºC, 12 h, 6 bar H2. 



With the above optimized conditions in hand (Table 2, entry 9), the stability and 

recyclability of catalyst Co-Mo-S-0.83 was investigated. As shown in Figure 5, the 

conversion of 1a decreased gradually with the reaction cycles, being halved for the third 

run. Nevertheless, excellent yields of the hydrogenated product 2a could be obtained 

again even after the sixth run by increasing reaction temperature (up to 150 ºC) and 

reaction times. 

XRD and HRTEM characterization of the catalyst after different catalytic cycles 

revealed a continuing evolution of the mixed phase of cobalt sulfides (Figures 6 and 7; 

see also Figures S9-S12 in the Supporting information). In the fresh catalyst, both CoS2 

and Co3S4 are present (see Figures 1 and 2). After the first run, the Co3S4 phase is 

present in catalyst Co-Mo-S-0.83-R1 in a higher extent as result of the transformation of 

some CoS2. With two additional reaction cycles, a new phase of Co9S8 can also be 

detected in the reused catalyst Co-Mo-S-0.83-R3 indicating that the mixed phase of 

cobalt sulfides is further transformed. After the sixth run, the mixed phase of cobalt 

sulfides in catalyst Co-Mo-S-0.83-R6 is mainly constituted by Co9S8. These results and 

the presence of H2S in the gas-phase (detected by GC) after catalytic reaction suggest 

that catalyst undergoes desulfurization during the catalytic hydrogenation process. The 

extent of stability of the cobalt sulfide phases is in line with the previously reported 

thermodynamic data that predict poor stability of the CoS2 and Co3S4 phases under pure 

hydrogen atmosphere (or low content of H2S) at the working reaction temperatures.33 

However, while the hydrogenation of 1a was poisoned with the presence of H2S in feed, 

the addition of sulfur to the reaction mixture slowed down but did not avoid the catalyst 

deactivation (see Figure S13 in the Supporting Information). 

Interestingly, the hydrothermal treatment of the reused catalyst Co-Mo-S-0.83-R6 

with an excess of sulfur powder in the presence of an aqueous solution of hydrazine 



allowed the successful catalyst re-sulfurization and the recovering of most of the 

activity (see the Supporting Information for further details). This process leads to a new 

phase transformation affording a reactivated catalyst (Co-Mo-S-0.83-React) mainly 

formed by Co3S4 and CoS2 as mixed phase of cobalt sulfides. This reactivated catalyst 

shows a similar diffraction pattern to the catalyst after one catalytic cycle (Co-Mo-S-

0.83-R1), and both catalysts (Co-Mo-S-0.83-React and Co-Mo-S-0.83-R1) display 

similar catalytic activity for the hydrogenation of 1a under otherwise the same reaction 

conditions (Figure 5). These results demonstrate that catalytic activity of this cobalt-

molybdenum sulfide material relies on the cobalt phase composition, being higher with 

the presence of Co3S4 phase but lower when increasing the relative content of Co9S8 

phase. Accordingly to the comparative catalytic study (see Figure 4 and Figure S7 in the 

Supporting Information), catalytic performance of Co-Mo-S catalysts is diminished 

when increasing the relative content of the separated CoS2 phase, and therefore the high 

activity of catalyst Co-Mo-S-0.83 could be associated to the presence of the active 

Co3S4 phase.  However, the reused catalyst Co-Mo-S-0.83-R1 containing Co3S4 phase 

in a higher extent is less active than the fresh catalyst (Co-Mo-S-0.83), and therefore the 

catalytic activity should not be only ascribed to this active phase. 

 

Figure 6. XRD patterns of reused and reactivated Co-Mo-S catalysts 



 

Figure 7. HRTEM micrographs of (a,b) Co-Mo-S-0.83-R1, (c,d) Co-Mo-S-0.83-R3, 

(e,f) Co-Mo-S-0.83-R6, (g,h) Co-Mo-S-0.83-React 

To get more clues on the origin of the catalytic activity and therefore on the catalyst 

deactivation, an electrochemical study of the fresh, reused and reactivated catalysts was 

performed applying the voltammetry of immobilized particles (VIMP) methodology. 

This technique, developed by Scholz et al.34 have provided valuable analytical 

information on a variety of sparingly soluble solids upon their attachment as micro- or 

submicrosamples to inert electrodes in contact with suitable electrolytes.35 The cyclic 

voltammogram of the fresh catalyst Co-Mo-S-0.83 displays cathodic signals (C1) 

between 0.0 and -0.5 V (vs Ag/AgCl), preceding the prominent current peak associated 

to the hydrogen evolution reaction (HER),36 and a main anodic signal (A1) at +0.95 V 

(Figure S14 in the Supporting Information). These signals can be attributed to proton-

assisted solid-state reduction and sulfide-centered oxidation processes, respectively. 

Reused catalysts show similar cyclic voltammograms, but significant differences could 

be detected using a particularly sensitive technique, such as the square wave 

voltammetry. As shown in Figure 8A, the signal A1 for the fresh catalyst presents 



significant peak splitting with components at +1.02, +0.92 and +0.72 V preceding a 

weak peak at +1.2 V, this last one being associated to the oxidation of MoS2 and CoS2 

(Figure S15 in the Supporting Information). However, in the cyclic voltammograms of 

the reused catalysts only the central component at +0.92 V of the split signal is 

apparently retained whereas the components at +1.02 and +0.72 V have entirely or 

almost vanished. Unfortunately, no clear reappearance of these last two signals is 

achieved under the hydrothermal regeneration process. These results indicate that both 

signals correspond to active species that are consumed during the catalytic cycles, 

mainly in the first run, being likely associated to transient Co-Mo-S structures. 

 

Figure 8. Square wave voltammograms of (a,f) Co-Mo-S-0.83, (b,g) Co-Mo-S-0.83-R1, 

(c,h) Co-Mo-S-0.83-R3, (d,i) Co-Mo-S-0.83-R6 and (e,j) Co-Mo-S-0.83-Reac catalyst-

modified graphite electrodes immersed into 0.10 M H2SO4 aqueous electrolyte. 

Potential scan initiated at (A) 0.0 V in the positive direction or (B) +0.80 V in the 

negative direction; potential step increment 4 mV; square wave amplitude 25 mV; 

frequency 5 Hz. 



The square wave voltammetry of the cathodic region (C1) also provided differences 

between the fresh and reused catalysts. As shown in Figure 8B, broad cathodic waves at 

+0.40 and -0.28 V are superimposed to peak signals at +0.32, +0.17, -0.06 and -0.40 V 

in the fresh catalyst. By comparison with the voltammogram of MoS2 (Figure S16 in the 

Supporting Information), signals marked with asterisks at +0.32, +0.17, -0.06 V can be 

tentatively assigned to Mo(IV)-centered reduction processes to Mo(III) and Mo(II) 

sulfides successively. Interestingly, these signals are clearly diminished in the reused 

catalysts, thus denoting that the MoS2 phase plays a role in the catalytic hydrogenation 

of 1a and are partially consumed during the reaction. To our delight, the MoS2 phase 

was found to be regenerated under the hydrothermal catalyst reactivation, as revealed by 

the enhancement of the signals at +0.32, +0.17, -0.06 V in catalysts Co-Mo-S-0.83-

React. 

On the basis of all the above results we can conclude that the catalytic activity of 

these materials does not only depends on the composition of the mixed phase of cobalt 

sulfides, but also is associated with the presence of active, but poorly stable, Co-Mo-S 

structures that are mainly vanished after the first catalytic run.  

Reaction Scope 

The scope of the chemo- and regioselective hydrogenation protocol in the presence of 

catalyst Co-Mo-S-0.83 was broadly investigated for the hydrogenation of a large 

number of quinolines substituted with different functional groups (Table 3). Notably, 

the catalytic process is completely regioselective towards the hydrogenation of the N-

heteroarene ring to afford in all tested substrates the corresponding 1,2,3,4-

tetrahydroquinolines, without formation of the corresponding 5,6,7,8-tetrahydro- or 

decahydro-derivatives. Quinolines 1b-1e bearing a methyl group either on the benzene 

or the heteroarene ring reacted smoothly, affording the corresponding products in 



excellent yields (Table 3, entries 1-4). When the methyl group is located at the 4-

position, higher temperature (150 ºC) was required to get full conversion (Table 3, entry 

3). In contrast, the more sterically hindered phenyl group at the 2-position had no 

significant influence on the activity of this catalytic system (Table 3, entry 5). Halogen-

substituted quinolines were also readily transformed leading to the corresponding 

halogenated 1,2,3,4-tetrahydroquinolines 2g-2l in high isolated yields (Table 3, entries 

6-11). In this respect, the only exception is the hydrogenation of 7-bromoquinoline (1h) 

that required higher temperature (150 ºC), higher catalyst loading and longer reaction 

time (24 h) to be fully converted (Table 3, entry 7). Under similar reaction conditions, 

6-methoxyquinoline (1m) and 8-aminoquinaldine (1n) were successfully hydrogenated 

to the desired products 2m and 2n in 90% and 85% isolated yield, respectively (Table 3, 

entries 12 and 13). Interestingly, this catalytic protocol was also applicable for the 

preparation, in excellent yield, of 2-(2-(benzo[d][1,3]-dioxol-5-yl)ethyl)-1,2,3,4-

tetrahydroquinoline (2o), a direct precursor of the pharmacologically active natural 

product (±)-galipinine (Table 3, entry 14; see also Scheme S1 in the Supporting 

Information).37  

Table 3. Chemo- and regioselective hydrogenation of substituted quinolines catalyzed 

by Co-Mo-S-0.83.a 

 

Entry Substrate Product Conv. (%)b Yield (%)c 

1  1b   2b   >99 96 

2   1c   2c >99 90 



3d 
  1d 

  2d 

>99 91 

4 
  1e   2e 

>99 94 

5 
  1f 

  2f 

>99 96 

6   1g 
  2g 

>99 98 

7e,f,g   1h   2h >99 50 

8h 
  1i 

  2i 

>99 83 

9 
  1j   2j >99 92 

10i,j 

  1k   2k 

>99 91 

11 

  1l 
  2l 

>99 95 

12f,k 

  1m 
  2m 

96 90 

13f,k 

  1n   2n 

98 85 

14f,l 

  1o   2o 

>99 98 



15l,m 
  1p   2p 95 74 

16n   1q   2q 
96 82 

17o,p 

  1r   2r 

97 77 

18e,q,r 

  1s 
  2s 

99 87 

19o,s 

  1t 
  2t 

>99 74 

20 
  1u   2u 

>99 97 

21o 

  1v 
  2v 

>99 96 

22f,k 

  1w   2w 
98 78 

aReaction conditions: substrate (0.25 mmol), catalyst (6.5 mg), toluene (1.6 mL). bDetermined by GC 
using dodecane as an internal standard. cyield of isolated product. d15 h, 150 ºC. e18 h, 150 ºC. fCatalyst 
(13.1 mg). g2a (15%) as by-product. hTraces (< 2%) of 1,2,3,4-Tetrahydroquinaldine as by-product. i18 h. 
jTraces (< 5%) of 1,2,3,4-Tetrahydroquinaldine as by-product. k24 h, 150 ºC. l24 h. mPlease, see Scheme 
S2 in the Supporting Information. n24 h, 110 ºC, 30 bar H2; Traces (< 5%) of product with reduced double 
bond as by-product. o10 h, 150 ºC. p3-ethyl-1,2,3,4-tetrahydroquinoline (15%) as by-product. qCatalyst 
(9.8 mg). r6-methyl-1,2,3,4-Tetrahydroquinoline (6%) and traces (< 2%) of 6-methylquinoline as by-
products. sTraces (< 5%) of 2a as by-product. 

 

The functional group tolerance of this catalytic protocol was further studied by 

exploring other reducible substituents. Gratifyingly, high chemoselectivity to the N-

heteroarene ring hydrogenation was achieved in the presence of sensitive alkene groups 

that were well-retained in the final hydrogenated products (Table 3, entries 15 and 16). 



It should be noted that this selectivity is reached even at high conversions of substrates. 

Interestingly, the ketone sensitive group was also well tolerated under the hydrogenative 

reaction environment (Table 3, entry 17). Furthermore, 1,2,3,4-tetrahydroquinolines 

furnished with carboxylic acid derivative groups, including cyanides, acids, esters and 

amides (2s-2w) were also afforded in good to excellent isolated yields from their 

corresponding functionalized quinolines (Table 3, entries 18-22). To the best of our 

knowledge, the chemoselectivity in the presence of cyanide or amide functional groups 

have not been reported with homo- or heterogeneous catalysis. 

Finally, we have further investigated the applicability of this catalytic protocol for the 

hydrogenation of other structurally related N-heteroarenes. As shown in Scheme 2, 

benzo[h]quinoline (1x) and 3-methylbenzo[f]quinoline (1y) were almost fully converted 

by hydrogenation of the N-heteroarene ring providing the corresponding products 2x 

and 2y in 81% and 92% isolated yields, respectively. Interestingly, for 1,10-

phenanthroline (1z) only one N-heteroarene ring was hydrogenated obtaining 1,2,3,4-

tetrahydro-1,10-phenanthroline (2z) in moderate yield.      

 

Scheme 2. Regioselective hydrogenation of N-heteroarenes catalyzed by Co-Mo-S-

0.83. Reaction conditions: substrate (0.25 mmol), catalyst (13.1 mg), toluene (1.6 mL). 

a20 bar H2. 



CONCLUSIONS 

In summary, we have hydrothermally prepared a series of unsupported nanolayered 

cobalt-molybdenum sulfide based-materials with different chemical compositions that 

display abundance active sites per unit volume. All prepared catalysts exhibit good 

catalytic performance for the regioselective hydrogenation of the N-heteroarene ring of 

the quinoline. The most active catalyst (Co-Mo-S-0.83) presents a tunable phase 

composition constituted by MoS2 and a mixed phase of cobalt sulfides, including CoS2 

and Co3S4. The electrochemical characterization has allowed us to detect transient 

species, likely associated to Co-Mo-S structures, which are mainly vanished after the 

first catalytic run. The superior activity of catalyst Co-Mo-S-0.83 could be attributed 

not only to the presence of these unstable Co-Mo-S structures, but also to the 

composition of the mixed phase of cobalt sulfides, being higher with the presence of 

Co3S4 phase but lower when increasing the relative content of Co9S8 phase. A catalyst 

phase transformation has been observed under successive catalyst reuses as a 

consequence of the vanishing of the ternary Co-Mo-S structures as well as to the 

catalyst desulfurization under hydrogenative conditions, thus leading to a variation of its 

catalytic performance. Recovering of most of the catalytic activity has been successfully 

accomplished by a facile hydrothermal re-sulfurization process that allows for 

regeneration of the mixed phase of cobalt sulfides and MoS2, but no the ternary Co-Mo-

S structures. 

Application of this non-noble metal-based heterogeneous catalyst has allowed for the 

efficient hydrogenation of functionalized quinolines and some other related N-

heteroarenes to the corresponding tetrahydroderivatives. Notably, the catalyst displays 

high chemoselectivity for the hydrogenation of the N-heteroarene ring of the quinolines 

in the presence of other easily reducible groups, such as alkenes, ketones, cyanides, 



carboxylic acids, esters and amides. This impressive chemoselectivity makes this 

catalyst unique in comparison with other heterogeneous catalytic protocols reported to 

date and extend the tool box of synthetic strategies for valuable N-heterocyclic 

compounds.   

EXPERIMENTAL SECTION 

Synthesis of Co-Mo-S Catalysts 

The hydrothermal synthesis of unsupported Co-Mo-S catalysts was accomplished 

following the previously reported methodology used for the preparation of catalysts 

with lower or the same content of cobalt with respect to molybdenum (Co/(Mo + Co) 

mole ratio ≤ 0.5),29 but different loading of Co(OAc)2·4H2O (471.6, 592.5, 1100.4 and 

1650.7 mg) was used to obtain unsupported Co-Mo-S catalysts with Co/(Mo+Co) mole 

ratio > 0.5 (0.58, 0.66, 0.83, 0.91, respectively).   

Catalysts Characterization 

X-ray diffraction (XRD) patterns, electron microscopy (HRTEM and HAADF-STEM) 

images and textural properties (BET surface area, pore volume and pore diameter) of 

prepared Co-Mo-S catalysts were obtained as previously reported.29    

Voltammetric measurements were performed in a conventional electrochemical cell 

using graphite bar (2 mm diameter) working electrodes, a Pt mesh auxiliary electrode 

and a Ag/AgCl (3 M NaCl) reference electrode using a CH I660 potentiostat. For 

voltammetry of immobilized particles (VIMP) experiments, the graphite electrode was 

modified by rubbing its lower end over ca. 1 mg of the Co-Mo-S material, previously 

grinded and finely distributed on the plane surface of an agate mortar. Then, the 

modified-graphite bar was rinsed with water to remove the ill-adhered particles and its 

lower end was immersed into the 0.10 M H2SO4 aqueous electrolyte solution in the 



electrochemical cell. This solution was optionally deaerated by bubbling Ar during 10 

min. The voltammetric profiles of all measured materials were maintained in series of at 

least 10 successive measurements on the modified electrode. 

Hydrogenation of Quinoline Derivatives 

The hydrogenation of quinoline derivatives was carried out in a 300 mL autoclave. 

Inside the autoclave, a 8 mL glass vial sealed with a perforated septum with a syringe 

needle, and containing a stirring bar, the Co-Mo-S catalyst (6.5 mg), the quinoline 

derivative (0.25 mmol), dodecane (50 µL) as an internal standard and toluene (1.6 mL), 

was set in an alloy plate. Once the autoclave was tightly closed and purged 3 times with 

hydrogen up to 30 bar, it was pressurized to 12 bar and seated into an aluminum block 

located on a heating plate, which was set at 120 °C and 750 rpm of stirring speed.   

After reaction time, the autoclave was cooled down in an ice bath, and carefully 

depressurized. A sample of the reaction crude diluted with ethyl acetate was taken to be 

analyzed by GC. Reproducibility of these experiments was ensured by performing each 

reaction at least twice. The isolated yields of the tetrahydroderivative products were 

determine as follows: Catalytic reactions were carried in the absence of dodecane as an 

internal standard. After reaction time, ethyl acetate was added to the reaction mixture, 

which was filtered over celite and taken to dryness under reduced pressure. Prior to 

characterization, purification by silica gel chromatography was also accomplished for 

some of the products (see Supporting Information). 
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