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Abstract

Numerical modeling of groundwater flow and mass transport is increasingly
becoming a reference criterion nowadays for water resources assessment and
environmental protection. To render the model reliable for future predictions,
the model structure and parameters have to be characterized as close to the re-
ality as possible. The process of model identification by integrating measured
parameters and observed model states is so called inverse problem. A series
of methods has been proposed to solve the inverse problem in the past several
decades and its evolution is discussed in the thesis. The main point of this
thesis is to propose two stochastic inverse methods to estimate model param-
eters which cannot be described with a Gaussian distribution, e.g., hydraulic
conductivities, integrating nonlinear model observations, e.g., hydraulic head
data.

The first is the normal-score ensemble Kalman filter (NS-EnKF) con-
structed on the basis of the standard EnKF. The standard EnKF is widely
used as a real time data assimilation technique due to its advantages, e.g.,
computation efficiency and ability to assess model uncertainty. However, it is
known to perform optimally when the model parameters and state variables
follow multiGaussian distributions. To extend the application of the EnKF
to nonGaussian distributed state vectors, such as those in channelized fluvial-
deposit aquifers, we introduce the normal-score transformation into the EnKF,
to propose the NS-EnKF. The augmented state vector consisting of model pa-
rameters and state variables are normal-score transformed so that they follow
marginal Gaussian distribution. Then, the transformed vectors serve as in-
put to the EnKF, which now operates on marginally Gaussian distributed
variables. The updated vectors are then back transformed to the original
distribution space. The effectiveness of the proposed method is assessed in
two synthetic bimodal aquifers, where the NS-EnKF is found to perform bet-
ter than the standard EnKF in characterizing the bimodal structure of the
hydraulic conductivities and in the subsequent flow and transport predictions.

The second method is a pattern search-based inverse method (PSINV), a
novel inverse method that goes beyond the minimization of an objective func-
tion. The unknown model parameters are simulated by searching for pattern
matches including parameters and state variables arranged in pre-established
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spatial templates. The attractive features of the proposed method, PSINV,
include that (i) the estimated parameters do not necessarily follow a normal
distribution, avoiding the pitfalls associated with the multiGaussian distribu-
tion, such as the lack of connectivity on extreme values; (ii) the model struc-
tures and the relationship between model parameter and state observations
are characterized by multiple-point geostatistics, which renders it possible to
apply the method in highly heterogeneous aquifers of complex geometries. The
performance of the method is evaluated in two synthetic reservoirs composed
of two facies, sand and shale.



Resumen

La modelacién numérica del flujo de agua subterrdanea y del transporte de
masa se estd convirtiendo en un criterio de referencia en la actualidad para
la evaluacién de recursos hidricos y la protecciéon del medio ambiente. Para
que las predicciones de los modelos sean fiables, estos deben de estar lo mas
préoximo a la realidad que sea posible. Esta proximidad se adquiere con los
métodos inversos, que persiguen la integracién de los parametros medidos y
de los estados del sistema observados en la caracterizacién del acuifero. Se
han propuesto varios métodos para resolver el problema inverso en las iltimas
décadas que se discuten en la tesis. El punto principal de esta tesis es pro-
poner dos métodos inversos estocasticos para la estimacién de los parametros
del modelo, cuando estos no se puede describir con una distribuciéon gausiana,
por ejemplo, las conductividades hidraulicas mediante la integracién de obser-
vaciones del estado del sistema, que, en general, tendran una relacién no lineal
con los parametros, por ejemplo, las alturas piezométricas.

El primer método es el filtro de Kalman de conjuntos con transformacion
normal (NS-EnKF) construido sobre la base del filtro de Kalman de conjun-
tos estdndar (EnKF). El EnKF es muy utilizado como una técnica de asim-
ilacién de datos en tiempo real debido a sus ventajas, como son la eficiencia
y la capacidad de computo para evaluar la incertidumbre del modelo. Sin
embargo, se sabe que este filtro sélo trabaja de manera éptima cuando los
parametros del modelo y las variables de estado siguen distribuciones multi-
gausianas. Para ampliar la aplicaciéon del EnKF a vectores de estado no gau-
sianos, tales como los de los acuiferos en formaciones fluvio-deltaicas, el NS-
EnKF propone aplicar una transformaciéon gausiana univariada. El vector de
estado aumentado formado por los pardmetros del modelo y las variables de
estado se transforman en variables con una distribucién marginal gausiana.
Estos vectores transformados sirven de entrada al EnKF, que ahora opera en
variables cuya distribucién marginal es gausiana. Los vectores actualizados re-
sultantes acaban transformandose al espacio original. La eficacia del método
propuesto se evalia en dos acuiferos sintéticos con conductividades que siguen
una distribucién bimodal, donde el NS-EnKF produce mejores resultados que
el EnKF en cuanto a la caracterizacion de la estructura bimodal de la conduc-
tividad hidraulica y las predicciones posteriores de flujo y transporte.

vil
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El segundo método es un método inverso basado en patrones de bisqueda
(PSINV), es un nuevo método inverso que va mds alld de la minimizacién
de una funcién objetivo. Los parametros del modelo se simulan mediante la
busqueda de patrones en los que se incluyen pardmetros y variables de estado
dispuestos en plantillas preestablecidas. Las caracteristicas mas atractivas del
método propuesto, PSINV, son que (i) los pardmetros estimados no tienen
que seguir necesariamente una distribucién normal, evitando los problemas
asociados con la distribucion multigausiana, tales como la falta de conectividad
en los valores extremos, (ii) la heterogeneidad del modelo y la relacién entre
los parametros del modelo y las variables de estado se modelan usando la
geoestadistica multipunto, lo que hace posible la aplicaciéon del método en
acuiferos altamente heterogéneo y con geometrias complejas. El método se
evalué en un depésito sintético compuesto de arena y pizarra.



Resum

La modelitzacio numerica del flux d’aigua subterrania i del transport de massa
s’esta convertint en un criteri de referencia en 'actualitat per a l'avaluacié
de recursos hidrics i la proteccié del medi ambient. Perque les prediccions
dels models siguen fiables, aquests deuen estar el més proxim a la realitat
que siga possible. Aquesta proximitat s’obté amb els metodes inversos, que
persegueixen la integracié dels parametres mesurats i dels estats del sistema
observats en la caracteritzacié de 'aqiiifer. S’han proposat diversos metodes
per a resoldre el problema invers en les ultimes decades que es discuteixen
en la tesi. El punt principal d’aquesta tesi és proposar dos metodes inversos
estocastics per a l'estimacié dels parametres del model, quan aquests no es
poden descriure amb una distribucié gausiana, per exemple, les conductivitats
hidrauliques mitjancant la integracié d’observacions de I’estat del sistema, que,
en general, tindran una relacié no lineal amb els parametres, per exemple, les
altures piezometriques.

El primer metode és el filtre de Kalman de conjunts amb transformacio
normal (NS-EnKF) construit sobre la base del filtre de Kalman de conjunts
estandard (EnKF). El EnKF és molt utilitzat com una teécnica d’assimilacié
de dades en temps real a causa dels seus avantatges, com sén l'eficiencia i la
capacitat de comput per a avaluar la incertesa del model. No obstant aco, se
sap que aquest filtre només treballa de manera optima quan els parametres
del model i les variables d’estat segueixen distribucions multigausianes. Per
a ampliar 'aplicacié de 'EnKF a vectors d’estat no gausians, tals com els
dels aquifers en formacions fluvio-deltaiques, el NS-EnKF proposa aplicar una
transformacié gausiana univariada. El vector d’estat augmentat format pels
parametres del model i les variables d’estat es transformen en variables amb
una distribucié marginal gausiana. Aquests vectors transformats serveixen
d’entrada a 'EnKF, que ara opera en variables la distribucié marginal dels
quals és gausiana. Els vectors actualitzats resultants acaben transformant-
se a l'espai original. L’eficacia del metode proposat s’avalua en un agqiiifer
sintetic amb conductivitats que segueixen una distribucié bimodal, on el NS-
EnKF produeix millors resultats que el EnKF quant a la caracteritzacié de
I’estructura bimodal de la conductivitat hidraulica i les prediccions posteriors
de flux i transport.

1X



El segon metode és un metode invers basat en patrons de recerca (PSINV),
és un nou metode invers que va més enlla de la minimitzacié d’una funcié
objectiu. Els parametres del model se simulen mitjancant la recerca de pa-
trons en els quals s’inclouen parametres i variables d’estat disposats en plan-
tilles preestablides. Les caracteristiques més atractives del metode proposat,
PSINV, sén que (i) els parametres estimats no han de seguir necessariament
una distribucié normal, evitant els problemes associats amb la distribucié
multigausiana, tals com la falta de connectivitat en els valors extrems, (ii)
I’heterogeneitat del model i la relacié entre els parametres del model i les
variables d’estat es modelen usant la geoestadistica multipunt, la qual cosa
fa possible 'aplicacié del metode en aqiiifers altament heterogenis i amb ge-
ometries complexes. El metode es va avaluar en un diposit sintetic compost
d’arena i pissarra.
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Introduction

1.1 Motivation and objective

Numerical modeling prediction has become a common reference tool in ground-
water management as well as for the remediation of contaminated sites. To
construct a reliable model, it is indispensable to characterize as best as pos-
sible all the parameters and variables involved in the model. The intuitive
method to obtain the parameters is in situ measurement from the field. The
measured “hard data” (the term hard is used to indicate that it represents
a direct measurement of the parameter of interest) are used to constrain the
model parameters with a geostatistic algorithm, e.g., Deutsch and Journel
(1998). However, it is in practice impossible to explore the aquifer exhaus-
tively. Besides the mentioned hard data, we can take advantage of the “soft
data” (the term soft is used to indicate that it represents an indirect measure-
ment of the parameter of interest), which are collected easily and extensively,
for instance, hydraulic head and remote sensing data, some of which can be
integrated with the help of the geostatistic method while others have to be
assimilated with the inverse method invoking the inverse problem.

The inverse problem aims at determining the unknown model parame-
ters by integrating the observed model responses. However, the subsurface
reservoir is normally very heterogeneous due to complex geologic process and
physical and chemical reactions, which makes model parameter identification
a demanding task. In the past several decades a series of inverse methods has
been proposed to solve the inverse problem. Despite of different formulation
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details, most inverse methods estimate the parameters under the criterion of
minimizing an objective function which measures the deviation between the
simulated and observed data,

J = ®(Y (x)*™, Yo%) (1.1)

where Y (2)%™ is simulated model states, x represents the parameters to be
estimated and Y°% the observations. A first problem that arises if we focus
only on the state reproduction is that the identified model structure might
be geologically unrealistic (Kitanidis, 2007). A solution to this problem is
characterizing correctly the prior structure and preserving the prior statistics
during the inverse modeling.

In the conventional inverse problem the aquifer structures are characterized
by a two-point based variogram model which evaluates correlation between two
locations. The variogram model is deficient to describe curvilinear structures
exhibited by some complex subsurface reservoirs, e.g., fluvial deposit aquifers.
An approach to handle the nonlinear structures is multiple-point geostatistics
(Guardiano and Srivastava, 1993), in which a training image is introduced
serving as the conceptual model. The high order statistics, experimental local
conditional distribution function and structure patterns, are derived from the
training image and transferred to the generated realizations.

Field data indicate that the model parameters, e.g., hydraulic conductivity,
display a log-normal histogram. By extension, many researchers have assumed
that the best statistical model to characterize the spatial variability of logcon-
ductivity is the multiGaussian distribution. The multiGaussian distribution
is attractive since it is fully described by two values, expectation and covari-
ance. Some inverse methods are known to work optimally in a multiGaussian
framework. For instance, the ensemble Kalman filter (EnKF) provides an
optimal solution when the parameters and state variables follow a multiGaus-
sian distribution (Arulampalam et al., 2002). However, the appropriateness
of the multiGaussian distribution has been challenged for some decades now
(e.g., Gomez-Hernandez and Wen, 1998; Journel and Deutsch, 1993) and the
multiGaussian model has been found unreasonable in such cases that there
exist continuous paths composed of extreme high (low) values, or for intricate
spatial heterogeneity patterns. Some inverse methods are thus proposed to go
beyond the limitation of the multiGaussian distribution, e.g., particle filtering.

The objective of this thesis is to propose inverse methods coping with the
above mentioned problems, that is, the new inverse methods are supposed to
satisfy the standards listed below: (a) preserve a prior model structure to en-
sure geological realism; (b) perform well even if the model parameters do not
follow a multiGaussian distribution; (c¢) characterize the curvilinear structures
in complex aquifers which cannot be described with a two-point variogram-
based model; (d) develop some optimization scheme which goes beyond the
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objective function framework. Contribution of this thesis includes two novel
inverse methods, normal score EnKF (NS-EnKF) and a pattern search based
inverse method (PSINV). The former is constructed by modifying the stan-
dard EnKF so that it can handle nonGaussian distributed model parameters
and states and the latter is a pattern searching based inverse method dealing
with categorical variables in a multimodal reservoir based on multiple point
geostatistics.

Hereafter, notice that we will use interchangeably the terms data assim-
ilation, inverse modeling and conditioning, they have the same meaning and
are commonly used in filtering, hydrogeology and geostatistics, respectively
to mean that we aim at generating realizations of a parameter honoring the
measured data.

1.2 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 recalls the evolution of the inverse modeling ranging from the
preliminary manual calibration to recent automatic data assimilation methods.
Shortcomings and advantages of each type of inverse method are highlighted,
in which the shortcomings will serve as the motivation for developing new
methods and advantages will be retained when developing new techniques.
Recent trends of the inverse problem are also discussed in this chapter.

Chapter 3 modifies the standard EnKF so that it can deal with non-
Gaussian distributed model parameters and model states. It is well known
that the standard EnKF performs optimally when the parameter follows a
Gaussian distribution and the model transfer function is linear. In this chap-
ter, the parameters and state variables are transformed via normal-score trans-
formations so that they follow a marginal Gaussian distribution. The Kalman
filtering is then carried out in the Gaussian space. The NS-EnKF is compared
with the standard EnKF to assess its performance through a synthetic ex-
ample which resembles a channelized fluvial deposit aquifer. Furthermore, a
sensitivity analysis of the NS-EnKF is presented.

Chapter 4 evaluates the performance of NS-EnKF under the stringent con-
dition that no parameter measurements (hard data) are available. In this ex-
periment, the hydraulic conductivities of a bimodal subsurface reservoir are
estimated by incorporating piezometric head observations.

Chapter 5 proposes a novel inverse method, a pattern search-based inverse
method and the program code, PSINV. The model parameters are simulated
by pattern matching of pre-defined templates composed of a combination of
parameter and state variable values rather than by minimizing an objective
function. The multiple-point based pattern matching allows identifying curvi-
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linear structures impossible to capture with a two-point variogram model. The
performance of PSINV is illustrated in a bimodal facies reservoir composed of
sand and shale.

The above four chapters are in fact four independent papers which have
been published, are under review or to be submitted.

Chapter 6 summarizes the thesis and gives recommendations for future
research.

Appendix A shows in detail how the transformation function needed in the
NS-EnKF is constructed including normal score transform and back transform.
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Abstract

Parameter identification is an essential step in constructing a groundwater
model. The process of recognizing model parameters by conditioning on the
observed data is inverse problem. A series of inverse methods has been pro-
posed to solve the inverse problem, ranging from trial-and-error manual cali-
bration to the current complex automatic data assimilation algorithms. This
paper does not attempt to be another review paper on inverse models, but
rather to analyze and track the trajectory of the inverse methods over the
last decades, revealing their evolution, motivation and future trends. Issues
confronted by the inverse problem, such as dealing with multiGaussianity or
whether to preserve or not the prior statistics are discussed.

2.1 Introduction

Mathematical modeling of subsurface flow and mass transport is needed for
groundwater resources management and contamination remediation. The for-
ward model requires specification of a variety of parameters, for instance,
hydraulic conductivity, storativity and source or sink together with initial and
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boundary conditions. However, in practice it is impossible to characterize the
model exhaustively because of the complex hydrogeological environment; for
this reason, inverse modeling is indispensable. Inverse models are used to
identify input parameters at unsampled locations by incorporating observed
model responses, e.g., hydraulic conductivities are derived after hydraulic head
and/or solute concentration data are combined. Deriving model parameters
from model state observation is common in many other disciplines, such as
petroleum engineering, meteorology and oceanography. This work mostly fo-
cuses on inverse methods used in hydrogeology.

2.1.1 The forward problem and the inverse problem

The forward problem involves predicting model states, e.g., hydraulic head,
drawdown and solute concentration, based on a prior model parameterization.
Combining the mass conservation and Darcy’s laws, the forward groundwater
flow model in an aquifer can be written as (Bear, 1972)

Oh
V- (KVh) :Ssa—i—Q (2.1)
subject to initial and boundary conditions, where V- is the divergence oper-
ator (a% + 8% + %), V is the gradient operator (8%, 6%, %)T, K is hydraulic
conductivity [LT~1], h represents hydraulic head [L], Ss is specific storage
[L71], t is time [T], and Q is source or sink [T~!]. The differential equation
governing non-reactive transport in the subsurface is:

O = V(40) + V-(6DVC) (2.2)
subject to initial and boundary conditions, where C' is the concentration of
solute in the liquid phase [M L~3], ¢ is porosity [-], D is the local hydrody-
namic dispersion coefficient tensor [L?T 1], and ¢ is the Darcy velocity [LT~}]
calculated by Darcy’s law: ¢ = —KVh.

The inverse problem aims at determining the unknown model parameters
by making use of the observed state data. In the early days of groundwater
modeling, it was common to start with a prior guess of the model parameters,
run the forward model to obtain the simulated states, and then enter in a
manual loop of comparison between simulated and observed states, modifica-
tion of parameters, and forward model running, until observed and simulated
values were close enough so as to accept the model parameter distribution as
a good representation of the aquifer. This “trial and error” method falls into
the scope of “indirect methods” as opposed to the “direct methods” which do
not require multiple runs of the forward model to derive the model parameters
(Neuman, 1973) as will be discussed below.
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2.1.2 Why is the inverse problem necessary?

Sagar et al. (1975) classified the inverse problem into five types according to
the unknowns, i.e., model parameters, initial conditions, boundary conditions,
sources or sinks and a mixture of the above, respectively. Most documented
inverse methods fall into the first type, that is, they try to identify model
parameters which contribute a large amount to model uncertainty due to the
inherent heterogeneity of aquifer properties. Parameter identification is of
importance considering the fact that no reliable predictions can be acquired
without a good estimation of model parameters. Besides estimation of aquifer
parameters, inverse methods are also able to provide an assessment of uncer-
tainty for the predictions. Furthermore, inverse problem might serve as a guide
for data collection and the design of an observation network. The reader is re-
ferred to Poeter and Hill (1997) who discussed the benefits of inverse modeling
in depth.

2.1.3 Why is the inverse problem difficult?

A problem is properly posed if the solution exists uniquely and varies con-
tinuously as the input data changes smoothly. However, most of the inverse
problems in hydrogeology are ill-posed and they cannot be solved unless un-
der certain assumptions and constraints. Ill-posedness may give rise to three
problems: non-uniqueness, non-existence and non-steadiness of the solutions,
among which non-uniqueness is the most common. Non-uniqueness primarily
stems from the fact that the number of parameters to be estimated exceeds
that of the available observation data. Another reason is that the parameters
to be identified are sometimes not sensitive to the observations; for instance,
hydraulic conductivities are not as sensitive to head data close to prescribed
head boundaries as they are to head data close to prescribed flux boundaries
(Carrera and Neuman, 1986b).
A series of suggestions have been proposed to alleviate the ill-posedness:

1. Reduce the number of unknown parameters, e.g., using zonation, or
collect more observation data so that the numbers of data and unknowns
are balanced.

2. Consider the prior information or some other type of constraint so as to
restrict the space within which parameters may vary.

3. Impose regularization terms to reduce fluctuations during the optimiza-
tion iterations.

4. Maximize the sensitivity of heads to model parameters, for instance, by
designing properly the observation network.
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5. Minimize the nonlinearity in the model equation. Carrera and Neuman
(1986b) argued that working with the logarihtm of hydraulic conductiv-
ity reduces the degree of non-convexity during optimization. An alterna-
tive is to infer hydraulic conductivity using fluxes rather than heads as
done by Ferraresi et al. (1996), since the relationship between hydraulic
conductivity and flux is linear (Darcy’s law) while the relationship be-
tween hydraulic conductivity and head is nonlinear.

Detailed discussions can be found in works by Emsellem and De Marsily
(1971), Neuman (1973), Carrera and Neuman (1986b) and McLaughlin and
Townley (1996) among others.

Besides the ill-posedness problem, computational burden is the second
main hurdle for inverse problems (Neuman, 2006). There are several reasons
for the high CPU time requirement. Since many inverse models are iterative,
the forward model has to be run many times until an acceptable parameter
distribution is obtained. The time needed to run the forward model grows
exponentially with the degree of discretization and the level of heterogeneity.
When multiple realizations are sought, CPU demand grows with the number
of realizations. For those methods that require them, computing sensitivity
matrices is very time consuming. A few measures to reduce computational
demand have been proposed, for instance, (a) certain kernel technique renders
it possible to select representative realizations from a large ensemble so that
the size of the ensemble can be reduced (Scheidt and Caers, 2009); (b) scale-up
can be taken prior to any forward simulation in order to reduce solution time
(e.g., Li et al., 2011d); (c) some improvements have been reported to speed
up the calculation of the sensitivity Jacobian matrices (Medina and Carrera,
2003).

The problem of scales is the third difficulty to be confronted in the appli-
cation of the inverse method. Measurements from boreholes (made in situ or
in the laboratory), local pumping tests, and regional aquifer estimates are the
three common scales (Dagan, 1986; Kitanidis and Vomvoris, 1983) at which in-
formation is handled in aquifer modeling. As Emsellem and De Marsily (1971)
pointed out, “permeability is a parameter with no punctual value but with an
average value in a region of a given size”. The support of the permeability
measured from the field is normally smaller than the cell size of the numerical
model. In practice, permeability should be upscaled to a scale consistent with
that of the numerical model discretization, otherwise the forward model would
be computationally very expensive. A variety of approaches to calculate the
upscaled permeability or hydraulic conductivity are available (e.g., Renard
and Marsily, 1997; Sanchez-Vila et al., 2006; Wen and Goémez-Hernandez,
1996; Zhou et al., 2010; Li et al., 2011a,b). Besides the scale inconsistence
between the field measurement support and numerical model discretization,
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another scale problem is related with variety of observations, i.e., the observed
data may be obtained in different supports.

2.1.4 Outline of the paper

Despite all sorts of difficulties, many inverse methods have been proposed to
solve the inverse problem. In the present paper we do not intend to review
all current inverse methods, since several others have reviewed the topic from
different points of view (e.g., Carrera et al., 2005; De Marsily et al., 2000;
McLaughlin and Townley, 1996; Oliver and Chen, 2010; Yeh, 1986). But
rather, we would like to analyze the evolution of the inverse models, from
the simple trial-and-error approaches of yesterday to the sophisticated ensem-
ble Kalman filter of today, pointing out the incremental improvements that
happened in the way. In the remainder of this paper, we mainly illuminate
seven key topics as follows.

e Section 2.2.1 discusses the direct method. We focus on the indirect
methods in the following sections.

e Section 2.2.2 shows a linear inverse method in which the groundwater
flow model is solved by linearizing the partial differential equation un-
der certain assumptions. Its shortcoming motivates development of the
nonlinear inverse methods in which the forward problem is solved nu-
merically. The inverse methods in the rest sections all belong to the
nonlinear type.

e Section 2.2.3 highlights the importance of considering uncertainty and
introduces the inverse method based on Monte Carlo simulation in which
multiple plausible realizations are used to represent the real system.

e Section 2.2.4 displays another way to update the model, i.e., by sampling
the posterior distribution rather than by minimizing an objective func-
tion which measures the mismatch between the simulated and observed
data.

e Section 2.2.5 focuses on integrating new observations sequentially with-
out the need to reformulate the problem.

e Section 2.2.6 talks about whether the prior statistical structure of the
model should be preserved.

e Section 2.2.7 addresses the issue of multiGaussianity in inverse modeling
and the difficulties to get away from it.
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In each section, we will introduce a typical inverse method explaining its prin-
ciple, implementation details, advantages and shortcomings. Recent trends of
the inverse problem are summarized in Section 2.3. The paper ends with some
conclusions.

2.2 Evolution of inverse methods

Many approaches have been proposed to solve the inverse problem. Sev-
eral comparison studies have been carried out to evaluate their performances,
among them Zimmerman et al. (1998) and Hendricks Franssen et al. (2009)
both compared seven different inverse methods. The former work focused
on the transmissivity estimation and subsequent forecast of transport at the
Waste Isolation Pilot Plant (WIPP). The latter applied seven inverse meth-
ods to characterize the well catchments by groundwater flow modeling. Some
methods, such as the maximum likelihood method, the self-calibration method
and the pilot point method were analyzed in both works. In this section we
would like to track the evolution of inverse methods under different driving
forces.

2.2.1 Direct approach or indirect avenue?

Inverse methods fall into two groups: direct and indirect ones (Neuman, 1973).
Nowadays, only indirect methods are considered; however, it was the direct
method that, somehow, gave rise to the indirect one. The move from direct
methods to indirect ones would be the first major evolution in solving inverse
problem, and for this reason we start this analysis by recalling the direct
method and why it had to be discarded in favor of the indirect one.

The forward problem of groundwater flow model can be expressed generally
as F(K) = h, where F(-) is the equation (e.g., Equation 2.1) relating the
system parameters (e.g., hydraulic conductivity K) to the model response
(e.g., hydraulic head h). The inverse problem can be simply formulated as the
inverse: K = F~!(h), with the known responses but unknown parameters.
The boundary conditions and sources or sinks terms could also be identified
if necessary (Sagar et al., 1975).

Although the theory is straightforward, it is virtually impossible to obtain
realistic solution by solving the algebraic equation series due to the serious
ill-posedness or the singularity of the matrices involved in the numerical for-
mulation of the problem (Sun, 1994). Some modifications were proposed to
cope with the difficulties, such as: consider more equations than there are un-
knowns to build an over-determined system so that the effect of measurement
errors is reduced (Ponzini and Lozej, 1982); or, impose a constraint on the
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objective function, which converts the inverse problem into a linear program-
ming (Kleinecke, 1971; Neuman, 1973) or a minimization problem (Navarro,
1977).

The main shortcoming of the direct method is that it requires that piezome-
ter heads have been measured at all nodes of the discretized domain, and for
it to yield stable results head measurements are needed everywhere for several
orthogonal boundary conditions in the sense explained by Ponzini and Lozej
(1982).

It is worthwhile mentioning that, recently, Brouwer et al. (2008) proposed
a direct approach called the “double constraint method” to determine perme-
ability. Although it is not strictly a direct method, since it does not require
having observations extensively over the entire domain, the final step of the
method, computing permeabilities, is a direct approach. The methods assumes
that couples of pressure/flow rates are available at a number of points in the
domain. A guess of the spatial distribution of the permeabilities is made and
two forward runs are performed, the first one considers the measured pressures
as prescribed boundary conditions (disregarding the flow rate data), the sec-
ond one uses the flow rates as prescribed boundary conditions (disregarding
the pressure data), then prior permeability guess is forgotten and new per-
meabilities are computed “directly” at each block interface using the pressure
gradients derived from the first run and the flow rates derived from the second
one. The process is repeated, and eventually the spatial distribution of perme-
abilities converges to a stable one. The method was compared in a synthetic
example with the results obtained by the ensemble Kalman filter yielding good
results.

The virtual impossibility of having state observation data on the entire
domain gave rise to the indirect methods capable of handling limited numbers
of observations.

2.2.2 Linearization or not?

Kitanidis and Vomvoris (1983) proposed the geostatistical approach (GA) as
a very clever way to reduce the number of unknown values and subsequently
mitigate the ill-posedness problem. Using geostatistical tools, identifying the
conductivities is not performed by trying to guess the values of conductivity
in each node of the aquifer domain, but rather by determining the parameters
of the random function model underlying such a spatial distribution; then,
conductivities are interpolated by kriging onto the model cells.

The procedure of the GA can be summarized into two main parts: struc-
ture analysis and linear estimation. Structure analysis consists of three steps
as follows:
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1. Select a geostatistical model, e.g., decide a variogram function and whether
the model is stationarity or not. The model structure is selected based
on all available information including hydraulic properties.

2. Estimate the parameters characterizing the model structure such as
trend (if any), variance and correlation ranges. The joint probability
function of log-permeability and head is assumed multiGaussian, and the
hydraulic heads are expressed as a linear function of log-permeability, af-
ter linearizing Equation 2.1. Then, the parameters of the geostatistical
model (generally no more than five) are estimated through maximum
likelihood. Gauss-Newton method is used to solve the iterative maxi-
mization of the likelihood function.

3. Examine the validity of model. The estimated structure is either ac-
cepted or modified during the test (i.e., the variogram function is changed,
or anisotropy is introduced).

As soon as the geostatistical model is accepted, the log-permeability field is
estimated by kriging, a best linear unbiased estimation algorithm, which is
capable of providing estimations with minimum error variance. Later, Dagan
(1985) and Rubin and Dagan (1987) proposed an extension of the GA using
Bayesian conditional probabilities.

The advantages of the GA reside in two main aspects. First, it reduces the
number of the effective parameters to be estimated by introducing the concept
of random function into the inverse problem. In this way, the ill-posedness is
alleviated since the unknown value number is far less than the number of
observations and the estimated parameters are independent of grid discretiza-
tion. Second, this method is computationally efficient arising from two facts:
hydraulic head is obtained by first-order approximating the flow equation in-
stead of numerical solving it; a linear estimation (kriging) is applied as soon
as the geostatistical structure is identified with no iterative optimization in-
volved, saving CPU time to a large extent. The method was first verified
through a one-dimensional test and found stable and well-behaved (Kitanidis
and Vomvoris, 1983).

Despite several advantages of this method, we have to mention some short-
comings. First, the hydraulic head in the forward problem is approximated by
linearizing the flow equation under an assumption which is only valid if the
log-conductivity exhibits a small variance. Hoeksema and Kitanidis (1984) al-
leviated this problem by applying the method to a two-dimensional isotropic
confined aquifer in which hydraulic heads are obtained by solving numerically
the partial differential equation, and then Kitanidis (1995) further general-
ized it onto a quasi-linear approach. Second, the final conductivity map is
obtained by kriging, this has two implications: first, and most important, the
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final maps are smooth since they represent an ensemble expected value of the
random function model, and second, since kriging only uses the covariances
for the estimation, as soon as heads cannot be approximated as a linear com-
bination of the conductivities, the final conductivity maps do not honor the
measured piezometric heads, in the sense that the forward solution of the flow
problem will not match the measured heads.

The need to apply the inverse model to hydraulic conductivity spatial
distributions with large heterogeneity forced moving from the linearized ap-
proaches to other approaches in which this linearization is not necessary.

2.2.3 Deterministic estimation or stochastic simulation?

A typical example of nonlinear inverse approaches is the maximum likelihood
method (MLM) developed by Carrera and Neuman (1986a). The method is
able to estimate simultaneously such parameters as hydraulic conductivity,
specific storage, porosity, dispersivity, recharge, leakage and boundary condi-
tions by incorporating head and concentration measurements as well as prior
information (Medina and Carrera, 1996). Zonation is employed to reduce the
number of parameters to be estimated, that is, hydraulic conductivities are
assumed constant over large patches of the aquifer, thus, the number of un-
knowns is proportional to the number of patches. Then, the groundwater
problem (Equation 2.1, or 2.2 or both) is solved numerically subject to initial
and boundary conditions. Let z be a vector of all the unknown parameters
and y° be a vector of available measurements, a set of optimum parameter
estimates is obtained by maximizing the likelihood L(z | y°**). Under the
hypothesis that all the data could be transformed to jointly follow a multi-
Gaussian distribution, the likelihood function can be expressed as follows:

1 ¥m

L | y™) oc exp{=5 > (v = y7™) O, (wi — 07™)} (2.3)
1=1

where y; can be computed states (e.g., head and concentration) and model
parameters, C ; is the corresponding covariance of y; and NV, is the number
of types of measurements. Maximizing L(z | y°**) is equivalent to minimize
—2In(L), and the optimization problem turns to minimizing the objective func-

tion:
Nm

T = (i — ") C i — y™). (2.4)
i=1

Iterative minimization algorithms are applied on the objective function until
certain convergence criteria are met. The model parameters are then updated
by adding the optimal perturbations. The uncertainty of parameter estimates
is evaluated by a lower bound of the covariance matrix.
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One of the important features of MLM is that the number of unknown pa-
rameters is reduced significantly due to the application of zonation so that the
potential ill-posedness problem is circumvented to some extent. Furthermore,
the MLM might be used as a conceptual model identification tool, i.e., to
identify the best model structure among several alternatives; in this respect,
Carrera (1987) argued that the criterion proposed by Kashyap (1982) is the
most effective.

However, some limitations of the MLM are apparent. Although the zona-
tion scheme does help to reduce the number of the unknowns, it causes over
smoothness, i.e., inherently heterogeneous geologic properties are represented
by a few patches of homogeneous conductivities, while at the same time may in-
troduce unacceptable discontinuities between zones. Furthermore, some zone
discretizations may cause bias, depending on the number of zones and mea-
surements (Kitanidis, 1996). Also, as stated earlier, the objective function is
constructed under the assumption of a multinormal distribution, i.e., the prior
residuals and estimates follow a multiGaussian distribution. The implications
of this assumption will be discussed further in Section 2.2.7.

The MLM was probably the first widely successful inverse method, it could
incorporate many types of observations, it included a regularization term to
prevent wide fluctuations during the optimization phase, and, because it did
not use any approximation for the relationship between the state variables and
the aquifer parameters, it yielded a zoned map of hydraulic conductivities that
reproduced very well the observed data. However, the MLM method produced
a single map, too smooth to really describe the heterogeneity observed in
nature.

Small scale variability had already being recognized as one of the important
factors controlling aquifer response. Recognizing this, De Marsily et al. (1984)
introduced the pilot point method (PiPM) as a procedure to introduce more
variability in the aquifer model. Starting from a kriging map of the hydraulic
conductivities, smooth as all kriging estimation maps are, De Marsily et al.
(1984) positions a fictitious datum where no observation exists, and assigns to
it a value so that when kriging is performed again, with this new datum, the
new kriging map provides a better approximation to the observed piezometric
head data. New pilot points are introduced sequentially into the model until
there is enough heterogeneity in the model so as to reproduce the observed
head data. This procedure had several advantages: the aquifer could be dis-
cretized at any scale, since after each iteration, (block) kriging was performed
on the entire aquifer; the heterogenity was consistently treated throughout the
process, since the same variogram model was used for all kriging estimations;
and, because of the way the procedure is implemented, the fictitious data in-
troduced at the pilot points was always within the local limits of variability of
the variable as induced by the underlying random function model. The PiPM
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was successfully applied to model the Culebra formation overlying the Waste
Isolation Pilot Plan (WIPP) (Cooley and Hill, 2000; LaVenue et al., 1995; Ra-
maRao et al., 1995, 2000). The main problem of the PiPM was still that, at
the end, there was only a single representation of the aquifer, a single kriging
map that, although more heterogeneous than the kriging map computed from
the conductivity data alone, still was too smooth.

An estimated map, let it be obtained by kriging, maximum likelihood or
Bayesian conditional probabilities, it is an average map, and the average does
not necessarily represent reality. The same way that the average outcome of
throwing a dice (3.5) does not correspond to any of the dice face pips, the
average of an ensemble of potential realizations, does not correspond with any
realization. The smooth fields obtained by these methods fail to reflect the
local spatial variability and will necessarily fail in properly predicting mass
transport (e.g., Gémez-Herndndez and Wen, 1994).

It is then when the self-calibrated method is proposed (SCM) and the con-
cept of inverse stochastic modeling starts being considered. The idea is not
to seek a single smooth representation of the spatial variability of hydraulic
conductivity capable of reproducing the observed piezometric head and/or
concentration data, but to generate multiple realizations, all of which display-
ing realistic patterns of short scale variability, all of which reproducing the
observed piezometric head and/or concentration data. The concept of the
SCM was first outlined by Sahuquillo et al. (1992) and then elaborated by
Goémez-Herndndez et al. (1997) accompanied with two applications and an
implementation program (Capilla et al., 1997, 1998; Wen et al., 1999). The
SCM is based on the PiPM with the following rationale: instead of starting
from a kriging map and introducing local perturbations by adding fictitious
pilot points and optimizing the value that would produce the best reproduc-
tion of the observed state, let’s start from multiple realizations generated by
a conditional simulation algorithm; and instead of identifying the optimal lo-
cation of the next pilot point and introducing them sequentially, locate what
Gémez-Hernéndez et al. (1997) call master points all at once (as many as two
or three per correlation length) and determine the values of the perturbations
in a single optimization step. To understand the SCM, one has to recall that
a conditional realization is the sum of a conditional mean (kriging map) plus
a correlated residual map (Journel, 1974), what SCM is to apply the pilot
point method with multiple points at once to modify the conditional mean
with the objective that the new conditional mean plus the correlated residuals
would match the observation data. By applying this optimization approach
to all the realizations of an ensemble, the SCM is capable to generate multiple
realizations, all of which are conditional to the state observation; thus, the
term inverse stochastic modeling.
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With such an ensemble of realizations, it was possible to make transport
predictions in each of the realizations and collect all of these predictions to
build a model of uncertainty based on transport predictions made on realistic
realizations.

It was soon realized that the concept of the SCM could be implemented
in the original PiPM, and it has been applied multiple times since then (e.g.,
Alcolea et al., 2006, 2008; Lavenue and De Marsily, 2001).

Gomez-Herndndez et al. (2003) reviewed stochastic conditional inverse
modeling showing the strengths of SCM. The SCM was extended to incorpo-
rate concentration data (Hendricks Franssen et al., 2003; Wen et al., 2002) for
the characterization of hydraulic conductivity, and also to incorporate break-
through data of both reactive and nonreactive data to characterize the spatial
variability of the sorption coefficient (Huang et al., 2004). Recently, genetic al-
gorithms have been coupled with the SCM to search for the optimal locations
of the master points as well as the optimal perturbation at these locations
(Wen et al., 2006).

Both the PiPM and the SCM have been highly criticized recently by Rubin
et al. (2010) who present as an alternative the anchored distribution method.

The MLM, the PiPM and the SCM are closely related in that they follow
a very similar perturbation and updating scheme. The update process for the
PiPM is illustrated in “Figure 1”7 of RamaRao et al. (1995) and in “Figure
17 of Alcolea et al. (2006). For the sake of completeness and comparison, we
graphically show an sketch of the update algorithm for all the three methods
(Figure 2.1). In the MLM, it is like that there is a pilot point in each zone,
and the perturbation in the pilot point extends as a constant over the entire
zone; in the PiPM, the pilot point perturbation dies out with the correlation
length of the random function model; and in the SCM, the perturbation of
the entire field is obtained by kriging the perturbations in each master point.
All three methods seek finding those perturbations that added to the initial
guess will result in a new field that is conditional to the observed state data.

2.2.4 Minimization or sampling?

Up to here all inverse methods discussed are based on the minimization of an
objective function that measures the mismatch between the simulated state
and the observed values. However, there are alternative ways to achieve the
same results without resorting to an optimization problem, but rather to sam-
pling a multivariate probability distribution.

Suppose that model parameter x is characterized by a multiGaussian dis-
tribution with mean p and variance Cy, © ~ N(u, Cy,), with a prior probability
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Figure 2.1: Schematic illustration of MLM, PiPM and SCM. Suppose the
parameter to be estimated is the log hydraulic conductivity. The prior guess
is updated by adding a perturbation, logK,pdate = logKprior + AlogK. The
PiPM adds a perturbation around each pilot point sequentially. A seed logK
field of the realization ensemble is shown for the SCM, which is modified by
adding a perturbation that is computed by interpolating the perturbations at
the master points.
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density given by

n(@) ox eap{— 3 (x — u) C; \(z — ). (2.5)

Assuming that the discrepancies between observed state variables y°* and
their corresponding model simulations y*™ = F(x) is also multiGaussian with
error covariance Cy, the joint probability distribution of y°% given x is,

1 _
m(y*™ | ) o efvp{—i(szs - F(2))'C (y™ = F(a))}. (2.6)

Using Bayes’ theorem, the posterior distribution of x given the observations

y°% can be written as

" | 9) = <w(z) -7y | 2)
o eapl{—g (e — ' C; (o — ) — L — F@)) 0 ™ — F(a)))
(2.7)
with ¢ a normalization constant. Markov chain Monte Carlo method (McMC)
(Hastings, 1970; Metropolis et al., 1953; Oliver et al., 1997) is suitable for
drawing samples from the posterior conditional distribution 7(z | y°%). If a
sufficiently large chain is generated following the procedure described below,
the chain will converge so that its members will be drawn from the posterior
conditional distribution. The procedure of McMC is the following (Robert
and Casella, 2004)

1. Initialize the first realization .
2. Update x according to the Metropolis-Hastings rule:

e Propose a candidate realization z* conditional on the last realiza-
tion by drawing from the transition kernel z* ~ ¢(z* | x).

e Accept the candidate z* with probability min{l, a} and
m(@* |y) alz|z¥)

=Ty e 2) (28)

3. Loop back to the second step.

The two critical points on the McMC method are the selection of the
transition kernel g(z* | z) and how to compute the acceptance probability
a. The first attempt to apply the McMC in hydrogeology is by Oliver et al.
(1997) who generated permeability realizations conditioned to variogram and
pressure data using a local transition kernel. This local kernel only modifies



CHAPTER 2. INVERSE METHODS IN HYDROGEOLOGY:... 19

a single cell in the realization of £ when making the transition from z to z*.
Such a small perturbation, specially if the aquifer discretization is large, makes
the method quite slow, since after each proposal there is a need to evaluate the
state equation (groundwater flow model) and to decide whether the proposal
is accepted or not. If transition kernel is global, producing a new realization
which changes in every cell of the aquifer, the probability that the candidate
is rejected is quite high. An alternative is to use a block kernel in which the
proposed realizations differs from the previous one only over a certain region
inside the aquifer (Fu and Gémez-Hernandez, 2009). The so called blocking
McMC gives better results than either the local or global transition kernels.
If, in addition, the evaluation of the state of the system, for the purposes of
computing the acceptance probability, is made on a coarse scale with the aid
of upscaling, and only the high acceptance probability members are submitted
to the fine scale evaluation, the convergence rate of the chain will be improved.

As mentioned, the McMC is not an optimization algorithm, it aims at
generating multiple independent realizations by sampling from the posterior
parameter distribution conditioned on the observations. It is also important to
notice that, since the posterior distribution is built from the prior parameter
distribution, the realizations generated are consistent with the prior model.
We will return later to the issue of whether it is important or not to preserve
the prior model structure throughout the inversion process in Section 2.2.6.

The original McMC is computational demanding since each proposed re-
alization is subject to forward simulation which involves solving a partial dif-
ferential equation over a large domain and a long time period. Furthermore,
these proposed realizations are not necessarily accepted, which generally re-
quires that a large number of candidate realizations have to be generated and
evaluated. A lot of work has been devoted to increase efficiency of McMC by
means of increasing the acceptance rates or reducing the dimensionality of the
forward simulation. A “limited-memory” algorithm has been used to acceler-
ate sampling using low-dimensional jump distributions (Kuczera et al., 2010).
A two-stage McMC has been proposed to improve the efficiency of McMC
(Dostert et al., 2009; Efendiev et al., 2009), in which fine scale simulations
are performed only if the proposal at the coarse scale is accepted. Another
drawback of McMC is related with the low mixing speed of the chain, in other
words, the McMC should sample from the entire posterior distribution, but it
takes quite a long chain until this happens (Fu and Gémez-Hernéndez, 2009;
Romary, 2010).

2.2.5 Real time integration or not?

The trajectory of inverse modeling up to here shows quite a large evolution
from the initial methods. There were two main problems. The first, and most
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important one, was CPU requirements; the second was the need to reformulate
the problem from the beginning if new data are collected. Inverse stochastic
modeling supposed a big leap in aquifer characterization, but, in essence, it was
equivalent to performing inverse modeling seeking a single best estimate, but as
many times as realizations were needed. It was necessary to find an alternative
capable of generating multiple conditioned realizations of conductivity in a
more efficient manner. If this could be achieved, it would be interesting that as
new data are collected, as it happens in any monitoring network that measures
piezometric heads or concentration values sequentially in time, that they could
be incorporated into the inverse model naturally without any modification of
the algorithm. The ensemble Kalman filter (EnKF) is the method capable of
it (Burgers et al., 1998; Evensen, 1994).

The EnKF is based on the Kalman filter, a data assimilation algorithm for
systems in which the relation between model parameters and states is linear
(Kalman, 1960). This linearity renders an exact propagation of the covariance
with time. However, the equations depicting groundwater and solute transport
model are nonlinear (Equations 2.1 and 2.2), which deteriorates the propaga-
tion of covariance. As a solution to this problem, the extended Kalman filter
was proposed, the nonlinear function is approximated linearly by a Taylor-
series expansion and this linearization is used for covariance propagation. The
problem with extended Kalman filter is that it also tends to deteriorate as
more data assimilated, it does not work well with highly heterogeneous fields,
and it is time-consuming when the aquifer is finely discretized (Evensen, 2003).

The EnKF circumvents the problem of covariance propagation in time by
working with an ensemble of realizations. The forward problem is solved on
each realization, and the ensemble of states is used to compute the covariance
explicitly. This is one of the reason that the EnKF is computationally effi-
cient. Another reason resides in that the EnKF is capable of incorporating the
observations sequentially in time without the need to store all previous states
nor the need to restart groundwater simulation from the very beginning time.

The theory and numerical implementation of the EnKF is described exten-
sively in Evensen (2003, 2007). Here we will only recall that the EnKF deals
with dynamic systems, for which observed data are obtained as a function of
time and used to sequentially update the model. The joint state vector x;, for
realization ¢, including both the parameters controlling the transfer function
and the state variables, is given by:

A (al,ag,...,aN)T>
.= - 2.9
! <B>Z <(b17b2a"'7bN)T i ( )
where A is the vector of model parameters such as hydraulic conductivities and

porosities, and B is the vector with the state variables such as hydraulic heads
and concentrations. The size of the state vector ensemble x is determined by



CHAPTER 2. INVERSE METHODS IN HYDROGEOLOGY:... 21

the number of grid cells in which the domain has been discretized (V) and the
number of realizations in the ensemble (N,), i.e., x = (z1,22,...,ZN,).

The EnKF consists of two main steps: forecast and update. The forecast
step involves the transition of the state vector from time ¢t — 1 to time ¢, i.e.,
x; = F(x¢—1), where F() is the transfer function. Normally this transfer func-
tion leaves the model parameters unchanged and forecasts the state variables
to the next time step using the groundwater flow model (Equation 2.1). After
observation data are collected the state vector is updated by Kalman filtering:

Xt =x{ + Gi(y?® + ¢ — Hx/) (2.10)

where xi' is the joint vector ensemble with the updated states at time ¢ and
X{ is the vector ensemble with the forecasted states; y¢** is the observation
at time ¢; € is an observation error characterized by a normal distribution
with zero mean and covariance R; G; is the Kalman gain, derived after the

minimization of a posterior error covariance:
G, = P/H"(HP/H"T + R)™! (2.11)

it multiplies the residuals between observed and forecasted values to provide

an update to the latter; H is the observation matrix; P{ is the ensemble

covariance matrix of the state X{ :

1 - T
Pl g O = x) 0 = %) (2.12)
where )’({ is the ensemble mean: )‘({ ~ NLT Zf\gl x{ ;; and x{ ; is a realization

of the ensemble of state vectors. It is worth noting that we do not have
to compute the whole covariance matrix explicitly because we can compute
directly P{ HT and HP{ HT taking advantage of the fact that most of the entries
of H are zeroes.

Most inverse methods need to store the previous states when conditioned to
new observed data. The forward simulation has to be restarted from the initial
time until the new observation data are collected. On the contrary, the EnKF
is able to assimilate the real time observation data and stores only the latest
state. The EnKF focuses on the present observation data while the previous
incorporated observations are not involved any more as soon as they have been
assimilated. This is one of the reasons of attractive computational efficiency as
we have mentioned. The sequential data assimilation scheme with the EnKF
is shown in Figure 2.2. Due to its advantages such as computational efficiency
and easiness to combine with any forward model, the EnKF has been widely
applied as a data assimilation tool in diverse disciplines such as oceanography,
meteorology and hydrology (e.g., Bertino et al., 2003; Chen and Zhang, 2006;



22 CHAPTER 2. INVERSE METHODS IN HYDROGEOLOGY:...

obs obs

u Forecast model ¢ Update (Eq.15) . Forecast model ¢

...... - ., » »
X i X, X X1

Figure 2.2: Workflow of the EnKF.

Houtekamer and Mitchell, 2001; Moradkhani et al., 2005; Nowak, 2009; Wen
and Chen, 2005).

Notice that the EnKF is neither an optimization method nor a sampling
one, it is a data assimilation filter based on the minimization of a poste-
rior covariance. For this reason, the EnKF is optimal when parameter and
states are linearly related and follow a multiGaussian distribution (Evensen
and Leeuwen, 2000). However, in hydrogeology, hydraulic conductivity is likely
not to be properly modeled as multiGaussian, and even if it were, the states
(heads and concentrations) would never be due to the nonlinear state transfer
function. Some work has been done attempting to circumvent the problem of
non-Gaussianity, but it will be discussed in its own section later on (Section
2.2.7).

Besides the multiGaussian requirement, other disadvantages related with
the EnKF include: (a) underestimation of model variability especially when
the ensemble size is small and the parameter is highly heterogeneous; (b) non-
physical and spurious update of state vectors. To address these problems,
several covariance regularization strategies are proposed such as covariance
inflation, cutoff radius, distance based covariance localization and damping
factor scheme (Chen and Oliver, 2010; Devegowda et al., 2010; Hamill et al.,
2001; Hendricks Franssen and Kinzelbach, 2008; Houtekamer and Mitchell,
1998).

2.2.6 Preserve prior structure or not?

The inverse methods based on optimization attempt to minimize the deviation
between predicted states and observation data, disregarding, sometimes, the
prior model used to generate the initial guess fields from which to start the
optimization. Kitanidis (2007) already stated that “the degree of data repro-
duction is a poor indicator of the accuracy of estimates”. There has been some
debate on whether the prior model structure should be preserved through the
inverse modeling process, or, on the contrary, the optimization process may al-
low the final set of realizations to depart (drastically) from the original model
as driven by the need to reproduce the observed states. The best, probably
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lies in between, the prior model should be taken into account and should be
used as a regularization element, while the new data should allow to introduce
some deviations when this is the only way to approximate them. In this re-
spect, Neuman (1973) proposed the multiple-objective algorithm in which the
model parameters are constrained not only by minimization of the reproduc-
tion error but also by a physical plausibility criterion. A similar strategy is
used by Carrera and Neuman (1986a) and Medina and Carrera (1996) in the
MLM, in which prior information is combined into the likelihood functions, or
by Alcolea et al. (2006) in the PiPM, in which a regularization term is added
to the objective function.

There are methods which, by construction, will produce realizations with
the prior model structure, such as the McMC, in which the prior model is
implicitly built into the definition of the posterior conditional probability dis-
tribution from which the chain of realizations are drawn.

There are two other methods that, by construction, will preserve the prior
model during the inversion process, thus ensuring that the parameter dis-
tributions are physically plausible at the end of the inversion process: the
gradual deformation method (GDM) and the probability perturbation method
(PrPM).

The GDM method, as initially proposed by Hu (2000), is based in the suc-
cessive linear combination of pairs of realizations. A single parameter controls
this linear combination and its value is computed by a simple optimization
procedure so that there is an improvement in the reproduction of the ob-
served state on the resulting realization. In addition, if both realizations are
multiGaussian with the same mean and covariance it is easy to show that the
resulting realization will also be multiGaussian with the same mean and co-
variance. This pairwise combination is repeated until an acceptable match to
the observed data is attained. This simple, but extremely effective, approach,
which only worked for multiGaussian fields was soon extended to work with
other random function fields in conjunction with sequential simulation algo-
rithms. In sequential simulation algorithms, each node of the realization is
visited sequentially, a random number is drawn and a nodal value is obtained
from the local conditional distribution, which has been computed accordingly
to the random function model. There are sequential simulation algorithms
to generate multiGaussian realizations (e.g., Gémez-Hernandez and Journel,
1993), realizations with arbitrary indicator covariance functions (e.g., Gémez-
Herndndez and Srivastava, 1990) or realizations based on the multiple-point
patterns derived from a training image (e.g., Strebelle, 2002). In all cases, it
all reduces to mapping a set of independent uniform random numbers into a
realization of correlated values using as a transfer function the local condi-
tional probabilities computed according to Bayes’ rule, which are the essence
of all sequential simulation algorithms.
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The attractiveness of GDM is that each iteration is a simple optimization
step, and that it preserves the prior spatial structure. The GDM algorithm
can be summarized as follows:

1.

Generate two independent Gaussian white noises, z; and zo, with zero
mean and unit variance. The two noises are combined to form a new
Gaussian white noise vector z with zero mean and unit variance accord-
ing to

z = z1 sin(pm) + 22 cos(pm) (2.13)

where p is a deformation parameter ranging from -1 to 1. If p =0, z is
the same as z9 and if p = 1/2, z is the same as z;. Note that more than
two noises could be combined to increase the convergence rate (Ying and
Gomez-Hernandez, 2000; Le Ravalec-Dupin and Noetinger, 2002).

. The random vector z, is transformed into a uniform white noise vector

u = G~1(2), with G(-) being the Gaussian cumulative distribution func-
tion, and w is used with a geostatistical sequential simulation algorithm
to yield a realization z, z = S(z).

Run the forward model F(-) (e.g., Equation 2.1) on the generated prop-
erty realization to obtain the simulated model responses, such as flow
rates and hydraulic heads.

An objective function measuring the mismatch between the simulated
model response and the observed data is built as

J(p) =Y wilF(x(p))i — Fa(p))7™)*. (2.14)
i=1

where w; is a weight and n is the number of observed data.

. Minimize the objective function to obtain the optimal p, and update the

random vector z.

The updated random vector z will replace the previous z; and combine
with a newly generated vector zy to construct a new random vector.
Then loop back to the second step until all the observed data are matched
up to some tolerance.

The drawback of the GDM is related to the convergence rate. Le Ravalec-
Dupin and Noetinger (2002) found that the convergence rate is strongly in-
fluenced by the number of realizations which are combined in each iteration.
Caers (2003) proposed an efficient gradual deformation algorithm by coupling
the traditional GDM, multiple-point geostatistics and a fast streamline-based
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history matching method with the aim to reduce CPU demand for parameter
identification in highly heterogeneous reservoir. Another criticism to GDM
has been whether it generates realizations spanning the entire space of vari-
ability coherent with the observed data; in this respect, Liu and Oliver (2004)
assessed the performance of the GDM through a one-dimensional experiment;
after comparison of the GDM with other inverse methods, such as the McMC,
they concluded that the GDM is able to produce reasonable distributions of
permeability and porosity in their model.

Another method that attempts to preserve the prior structural model is
the probability perturbation method (Caers, 2003). The probability pertur-
bation is also based on the sequential simulation algorithm, therefore, it will
preserve the random function model that is implicit to the algorithm used.
Given a fixed random path to visit the nodes of the aquifer, a fixed set of
random numbers, and a fixed set of conditional probability distributions, the
PrPM will freeze the random numbers and perturb the conditional probabil-
ity distributions in order to achieve the match to the observed data. Recall
that the GDM freezes the probability distributions and modifies the random
numbers. The perturbation of the conditional probabilities is performed by
means of a single parameter rp that is subject to optimization. This param-
eter can be interpreted as the degree of perturbation needed to apply to the
seed realization in order to match the state data, if rp is close to zero, the
actual realization gives a good reproduction of the state data, there is no need
to change anything, if rp is close to one, the current realization is far from
matching the observation data and there is a need to generate another real-
ization independent of the previous one, any value in between would generate
a realization that represents a transition between these two independent real-
izations. Caers (2007) compared the performances of the GDM an the PrPM
in several simple examples from such aspects as preservation of prior structure
and accuracy of posterior sampler.

The PrPM method has been extended to allow different degree of per-
turbation in different geological zones of the aquifer, that is, rp is allowed
to vary piecewise within the aquifer according to pre-defined zones (Hoffman
and Caers, 2005). The PrPM was initially applied to categorical variables,
although later it was extended to continuous ones (Hu, 2008). The PrPM
has been mostly used in petroleum engineering although recently it has been
applied in groundwater modeling, e.g., combined with a multiple-point geo-
statistical method to locate high permeability zones in an aquifer (Ronayne
et al., 2008).

Before Caers proposed the PrPM, the idea of perturbing probabilities had
already been proposed by Capilla et al. (1999) although in a slightly different
context. They used the concept of the SCM method, but instead of work-
ing with the conductivity values directly, they transformed these conductivity
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values onto cumulative probabilities using the local conditioning probability
distributions obtained by kriging (the probability field of Froidevaux (1993)).
The type of kriging used could be indicator kriging and could incorporate soft
conditioning data, and therefore, the spatial structure associated to such a
type of kriging would be preserved through the optimization process. Once
the probabilities had been computed, the SCM method would be applied to
seek the best spatial distribution of probabilities that when backtransformed
onto conductivities would result in the best match to the observed state data.
Later, to improve its efficiency, the optimization step of the probability fields
was combined with the GDM by Capilla and Llopis-Albert (2009).

The problem still is what if the prior model is not correct. What if the prior
model implies an isotropic spatial correlation, but, in reality conductivities are
highly anisotropic with channels of high permeability and quasi impermeable
barriers? Some studies have analyzed the impact of a wrong a priori model
choice, for instance, Freni and Mannina (2010) analyzed the impact of different
a priori hypotheses and found that improper assumptions could lead to very
poor parameter estimations; Li et al. (2011c) assessed the performance of
normal-score EnKF (NS-EnKF) in non-multiGaussian media and they argued
that, if the monitoring net was designed properly, the localized NS-EnKF was
able to identify the channel structure even when an erroneous prior random
function model was used. A possible solution to account for the prior model
uncertainty is to use multiple prior models as done by Suzuki and Caers (2008)
although at a very large computational demand.

2.2.7 MultiGaussian or not?

Ever since the publication of the seminal paper on stochastic hydrogeology
by Freeze (1975), hydraulic conductivity has been assumed to follow a uni-
variate lognormal distribution. This assumption was based on experimental
data, and it was later corroborated by Hoeksema and Kitanidis (1985) who
analyzed the histogram and covariance of hydraulic conductivity data from 31
regional aquifers to conclude that, indeed, hydraulic conductivity is best mod-
eled by a logGaussian histogram. However, there are still many cases, such as
aquifers in fluvial deposits, in which several highly contrasting facies coexist
and in which conductivities are better characterized by a multimodal distri-
bution. But, whether the histogram of the conductivities is normal is not the
most important issue, after all, it is always possible to apply a normal-score
transformation to the data so that the transformed data follows a Gaussian
histogram; the important issue is whether the best model to characterize the
spatial continuity of hydraulic conductivity is the multiGaussian or not. Ap-
plying a normal-score transform to the data will render them univariate nor-
mal, but it does not imply that the higher-order models (the ones controlling
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the continuity of the extreme values, or the curvilinear arrangements of some
conductivity values) should follow a multiGaussian model.

The nonGaussian models have been explored for some time now (e.g.,
Gémez-Hernandez and Wen, 1998; Journel and Deutsch, 1993; Kerrou et al.,
2008; Rubin and Journel, 1991; Woodbury and Ulrych, 1993; Zinn and Harvey,
2003), and the dangers of using a multiGaussian model in aquifers with high

continuity of extreme values were already exposed by Journel and Deutsch
(1993) and Gémez-Hernandez and Wen (1998).

Of all the methods discussed, all of those which are based on the minimiza-
tion of the sum of square deviations have a tendency to generate multiGaussian
realizations, even if the seed realizations prior to the start of the inverse pro-
cedure are non-Gaussian. Basically, all methods that use only moments up to
the order two (covariance) in their formulation will behave in this way as a
consequence that the multiGaussian distribution is the only one fully charac-
terized by a mean value and a two-point covariance function. This is the case
of the GA, the SCM, the PiPM, or the MLM. Even the EnKF, which only
uses the ensemble derived covariance to update the realizations after each data
collection stage, will end up with realizations with a multiGaussian flavor even
if the initial ensemble is not.

Some of the methods discussed can handle non multiGaussian patterns
of variability, such as the McMC, the GDM or the PrPM. It is apparent
that those methods that can benefit from techniques such as multiple point
geostatistical simulation, which can generate realizations of conductivity with
realistic patterns according to a training image (Mariethoz, 2009), are the most
promising. There have been some attempts to modify the EnKF to handle
non multiGaussian ensembles, by applying transformations to parameter and
state variables that either makes them Gaussian (Zhou et al., 2011a; Schoniger
et al., 2011) or linearize their relationship (Schéniger, 2010).

2.2.8 'Trajectory of inverse approaches to date

Table 2.1 summarizes the inverse methods discussed so far. As time has passed
inverse models have, sequentially, gotten away from the linearization of the
state equation, become stochastic, attempted to preserve the prior structure
(or at least introduce some controls which will give the prior structure infor-
mation some weight during the inverse modeling process), and become capable
of handling non-multiGaussian realizations. In our opinion the best inverse
model should be the one that is stochastic, is capable to deal with multiple
sources of state data governed by a complex state equation, is not limited to
multiGaussian realizations, can weight in prior information, and can generate
multiple realizations in an efficient manner.
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Table 2.1: Details of the inverse methods mentioned in the paper. The attributes of each inverse method are reported

based on its most popular implementation.

Lineari- Stochas- Structure Gaussian M or S! References?
zation tic preser- assump-
vation tion
Direct method
Yes No No - M Navarro (1977)
Indirect method
GA Yes No No Yes M Kitanidis and Vomvoris
(1983); Kitanidis (1995)
MLM No No No Yes M Carrera and Neuman
(1986a)
PiPM No No? No A M De Marsily et al. (1984);
RamaRao et al. (1995);
Alcolea et al. (2006)
SCM No Yes No -4 M Gomez-Hernandez
et al. (1997); Hendricks
Franssen (2001)
McMC  No Yes Yes No S Oliver et al. (1997)
GDM No Yes Yes No M Hu (2000)
PrPM No Yes Yes No M Caers (2002); Hoffman
and Caers (2005)
EnKF No Yes No Yes - Evensen (1994, 2007)

1: Minimization of an objective function (M) or Sampling from a distribution (S).
2: References of original work and to main improvements
3: In its inception PiPM pursued a single aquifer map, but it was later converted onto a stochastic

approach.

4: Although implicitly there is no multiGaussian assumption in its formulation, the final realizations tend
to become multiGaussian given the way the optimization model is formulated
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2.3 Recent trend of inverse methods

The methods discussed so far have already been thoroughly tested and their
advantages and pitfalls are well known. In the last few years, new issues have
been brought into the inverse model formulation that we would like to mention
next.

2.3.1 Integrating multi-sources information

Direct measurements of parameters of interest (usually known as “hard data”)
represent the first constraint that the model must meet. These data are eas-
ily handled by standard geostatistic methods (Deutsch and Journel, 1998).
Then, there are soft data, that is, indirect measurements of the parameters.
Recent developments in physical and geophysical techniques provide indirect
measurements that are non-linearly related to the parameter of interest and
that should be used also to constrain our aquifer model. Examples of these
techniques are ground-penetrating radar (Dafflon et al., 2009; Kowalsky et al.,
2004), time-lapse electrical resistivity (Irving and Singha, 2010), 4D-seismic
(Le Ravalec-Dupin, 2010), spatial altimetry (Getirana, 2010), and remote sens-
ing (Brunner et al., 2007; Hendricks Franssen et al., 2008). It is worth noting
that certain techniques (e.g., remote sensing) are able to provide information
over a large area rather than at quasi-point scale. Besides the hard and soft
(geo)physical measurements, state data other than hydraulic heads or flow
rates should be used to infer aquifer parameters, for instance peak concen-
tration arrival times (Bellin and Rubin, 2004) or groundwater ages (Sanford,
2010).

Two other types of data have been used to identify aquifer structure, i.e.,
water table fluctuations due to tides and connectivity data. Tidal induced wa-
ter table fluctuations carry information about the aquifer properties in coastal
aquifers. Head fluctuations have been used to identify possible preferential
flow paths between the sea and the coastal aquifer (Alcolea et al., 2007; Park
et al., 2011; Slooten et al., 2010). The other rarely applied constraint is con-
nectivity, which is found to play a critical role in transport modeling. In
a synthetic example, Zinn and Harvey (2003) demonstrated how the same
conductivity values when rearranged in space to induce different connectivity
patterns have very different flow and transport behavior. Some indicators has
been proposed to measure the connectivity (e.g., Knudby and Carrera, 2005,
2006; Le Goc et al., 2010), and some attempts to include connectivity infor-
mation in inverse modeling have been carried out (Alcolea and Renard, 2010;
Renard and Caers, 2008).
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2.3.2 Combining high-order moments

To include curvilinear features in the spatial distribution of the hydraulic
conductivities amounts to go beyond the two-point covariance (a second order
moment) and to account for high-order moments. A possible approach is with
multiple-point geostatistics (Guardiano and Srivastava, 1993; Strebelle, 2002).
We have already discussed how the GDM and the PrPM take advantage of
the sequential simulation methods based on multiple-point geostatistics to
generate inverse conditional realizations following the patterns extracted from
a training image (such as the one in Figure 2.3). An alternative avenue is
the use of spatial cumulants (Mustapha and Dimitrakopoulos, 2010). Other
examples include that Alcolea and Renard (2010) proposed a blocking moving
window algorithm taking advantage of multiple point simulations, Mariethoz
et al. (2010) has proposed an iterative resampling algorithm, and Zhou et al.
(2011b) presented a pattern search based inverse method.
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Figure 2.3: Conceptual model of a fluvial deposited aquifer used as a training
image by the multiple point based simulation algorithms.

2.3.3 Multiscale problem

There are a couple of reasons why it is interesting to use a multiscale approach
to deal with the inverse problem. On one hand, if the aquifer is very heteroge-
neous and the discretization is too fine, it may be computationally impossible
to handle a stochastic inverse problem. On the other hand, data may be avail-
able at different support scales. Some authors have combined upscaling and
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inverse modeling to address the scale problem (e.g., Fu and Gémez-Hernandez,
2009; Fu et al., 2010; Li et al., 2011d; Li and Ren, 2010; Scheidt et al., 2011).

2.4 Conclusions

We have given an overview of the trajectory of inverse methods in hydroge-
ology, i.e., how the algorithms have evolved during the last decades to solve
the inverse problem, from direct solutions to indirect methods, from lineariza-
tion to nonlinearization of the transfer function, and from single estimate to
stochastic Monte Carlo simulation. Furthermore, we consider a few issues
involved in solving the inverse problem, e.g., whether the multiGaussian as-
sumption is appropriate and whether the prior structure should serve as a
constraint. Not all aspects of inverse modeling have been touched here, the
reader is referred to other works for a more general introduction to the inverse
problem (e.g., Oliver et al., 2008; Sun, 1994).
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An Approach to Handling
Non-Gaussianity of
Parameters and State
Variables in Ensemble
Kalman Filtering

Abstract

The ensemble Kalman filter (EnKF) is a commonly used real-time data as-
similation algorithm in various disciplines. Here, the EnKF is applied, in
a hydrogeological context, to condition log-conductivity realizations on log-
conductivity and transient piezometric head data. In this case, the state vec-
tor is made up of log-conductivities and piezometric heads over a discretized
aquifer domain, the forecast model is a groundwater flow numerical model,
and the transient piezometric head data are sequentially assimilated to update
the state vector. It is well known that all Kalman filters perform optimally
for linear forecast models and a multiGaussian-distributed state vector. Of
the different Kalman filters, the EnKF provides a robust solution to address
non-linearities; however, it does not handle well non-Gaussian state-vector dis-
tributions. In the standard EnKF, as time passes and more state observations
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are assimilated, the distributions become closer to Gaussian, even if the initial
ones are clearly non-Gaussian. A new method is proposed that transforms
the original state vector into a new vector that is univariate Gaussian at all
times. Back transforming the vector after the filtering ensures that the ini-
tial non-Gaussian univariate distributions of the state-vector components are
preserved throughout. The proposed method is based in normal-score trans-
forming each variable for all locations and all time steps. This new method,
termed the normal-score ensemble Kalman filter (NS-EnKF), is demonstrated
in a synthetic bimodal aquifer resembling a fluvial deposit, and it is compared
to the standard EnKF. The proposed method performs better than the stan-
dard EnKF in all aspects analyzed (log-conductivity characterization and flow
and transport predictions).

3.1 Introduction

Groundwater modeling and prediction plays a critical role in decision making
for groundwater management and environmental protection. In order to make
reliable groundwater flow model predictions, it is necessary to account for
all measured data. Although important information can be obtained from
field work, it is in practice impossible to characterize an aquifer exhaustively.
To best account for the state information—such as flows, hydraulic heads
or concentrations—in the characterization of aquifer parameters, numerous
methods of parameter identification have been proposed (e.g., for an overview
see Carrera et al., 2005; De Marsily et al., 2000; Hendricks Franssen et al.,
2009; McLaughlin and Townley, 1996; Oliver and Chen, 2010; Yeh, 1986).

In the early days of parameter identification, the aim was to obtain a single
“best” estimate of the aquifer parameters. However, it has been proven that
such a “best” estimate is always much smoother than the real aquifer and
that flow and transport predictions performed in such estimate are very poor
(Gémez-Herndndez and Wen, 1994). The alternative is to resort to Monte
Carlo analysis in which multiple realizations of the aquifer parameters are
built accounting for all the measured data. Each realization represents a pos-
sible case of the unknown reality. Flow and transport are modeled in each
realization and all model predictions are collected to characterize uncertainty
and to define an optimal prediction (e.g., pilot point method (Alcolea et al.,
2006; RamaRao et al., 1995), self-calibration (Gémez-Herndndez et al., 1997)
and gradual deformation (Hu, 2000)).

One such Monte Carlo-based method is the ensemble Kalman filter (EnKF)
proposed by Evensen (1994) and subsequently clarified by Burgers et al. (1998).
The EnKF is an extension of the Kalman filter to deal with nonlinear state
equations. The Kalman filter (Kalman, 1960) proved to be a very powerful
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data assimilation algorithm for systems in which the relation between parame-
ters and state is linear. This linearity allowed an exact propagation of the state
covariance in time. The first attempt to deal with nonlinear transfer functions,
such is the case in groundwater modeling, was the extended Kalman filter
(e.g., Leng and Yeh, 2003; Yeh and Huang, 2005). In the extended Kalman
filter, the nonlinear transfer function is linearized after a Taylor expansion
and this linearization is used for the covariance propagation. For highly non-
linear transfer functions, extended Kalman filter tends to deteriorate as time
progresses, since the errors in the covariance propagation accumulate; at the
same time, extended Kalman filter is time consuming when the aquifer is finely
discretized (Evensen, 2003).

The EnKF circumvents the problem of covariance propagation in time
by working with an ensemble of realizations. In each realization the state
equation is solved, and the ensemble of states is used to compute the covari-
ance explicitly and efficiently. The EnKF has gained popularity in diverse
disciplines such as oceanography, meteorology and hydrology (e.g., Bertino
et al., 2003; Chen and Zhang, 2006; Houtekamer and Mitchell, 2001; Li et al.,
2011b; Moradkhani et al., 2005; Nowak, 2009; Wen and Chen, 2005a). The
advantages of the EnKF can be summarized as follows: first, CPU consump-
tion is reduced mostly because of the way the state covariance is computed
(Hendricks Franssen and Kinzelbach (2009) documented a reduction of the
needed CPU time by a factor of 80 as compared with other Monte-Carlo type
inverse modeling); second, the EnKF can easily be combined with different
forecast models; third, the EnKF is capable of incorporating the observations
sequentially in time without the need to store all previous states. In addition,
although Evensen (1994) developed the EnKF to obtain a single optimal es-
timate of the system state, the EnKF provides, as a by-product, the entire
ensemble of states, which can be used to assess uncertainty.

Our objective with this paper is to use the EnKF for the generation of
an ensemble of hydraulic conductivity realizations which are conditional to
hydraulic conductivity measurements and to piezometric head data. This ap-
proach has already been described in the literature, for instance by Hendricks
Franssen and Kinzelbach (2008), who generated realizations of transmissivity
and recharge, and by Liu et al. (2008), who focused on hydraulic conductivity,
dispersivity, mass transfer rate and mobile porosity ratio for a dual-domain
mass transfer model at the MADE site. Example applications in petroleum
engineering can be found in the works by Wen and Chen (2005b) and Gu and
Oliver (2007). Our contribution is to develop a new approach applicable to
non-Gaussian distributions of hydraulic conductivities, with an application to
a bimodal distribution typical, for instance, of fluvial deposits.

It can be shown that the EnKF provides an optimal solution when the
parameter vector follows a multiGaussian distribution and the state transfer
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function is linear (Arulampalam et al., 2002). In most practical applications in
groundwater and petroleum engineering neither the parameters can be mod-
eled as multiGaussian nor the transfer function is linear. The importance of
accounting for the nonGaussianity of hydraulic conductivity has already been
demonstrated in the literature (Gémez-Hernandez and Wen, 1998; Journel and
Deutsch, 1993; Zinn and Harvey, 2003). To circumvent the problems of the
EnKF, some authors have concentrated in the problem of non-Gaussianity in
the parameters and others have focused on reparameterizing the state equa-
tion so that the relationship between model parameters and state variables
is closer to linear. Sun et al. (2009) worked on the non-Gaussianity aspect
and took advantage of localization techniques with a Gaussian mixture model
to update the parameters of a multimodal distribution. Chen et al. (2009)
addressed the nonlinearity problem by reparameterization.

In this work we take the route of transforming parameters and state vari-
ables so that they both follow marginal Gaussian distributions. These trans-
formations, which are themselves highly nonlinear, will make the state transfer
function even more nonlinear than for the untransformed variables, but, in re-
turn, the Kalman filtering equations will be applied on Gaussian variates. We
demonstrate this approach on a synthetic aquifer resembling a highly channel-
ized fluvial deposit. It will be shown how this approach improves the results
obtained using a standard implementation of the EnKF even though the uni-
variate transformation applied ensures marginal Gaussian distributions but
does not ensure multiGaussianity of the joint state vector.

We are aware that in another study (Schoniger et al., 2011) similar trans-
formation techniques as proposed in this paper were applied but only to the
state variables, not to the parameters, in the context of hydraulic tomography.
The authors focus on the improvements that can be achieved with different
transformation techniques, analyze under which conditions improvements can
be obtained, and demonstrate a pseudo-linearizing effect of their transforma-
tions. For reference, they compared their improved method to an exhaustive
particle filter. Similar applications can be found in other disciplines; for in-
stance, in reservoir modeling, transformation from non-Gaussian distribution
to Gaussian distribution is applied to the state variables, such as saturation, by
Gu and Oliver (2006) and, in ocean ecosystem modeling, a similar transforma-
tion is applied to chlorophyll-a concentration by Simon and Bertino (2009).
Other transformation algorithms can be found in the literature such as in
Béal et al. (2010) and Bocquet et al. (2010). In contrast with all of these
applications, the method proposed in this paper focuses on transforming not
only the non-Gaussian distributed state variables but, most importantly, the
non-Gaussian distributed model parameters, i.e., the hydraulic conductivities,
which are commonly assumed to follow a log-normal distribution. These trans-
formation of parameters and state variables will make the relationship between
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the transformed variables even more nonlinear (instead of more linear as pur-
sued in the previously cited works), but the Kalman filtering equations will be
applied to Gaussian variables. To our knowledge, no such transformation al-
gorithm has been applied to handle the non-Gaussian distribution of hydraulic
conductivities in the scope of the EnKF in hydrogeology.

Throughout the paper we use interchangeably the terminology from geo-
statistics, hydrogeology and Kalman filtering, most noticeably, (a) piezomet-
ric head data assimilation is equivalent to (inverse) data conditioning, in the
sense that the solution of the flow equation in each of the final realizations
of hydraulic conductivity will match the measured piezometric heads, (b) by
forecast model, transfer function or state transition model we refer to the tran-
sient groundwater flow equation and its corresponding numerical model, and
(c) when referring to the flow equation we distinguish between parameters
(i.e., hydraulic conductivities) and state variables (i.e., piezometric heads),
whereas in the EnKF we will talk about a (joint) state vector that includes
realizations of both parameters and state variables at time ¢. Also, since our
goal is the characterization of the hydraulic conductivity spatial variability, we
will be using the term hard data to refer to local measurements of hydraulic
conductivity, as opposed to measurements of piezometric heads which are soft
data since they do not measure directly hydraulic conductivity but serve to
characterize its spatial variability.

The rest of the paper is structured as follows. After the standard EnKF
is introduced, the new algorithm is explained in detail. Then a synthetic
bimodal aquifer is used to evaluate the performance of the proposed method.
The paper ends with a discussion and some conclusions.

3.2 Methodology

We first present the groundwater flow and transport equations that will be used
in the synthetic example, then we follow with the description of the standard
EnKF and propose the new algorithm with the transformed variables, which
will be referred to as the normal score EnKF (NS-EnKF'). The flow model will
be used in conjunction with ensemble Kalman filtering to obtain realizations
of hydraulic conductivity conditioned to both conductivity and piezometric
head data. The transport model will be used only for verification purposes to
evaluate how well transport is predicted in the final conductivity fields.
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3.2.1 Flow and transport equations

By combining mass conservation and Darcy’s law, the groundwater flow equa-
tion in saturated porous media can be expressed as (Bear, 1972):

V- (KVh) = SS?Z +Q (3.1)

subject to initial and boundary conditions. In the differential equation, V-
is the divergence operator, V is the gradient operator, K is the hydraulic
conductivity [LT~!], h represents hydraulic head [L], Ss is specific storage
[L71], Q is the source-sink term [T'~!] and t is time [T]. Equation 3.1 is
numerically solved by applying a discretization in space and time.
The governing equation for non-reactive transport in the subsurface is:
% = —V-(¢C) + V-(¢DVC) (3.2)
subject to initial and boundary conditions, where C'is the concentration of so-
lute in the liquid phase [M L3]; ¢ is porosity [-]; D is the local hydrodynamic
dispersion coefficient tensor [L27~!] with principal axes parallel and perpen-
dicular to the direction of flow and eigenvalues proportional to the components
of the fluid velocity and the longitudinal and transverse dispersivities, and ¢
is the Darcy velocity [LT~!] calculated by Darcy’s law: ¢ = —KVh.

3.2.2 Standard EnKF

The theory and numerical implementation of the EnKF is described exten-
sively in Evensen (2003, 2007). Here we will only recall that the EnKF deals
with dynamic systems, for which state data are observed as a function of time
and used to sequentially update the parameters and the state of the system.
For this purpose an ensemble of realizations is generated and then each real-
ization is updated as observation data are available.

In the EnKF, the state vector x is represented by the collection of all
state vectors for all N, realizations, x = (x1,x2,...,xy,). For realization i, x;
includes both the parameters controlling the transfer function and the state

variables:
T
2 — <A> _ <(a1,a2,...,aN-Np)T> (3.3)
B). (b1,ba,...,bN.N,) ;
where A is the vector of model parameters, such as hydraulic conductivities
and porosities, and B is the vector with the state variables, such as hydraulic
heads and concentrations. The size of the state vector for each realization

is determined by the number of grid cells in which the domain has been dis-
cretized (IV), the number of model parameters (NN,), and the number of state
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variables (Ns). In our case, only one type of parameter (log-hydraulic conduc-
tivity InK') and one type of state variable (piezometric head h) are considered,

therefore
i = ((anl,ang,...,anN)T> ‘
(hi,ha,...,hn)"T .

The final size of the ensemble state vector is equal to the size of each realization
state vector multiplied by the number of realizations. In our case, it is 2 x
N x N,.

The EnKF consists of two main steps: a forecast step and an update step.
Both steps are to be performed in each realization. The forecast step involves
the transition of the state variables from time ¢ — 1 to time ¢,

(3.4)

x; = F(x;-1) (3.5)

where F'(-) is the transfer function. In our case this transfer function leaves
the log-conductivities unchanged and forecasts the piezometric heads to the
next time step using the transient groundwater flow model (Equation 3.1).

After data are collected, the state vector is updated by the EnKF. The
update process is summarized by the following equations:

X" = xI + Gy(z + e — Hx/)
G,=P/H'(HP/H" +R)!

where x}* is the vector with the updated model parameters and state variables
at time ¢t and xf is the vector with the forecasted state; G is the Kalman
gain—derived after the minimization of a posterior error covariance—it mul-
tiplies the residuals between observed and forecasted values to provide an
update to the latter; z; are the observations at time ¢; € is an observation
error, generally characterized by a normal distribution with zero mean and a
diagonal covariance R (we assume that errors at different measurement loca-
tions are independent); H is the observation matrix which has as many rows

as number of measurements (M) and in our case consists of 0’s and 1’s since

f
ti

a realization of the ensemble of forecasted state vectors; 5({ is the ensemble

we assume that measurement locations coincide with the grid nodes; x; ; is
mean; and P{ is the ensemble covariance matrix of the state x{ . It is worth
noting that we do not have to compute the whole covariance matrix explicitly

because we can compute directly P{ H' and HP{ H" taking advantage of the
fact that most of the entries of H are zeroes.
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The EnKF has an intrinsic feature in honoring parameter data (i.e., hy-
draulic conductivity measurements) as long as they remain constant during
the forecast step and parameter measurement errors are neglected. In such a
case the components of the covariance matrix P{ involving parameter mea-
surement locations are equal to zero, the Kalman gain at those locations is
also zero, and therefore they remain constant also through the update step.

3.2.3 Normal-score EnKF

As we have mentioned before, we are going to modify the formulation of the
standard EnKF so that we ensure that the joint state vector follows marginal
Gaussian distributions at all locations and all times. This is achieved by
applying a normal-score transform, independently, to each element of the state
vector as discussed in the appendix A. This normal-score transform function
(TF) has to be recomputed after each forecast step. Let ®.(-) represent the
normal-score transformation at time ¢ so that

yt = $r(x¢) (3.7)

is a new state vector in which all variables have a marginal Gaussian distri-
bution with zero mean and unit variance. Similarly we will have a normally
distributed state vector at time ¢t — 1, y;—1 = ®;—1(x¢—1). Substituting y for
x in the transfer function (3.5) we obtain

ye = @u(F(9; (ye-1))), (3.8)
which we can rewrite as
yt = @t(yt-1) (3.9)
with ¢, = & - F - <I>;11. We have replaced the original nonlinear transfer
function F'(-) with a new nonlinear transfer function ¢ (-) that takes as input
a vector of Gaussian variables and propagates it in time into a new vector
which is also Gaussian. (Notice that the normal score transform only renders
the variables Gaussian one by one, the multivariate properties of the state
vector are also changed but not necessarily to become multiGaussian.)

The inverse of the normal-score transform function permits, at any time
step and for any location, to retrieve the state vector x from the vector y
ensuring that the marginal non-Gaussian distribution of x is kept. This is
particularly interesting in cases such as aquifer modeling in fluvial deposits,
which are characterized by multimodal distributions of log-conductivities.

Once the new transfer function in Equation 3.9 is established, the NS-
EnKF just follows the same steps as the standard EnKF. However, since the
transfer function depends on the normal-score transform function that, in turn,
depends on the state values, there is not an explicit expression. A flow chart of
the NS-EnKF is displayed in Figure 3.1 which consists of the following steps:
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Figure 3.1: Flow chart of the NS-EnKF.
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. Generate the initial ensemble. A large number of equally likely stochastic

realizations of the state vector are generated. In our case the state vector
consists of log-conductivities and piezometric heads; the log-conductivities
are generated using geostatistical simulation techniques (Deutsch and
Journel, 1998), which are conditioned to hard data; the piezometric
heads are set equal to the initial heads, which in our case are zero every-
where (alternatively the initial heads could be set equal to the steady-
state solution of the flow equation for given boundary conditions and
external sources, or they could be obtained from a warm-up run).

. Forecast. For each realization, the log-conductivities stay unchanged,

and the piezometric heads are the solutions of the groundwater flow
equation in each realization from time ¢ — 1 to time ¢.

. Normal-score transform. Establish the local cumulative distribution

functions (CDFs) for all the components of the state vector from the
ensemble of realizations. In our case there will be one such local CDF at
each location for the log-conductivity and another one for the piezomet-
ric head. Use these local CDFs to build the normal-score transformation
function and transform the state vector into a new vector, with all its
components following marginal Gaussian distributions with zero mean
and unit variance. It is worthwhile to mention that the log-conductivities
transform functions remain unchanged during the data assimilation (TF1
in Figure 3.1); this helps recovering the prior model structure. On the
contrary, the transformation functions for piezometric heads have to be
recomputed at each time step (TF2 in Figure 3.1).

. Update. State data are collected at time ¢t. These data are normal-score

transformed using the same local transformation functions computed in
the previous step. In our example we only collect piezometric head data
although the method would be applicable if log-conductivity data were
collected, too. Next, we apply Equation 3.6 to update the state vector.

. Back transform. The updated state vector is back transformed using

the previously constructed transformation functions. Time advances one
step, the updated state vector becomes the current vector and we loop
back to the forecast step.

To sum up, the proposed method applies the EnKF always to a state

vector all of which components follow a marginal Gaussian distribution. Fur-
thermore, using the normal-score transformation we ensure that the prior non-
Gaussian marginals of the model parameters are kept throughout, in our case,
the prior bimodal pattern of the log-conductivities. We recognize that, in the
proposed method, the model parameters and state variables are transformed
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Table 3.1: Scenario definition. Parameters that change from one scenario to

another.
Scenario No. hard data Variance No. realizations EnKF NS-EnKF
1 80 1.72 1000 X
2 80 1.72 1000 X
3 80 1.72 200 X
4 20 1.72 1000 X
5 80 9.92 1000 X

into Gaussian space independently of each other, which yields a state vec-
tor with univariate Gaussian marginal distribution but not necessarily jointly
multiGaussian.

3.3 Synthetic experiment

Aquifers of fluvial deposits are a typical example of geologic formations in
which conductivities have a non-Gaussian distribution. Moreover, the hy-
draulic conductivities in such aquifers typically show a variation over several
orders of magnitude. In this section, a synthetic bimodal aquifer composed of
sand and clay is built to demonstrate the effectiveness of the proposed method.
The NS-EnKF is compared with the standard EnKF in order to investigate
whether and to what extent the normal-score transformation improves aquifer
characterization for non-Gaussian cases. The influence of several parameters
(i.e., number of realizations, number of hard data and magnitude of hydraulic
conductivity variance) is investigated (see Table 3.1 for the description of the
different scenarios).

Direct sampling, a multiple-point geostatistical simulation algorithm, is
used to generate facies-distribution realizations (Mariethoz et al., 2010). Di-
rect sampling is a pattern-based geostatistic simulation approach that gener-
ates realizations by borrowing structures from a training image. A training
image generated by FLUVSIM (Deutsch and Tran, 2002) serves as a concep-
tual model of the bimodal aquifer composed of sand with high permeability
and floodplain fine-grid deposits (e.g., clay) with low permeability (see Fig-
ure 3.2). Compared with traditional variogram-based two-point geostatistics,
multiple-point geostatistics is well suited for handling curvilinear structures,
which cannot be characterized well with a variogram.

The numerical experiment is carried out for a synthetic aquifer of 1 m
thickness extending over a domain of 500 m x 400 m discretized in 2D into
100 columns by 80 rows (i.e., square grid cells of 5 m). The reference facies field
(Figure 3.3A) is generated by direct sampling based on the training image of
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Figure 3.2: Training image used to generate the ensemble of binary facies
realizations.

Figure 3.2. Then, each facies is populated with log-conductivity values. These
log-conductivity values are generated by GCOSIM3D (Gémez-Hernédndez and
Journel, 1993), independently for each facies, according to stationary multi-
Gaussian random functions with parameters given in Table 3.2. The reference
InK field is plotted in Figure 3.3B. The histogram of InK (Figure 3.3E) shows
a pronounced bimodality with a global mean of —4.43 In(cm/s) and variance
of 1.72 (In(cm/s))2. Hydraulic conductivity measurements are taken from this
reference field at the locations shown in Figure 3.3C. These data will be used
as conditioning hard data.

Table 3.2: Parameters defining the multiGaussian random function used to
generate the log-conductivity within each of the two facies.

Facies Variogram type Mean Std.dev. Ay (m) Ay (m)
(In(em/s)  (Inem/s))

clay exponential -5.5 0.5 50 50

sand exponential -3.0 0.5 100 50

* ranges in the x and y directions.

The groundwater flow equation under confined conditions is solved for
the reference hydraulic conductivity field assuming impermeable boundary
conditions on the northern and southern boundaries, constant prescribed head
on the western boundary equal to zero meters and prescribed specific discharge
through the eastern boundary of —2.2 m/d (Figure 3.3D). The initial head
is 0 m over the area of interest. The groundwater flow equation (Equation
3.1) is solved by finite differences in both space and time using the simulator
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Figure 3.3: (A) Reference facies field; (B) reference log-conductivity field
(In(cm/s)); (C) hydraulic conductivity measurements used for conditioning;
(D) flow boundary conditions and location of piezometers (open circles for
observation, solid circles for prediction); (E) histogram of reference log-
conductivity.
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developed by Fu (2008). The simulation period of 300 days is discretized into
100 time steps, the duration of which follows a geometric series with ratio of
1.05. There are no internal sinks or sources in this example. Specific storage
is assumed constant and equal to 0.003 m~!. Piezometers cover the aquifer
regularly (see Figure 3.3D), and the transient evolution of the piezometric
heads in the reference field at these locations is sampled. Head observations
from piezometers #1 to #32 will be used as observation data (conditioning
data) during the update step of the NS-EnKF. The remaining piezometers will
be used for validation purposes.

Similarly as we did to generate the reference realization, one thousand
facies realizations are generated by direct sampling using the training image
depicted in Figure 3.2. Then, in each realization, both facies are populated
with InK values generated by sequential Gaussian simulation. It is important
to stress that both the facies realizations and the log-conductivity realizations
are conditional to the hard data sampled from the reference field and shown in
Figure 3.3C. The geostatistical parameters used in the sequential simulation
are the same as for the reference given in Table 3.2. By generating the real-
izations in this way, neither statistical model uncertainty nor log-conductivity
measurement uncertainty are considered in this example. For illustration pur-
poses, a randomly selected realization is shown in Figure 3.4 together with the
ensemble mean of the 1000 realizations.

Initial InK mean

400

Initial InK r550

x(m)

Figure 3.4: A randomly selected InK realization (550*") from the initial en-
semble and the ensemble mean of all 1000 initial realizations for Scenarios 1
and 2.

Next, hydraulic head data assimilation by the NS-EnKF is performed as
illustrated in section 2.3. The transient hydraulic heads observed in the ref-
erence field during the first 50 time steps (22.8 days) at the 32 monitoring
piezometers are used to update the state vector after each time step. The
observed heads during the remaining 50 time steps are used for model verifi-
cation. Head observation error is characterized by a normal distribution with
zero mean and a standard deviation of 0.01 m.
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Recall that the term assimilation, commonly used in the filtering literature,
is equivalent to the term conditioning used in the geostatistical literature.

3.4 Performance assessment measures

Ensemble means and ensemble standard deviations will be computed. The
ensemble mean map should reproduce the main spatial patterns of hydraulic
conductivity, as close as permitted by the conditioning data set, and it will be
visually compared with the reference map to get a qualitative assessment. The
standard deviation map will indicate, locally, the degree of uncertainty and, as
will be seen, will serve to delineate the edges of the channels. For a quantitative
assessment we compute a precision measure given by the Average Absolute
Deviation (AAD(x);), and, taking advantage of knowing the reference, we
also compute a bias measure, the Average Absolute Error (AAE(x)¢).

Nzy N,
AAD( Z Z ‘ Tt xtl ‘
nyN ==t (3.10)
Ny
AAE(z

Z‘fﬂtz_ ,i ‘
=1

where z;; ; is the state at time step ¢, node ¢ and realization j, N, and NNV, are
the number of grid cells and realizations, respectively, Z;; represents ensemble

5131/

mean at time ¢ and node i, and x:e@f is the reference state at time ¢ and node
i.

The histograms of hydraulic conductivity before and after data assimilation
will be compared.

Connectivity of conductivity plays a critical role for transport: early arrival
times of contaminants are very sensitive to the existence of channels charac-
terized by connected high-conductivity values, and late arrival times are in-
fluenced by the presence of barriers of connected low-conductivity values. A
series of measures have been proposed to evaluate connectivity (Knudby and
Carrera, 2005) and we adopt the connectivity function as defined by Stauf-
fer and Aharony (1994) because it is straightforward and easy to compute.
This connectivity function gives the probability that two points are connected
within the same facies by a continuous path. Thus, connectivity is a non-
increasing function of Euclidean distance. In our case, in order to calculate
the connectivity function, the continuous log-conductivity fields are converted
to indicator fields with values 0 and 1:

1, iflnK > —4
I(z) = :
0, otherwise
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where the threshold of —4 splits, approximately, the log-conductivities into
sand and clay (Figure 3.3E). We use the program CONNEC3D (Pardo-Igtizquiza
and Dowd, 2003) to calculate the probability that two points with log-conductivities
larger than —4 are connected following a continuous path with log-conductivities
larger than —4.

Hydraulic conductivity and piezometric head conditioning is not enough
to ensure good transport predictions (Meier et al., 2001). We analyze the
transport prediction ability of the updated conductivity fields by performing
a transport experiment—once piezometric head is at steady state—in which
particles are uniformly released over a line source at x = 17 m. The in-
tegrated breakthrough curves (BTCs) at a control plane positioned at x =
450 m are computed in the reference field and compared to the BTCs in the
updated fields (see Figure 3.5 for the experiment setup). Average Absolute
Error AAE(T,,) and Average Absolute Deviation AAD(T,,) are computed for
different percentiles of the cumulative mass distribution.

T

N,
1
AAE(T,) = I Z | Troo — Treto |
" or=1

1 Nr _ (3.11)
AAD(TQ) = ﬁ Z ‘ Tna - Ta ‘
" =1

where T, , is the travel time for the r*® realization, the o percentile of the

cumulative mass distribution (« values of 5%, 50% or 95% are analyzed),
Tref,o refers to the travel times corresponding to the reference field, and T,
represents mean travel time over the ensemble.

3.5 Results and discussion

3.5.1 Standard EnKF versus NS-EnKF

In this subsection we will show that conditioning to piezometric head data
by either the EnKF or the NS-EnKF is always beneficial, since either method
produces a final ensemble of realizations that better characterizes the spatial
variability of hydraulic conductivity than the initial ensemble of realizations.
We will also show that the NS-EnKF outperforms the standard EnKF for the
fluvial aquifer used here both with regard to the characterization of hydraulic
conductivity, and in the capabilities of the updated hydraulic conductivity
model to predict piezometric heads at unsampled locations, and mass trans-
port through the aquifer.
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Figure 3.5: Configuration of the transport prediction experiment showing the
line source where particles are injected and the control plane where break-
through curves are measured (a few particle paths are shown for illustration).

Characterization of hydraulic conductivity

Regarding the characterization of hydraulic conductivities, we compare the
initial (unconditional) ensemble of realizations and the final ensembles once
the updating (conditioning) process is completed, focusing on: (i) the two per-
formance measures defined earlier, AAE(InK) and AAD(InK), (ii) individual
realizations from the ensembles, (iii) ensemble averages, (iv) log-conductivity
histograms, (v) probability maps of the two facies, and (vi) connectivity in
the horizontal direction.

Table 3.3 lists the values of AAFE(InK) and AAD(InK); these values show,
quantitatively, that conditioning to piezometric heads by either the standard
EnKF or the NS-EnKF improves the characterization of the spatial distribu-
tion of hydraulic conductivities. A reduction on the AAFE indicates a higher
precision, while a reduction on the AAD implies a smaller bias. These values
also show that the NS-EnKF performs better than the standard EnKF.

Figure 3.6 shows a randomly selected realization and the ensemble mean
after conditioning to piezometric heads for the two filtering approaches; the
reference field is also shown. We notice that the continuity of the sand channels
in the NS-EnKF case is better reproduced than for the standard EnKF both
for the single realization and for the ensemble mean. In any case, it is quite
remarkable how well the main patterns of continuity on the reference field are
captured by the ensemble Kalman filters.

A more pronounced difference between the final results obtained by the two
filters is observed when analyzing the log-conductivity histograms. Figure 3.7
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Figure 3.6: The reference field together with a randomly selected realization
(550" of InK and the ensemble mean of InK for Scenarios 1 and 2 (standard
EnKF and NS-EnKF) after 50 times steps of piezometric head data assimila-
tion.
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Table 3.3: Comparison of the initial ensemble (only conditioned to conduc-
tivity data), standard EnKF and NS-EnKF (Scenarios 1 and 2 in Table 3.1,
which are conditioned to both conductivity and piezometric head data).

Metrics Initial ensemble Scenario 1 Scenario 2
AAE(InK) 0.78 0.65 0.64
AAD(InK) 0.75 0.52 0.40
AAE(h) 0.48 0.12 0.13
AAE(T5y) 11.49 10.76 7.80
AAE(T50%) 60.26 42.79 27.91
AAE(Tys,) 332.29 164.16 94.41
AAD(T5) 9.50 10.63 3.91
AAD(T5qv) 60.01 34.80 27.90
AAD(Ty59) 220.37 134.39 79.39

displays the histogram of the initial ensemble of log-conductivity (recall that
both filters start with the same ensemble of initial realizations conditioned
to the hard log-conductivity data) and the histograms of the final ensembles.
The initial ensemble pattern is maintained by the NS-EnKF as expected, since,
this is a built-in feature of the new algorithm. However, the standard EnKF
produces a histogram that gets close to Gaussian: the two initial modes are
smeared out and the final range is increased.

Another way to look at how the evolution of the histograms impacts the
characterization of the spatial distribution of the hydraulic conductivities is
to retrieve the facies distribution by using the value of —4 In(cm/s) as a cut-
off to identify the sand and clay facies. By transforming all realizations into
0’s (if InK is less than —4) and 1’s (if InK is greater than —4), and then
computing the ensemble average, the resulting average maps would represent
the probability that at each location the log-conductivity is larger than —4,
which, in this case, could be interpreted as that the facies is sand. Figure
3.8 shows the probability maps obtained in the initial ensemble, and on the
final ensembles. In the initial ensemble, the hard log-conductivity data are
enough to allow distinguish the location of the sand channels, but with still
high uncertainty on their width. In the final ensembles, all channels are better
delimited, with a very small area with probabilities away from 0 or 1 in the
results of the NS-EnKF as compared with the probabilities obtained by the
standard EnKF.

In a fluvial aquifer the connectivity induced by the sand channels is quite
important in terms of transport predictions. Figure 3.9 shows connectivity
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Figure 3.7: Log-conductivity histograms for the initial ensemble of realiza-
tions and for Scenarios 1 and 2 (standard EnKF and NS-EnKF) after data
assimilation.
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Figure 3.8: Probability that log-conductivity is larger than —4 In(cm/s) for
the initial ensemble of realizations, and for the ensembles corresponding to
Scenarios 1 and 2 (standard EnKF and NS-EnKF) after 50 times steps of
piezometric head data assimilation.
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as a function of horizontal separation, for each one of the realizations in the
initial ensemble and in the two final ensembles. Also the connectivity of the
ensemble averages and of the reference field are shown. Connectivity is com-
puted on the indicator maps obtained above and measures the probability that
any two points, both of them with log-conductivities above —4 In(cm/s), and
which are a certain horizontal distance apart, are connected by a continuos
path of log-conductivities above —4 In(cm/s). Looking only at the ensemble
averages, we can conclude that the standard EnKF tends to produce realiza-
tions which are, on average, less connected, for all distances, than the reference
field, with the NS-EnKF producing an average connectivity which is closer to
the reference one than the standard EnKF; at the same time, the high con-
nectivity values observed in the initial ensemble average for short distances is
lost after conditioning to piezometric heads by any of the filters. Looking at
the individual realizations, we can notice that the spread of the curves is pro-
gressively reduced from the initial ensemble to the ensemble obtained by the
standard EnKF with the minimum spread for the ensemble obtained by the
NS-EnKF. It remains to analyze the apparent splitting of the NS-EnKF en-
semble of connectivity curves into two subsets, one set with curves about that
of the reference field, and another one with curves higher than the reference.
In all the aspects analyzed, the NS-EnKF outperforms the standard EnKF
with respect to the characterization of the spatial variability of log-conductivities.

Prediction ability of the updated model

Regarding the prediction capabilities of the updated models, we will analyze
piezometric head predictions at both conditioning piezometers and control
piezometers, we will also analyze the solute predictions for the mass transport
experiment described earlier.

Figure 3.10 shows the hydraulic head evolution with time at two of the
observation wells. Results are shown for the initial ensemble of realizations
(conditioned only on log-conductivity) and for Scenarios 1 and 2 (standard
EnKF and NS-EnKF) after conditioning to 32 piezometers up to the 50"
time step (22.8 days). Head uncertainty is significantly reduced after data
assimilation. Conditioned piezometric heads, up to the 50" time step, are
almost perfectly reproduced in both scenarios. However, piezometric head
prediction after the 50" time step (when observation data are not used for
conditioning anymore) exhibits lower uncertainty for the NS-EnKF than for
the standard EnKF. We have also checked the head evolution at 8 control
piezometers, two of which are shown in Figure 3.11. Like at the observation
locations, piezometric head uncertainty is reduced, after data assimilation,
in both scenarios, and the NS-EnKF gives more precise predictions than the
standard EnKF'.
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Figure 3.9: Connectivity, as a function of the separation distance, measuring
the probability that two points aligned in the x direction are connected by
a continuous path of log-conductivities larger than —4 In(cm/s). Gray curves
correspond to individual realizations, their mean is given by the triangles
(red) and the squares (black) correspond to the reference. Results are shown
for the initial ensemble of realizations (conditioned on log-conductivity) and
for Scenarios 1 and 2 (standard EnKF and NS-EnKF) after data assimilation.
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Figure 3.10: Piezometric head evolution at two of the thirty-two conditioning
piezometers. Results are shown for the initial ensemble of realizations (con-
ditioned only on log-conductivity) and for Scenarios 1 and 2 (standard EnKF
and NS-EnKF, conditioned to transient piezometric heads up to 22.8 days).
The vertical dashed lines indicate the conditioning period. Squares represent
the piezometric head in the reference field.
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Figure 3.11: Piezometric head evolution at two of the eight validation piezome-
ters. Results are shown for the initial ensemble of realizations (conditioned
only on log-conductivity) and for Scenarios 1 and 2 (standard EnKF and NS-
EnKF) after data assimilation. Squares represent the piezometric head in the

reference field.
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The updated InK fields are further evaluated by using them as input for
the solute transport prediction exercise described at the end of Section 3.4.
The random walk particle tracking program RW3D (Fernandez-Garcia et al.,
2005; Salamon et al., 2006; Li et al., 2011a) is used to solve Equation 3.2. For
the sake of simplicity, only advection is considered in the experiment. Table
3.3 shows the values of AAFE(T,) and AAD(T,) for the 5" 50" and 95"
percentiles of the breakthrough curves. We can see that, when using the NS-
EnKF, both the bias and uncertainty are substantially reduced with respect
to the corresponding values computed on the initial ensemble. The standard
EnKF also improves bias and uncertainty compared with the initial ensem-
ble, although this improvement is less than that of the NS-EnKF. Figure 3.12
summarizes the breakthrough curves for the initial ensemble of realizations
(conditioned only on log-conductivity) and for Scenarios 1 and 2 (standard
EnKF and NS-EnKF) after data assimilation. The NS-EnKF gives better
transport prediction than the standard EnKF, the breakthrough curve uncer-
tainty, as measured by the width of the confidence interval given by the 5%
and 95 percentiles, is reduced significantly, and the median BTC is almost
identical to the reference one.

In summary, with respect to prediction of flow and transport, the standard
EnKF is able to predict head evolution properly, and makes a reasonable pre-
diction of solute transport, but cannot match the NS-EnKF, which performs
better in both cases.

3.5.2 Parameter sensitivity on NS-EnKF

From the previous section we can conclude that the proposed approach, the
NS-EnKF, is better than the standard EnKF. Next, we will analyze the sen-
sitivity of the NS-EnKF to different parameters, i.e., time span of data as-
similation, number of realizations, number of conditioning hard data and log-
conductivity variance.

Effect of time span of head data assimilation

In this section we will discuss the impact of the duration of the piezometric
head data assimilation period on the spatial characterization of log-conductivity.
Figures 3.13 and 3.14 show the ensemble mean and standard deviation of log-
conductivity for the initial ensemble and after assimilating head data up to
time steps 1, 10 and 50 (that is, 0.11, 1.45 and 22.8 days).

From the analysis of these two figures, we note that just a single time step
is needed to obtain an ensemble mean that displays channels similar to those
in the reference field. Then, as more observation heads are assimilated, the
ensemble mean tends to resemble better the reference; however, the ensemble



CHAPTER 3. AN APPROACH TO HANDLING NON-... 73

1 Initial ensemble

IS o o
IS o ©

Normalized concentration

o
o

ob—dlt o L L ]
400 800 1200 1600

Time (day)

Scenario 1 mere 2 - Scenario 2 b 2 °S-

° °
o ==
—_—

o
=
Normalized concentration

Normalized concentration

o
o

0 TSI [N T TSR N [ T ST [N T S MR | 0 TTERIN (VI ST W Y ST SIS ST S—— |
400 800 1200 1600 400 800 1200 1600

Time (day) Time (day)

Figure 3.12: Summary of the breakthrough curves. The 5" percentile, the
median, and the 95" percentile of the travel times are computed as a function
of normalized concentration. Dashed lines correspond to the 5% and 95"
percentiles, the solid line corresponds to the median, and the dotted line is the
breakthrough curve in the reference. Results are shown for the initial ensemble
of realizations (conditioned only on log-conductivity) and for Scenarios 1 and
2 (standard EnKF and NS-EnKF) after data assimilation.
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Figure 3.13: Evolution of log-conductivity ensemble mean as data are assimi-

lated for time steps 1, 10 and 50 (Scenario 2).

Initial standard deviation 1.00

Scenario 2: Standard deviation t1
400 =

y(m)

500

X(m)
Standard deviation t10

d deviation t50
e e =i

0.40
0.20
0.0

0.0

Figure 3.14: Evolution of log-conductivity ensemble standard deviation
data are assimilated for time steps 1, 10 and 50 (Scenario 2).

as



CHAPTER 3. AN APPROACH TO HANDLING NON-... 75

mean does not change as much between the 10*" and the 50" time steps as it
did between the 1% and the 10",

The length of the assimilation period has a larger impact in the ensem-
ble standard deviation maps. These maps show how the uncertainty on log-
conductivity becomes smaller as the time span of head data assimilation in-
creases. As mentioned above, the ensemble mean maps change little between
steps 10" and 50", but the standard deviation maps do change substantially,
with an overall reduction of its values everywhere and with the highlight of
the most likely locations for the channel borders given by the highest standard
deviation values. In these maps, we can also observe that the standard de-
viation is zero at log-conductivity conditioning data locations, implying that
InK measurements are honored in all realizations.

We conclude that, for the specific flow setup discussed in this paper, a
short span of piezometric head data is enough to obtain an ensemble mean
capturing the main patterns of variability of log-conductivity, both in terms
of facies delineation and of within-facies log-conductivity spatial variability;
however, the ensemble of final realizations gets more precise when a longer time
span is used for conditioning, resulting in an ensemble standard deviation map
that could be used to draw the borders of the sand/clay interface.

Effect of size of the ensemble

All results shown until now were for an ensemble of 1000 realizations. To
evaluate the impact of ensemble size, we performed an analysis with an en-
semble of 200 realizations, referred to as Scenario 3 in Table 3.1. The ensemble
log-conductivity mean, together with a few realizations before and after as-
similating the piezometric head data for the first 50 time steps are displayed
in Figure 3.15. For this number of realizations, and for our example, which
has a relatively high log-conductivity variance, the problem of filter inbreed-
ing (Hendricks Franssen and Kinzelbach, 2008) is apparent. The final up-
dated realizations are almost identical to each other, and virtually equal to
the ensemble mean after data assimilation. The average absolute deviation
AAD(InK) is only 0.02 (see Table 3.4, Scenario 3), which represents an unrea-
sonable reduction of uncertainty. A series of algorithms have been proposed to
cope with the problem of filter degeneration caused by a small ensemble size
(Chen and Oliver, 2010; Hamill et al., 2001; Hendricks Franssen and Kinzel-
bach, 2008; Houtekamer and Mitchell, 1998). We have not investigated how
these algorithms would perform in conjunction with the NS-EnKF, and we
conclude that the ensemble size has to be carefully chosen, particularly for
high-variance log-conductivity fields.
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Initial InK r1

Figure 3.15: The first three realizations and the ensemble mean before (left
column) and after (right column) 50 times steps of piezometric head data
assimilation using the NS-EnKF with an ensemble size of 200 realizations
(Scenario 3). Notice how filter inbreeding effects the final results making all
the realizations virtually the same.
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Table 3.4: Performance measures for Scenarios 3, 4 and 5.

Metrics Initial Scenario Initial Scenario Initial Scenario
ensem- 3 ensem- 4 ensem- 5
ble ble ble
AAE(InK) 0.78 0.85 1.05 0.77 1.87 1.57
AAD(InK) 0.76 0.02 1.00 0.53 1.81 1.00
AAE(h) 0.52 0.52 1.34 0.14 0.77 0.43
AAE(Tsy) - - 12.01 8.54 9.59 10.77
AAE(Ts5oy) - - 79.66 91.09 1986.06  1345.58
AAE(Tys9) - - 176.32 71.45 19313.82 4664.59
AAD(Tsy) - - 12.10 7.70 9.51 3.68
AAD(T5py) - - 70.44 32.67 1668.17  831.16
AAD(Tysy) - - 158.70 71.20 13698.18 3134.55

Effect of number of hard conditioning data

Maintaining an ensemble size of 1000 realizations, we reduce the number of
InK conductivity conditioning hard data. It could be argued that the good
results observed in the previous section were due to the large number of condi-
tioning data. This large number yields an initial ensemble average that already
captures the main patterns of the reference InK variability. For this reason
we have reduced the number of conditioning data to 20 regularly-spaced sam-
ples taken from the reference field (Scenario 4 in Table 3.1). Then, we have
generated a new set of initial InK realizations by direct sampling using the
same training image of Figure 3.2. The ensemble average of this new set of
initial realizations can be seen in Figure 3.16. This mean map displays hardly
any information about the channels of the reference, even though all 1000
realizations share the same 20 conditioning data.

It is remarkable to see how, assimilating the piezometric head data, the
resulting ensemble mean map displays the most important features in the refer-
ence, although the channels are not as connected as in the reference. However,
the relative improvement of this updated ensemble mean with respect to the
initial one is very important. We attribute this behavior to the coupling of the
EnKF and the normal-score transforms applied to all members of the state
vector as described earlier.

Individual realizations, such as number 550", resemble the main channel
patterns of the reference; however, they are noisier than similar realizations
generated with a larger number of InK conditioning data, and, somehow,
the channel connectivity is obscured. The metrics obtained for the flow and
transport exercises are given in Table 3.4 (Scenario 4). We can see that all of
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Initial InK r550 Initial InK mean

Figure 3.16: A randomly selected realization (550'") and the ensemble mean
before and after 50 time steps of piezometric head data assimilation using the
NS-EnKF for the scenario where only 20 log-conductivity conditioning data
are used (Scenario 4).
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them decrease their values with respect to the values computed in the initial
ensemble, and that the final values, although larger, are comparable to those
obtained when conditioning to 80 InK data (Scenario 2 in Table 3.3).

We conclude that, overall, reducing the number of hard conditioning data
is not an obstacle for log-conductivity characterization by the NS-EnKF.

Effect of InK variance

Our final analysis focuses on the impact of a very high variance of InK on the
performance of the NS-EnKF (Scenario 5 in Table 3.1). To keep the rest of the
parameters as similar as possible to those used in Scenario 2, we have simply
scaled the reference realization, as well as the 1000 initial realizations for Sce-
nario 2, so that both reference and initial realizations have a variance of 9.92,
while keeping the same mean and the same spatial patterns. Then, we have run
the same flow exercise in the new reference field, and we have sampled the same
piezometers for their usage as conditioning data by the NS-EnKF. Figure 3.17
shows the reference field with its histogram, initial realization number 550, the
initial ensemble mean, the updated realization number 550 after assimilating
the piezometric head data up to time step 50, and the updated ensemble InK
mean. We can see that even for this very large variance, the NS-EnKF is able
to generate realizations which display the bimodal characteristic of the refer-
ence realization with, approximately, the same distribution of channels. We
attribute the good behavior of the method to the normal-score transformation
and to the large conductivity contrast that there is between sand and clay.
The measures quantifying bias and uncertainty of log-conductivity character-
ization and flow and transport predictions are shown in Table 3.4 (Scenario
5). We can see that the biases and uncertainties are significantly reduced;
however, we notice that the final bias and uncertainty values for the travel
times after the NS-EnKF are still very high, which can be attributed to the
extreme range of log-conductivities. This large range of variability induces
zones of very low K and of very high K in all realizations; a small deviation of
the proportions of the very low (or very high) log-conductivities with respect
to the reference field can produce a large deviation on the travel times. The
improvement of transport prediction is also well noticed when analyzing the
BTCs (Figure 3.18).

We conclude that the NS-EnKF can handle high variance cases, particu-
larly for bimodal cases with contrasting facies.

3.5.3 Discussion

We have demonstrated that the proposed NS-EnKF works on the fluvial
aquifer used as a reference in this synthetic exercise. We have also shown
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Figure 3.17: New reference log-conductivity field with larger variance (9.92
In(ecm/s)?) and corresponding histogram, together with a realization (550'")
and the ensemble mean before and after 50 times steps of piezometric head
data assimilation using the NS-EnKF (Scenario 5).
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Figure 3.18: Summary of the breakthrough curves for Scenario 5. The 5"

percentile, the median, and the 95 percentile of the travel times are computed
as a function of normalized concentration. Results are shown for the initial
ensemble of realizations (conditioned only on log-conductivity) and for the
realizations after data assimilation.

that the method is quite robust for scenarios under conditions less favorable
than the ones of the reference scenario (Scenario 2). The starting point is the
less amenable for a Kalman filter: the state transition equation is a complex
non-linear function, and both log-conductivities and piezometric heads can
be statistically characterized by a multivariate distribution which is far from
the multiGaussian one. Kalman filter performance is the best for linear state
transition equations and for multiGaussian random functions. We have cho-
sen to transform both parameters and state variables (all collected in a joint
state vector) into new ones which follow Gaussian marginal distributions. This
transformation does not imply that the bivariate, trivariate and higher-order
distributions of the transformed random function are multiGaussian. We have
also chosen the ensemble Kalman filter to condition to piezometric head data,
because, out of the different Kalman filters, it is the most robust against non-
linearities of the state transition function.

The main conclusion that we derive from this work is that, in a similar
way to the EnKF is robust to non-linearities; the marginal transformation
into Gaussian deviates of conductivities and piezometric heads is robust to
non-multiGaussianity. It could be argued that the results are so good be-
cause the number of hard conditioning data is large. There are two replies to
this argument: (i) the number of hard conditioning data is the same for the
standard EnKF as for the NS-EnKF in the examples, yet NS-EnKF always
performs better, and (ii) one of the scenarios analyzed reducing substantially
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the number of conditioning data yields similar results. In addition, we have
also performed an analysis with no hard data, which is included in a paper
currently under review (Zhou et al., 2011), and the results are remarkably
good; not as good as we present here, but good enough to warrant that the
benefits of the NS-EnKF are worth considering.

3.6 Conclusions

The EnKF has gained popularity in diverse disciplines because of its computa-
tional efficiency, flexibility and capacity for uncertainty assessment. However,
although the EnKF is relatively robust for nonlinear model dynamics, it per-
forms not optimally for non-multiGaussian parameter distributions. In this
work, a new approach (NS-EnKF) is proposed that always works on state
variables with marginal Gaussian distributions. Gaussianity is achieved by
applying a normal-score transform to all variables, prior to performing the
updating step in Kalman filtering. We recognize that the normal-score trans-
form of the state variables renders them just univariate Gaussian, and that the
multivariate distribution may remain far from the optimal multiGaussian dis-
tribution; yet, the new state variables are closer to multiGaussian than prior
to the transformation, and, the histograms of the state variables (conduc-
tivity and piezometric head in our case) are preserved throughout the entire
process. We have demonstrated how to implement the NS-EnKF to generate
log-conductivity realizations which are conditional to log-conductivity data
and also to transient piezometric head data. The method not only is able to
honor the conditioning data, but it preserves the bimodal characteristics of
the underlying reference field, performs well in the context of hydraulic head
predictions outside the conditioning period, and also in the context of mass
transport prediction. We have also analyzed the impact in the performance
of the NS-EnKF of the following parameters: the length of the piezometric
head sampling period, the number of conditioning log-conductivity data, the
number of realizations in the ensemble and the variance of log-conductivity.
The following conclusions can be drawn from the simulation experiments:

e The proposed method, the NS-EnKF, gives better results than the stan-
dard EnKF in terms of reproducing the bimodal InK histogram, the
connectivity of the InK fields and in terms of predicting hydraulic heads
and conservative transport. Both methods are capable of generating InK
realizations which honor the conditioning data, namely log-conductivity
and transient head data. On the contrary, the standard EnKF can-
not preserve the bimodal histogram of InK, underestimates connectivity
and gives less precise and less accurate transport predictions than the
NS-EnKF for the transport exercise discussed.
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e The hydraulic head measurements during the early stage of the assimi-
lation process by the NS-EnKF are enough to capture the main patterns
of variability of InK; however, by extending the assimilation time span,
the uncertainty on InK is largely decreased, and the ensemble standard
deviation map serves to delineate the interfaces between sand and clay.

e In this experiment good results were obtained with 1000 realizations, but
results deteriorate for 200 realizations. Careful choice of the ensemble
size is important in the application of the NS-EnKF.

e A large number of log-conductivity conditioning data helps in delineating
the spatial variability patterns before the hydraulic head is assimilated
by the NS-EnKF'; however, we found that even when the number of hard
data is smaller, piezometric head observations are enough to capture the
complex patterns exhibited in this particular example.

e The NS-EnKF also performs well in strongly heterogeneous formations
with InK variance close to 10.

The univariate Gaussian distribution is considered in the present method
and bivariate or even multivariate Gaussian distribution will be investigated
in the future.
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Pattern Recognition in a
Bimodal Aquifer using the
Normal-Score Ensemble
Kalman Filter

Abstract

The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines
to estimate model parameters and update model states by integrating ob-
served data. EnKF is known to perform optimally only for multiGaussian
distributed states and parameters. A new approach, the normal-score EnKF
(NS-EnKF), has been recently proposed to handle complex aquifers with non-
Gaussian distributed parameters. In this work, we aim at investigating the
capacity of NS-EnKF to identify patterns in the spatial distribution of the
model parameters (hydraulic conductivities) by assimilating dynamic obser-
vations in the absence of direct measurements of the parameters themselves.
In some situations, hydraulic conductivity measurements (hard data) may not
be available, which requires the estimation of conductivities from indirect ob-
servations, such as piezometric heads. We show how the NS-EnKF is capable
of retrieving the bimodal nature of a synthetic aquifer solely from piezometric
head data. By comparison with a more standard implementation of EnKF,
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the NS-EnKF gives better results with regard to histogram preservation, un-
certainty assessment and transport predictions.

4.1 Introduction

The inverse problem in hydrogeology involves characterizing model parame-
ters, mainly hydraulic conductivity, by integrating measurements of the state
variables such as hydraulic head or concentration data. Omne such inverse
method is the ensemble Kalman filter (EnKF). The EnKF was proposed by
Evensen (1994) and further clarified by Burgers et al. (1998) as an extension
to the Kalman filter for the cases in which the state equation is non-linear.
It has gained popularity in many disciplines as an efficient data assimilation
algorithm (e.g., Houtekamer and Mitchell, 2001; Bertino et al., 2003), and
it has been extended, through the augmentation of the state vector, to the
identification of the parameters controlling the state of the system (Nzevdal
et al., 2005; Chen and Zhang, 2006; Moradkhani et al., 2005; Wen and Chen,
2005; Hendricks Franssen and Kinzelbach, 2008). The popularity of EnKF
can be attributed to its advantages like the relative limited CPU demand as
compared with other Monte-Carlo type inverse modeling (Hendricks Franssen
and Kinzelbach, 2009) and the ease of combining the EnKF with virtually any
forward model.

The EnKF is known to provide an optimal solution when the parameter
vector follows a multiGaussian distribution and the state transfer function
is linear (Arulampalam et al., 2002). The fact is that, in many practical
applications of groundwater modeling, hydraulic conductivity cannot be mod-
eled as multiGaussian distributed. The importance of accounting for non-
multiGaussinity and the impact of not accounting for it has been clearly
demonstrated (e.g., Journel and Deutsch, 1993; Gémez-Hernandez and Wen,
1998; Zinn and Harvey, 2003). Zhou et al. (2011) developed a new approach,
the normal-score EnKF (NS-EnKF), to better handle non-Gaussianity distri-
butions of hydraulic conductivity and states. Both, states and parameters,
are normal-score transformed at each time step so that they follow marginal
univariate Gaussian distributions. Then, the EnKF is applied on the normal-
score transformed states and parameters. The performance of the NS-EnKF
was shown to outperform the standard EnKF in a synthetic test example
(Zhou et al., 2011).

The purpose of this paper is to evaluate the performance of the NS-EnKF
in identifying hydraulic conductivity patterns in a bimodal aquifer by inte-
grating dynamic hydraulic head data. The NS-EnKF has proven to work well
in the presence of a relatively dense sample of hydraulic conductivities, i.e.,
direct measurements or hard data (Zhou et al., 2011). However, in practice we
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have to confront the situation in which the direct measurements of hydraulic
conductivity are scarce or simply unavailable. Therefore we want to investi-
gate the performance of the NS-EnKF to characterize a non-multiGaussian
hydraulic conductivity distribution without the use of hard data. Hydraulic
heads serve as the only information source, based on which to characterize the
hydraulic conductivity model, and direct measurements of hydraulic conduc-
tivity are not considered in this experiment.

The structure of the remaining part is outlined as follows. The NS-EnKF
algorithm is briefly introduced in Section 4.2. The method is tested in Section
4.3 on a synthetic bimodal aquifer composed of sand and shale, where the
model is constrained to the observed hydraulic heads through the NS-EnKF
and the standard EnKF. Results and discussions follow the synthetic example.
The paper ends with some conclusions.

4.2 The NS-EnKF

The standard EnKF algorithm is described by Evensen (1994), Burgers et al.
(1998) and Evensen (2007). The first application of the augmented EnKF
in hydrogeology was applied by Chen and Zhang (2006). Details about the
NS-EnKF algorithms can be found in Zhou et al. (2011). The main steps
of the NS-EnKF algorithm are the same as for the standard EnKF, but the
big difference is the introduction of additional pre- and post- processing steps
carried out on the states and parameters contained in the augmented state
vector. It starts with an ensemble of realizations that have been generated
following a given random function. The NS-EnKF method consists of the
following four main steps:

1. Forward simulation. For each realization of the ensemble, the state vec-
tor at time t—1 is updated to time ¢ using a state transfer equation, in our
case, piezometric heads are updated from time t—1 to time ¢ through the
solution of the groundwater flow equation, the hydraulic conductivities,
which are members of the augmented state vector, remain unchanged
through this step.

2. Normal score transformation. Establish, through the ensemble, the lo-
cal cumulative distribution function (CDFs) at each grid cell for all the
components of the augmented state vector (i.e., both states and param-
eters). These local CDF's are used to construct normal score transform
functions, which are used to transform the augmented state vector into
a new vector. All the components of the new vector follow a marginal
Gaussian distribution with zero mean and unit variance.
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3. Update. The state vector is updated similarly as in the standard EnKF:
X = x{ + Gy(z; + e — Hx/) (4.1)

where x}' is the vector with the updated state variables at time ¢ (in
normal space) and x{ is the vector computed from the forward simulation
and then normal score transformed; Gy is the Kalman gain, derived on
the basis of the minimization of the posterior error covariance; z; is the
normal-score transformed observation at time ¢; € is an observation error
characterized by a normal distribution with zero mean and a diagonal
covariance (it is assumed that errors at different measurement locations
are independent); H is the observation matrix.

4. Back transform. The updated state vector x} is back transformed using
the previously constructed local CDF's.

The above steps loop until all the observed piezometric heads (for a certain
time period) are integrated.

4.3 Synthetic example

A synthetic bimodal aquifer composed of sand and shale occupies an area
of 300 m x 240 m, where the hydraulic conductivities are characterized by a
nonGaussian distribution and exhibit a range over several orders of magnitude.
The study domain is discretized into 100 columns by 80 rows (the grid cells
have dimensions of 3 m x 3 m). The aquifer is assumed confined with a
thickness of 10 m.

The reference facies field is generated by SNESIM (Strebelle, 2002), a
multiple-point geostatistical simulation algorithm, using as training image the
one in Figure 4.1. Each facies is then populated with log-conductivity values
generated by GCOSIM3D (Gémez-Herndndez and Journel, 1993) with param-
eters shown in Table 4.1. The reference InK field is presented in Figure 4.2.
The histogram of log-conductivity is bimodal, with modes coinciding with the
means of the sand and shale distributions, 3.0 In(m/d) and -2.0 In(m/d), re-
spectively, and it has a global mean of -0.47 In(m/d) and a global standard
deviation of 2.39 In(m/d).

The groundwater flow equation is solved for the reference field using the
transient flow simulator MODFLOW (Harbaugh et al., 2000) with imperme-
able boundary conditions in the north and south, constant head of 0 m in
the west and prescribed flow rate of 270.5 m3/d along the east boundary dis-
tributed as can be seen in Figure 4.2. Different flow rates are set on the
eastern boundaries depending on their water supply capacity, i.e., large flow
rates correspond to zones with high conductivities. The initial head over the
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Shale

0
0

East 250

Figure 4.1: Training image used to generate the binary facies realizations
(Strébelle, 2000).

Table 4.1: Parameters defining the multi-Gaussian random function used to
generate the log-conductivity within each of the two facies.

Facies Variogram  Mean Variance Ay (m) Ay (m) Sill

type (In(m/d))  (In(m/d)?)
sand  exponential 3.0 1.0 144 72 1.0
shale exponential -2.0 1.0 72 72 0.35

* ranges in the x and y directions.
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Figure 4.2: Reference log-conductivity field and the histogram. Flow boundary
conditions and locations of piezometers are also indicated.
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domain is 0 m. The total simulation period of 500 days is discretized into 100
steps with step sizes that increase following a geometric series with a ratio of
1.05. Specific storage is assumed constant and equal to be 0.003 m~!.

Using the same training image (Figure 4.1) and the same multiple-point
geostatistical algorithm (SNESIM), 1000 facies realizations are generated. For
each realization both facies are populated with InK values generated with
sequential Gaussian simulations using the parameters as specified in Table
4.1. The assimilation of piezometric head data is performed by the standard
EnKF and the NS-EnKF. Observed piezometric heads from 111 piezometers
in 60 time steps (67.7 days) serve as conditioning data. The locations of the
111 piezometers are shown in Figure 4.2.

4.4 Results and discussions

4.4.1 Spatial variety characterization of InK

Figure 4.3 shows the evolution of the ensemble mean and variance of logcon-
ductivity as the piezometric head data are assimilated by the NS-EnKF from
the initial time step (¢ = 0) to the end of the data assimilation (¢ = 60). The
ensemble mean of the initial realizations is smooth and shows no feature even
though each initial realization honors the same multiple-point geostatistical
model implicit in the training image. Structures of the spatial pattern of InK
start to appear during the conditioning to piezometric head data. For instance,
at the 5" assimilation step, the channel pattern near the eastern boundary is
identified and at the end of the 60" step, the ensemble mean of InK resem-
bles closely the reference field, having identified quite precisely the channel
locations in the reference. The variance is also reduced over the domain as
more piezometric heads are integrated. At the end of time step 60 we can
even identify the boundaries of the channels by the largest variance strings.
We can argue that assimilation of hydraulic heads with the NS-EnKF plays a
critical role in recognizing patterns of InK and allows a good characterization
of the bimodal aquifer.

Figure 4.4 shows the results obtained using the standard EnKF. The en-
semble mean is similar to the one obtained by the NS-EnKF, i.e., the InK
patterns are recognized as more piezometric heads are assimilated. The main
difference resides in the variance field. The variance is initially reduced around
the piezometers, which is clearly illustrated by observing the variance field up
to the 15" time step while in the case of NS-EnKF, the influence area of the
piezometer is extended and depends on the channels to a large extent. Then,
at the end of data assimilation (¢ = 60), the InK variance in Figure 4.4 is
widely reduced over the entire domain. On one hand, the variance reduction
is what we expect as additional information is incorporated in the model; on
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Figure 4.3: Evolution of the InK ensemble mean and variance as data are
assimilated with the NS-EnKF for time steps 5, 15 and 60. Reference InK is
shown for comparison.
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the other hand, the over-reduction of the ensemble variance cannot represent
the real uncertainty, that is, the uncertainty is underestimated. This can be
reinforced by Figure 4.5 which shows the evolution of the average absolute
bias (AAB(x):) and the average ensemble spread (AESP(x)).

The AAB(x); and the AESP(x); evaluate accuracy and uncertainty of the
estimation, respectively. They are defined as

1 Oy Xe
AAB($)t = ﬁb Zz; E ; |xt7i,r - xref,i|

1 N, 1/2
AESP(x)t :<szazm>

=1

where z;; , is the estimated log-conductivity at time step ¢, node 7 and real-
ization 7, x,.y; is the reference log-conductivity at node i, N} is the number
of nodes, N, is the number of realizations and 0'%“, is the variance over the
ensemble at time step ¢ and location <. We can see that as assimilation time
advances, the AAB(x); and the AESP(z); decrease and approach a stable
value. Clearly, the AAB(z)gp corresponding to the NS-EnKF is smaller than
that for the standard EnKF, indicating a more accurate estimation. On the
contrary, the AESP(x)go corresponding to the NS-EnKF is bigger than that
for the standard EnKF, indicating an estimate with higher uncertainty. The
discrepancy discrepancy between AAB(x)sp and AESP(x)go is much larger
for the standard EnKF than for NS-EnKF, which indicates that the former
underestimation the uncertainty in relation with the latter.

Figure 4.6 displays InK histograms of the reference field, the prior ensem-
ble and the updated ensemble by the EnKF and the NS-EnKF after piezo-
metric heads are assimilated. The global mean and standard deviation are
preserved during data assimilation for both the standard EnKF and the NS-
EnKF. The bimodal histogram for the prior ensemble (related with the sand
and shale facies) is correctly preserved by the NS-EnKF, but it is not during
data assimilation with the standard EnKF. In the latter case, the updated
histogram tends to be Gaussian and the bimodality is almost gone. Besides,
the histogram obtained with the standard EnKF shows extremely high and
low values, outside of the range of the reference histogram.

Connectivity plays a key role in solute transport simulation and thus a
series of measures has been proposed to assess it. Here we adopt the con-
nectivity function which measures the probability that two points within the
same facies are connected by a continuous path (Stauffer and Aharony, 1994).
We focus on the connectivity of sand along the x direction which is the main
orientation of the channels. The log-conductivity values are first converted to



100 CHAPTER 4. PATTERN RECOGNITION IN A BIMODAL. ..

InK mean t0

East
InK variance t5

North

0

East
InK variance t15
240 m|

0

North

East

300m
00 m
InK variance t60

3

Figure 4.4: Evolution of the InK ensemble mean and variance as data are
assimilated with standard EnKF for time steps 5, 15 and 60. Reference InK
is shown for comparison.
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Figure 4.5: Evolution of Average Absolute Bias AAB(InK') and Average En-
semble Spread AESP(InK) for sequential data assimilation with standard
EnKF and the NS-EnKF.
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Figure 4.6: InK histograms for the (A) reference, (B) prior, (C) posterior with
the standard EnKF, and (D) posterior with the NS-EnKF.
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indicator variables according to

1, iflInK >0
I(z) = :
0, otherwise.

which, in this particular case, is equivalent to partition them into sand and
shale. Then, the program CONNEC3D (Pardo-Igizquiza and Dowd, 2003)
is used to compute the connectivity functions for different distance lags for
log-conductivities larger than 0 In(m/d). Figure 4.7 shows the connectivity
function changes with distance before (Figure 4.7A) and after data assimilation
with the standard EnKF (Figure 4.7B) and the NS-EnKF (Figure 4.7C). These
figures show the functions for the reference field, for each updated stochastic
realization and they also show the mean of the connectivity functions over the
stochastic realizations. We can see that the reference connectivity function is
underestimated by both the standard EnKF and the NS-EnKF, but the latter
performs a little better, the span of the ensemble of realizations includes almost
completely the connectivity function for the reference field.

4.4.2 Prediction capacity of updated InkK

The previous assessments focused on the estimation of log-conductivity itself,
for this purpose, the NS-EnKF is found to perform properly in detecting the
log-conductivity pattern, preserving the bimodal histogram and estimating the
connectivity. Now, the updated log-conductivity realizations will be tested for
their ability to perform predictions.

Figure 4.8 shows the hydraulic head evolution with time at two of the
piezometers, one located in shale (Piezometer #19) and the other in sand
(Piezometer #44). Hydraulic head predictions for the prior and updated re-
alizations are displayed. Data assimilation by the standard EnKF and the
NS-EnKF result in a significant reduction of prediction uncertainty for both
methods at both piezometers. The accuracy of hydraulic head prediction is
very similar for the NS-EnKF and for the standard EnKF although the up-
dated InK fields by NS-EnKF are superior in terms of detection of the spa-
tial patterns of hydraulic conductivities. This fact can be attributed to the
smoothing effect of the groundwater flow equation (Delhomme, 1979), i.e.,
similar piezometric head distributions can be obtained for different InK fields,
and thus the non-uniqueness of solutions to the inverse problem (Carrera and
Neuman, 1986).

To further evaluate the updated InK fields we performed a transport pre-
diction experiment for the case of steady-state flow. Figure 4.9 shows the set-
up of this synthetic experiment. No flow boundary conditions are defined for
the northern and southern boundary and prescribed heads along the western
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Figure 4.7: Connectivity as a function of the separation distance, measuring
the probability that two points in = direction are connected by a continuous
path of InK larger than 0 In(m/d). Shown are the results for (A) the prior un-
conditional realizations, (B) the realizations conditioned with standard EnKF,
and (C) the realizations conditioned with the NS-EnKF.
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Figure 4.8: Piezometric head evolution for two of the 111 piezometers, loca-
tions of which are indicated in Figure 4.2. Results are shown for the prior
ensemble (no data assimilation), for assimilation with the standard EnKF and
the NS-EnKF (conditioning to piezometric heads until 67.7 days, indicated by
the vertical dashed line). Circles refer to piezometric head in the reference

field.
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(equal to 0 m) and eastern boundary (equal to -10 m). Conservative particles
are released along a vertical line at x = 19.5 m and two control planes are
located at x = 110 m and = = 290 m, at which the arrival times are recorded.
The random walk particle tracking program RW3D (Fernandez-Garcia et al.,
2005; Li et al., 2011) is used to solve the conservative transport equation. The
integrated breakthrough curves (BTCs) at the two control planes are com-
puted and compared with the prior BTCs and the reference BTCs (Figure
4.10). For both the standard EnKF and the NS-EnKF, the uncertainty of
BTC prediction is significantly reduced, indicating the importance to inte-
grate piezometric head data. With standard EnKF, the bias and uncertainty
are reduced compared with the prior at both control planes. However, the
ensemble median deviates from the reference and the reference is not enclosed
in the 90% confidence interval. With the NS-EnKF, not only the bias and pre-
diction uncertainty are significantly reduced at both control planes but also
the reference is well represented by the ensemble median, and it is contained
within the 90% confidence interval, especially for control plane B.

No flow

240 m

Control plane A< "> Control plane B

H(,y)=0m H (300, y)=-10 m

Particle injection ™ Particle path

0 No flow 300 m

Figure 4.9: Configuration of the transport prediction experiment. Shown
are boundary conditions, locations for particle injection, location of the two
control planes and an illustration of the particle paths.

4.5 Conclusions

The EnKF has been widely used as a data assimilation algorithm to estimate
model parameters and update model states. The EnKF has gained popular-
ity in various disciplines due to its attractive advantages in comparison with
other inverse methods in such respect as uncertainty characterization, compu-
tational efficiency and flexibility. However, EnKF does not perform optimally
for non-multiGaussian parameter distributions and nonlinear models. The
normal-score EnKF (NS-EnKF') was proposed (Zhou et al., 2011) in order to
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Figure 4.10: Breakthrough curves at two control planes for the prior ensemble
and the ensemble updated with the standard EnKF and the NS-EnKF. The 5"
percentile, median, 95" percentile and reference of the breakthrough curves
are shown.
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reduce problems related with non-Gaussianity of states and parameters. A
normal-score transformation is applied so that the marginal distributions of
states and parameters are Gaussian. The objective of this paper is to inves-
tigate the behavior of the NS-EnKF in identifying InK patterns for a syn-
thetic non-Gaussian aquifer with a bimodal InK distribution by assimilating
hydraulic heads in the absence of InK measurements. The standard EnKF
is also used for the same synthetic set-up in order to compare the results.
The NS-EnKF gives better results than the standard EnKF because: (1) the
bimodal histogram is well preserved by the NS-EnKF while it is not by the
standard EnKF, (2) parameter uncertainty is underestimated by the standard
EnKF with respect to the NS-EnKF, (3) channel connectivity along the x
direction is underestimated by both methods but the connectivity functions
computed on the ensemble of realizations obtained by NS-EnKF are closer
to the connectivity function in the synthetic reference field, and (4) the fate
of conservative solute is predicted correctly by the updated InK fields in NS-
EnKF while the results by standard EnKF exhibit a certain deviation from the
reference. In conclusion, piezometric head data carry important information
which, in conjunction with a knowledge of the prior histogram of the hydraulic
conductivity, permits the characterization of a non-Gaussian InK distribution
even if no hydraulic conductivity data are available.
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A Pattern Search Based
Inverse Method

Abstract

Uncertainty of model predictions is caused to a large extent by the uncer-
tainty on model parameters while the identification of model parameters is
demanding due to the inherent heterogeneity of the aquifer. A variety of in-
verse methods has been proposed for model identification. In this paper we
present a novel inverse method to constrain the model parameters (hydraulic
conductivities) to the observed hydraulic head data. In the method proposed
we build a conditioning pattern consisting of simulated model parameters and
observed flow data. The unknown parameter values are simulated by pat-
tern searching through an ensemble of realizations rather than optimizing an
objective function. The model parameters do not necessarily follow a multi-
Gaussian distribution and the nonlinear relationship between the parameter
and response is captured by the multipoint pattern matching. The algorithm
is evaluated in two synthetic bimodal aquifers. The proposed method is able
to reproduce the main structure of the reference fields and the performance
of the updated model in predicting flow and transport is improved compared
with the prior model.
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5.1 Introduction

The inverse problem in hydrogeology aims to gain understanding about the
characteristics of the subsurface, i.e., identification of model structure and
corresponding parameters, by integrating observed model responses such as
hydraulic head and mass concentration data. Several inverse methods have
been proposed to solve the inverse problem in the last several decades. The
first application of inverse methods in hydrogeology treat the aquifer proper-
ties as piecewise homogeneous (e.g., Carrera and Neuman, 1986). However,
soon it is realized that the aquifer should be characterized by heterogeneous
distributions of the parameters (see De Marsily et al., 2005, for a historic
perspective on the treatment of heterogeneity in aquifer modeling). There are
already several inverse methods capable of dealing with this heterogeneity, e.g.,
the pilot point method (RamaRao et al., 1995), the self-calibration method
(Gémez-Herndndez et al., 1997; Wen et al., 1999; Hendricks Franssen et al.,
2003), the ensemble Kalman filter (Evensen, 2003; Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008; Zhou et al., 2011) or the Markov
chain Monte Carlo method (Oliver et al., 1997; Fu and Gémez-Hernandez,
2009).

In the above referred inverse methods, the groundwater model structure
is described by a variogram model, which basically measures the correlation
between two spatial locations. This two-point variogram-based model is not
able to characterize curvilinear features, e.g., cross-bedded structures in flu-
vial deposits or erosion fractures in karstic formations, while these curvilinear
structures play a key role in flow and especially solute migration modeling (e.g.,
Kerrou et al., 2008; Li et al., 2011b). A solution to address this issue is to use
multiple-point geostatistics. A “training image”, which contains the types of
features to be reproduced by the aquifer model, is introduced as a geological
conceptual model (Guardiano and Srivastava, 1993). This training image is
used to derive experimental local conditional distributions that serve to propa-
gate the curvilinear patterns onto the simulated aquifer. A series of programs
based on multiple-point geostatistics is available, e.g., SNESIM (Strebelle,
2002), FILTERSIM (Zhang et al., 2006), SIMPAT (Arpat and Caers, 2007)
and DS (Mariethoz et al., 2010b), and a detailed review on multiple-point geo-
statistics is provided by Hu and Chugunova (2008). The advantages of using
multiple-point geostatistics for the characterization of hydraulic conductivity
and for flow and transport prediction have been confirmed after comparison
with variogram-based simulation methods, both in synthetic examples and in
real aquifers (e.g., Feyen and Caers, 2006; Huysmans and Dassargues, 2009;
Journel and Zhang, 2006). An alternative to derive multiple-point statistics
is using high-order spatial cumulants which are combinations of moments of
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spatial parameters to characterize non-Gaussian nonlinear random variables
(Dimitrakopoulos et al., 2010; Mustapha and Dimitrakopoulos, 2010).

Most of the inverse methods construct an objective function to measure
the deviation between the simulated and observed data. Then, through an
optimization algorithm, the initial aquifer models are modified until the ob-
served data are well reproduced by the model predictions. However, during
the optimization process, the aquifer spatial structure may be modified with
respect to the structure of the initial guesses and become geologically unrealis-
tic (Kitanidis, 2007). To prevent this departure, techniques such as including a
regularization term or using a plausibility criterion are combined with the ob-
jective function to constrain the deviation of the updated model from the prior
model (Emsellem and De Marsily, 1971; Neuman, 1973). But these methods
have been challenged on their theoretical foundations (RamaRao et al., 1995;
Rubin et al., 2010). Some recent inverse methods use other avenues in an
attempt to preserve the prior structure when perturbing the parameter values
in the prior fields.

Considering the limits of the conventional inverse methods and the ad-
vantages of multiple-point geostatistics, a reasonable solution is using the
multiple-point geostatistics to characterize the nonlinear structure and try
to preserve the structure when the model is updated using inverse methods.
In this way, the curvilinear features are characterized properly and the model
remains physically realistic during the inverse process. A few examples of
such inverse methods include the gradual deformation method (GDM) (Hu,
2000; Caers, 2003), the probability perturbation method (PPM) (Caers, 2002;
Caers and Hoffman, 2006) and the probability conditioning method (PCM)
(Jafarpour and Khodabakhshi, 2011). In all three methods, the prior model
structure can be characterized by multiple-point statistics and the property
realizations are updated in such a way that the prior model statistics are kept.
The difference between the three methods resides in the way the observations
are integrated and the way the realizations are updated. The main idea of the
GDM is that the realizations are perturbed by modifying the random number
used to draw from the conditional distribution function. The random number
is chosen through optimizing the deformation parameter so that the mismatch
between the simulated and observed dynamic data is reduced. The PPM is
based in modifying the conditional probability function. For the case of PCM,
the realizations are updated with a multiple-point simulation method under a
soft constraint given by a probability map inferred from observed flow data.
The probability map is built with the help of the ensemble Kalman filter.

Alternatively to the inverse methods formulated in the framework of mini-
mizing an objective function, the Markov chain Monte Carlo method provides
another way, namely sampling from a posterior distribution that is already
conditioned to observations. Two such examples that are capable of dealing
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with curvilinear structures are the blocking moving window algorithm (Al-
colea and Renard, 2010) and the iterative spatial resampling (Mariethoz et al.,
2010a). Another avenue is treating the inverse problem as a search problem,
e.g., a distance-based inverse method (Suzuki and Caers, 2008). A large num-
ber of multiple-point simulations are constructed, from which a search scheme
is used to select those consistent with the observed dynamic data. The spatial
structure of the parameters is not disturbed since no modification is performed,
simply a selection is carried out. The updated model should be geologically
realistic as long as the prior model is generated properly.

In this paper, we present a novel approach to constrain the hydraulic con-
ductivities to dynamic flow data. The most distinct novelty of the proposed
method is that we formulate the inverse problem in the basis of pattern search
instead of minimizing an objective function or sampling the posterior distribu-
tion. We assume that the hydraulic conductivity to be simulated is related to
the geologic structure and flow dynamics in its neighborhood. The value at the
simulated node is determined by searching for matches to the conditional pat-
tern composed of simulated hydraulic conductivities and observed flow data.
The proposed pixel-based method is not only convenient to condition to lo-
cal data but it is also able to describe the geologic structure. Furthermore,
the pattern is searched through the prior ensemble of realizations all of which
are consistent with the geologic structure so that the pattern-search method
ensures that the updated fields are physically realistic and the prior statistics
are preserved.

The rest of the paper is outlined as follows. In section 5.2, the proposed
method is presented in detail. In section 5.3, a synthetic example is described
to assess the performance of the method. In section 5.4, the results of the
synthetic experiment are presented and analyzed. In section 5.5, the method
is further evaluated with another example to test the effect of number of
conditioning data and boundary conditions. In section 5.6, some conclusions
about the proposed method are shown.

5.2 Methodology

The method is based on the direct sampling algorithm proposed by Mariethoz
et al. (2010b). It has been extended to include state observation data, which
forces the enlargement of the concept of training image to a training ensemble
of realizations.

5.2.1 Flow chart of the algorithm

A flow chart of the proposed method is displayed in Figure 5.1, which consists
of the following steps:
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Postprocessing and Update of the Conductivity Ensemble

Figure 5.1: Flow chart of the proposed pattern-searching based multiple-point
ensemble inverse method.
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e Generate the prior ensemble of realizations. For the purpose of illus-

tration we will consider that hydraulic conductivity is the parameter
of interest. Let the ensemble be composed of N, realizations and each
hydraulic conductivity field be discretized into N, cells. Multiple-point
sequential simulation methods are applied to generate the conductivity
field ensemble, e.g., using the SNESIM or the DS codes mentioned in
the previous section. A training image is needed for the generation. The
hydraulic conductivity hard data are honored if available.

Forecast the dependent state variables. For each realization, the hy-
draulic head data are obtained by solving the transient flow equation on
the hydraulic conductivity field subject to initial and boundary condi-
tions. We assume that the initial and boundary conditions are known
perfectly so that we can focus on the uncertainty caused by hydraulic
conductivities. Notice that only model parameters are updated. To
avoid inconsistencies between the currently simulated hydraulic heads
and the updated hydraulic conductivities, the flow simulation is restarted
from the beginning whenever the hydraulic conductivity field is updated.
At this stage we have an ensemble of hydraulic conductivity realizations
that mimic the patterns of the training image, and the corresponding
ensemble of piezometric head fields. These two ensembles will become
now the training image in which to look for patterns that will permit
the generation of conductivity fields which also respect the piezometric
head measurements.

For each realization, define a random path visiting each node except
those with hydraulic conductivity measurements. For each node with an
unknown value (K;) in the sequential path,

1. Determine the conditional data pattern of K. In this work, the
data pattern is composed of hydraulic conductivities and piezomet-
ric heads. The conditional hydraulic conductivities include mea-
sured hard data, if any, and previously simulated values. The
known hydraulic conductivities and observed heads around K; are
ranked according to distance. A maximum number M of condi-
tional hydraulic conductivities and a maximum number N of con-
ditional piezometric heads are set. Only the closest M hydraulic
conductivities and the closest N observed heads are stored as con-
ditional data constituting the conditioning pattern. For instance,
in Figure 5.2, the conditioning data pattern for K; consists of three
hydraulic conductivities and two observed heads. The size of the
conditional data pattern is not determined by the search area but
instead by the number of conditioning data. The varying-size search
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neighborhood scheme was proposed by Mariethoz et al. (2010b).
Advantages of this pattern configuration are two-fold: (a) the size
of the conductivity data event in the pattern is influenced by the
density of the known conductivities, i.e., when the known conduc-
tivities are sparse, the pattern will cover a large area to reach the
maximum number of conditioning data (M ); on the contrary, when
the known conductivities are dense, the pattern will cover a small
area and only the nearest nodes are used to account for the local
variety. In other words, the flexible search neighborhood scheme
has similar effect as multiple-grids (Mariethoz et al., 2010b); (b)
only hydraulic heads located near the unknown node (N at most)
are considered rather than all the heads over the field, which fa-
cilitates to avoid potential spurious correlation between simulated
hydraulic conductivities and head observations.

° K,
oK
./(I_:?AH1

AH, * K,

Figure 5.2: A pattern example consisting of conditional hydraulic conductivity
and head data. Kj; is the value to be simulated.

2. Search for a match to the conditional pattern. Randomly start from
a realization in the ensemble to search for a match to the condition-
ing pattern in the ensemble of realizations. Calculate the distance
function (d) between the conditioning data and the candidate:

d = wd + (1 — w)dh (5.1)

where di and dj, are the distances between the conditioning data
and the candidate pattern corresponding to hydraulic conductiv-
ities and heads, respectively; w is a trade-off coefficient used to
balance the influence of the two types of conditioning data. This
weight technique has been applied in many inverse methods and
a usual choice for the value of w is 0.5 when two types of con-
ditioning data are taken into account and the distance measures
are normalized (e.g., Alcolea and Renard, 2010; Capilla and Llopis-
Albert, 2009; Christiansen et al., 2011; Hendricks Franssen et al.,
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2003). Since hydraulic heads depend not only on hydraulic con-
ductivities but also on the boundary conditions and the presence
of sinks or sources, the search is performed through the ensemble
but only about the position of K;. More specifically, in this work,
we search only within a 3 by 3 square as shown in Figure 5.3, i.e.,
only 9 pattern candidates centered in the 3 by 3 square are evalu-
ated in each realization and the matching pattern is expected to be
found among them. The expression of the distance function will be
discussed later on.

H ensemble

K ensemble

Figure 5.3: Sketch map of the searching strategy. The dashed line indicates
the exact location of K; through the ensemble. The candidates in the 3 by 3
square in each realization are evaluated to find the match consistent with the
conditioning hydraulic conductivities and observed piezometric heads.

3. Update the Kj;. If the distance function value d is less than a pre-
defined threshold (d;), extract the value to update K; from the
matching pattern and stop searching. If d; = 0, the conditioning
data are exactly matched; if d; > 0, a certain disagreement is al-
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lowed. To explicitly distinguish the misfits related with hydraulic
conductivities and heads in the conditioning data pattern, we can
define two thresholds, d;j and dy . In the present work, hydraulic
conductivities are considered as categorical variables (two facies
with uniform values) and the corresponding d; j, is set to 0, indicat-
ing an exact fit. Normally d ; is assigned a value larger than 0 to
account for the measurement errors. If no match is found fulfilling
the predefined thresholds, the pattern with the smallest distance
value is used.

4. Update the ensemble. Move on to the next cell and then to the
next realization until all the grids and realizations in the ensemble
are updated.

e Postprocessing. Inconsistencies may appear during data assimilation as
shown in Figure 5.4. We can find that the cells indicated by the ellipses
are not consistent with their neighboring values, and cannot be con-
sidered geologically realistic. We simply filter these inconsistent values
out similarly as Henrion et al. (2010) did. However, this might disturb
the proportion between facies since no proportion control strategy is ap-
plied. In order to reduce the influence of the artificial filtering on facies
proportion, we only consider those inconsistent objects consisting of at
most three cells. More complex postprocessing methods can be found in
image processing algorithms, e.g., kernel principal component analysis
(Kim et al., 2005; Mika et al., 1999), and among others (Falivene et al.,
2009).

-

Figure 5.4: Sketch of filtering out noise. The black/white cells are converted
to white/black so as to be consistent with the values in the neighborhood.

e Loop back to the forecast step and repeat the process until all observa-
tions available are integrated.
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5.2.2 Distance function

In the proposed method, the distance function plays a key role and it must
be defined carefully. The Minkowski distance is a commonly used distance
function as defined below (Borg and Groenen, 2005; Duda et al., 2001).

n 1/q
d{d(zn),p(an)} = <Z |d(xi) — p(@)!") (¢=1) (5.2)
i=1

where d{d(x,),p(zy)} is the distance function between the data event d(z,)
and the conditioning data pattern p(z,), n indicates the size of d(x,) and
p(xy), x can be hydraulic conductivity and head data, and ¢ is a variable
that, if equal to 1, gives rise to the Manhattan distance, and if it is equal to
2, to the Euclidian distance.

1. Manhattan distance (city-block distance) has been used as the dissimi-
larity measure in the SIMPAT, a multiple-point geostatistical simulation
algorithm (Arpat and Caers, 2007).

e Categorical variables:

d{d(zn), plan)} = % S deo,1]
=1 (5.3)
o {0, if d(z:) = p(x;)

1, otherwise

The distance values are normalized into the range [0, 1] by dividing
by n, which makes it convenient to define the threshold values, i.e.,
threshold values near 0 indicate very low deviation and near 1 very
high deviation. It also helps in combining the distances for different
attributes.

e Continuous variables:

d{d(xn),p(xn)} = % > dles) Zpl - [0, 1] (5.4)
1=1

dmax

where dynq, 18 the maximum deviation between d(x;) and p(z;),
together with n used to normalize the distance values.

2. Weighted Euclidean distance attributes different weights to elements in
the data event depending on their distance to the simulated node, i.e.,
the nearer to the simulated node, the more important, while in the un-
weighted Manhattan distance, all elements share the same weight.
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e Categorical variables:

dd(m), o)} = = Y @kl del0,1]  (5.5)
i=1

Y b 2
where h; is the lag distance from the element in the data event to
the simulated node and a; is the same as in Equation 5.3.

e Continuous variables:

1/2
1 " ld(zs) — plx) |2
d{d(wn), p(an)} = | = Z| €D) . p(:)] pot de0,1]
Zi:l hl i=1 dmax
(5.6)

where d;q; is the same as in Equation 5.4 and h; is the same as in
Equation 5.5.

The Manhattan distance and the weighted Euclidian distance functions de-
fined above were first proposed in developing the DS (Mariethoz et al., 2010b)
and then modified in this work. Manhattan distance functions (Equations 5.3
and 5.4) are more computationally efficient than Euclidian ones (Equations 5.5
and 5.6). An alternative to the Minkowski-based distance family is the Haus-
dorff distance (Dubuisson and Jain, 1994), which has been used, for instance,
by Suzuki and Caers (2008).

5.3 A synthetic example

A synthetic experiment is designed to evaluate the performance of the pro-
posed method. The test aquifer is assumed confined and it covers a domain
discretized into 100 x 80 x 1 cells, with cell dimensions of 1 m x 1 m x 10 m.
A training image for the facies (Figure 5.5) was generated using the object-
based geologic modeling program FLUVSIM (Deutsch and Tran, 2002). This
training image serves as a conceptual model of the bimodal aquifer composed
of high permeability sand and low permeability shale. Uniform permeability
values are assigned to the two facies, i.e., InK = —4 m/d for the shale and InK
= 1m/d for the sand. DS (Mariethoz et al., 2010b), a pattern-based multiple-
point geostatistical simulation algorithm, is used to generate the reference
facies field (Figure 5.6) by borrowing structures from the training image. Hy-
draulic conductivities at 20 locations in the reference are collected serving as
the conditioning hard data (see Figure 5.6 for locations of the measurements).

MODFLOW2000 (Harbaugh et al., 2000), a finite difference flow simulator,
is used to solve the transient groundwater flow equation on the reference field
subject to the boundary conditions: impermeable boundaries in the north and



124 CHAPTER 5. A PATTERN SEARCH BASED INVERSE. ..
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Figure 5.5: Training image used to generate the ensemble of binary facies
realizations.

80 Reference facies InK (m/d)

North

East

Hydraulic conductivity measurement
Piezometric head observation

Figure 5.6: Reference facies field.
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south, constant head in the west (H = 0 m) and prescribed flow rate in the east
(Q = 100 m3/d). Notice that the flow pumping rates in the east boundaries
are not uniform, but proportional to the conductivities at the boundary. The
initial head is 0 m everywhere over the field. A simulation period of 30 days
is discretized into 20 time steps following a geometric sequence of ratio 1.05.
Specific storage is assumed constant and equal to 0.003 m~!. Piezometric head
data at 63 observation locations are collected serving as the conditioning data
to update the prior model parameters. Configuration of the 63 piezometers is
shown in Figure 5.6.

The prior ensemble of realizations consists of 500 realizations which are
generated by DS using the same training image used to generate the reference.
The 20 conductivity hard data are honored when the prior realizations are
generated. The prior ensemble is so generated that the uncertainties related
with the conceptual model and hydraulic conductivity measurement are not
considered in this experiment.

The observed piezometric heads in the first 6 time steps (6.17 days) are
used to update the prior realizations with the proposed method. The results
after integrating the observations are presented and discussed in the following
section.

5.4 Results and discussions

5.4.1 Hydraulic conductivity characterization

Figure 5.7 shows the first four realizations in the ensemble before and after the
head data are assimilated. The prior realizations (left column) are conditioned
to 20 hydraulic conductivity measurements and the updated realizations (right
column) are consistent with both measured conductivity and observed piezo-
metric head data. We can find that the prior realizations deviate considerably
from the reference field while the updated realizations resemble closely the
reference. In other words, the main channel pattern is captured by integrating
the observed piezometric heads. However, we notice that the updated realiza-
tions exhibit a little higher variability near the west boundaries than in the east
(indicated by the three ellipses in the reference field). This can be attributed
partly to the boundary conditions, since piezometric heads around prescribed
head boundaries are not sensitive to hydraulic conductivity fluctuations.
Figure 5.8 summarizes the prior and posterior statistic metrics of InK over
the ensemble of realizations. The ensemble average (the second row of Fig-
ure 5.8, “EA”) of the prior realizations exhibits no channel trend while the
updated EA shows clear channels and resembles the reference field. The en-
semble standard deviation (the third row of Figure 5.8, “Std. dev.”) shows
a significant reduction of uncertainty, i.e., in the prior model the uncertain-
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Figure 5.7: The first four realizations in the ensemble. The left column shows
four prior facies fields and the right column shows the corresponding updated
facies. The reference field is also shown for comparison.
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ties around the hard data are small and the uncertainties grow big when far
away from the hard data locations while in the updated case they are reduced
everywhere. We also plot the RMSE (the bottom row of Figure 5.8) taking
advantage of knowing the reference field exactly. The RM SFE(z); at a node @
is computed as

1/2
N,
1 s
RMSE(x)i = | 5+ > (@bt — 27T )? (5.7)
r j=1

where NN, is the number of realizations in the ensemble, x can be either the
updated InK or the predicted head h, the superscripts upd and ref indicate
updated and reference model, respectively. Similarly with the standard devia-
tion, the RMSE(InK) field confirms the importance of assimilating observed
piezometric head data in characterizing the structure of hydraulic conductiv-
ity. The error is clearly reduced in the updated ensemble compared with the
prior case. Moreover, we calculate the average RMSE(InK) over the field
and it is reduced from 3.0 m/d of the prior model to 1.5 m/d of the updated
model. As we have mentioned previously, the structure identification near the
west boundaries is less improved compared with the east part (separated by
the dashed line) due to the influence of the prescribed head boundaries.

5.4.2 Prediction capability of the updated model

To evaluate the prediction capacity of the updated model, we will use it to fore-
cast piezometric head evolution and mass transport. The initial and boundary
conditions remain the same as during the model calibration. Figure 5.9 shows
the evolution of hydraulic head with time in the simulation period (30 days)
at two of the piezometers, where the left column shows predictions with prior
model and the right column shows predictions with the updated model after
assimilating the observed hydraulic head data until 6.17 days. The prediction
uncertainty is substantially reduced in the updated InK model compared with
the prior model. The average RM SE(h) at each time step over the hydraulic
field is calculated as shown in Figure 5.10. We can argue that the hydraulic
head prediction with the updated model is improved not only at the observa-
tion locations but over the whole field. Figure 5.11 summarizes the ensemble
average, standard deviation and RMSE of the flow prediction at the end of
the simulation with the prior and calibrated model, separatedly.

Figure 5.12 illustrates the configuration of the transport prediction exper-
iment. Conservative particles are released linearly along x = 10 m and three
control planes across the field are placed to record the arrival times of the par-
ticles. The random walk particle tracking program RW3D (Fernandez-Garcia
et al., 2005; Salamon et al., 2006; Li et al., 2011a) is used to solve the transport
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Figure 5.8: Ensemble average (the second row), standard deviation (the third
row) and RMSE (the bottom row) of InK over the ensemble before and after
head data assimilation. The reference field (the top row) is also shown for
comparison.
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Figure 5.9: Piezometric head evolution at two conditioning piezometers, po-
sitions of which are shown in Figure 5.6. Results are shown for the prior
ensemble and the updated ensemble. The dots represent the piezometric head
in the reference field.
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Figure 5.10: Evolution of average RM SE of piezometric heads over the field.
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Figure 5.11: Ensemble average (the second row), Standard deviation (the third
row) and RM SE (the bottom row) of hydraulic head over the ensemble before
and after head data assimilation. Reference head field (the top row) is also
shown for comparison.
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equation in the InK fields once the flow has reached steady state. Advection
and dispersion are both considered, with longitudinal and transverse disper-
sivities of 0.5 m and 0.05 m, respectively. The porosity is assumed constant
as 0.3. Figure 5.13 shows the breakthrough curves (BTCs) at the three planes
for the prior ensemble (left column) and for the updated ensemble (right col-
umn). We can see that the updated model reproduces the reference BTCs
better than the prior model does, i.e., the median of the travel times in the
updated model resembles the reference BT Cs. Moreover, the prediction uncer-
tainties measured by the 5% and 95" percentiles are significantly reduced, i.e.,
the confidence interval is narrower, after the hydraulic heads are conditioned.

Particle .| " - Particle
injection .

Figure 5.12: Configuration of the transport prediction experiment.

5.5 A comparison test

5.5.1 Reference

In the previous synthetic example there are 20 hard conductivity data and
63 piezometers used to calibrate the prior model. To further examine the
performance of the proposed method we test another application where the
observations are available at only 9 locations. Moreover, the effect of bound-
aries is also considered, i.e., a pumping well is added in this field. This example
is similar to the one in Alcolea and Renard (2010) from the respective of the
number of conditioning hard data, the number of hydraulic head piezometers,
boundary conditions etc.

The research domain of 100 m x 100 m x 10 m is discretized into 100 x 100
x 1 cells. The reference field is generated with the multiple point geostatistical
simulation algorithm SNESIM (Strebelle, 2002) using the training image in
Figure 5.14A. The reference field is shown in Figure 5.14B, where the hydraulic
conductivities are assumed constant within each facies, i.e., K = 10 m/d for
sand and K = 1072 m/d for shale. The transient flow equation is solved on
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Figure 5.13: Summary of the breakthrough curves. The 5" percentile, the
median, and the 95 percentile of the travel times are computed as a function
of normalized concentration. Dashed lines correspond to the 5™ and 95
percentiles, the solid line corresponds to the median, and the dotted line is the
breakthrough curve in the reference. Results are shown for the prior ensemble
and the updated ensemble.
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the reference confined aquifer under the boundary conditions: prescribed head
boundaries on the west (H =1 m) and on the east (H = 0 m) and impermeable
boundaries on the north and south. A pumping well with a production of 100
m?/d is located at well 9 in Figure 5.14B. The initial head is 0 m over the field.
The simulation period of 30 days is discretized into 20 time steps following a
geometric sequence of ratio 1.2.

(A) 250 (B)100 K(m/d)

10

o K

© ©

[} o

z z
10°

0 o etitnn, 0

0 East 250 0 East 100

Figure 5.14: Training image and reference field. (A) Training image (Strebelle,
2002). (B) Reference hydraulic conductivity field, in which the conductivities
are measured at the 9 points serving as the hard data to generate the prior
model and the piezometric head data at these wells are used to calibrate the
prior model.

5.5.2 Prior model and conditioning data

The prior model ensemble consists of 500 realizations which are generated with
the same algorithm (SNESIM) and the same training image (Figure 5.14A).
Each realization is conditioned to the 9 lithofacies measured from the reference
field (Figure 5.14B) at the nine wells, 6 of which are in sand the the other 3 are
in shale. The head dynamics at the 9 wells in the reference field are collected
for the first ten time steps (4.17 days) and used to update the prior model. The
updated model will be evaluated from facies recognition and flow prediction
capacity.

5.5.3 Calibrated model

Facies recognition

Figure 5.15 summarizes the reproduction of the facies by the conditional re-
alizations. On the first row a single realization is shown. It can be seen how,
after updating, the channel location is much closer to the one in the reference,
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the main channel features around the conditioning wells are reproduced; how-
ever they fail to match the entire length of the isolated branch towards the
bottom of the reference, and the branch on the upper right corner. The second
row shows the probability that a given cell is in sand, and the third row, the
ensemble variance map. When analyzing these last two maps, it is noticeable
the improvement that incorporating the piezometric head data brings to the
characterization of the hydraulic conductivity field. It is clear that the char-
acterization is best for the channels which are most affected by the presence of
the pumping well. The largest uncertainties after updating are next to the left
boundary, again due to the lack of sensitivity of the hydraulic conductivities
to the piezometric heads next to prescribed head boundaries.

Prior Updated
1007 = L

10

100

Prob (sand)

100

Var.

Figure 5.15: Comparison of the prior and calibrated model. A realization of
the ensemble (the first row), probability of being sand (the second row) and
variance (the third row).
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Flow prediction

Regarding flow predictions beyond the conditioning period, Figure 5.16 shows
the flow prediction at the end of simulation period (30 days) in one realiza-
tion of the ensemble, and Figure 5.17 displays the head evolution at the 9
wells in the prior and updated model. From Figure 5.16 we can reach similar
conclusions as when analyzing the characterization of the conductivities, the
updated model does quite a good job except for the part of the channel branch
towards the bottom that the conditioning model is not capable of capturing.
Figure 5.17 shows the head evolution up to and past the conditioning period
in all the 500 realizations before and after updating. We can appreciate the
large reduction on the spread of the piezometric head evolution in the different
realizations. Analyzing each well individually, we notice that piezometric head
assimilation allows setting the barriers that prevent the effect of the pumping
to reach wells 7 and 8; well 1 still displays too much fluctuation in the updated
model, this is due to the difficulty of the updating algorithm to capture the
blob of shale which there is in the reference field between wells 1 and 9, this
failure to capture such a feature may be due to the fact that such a feature
is not too recurrent in the training image and therefore it does not replicate
often in the 500 realizations; wells 2, 3 and 4 are much better reproduced
since the main channel branches connecting them to well 9 are there; well 5
evolution is related to its connection to the prescribed head boundary and to
the large shale barrier with respect to the pumping well, the reproduction of
this two features in the updated fields produces such a good reproduction; well
6 is very well reproduced during the conditioning period, but afterwards the
drawdowns are larger than observed, this is indicative that if the conditioning
period had been larger, better results would have been obtained; finally, well
9, the one with the largest drawdowns reduces substantially its fluctuations
with regard to the initial realizations, but the conditioning is not as good as
in the rest of the wells in absolute terms.

5.6 Conclusions

We present a novel inverse method in this paper to estimate model param-
eters by assimilating the observed flow data. The proposed method aims at
recognizing the spatial variety of the nonGaussian-distributed model param-
eters while guaranteeing the flow responses consistent with the observations.
The model parameters are characterized by multiple-point geostatistics which
not only relaxes the assumption that the parameters follow a Gaussian dis-
tribution but also is able to characterize complex curvilinear geologic struc-
tures. The inverse method is based on the Direct Sampling of Mariethoz et al.
(2010b) and it is formulated on the basis of pattern searching, i.e., search an
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Figure 5.16: Hydraulic head at the end of simulation period in the reference
field, prior model and updated model. Only one sample of the realization
stack is shown. Hydraulic prediction uncertainty is assessed in the following
figure.
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Figure 5.17: Piezometric head evolution at the 9 conditioning piezometers,
the positions of which are shown in Figure 5.14B. Results are shown for the
prior ensemble (the first 9 plots) and the corresponding updated ensemble (the
second 9). The dotted lines represent the piezometric head in the reference.

Only the first 6 days were used as conditioning data. (to be continued)
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ensemble of realizations for a data set which matches the conditional pattern
composed of model parameters and observations. A distance function is intro-
duced to measure the misfit between the conditional pattern and candidates.
The searching scheme avoids the need to use any optimization approach, and
therefore, the danger of falling onto local minima. Another advantage of the
proposed method is that it is not only easy to condition to hard data, since
it is a pixel-based method, but it also capable of describing complex geologic
features while preserving a prior random function model.

The performance of the proposed method is assessed by two synthetic
experiments in an aquifer composed of two facies, sand and shale of contrasting
hydraulic conductivity values. The prior hydraulic conductivity models are
updated by integrating observed piezometric head data using the proposed
method. The main channel structures in the reference field are found to be
well reproduced by the updated models. Furthermore, the prediction capacity
of the updated models are evaluated in flow and transport simulations, for
which both prediction error and uncertainty are significantly reduced.

In the present work, only categorical variables (InK facies) are considered
while it is straightforward to extend the method to handle continuous vari-
ables. The only difference resides in the scheme of postprocessing. Notice that
the proposed method can be time-consuming when a large ensemble is con-
sidered, but the CPU time can be reduced by parallelization, i.e., the Monte
Carlo simulations can be performed in parallel by more than one processor.
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General Conclusions

6.1 Summary

The main point of this thesis is proposing inverse methods to characterize
model parameters which cannot be characterized by Gaussian distribution in
complex aquifers. Two solutions are considered in the work, i.e., the normal-
score ensemble Kalman filter (NS-EnKF) and a pattern searching-based in-
verse method (PSINV).

The standard EnKF is known to perform optimally when the model pa-
rameters and state variables follow a multiGaussian distribution. To cope with
the nonGaussian distribution, the standard EnKF is modified by normal-score
transforming the state vector so that each component follows a marginal Gaus-
sian distribution. The nonGaussian distributed model vector is transformed
into the Gaussian space with the help of an experimental conditional distribu-
tion function which is constructed based on the ensemble realizations. Then,
the standard EnKF is applied on the transformed state vector and finally the
resulting updated vector is backtransformed to the original space. The NS-
EnKF therefore can be used to characterize nonGaussian distributed model
parameters by integrating observed model responses. Furthermore, the prior
model statistics are preserved since the normal score transformation scheme is
built on the basis of a prior ensemble. In this thesis the NS-EnKF is used to
identify the hydraulic conductivities in a synthetic bimodal aquifer condition-
ing to the observed piezometric head data. The proposed method performs
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better than the standard EnKF in recognizing the channel structure of the
subsurface reservoir and for flow and transport predictions.

Sensitivity of the NS-EnKF to different parameters is analyzed, i.e., time
span of data assimilation, number of conditioning hard data, size of the en-
semble and variance. The method is found to not be very sensitive to the
number of conditioning hard data in that the underlying model structure is
identified even without any hydraulic conductivity measurements. Notice that
more piezometers are needed whenever no hard data available. The impact
of variance magnitude is not serious since the method performs well in the
case with log-conductivity close to 10. The size of the ensemble, i.e., number
of realizations, exerts strong influence on the method since good results are
obtained with 1000 realizations while the results deteriorate when only 200
ones are used.

In contrast with the NS-EnKF, a pattern search-based inverse method,
PSINV, is proposed to estimate model parameters by assimilating observa-
tions. The PSINV is formulated in the framework of pattern search basis
rather than optimization of an objective function. The joint relation between
the model parameters and state variables are characterized by the condition-
ing pattern around the unknown parameter. In other words, the conditioning
data pattern consists of not only the observations of model states but also
the simulated parameters. This configuration of the pattern is borrowed from
multiple-point geostatistics which is capable of characterizing nonlinear struc-
tures. Then the ensemble is searched for a match to the conditioning pattern
and the unknown value is replaced by the one whose neighborhood matches
the conditioning pattern.

Features of the PSINV can be summarized into four aspects. First, the
algorithm is formulated by means of pattern searching and no minimization
and sensitivity matrix are involved, which will circumvent the potential local
minimum value and also makes it time efficient. Second, the model parameters
are not assumed to follow a multiGaussian distribution, i.e., the method is
supposed to perform well no matter what distribution the parameters follow.
Third, the prior structure is preserved during the observations are assimilated
since the candidates for matches are found within the prior ensemble. Finally,
multiple-point geostatistics is utilized to characterize the curvilinear structures
which cannot be described by conventional two-point variogram based model.
Performance of the PSINV is assessed in two synthetic aquifers composed of
two facies, sand and shale.
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6.2 Recommendations for future research

Several topics deserving further investigation about the two methods are listed
as follows:

e Considering jointly multivariate transformations in NS-EnKF. The NS-
EnKF only uses marginally distributed Gaussian variables, it would be
interesting to investigate the possibility of making a transformation that
would yield the state vector truly multiGaussian.

e Localization of NS-EnKF. In the NS-EnKF no localization strategy is
applied while it is found that filter degeneration may appear when the
ensemble size is small and the parameter field is highly heterogeneous
as shown in the numerical experiment in Chapter 3. Several localization
measures for the standard EnKF can be tried on the NS-EnKF, e.g.,
Schur product (Houtekamer and Mitchell, 2001) or streamline-based lo-
calization methods (Devegowda et al., 2010).

e Further evaluation and improvement of the program PSINV.

i. Sensitivity analysis of the program regarding parameters involved.
Evaluate influence of the variables used in the program, e.g., num-
ber of conditioning hard data, number of hydraulic head observa-
tions, threshold of acceptance in distance function, size of the con-
ditioning pattern and number of realizations in the ensemble. In-
structions on assigning the parameter values can be provided based
on the sensitivity analysis.

ii. Parallelization of the code. The PSINV can be time consuming when
a large number of samples are considered. One solution is to dis-
tribute the task to more than one processor, i.e., parallelizing the
code. Parallelization can be carried out on two parts of the pro-
gram, i.e., forecast of the state variables and update of the prior
parameters. It should not be very challenging to parallelize the
code since the parameter realizations in the ensemble are updated
one by one in the current code.

iii. Extension to deal with continuous variables. The present code can
only handle discrete model parameters, e.g., facies variables, and
some work has to be done before the program can cope with contin-
uous parameters. It is indeed straightforward to extend the code
to deal with continuous variables and only two problems deserve
considering, i.e., distance function and postprocessing, in which
the former is already prepared for the continuous variables and the
latter needs more investigation.
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iv. Generate new realizations whenever no match is found. New real-
izations can be generated during an iteration whenever no pattern
match is found and at the same time to prevent the likely underes-
timation of uncertainty.

Conditioning to multiple sources of information. The integrated data in
this work consist of measured hard data and dynamic hydraulic heads.
Plentiful observations such as solute concentration and remote sensing
data can also be integrated by the two inverse methods.

Extension to estimate other model properties. Hydraulic conductivity
is assumed the only uncertain model parameter in the experiments in-
volved in the thesis, while other parameters, such as porosity and specific
storage, may also need recognizing in practice. It is thus necessary to
jointly estimate these model parameters with the inverse methods. The
standard EnKF has been used to estimate several types of unknown
parameters and this avenue can be introduced to the NS-EnKF. With
regard to PSINV, the work is to add one more set ensemble of realiza-
tions.

Comparison with other inverse methods and application in the field. The
proposed two methods are evaluated in synthetic experiments and they
are found to perform well in these examples. However, these numerical
examples are specific and synthetic. The performance of the methods
should be reinforced by comparing with other inverse approaches and by
applying to the real data from the field.
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Normal-score transform

Normal-score transform is a tool relating any distribution function F'(x) to a
standard Gaussian function G(y) (Goovaerts, 1997). It is described in Figure
A.1, where the processes of normal-score transforming variable x onto a Gaus-
sian deviate y, and its inverse, are depicted. In other words, the two random
variables x and y are linked through their cumulative probability distributions:

F(z) = G(y)
y=G[F(x) (A1)
z=FG(y)]

where y follows a standard normal distribution with zero mean and unit vari-
ance and is the normal-score transform of z. More detailed information can
be found in Goovaerts (1997) and Deutsch and Journel (1998).

For each one of the components of the state vector (hydraulic heads or
hydraulic log-conductivities), the ensemble values are used to estimate a non-
parametric cumulative distribution function F'(z). Estimation of F'(z) amounts
to sort all values for a given state vector component, and assign to each value
a cumulative probability equal to i/(N, + 1), where ¢ is the ordinal position
after sorting, and N, is the number of realizations in the ensemble. These
distribution functions, which have to be computed for each location and each
time step, are used to normal-score transform the components of the state
vector, then the NS-EnKF is performed, and then a back transform is done to
retrieve the state vector in its original space to feed it to the transfer function
and perform the next forecast step.
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Figure A.1: Sketch of normal-score transformation.

In the back transform process, since F(z) is non-parametrically defined,
there is a need to establish rules of interpolation to retrieve the state vec-
tor value x given a cumulative probability F'(x), which, most likely, will not
correspond to any of the cumulative probabilities estimated from the values
of the ensemble. Besides, since the Gaussian deviates could result in cumu-
lative probabilities that are outside of the range of cumulative probabilities
estimated from the ensemble, there is a need to explicitly state the absolute
minimum and maximum of each state vector component, and the correspond-
ing interpolation rules for the upper and lower tails of the cumulative distri-
bution function. Different interpolation schemes are possible and the reader
is referred to Deutsch and Journel (1998) for the details.

Considering the way the cumulative distribution function F(x) is esti-
mated, the backtransform F~1-G(y) always exists; however, the normal-score
transform G~1-F(z) is undefined at conditioning locations for which all ensem-
ble values are identical, and thus, F(z) is a step function. At those locations,
we have chosen to assign a normal score by taking the average of the normal
scores of the state variables in the neighboring cells.
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