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Abstract: This work describes the update of an optical engine design with the aim of increasing its capabilities 

when used for combustion studies. The criteria followed to perform the optical engine redesign were: 

maximize the optical accessibility to the combustion chamber, minimize the time consumed to clean the 

optical parts, and minimize the adaptation costs. To meet these requirements, a modular design using 

window-holders to fit the windows in the optical flange, was proposed. This novel solution allows optical 

access near the cylinder-head plane while maintaining high operating flexibility (i.e. fast transition between 

optical and metal engine, and very fast cleaning procedure). 

The new engine design has three additional optical accesses to the combustion chamber and resulted in 

more efficient operation compared to the original design, reducing the time consumed to clean the optical 

parts from 40 down to 10 minutes. Two main parameters of the new engine were characterized, the effective 

compression ratio and the rotatory flow field velocity (swirl). The characterization process revealed very 

similar values between the effective and geometric compression ratios (14.7:1 vs 14.2:1), which confirms 

the use of appropriate dimensional tolerances during the machining process and low amount of blow-by. 

Finally, the swirl ratio was characterized through particle image velocimetry measurements for different 

crank timings at 1200 rpm and motored conditions, using the optical piston with a cylindrical bowl. This 

method revealed swirl ratios varying from 1 to 1.7 depending on the timing considered, with increasing trend 

as the piston moves towards the top dead center. 

Keywords: Optical engine; Efficiency; Combustion; Swirl; Optimization 

 

1. Introduction 

Internal combustion engines (ICE) play a fundamental role in the lifestyle of modern societies [1]. The 

capability of ICEs to cover fundamental requirements such as people and goods transportation and power 

generation has resulted in their mass production [2]. However, the massive use of ICEs has contributed to the 

global energy consumption and pollutant emissions increase [3]. Since the engine-out emissions are harmful 

to both humans and the environment [4][5], stringent regulations have been introduced along the years to 

reduce progressively the negative impact of the ICEs [6]. This fact, combined with the improvement in the fuel 

economy demanded by the vehicle users, has brought new challenges to the engine research community and 

manufacturers. 

The continuous optimization of the existing technologies and the development of new combustion 

systems needed to satisfy these demands, requires performing basic studies to allow the fundamental 

comprehension of the in-cylinder processes governing the pollutant emissions generation and performance 

of the ICEs [7][8]. 

The study of the different processes occurring inside the combustion chamber, e.g. the fuel injection 

process, air movement [9], fuel-air mixing and combustion, is typically addressed by using two complementary 

main sources of information: the experimental [10] and computational tools [11]. Figure 1 shows the different 

tools employed for experimentation, arranged from left to right by the degree of the fundamental 

understanding that they provide to the researchers. Also, the precision in controlling the boundary conditions 
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of the tests, decrease as moving to the right in the scheme, where the experimental facilities are closer to the 

production engine. 

 

 
Figure 1. Different experimental research tools arranged from more fundamental (left) to more applied 

investigation (right). 

 

The test rig is a constant volume vessel capable of reproducing the thermodynamic conditions existing 

in the combustion chamber of a real diesel engine when the injection starts, by means of a continuous flow 

of high temperature, high pressure gas through the test chamber [12]. This experimental device is endowed 

with different optical accesses, which allows the macroscopic study of the fuel injection event and combustion 

process by using different optical techniques [13]. Increasing the similarities to ICEs, the rapid compression 

machine (RCM) is typically used to study the autoignition chemistry by simulating a single engine compression 

stroke, which prevents the variations that appear during the real engine operation [14]. Optical techniques 

can be also applied in this device to determine the temperature and flow fields inside the reaction chamber 

and to measure the concentrations of several species produced during combustion [15]. Another fundamental 

research tool, closer to the real operation, is the optical engine [16]. This device is conceived to perform optical 

studies under the most similar conditions to the real engine operation. In this case, the experimental 

installation is based on a single-cylinder engine which has been modified to allow optical access to the 

combustion chamber, so that the flow fields inside the combustion chamber and also the cycle-to-cycle 

variations are more representative of the real engine behavior. By this reason, the optical engines are also 

typically used to validate, tune and refine the computational models used for modelling ICEs [17][18]. 

Single-cylinder engines (SCE) are devoted to carry out more applicate studies, such as performance [19] 

and engine-out emissions measurements [20], in highly controlled conditions. The test cell in which they are 

installed contain all the auxiliary systems for their operation and control, which are designed to minimize the 

variations in the intake conditions. This fact means that, ideally, the cycle-to-cycle variations during the engine 

operation are only consequence of variations in the combustion process itself. The observations using the 

optical engine can be used to understand the trends in engine-out emissions and performance measured here. 

Finally, the multi-cylinder engines (MCE) are the ones in production in the automotive industry [21]. They are 

installed in fully instrumented test cells capable of measuring performance and emissions. In this case, the 

auxiliary systems are those of the engine, so that the test cells result slightly simplified with respect to the SCE 

ones. The research done in this engine platform entails the most applicate work, e.g. to study the engine 

response to transient conditions, assess variations in engine hardware and perform homologation cycles [22]. 

Considering the challenge of achieving the emissions levels imposed by the future emissions regulations 

and the efficiency requirements imposed by vehicle users simultaneously, it is clear that more fundamental 

investigation is needed in the field of the ICEs. Literature demonstrates that the use of optical engines is 

essential for this task, since they allow to acquire fundamental understanding that otherwise would not be 

possible. Moreover, due to the great similarities to the real engines, the knowledge acquired can be directly 

extrapolated, contributing to the development of both compression ignition [23] and spark ignition engines 

[24]. In this sense, a wide variety of phenomena have been studied in detail, such as: the pilot injection process 

optimization through the liquid and vapor fuel visualization [25], the effect of swirl and tumble flows on the 

in-cylinder fuel-vapor distribution [26], the effect of biofuels on the air-fuel mixing and combustion behavior 

[27][28], the fuel injection characteristics governing the knocking phenomenon in spark ignition engines [29], 

the effect of coolant temperature on air-fuel mixture formation [30] and the distribution of the chemical 

species during the combustion process [31], among others. 

In spite of the scientific advantages that they offer, operating with optical engines is more troublesome 

than with single-cylinder engines, and much more difficult than doing it with multi-cylinder engines. In this 

sense, the optical parts typically need to be cleaned in the middle of the tests campaign because of the soiling 

of the optical parts, which forces to stop the installation continuously. Also, depending on the optical engine 

design, great time is consumed between two consecutive tests to ensure the same thermodynamic conditions 

cycle-to-cycle. Finally, the application of advanced optical techniques to study some in-cylinder phenomena 
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requires the engine to have several optical accesses [32], which increases the complexity of the design and 

costs compared to the equivalent single-cylinder engines. 

Different solutions can be found in literature regarding the optical engine designs [33][34][35]. The basic 

idea of all these designs is to use a Bowditch-style extended piston [36] to connect two pistons, as will be 

described in detail in the next section. The lower-piston is a regular piston that runs inside a conventional 

engine block, while the upper-piston has at least one optical access to allow performing optical studies, and it 

is called optical piston. Then, both pistons are connected using an empty cylindrical part, typically called 

extended or elongated piston. The major differences between the designs found in literature are related to 

the optical accessibility capacity to the cylinder. Thus, while some designs only have a single optical access 

through the piston bowl using a 45° mirror placed in the middle of the elongated piston [37], other designs 

have multiple accesses [38], which broadens the optical techniques that can be applied to study a given 

phenomenon [39]. In particular, the addition of multiple accesses offers the possibility of applying laser 

techniques, which typically require introducing laser sheets to the cylinder, parallel to the cylinder head plane. 

To allow this, different solutions are found in literature. The most optically accessible engines are those 

designed with full transparent liners [40][41]. These designs rely on using sapphire liners to allow optical 

access to the cylinder during almost the complete engine cycle. However, the cost of this solution is quite 

expensive, being restricted its acquisition to a small portion of engine research centers. To reduce the cost, 

alternative designs use pent roof windows inserted in the cylinder liner [42], and some other designs propose 

using a short quartz ring placed between the liner and cylinder head [43]. Both solutions are effective in 

conferring optical access to the combustion chamber at the cylinder head plane level, however, the cleaning 

of the inner side of these windows is not fast because some other elements should be removed to allow this 

task. In addition, the disposition of the windows can reduce drastically the compression ratio and/or increase 

the gas volume in the crevices. 

Considering this background, the work presented in this paper describes the improvement of an existing 

optical engine design with the aim of increasing the capabilities of the installation to apply fundamental 

studies, as well as to increase the operational efficiency of the test cell. Thus, the main objective is to reach a 

modular design that allows minimizing the challenges found during the operation with optical engines, i.e. 

reduce the cleaning time and increase the optical accessibility. For this purpose, firstly, the original design is 

explained to state the motivation of the work. Later, the process followed to update the optical engine design 

is described. Lastly, to assess if the final characteristics of the redesigned engine are representative of those 

of the real engines, the engine compression ratio and swirl ratio are characterized by means of dedicated 

studies. 

2. Description of the original single-cylinder optical engine 

This section is devoted to describe the original single-cylinder optical engine, which allows to 

comprehend the main restrictions of the original design. The main characteristics of the engine are 

summarized in table 1. It is interesting to note that the engine can be also used for spark ignition experiments 

using an appropriate cylinder head. In this sense, the authors have tested the spark ignition concept using a 

modified compression ignition cylinder head, in which a hole was machined to include the spark plug [16]. 

Table 1. Main characteristics of the engine. 

 

 

 

 

 

 

 

 

 

The operating principle of the optical engine can be understand looking at the figure 2, which shows a 

cross sectional view of the optical engine (left) and the optical layout necessary to study the injection and 

combustion processes (right). Different elements can be identified from the cross sectional view. In the top 

Parameter Value 

Type CI, 4stroke, DI 

Max. engine speed 1200 rpm 

Bore 85 mm 

Stroke 96 mm 

Bowl diameter 45 mm 

Bowl depth 12 mm 
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part, it can be identified the center-mounted direct injector and the optical piston with a cylindrical sapphire 

window placed in the bottom part of the piston bowl. This optical piston is screwed on the piston-extensor, 

which connects the optical piston with the lower piston to make their movement solidary. The cylindrical 

piston-extensor is empty to allow accommodating an elliptical 45° mirror in the middle of the optical path, 

below the piston bowl sapphire window. With this set-up, in-cylinder images can be recorded with a fast 

camera through the elliptical mirror, as can be seen in the right-side subfigure. In the bottom part of the 

engine, it is possible to distinguish the regular piston, on which the piston-extensor is screwed, the cylinder-

liner and the engine block. Finally, in the outer part of the system, there is a metal piece referred to as topwork 

that maintains the relative distance between the engine block and the cylinder-head, and also guides the 

optical piston. It is interesting to note that, since the optical piston is not lubricated with any fluid, Teflon rings 

are used. The use of this material allows to ensure the sealing between the optical piston and the inner part 

of the cylinder-liner to avoid the in-cylinder gas leakage (blow-by). However, the easy degradation of the 

Teflon under high temperature conditions limits the maximum engine speed and the effective operating hours 

of the installation. 

 
Figure 2. Cross sectional view of the optical engine (left) and optical layout necessary to study the combustion 

process (right). 

 

Figure 3 shows an example of the images acquired with this type of engine design. The left-side subfigure 

shows the injection process of gasoline fuel at high injection pressure using a 7-hole injector nozzle. From the 

figure, it can be identified two intake valves (upper part), one exhaust valve, the center-mounted direct 

injector, a spark plug and a pressure sensor. This type of images allow to study fundamental parameters 

related to the injection and mixing process, such as the length of the liquid and vapor phase of the fuel, which 

are key parameters governing the pollutant emissions formation [44]. The second and third subfigure show 

images taken during the combustion development. In particular, the second subfigure shows the natural 

luminosity emitted during the combustion process, acquired with a high speed camera, while the third one is 

colored based on the OH* radical intensity, which was acquired using an intensified camera equipped with an 

ultraviolet lens and a 310 nm band pass filter [45]. This type of results serve to trace the high temperature 

zones in the combustion chamber, which is relevant to study, for example, the NOx emissions. 

 

   
 

Figure 3. In-cylinder images of the injection (left) and combustion process (middle and right) acquired through the 

piston bowl window. 
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During the operation with the original engine configuration, several problems arise. As explained in the 

introduction section, the combustion products make the sapphire window of the piston to get dirty, which 

directly affects to the quality of the images taken and to the intensity levels captured with the high speed 

cameras, thus distorting the results of the study. To clean the inner side of the sapphire window, the 

disassembly of the optical piston is needed. This operation entails several actions: remove the elliptical mirror, 

place the optical piston in the bottom dead center (BDC) position by actuating manually on the crankshaft, 

introduce a dedicated tool to unscrew the piston window, clean the window, and reassembly all the parts. 

During the reassembly process, the elliptical mirror should be aligned again with the cameras to ensure 

recording the same in-cylinder area, and the cameras should be put in focus again, which implies an extra time 

consumed. The mean time consumed to perform all these tasks is about 40 min every 30 combustion cycles. 

The major source of operating inefficiency of the original engine design, is the necessity of removing the 

cylinder-head to change the piston rings, or the piston itself. This kind of operations take around 4 or 5 hours 

due to the necessity of disassembly the cylinder-head completely. It is worthy to note that, since the material 

used for the piston rings is Teflon, and it degrades rapidly at high temperatures, this task has to be done 

several times in not too much operating hours. For example, when running the engine at a moderated speed 

of 1200 rpm, typically used because of the natural frequency of the pulsed lasers, the piston rings degrade 

after 10 minutes of operation. Thus, with the aim of avoiding this shortcomings, a new engine design has been 

performed and validated as described in next sections. 

3. Engine design update and characterization 

This section contains the main details of the engine design update process. The first subsection is 

dedicated to define the new optical engine design, which serves to highlight the benefits compared to the 

original version. The last subsection describes the engine characterization in terms of effective compression 

ratio and swirl ratio, and presents a validation of the new design under combustion conditions. 

3.1. Description of the new design 

The engine design update was conditioned by three main requirements: 

 

• Maximize the optical accessibility and versatility for different studies 

• Minimize the time consumed to clean the optical parts (maximize the operating efficiency of the 

engine test bench) 

• Minimize the cost of the new version by using the original piston extensor 

 

To fulfill these requirements, a modular design was proposed instead of using a single piece top work. In 

the new design, the outer metal part of the original design (top work) was substituted by different elements, 

as shown in figure 4. Firstly, four columns were used to maintain the relative distance between the engine 

block and the cylinder-head. Also, a mobile cylinder-liner with a water-cooled housing was used. This allowed 

to clean the piston window in a faster way (around 4 minutes), by only removing four screws and moving 

down the cylinder-liner and housing (figure 5). 

To increase the optical accessibility to the combustion chamber, some additional optical accesses were 

done in the spatial plane near the cylinder-head. To do this, a new optical flange was designed, in which all 

the optical parts were assembled. To gain flexibility and operating efficiency, each window was embedded in 

a window-holder, which is later inserted and screwed in the optical flange. This system allows to extract and 

clean the windows in around 2 minutes each, when needed. The use of windows-holders also enables the 

substitution of the windows by metal dummies, which prevents damaging the optical parts if the optical access 

is not required in the tests campaign. If the soiling degree of the inner surfaces of the windows is not excessive, 

they can be cleaned without removing the windows-holders, accessing directly by hand through the gap 

between the optical flange and the cylinder-liner in the cleaning position (figure 5). It is worthy to note that 

the shape of the outer surface of these windows is planar, while the inner part is rounded to reproduce the 

cylinder geometry and avoid adding an extra empty volume, which would reduce the compression ratio of the 

engine. 
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Figure 4. Assembly and individual view of the different components of the new design. 

 

 
 

Figure 5. Illustration of the working (left) and cleaning position (right) with the new design. 

 

To allow the optical access to the combustion chamber through the upper windows when the piston is 

located near the top dead center (TDC) position, three cuts where done in the piston head at positions aligned 

with each window (figure 6). To avoid losing compression ratio due to the additional empty volume introduced 

with the cuts in the piston head, three windows were glued in the gaps. The shape of the inner and the outer 

surfaces of the piston windows is rounded to follow the piston shape. The lateral surfaces of these windows, 

and therefore the cuts in the piston head, were designed with a conical shape. Although the windows were 

glued with a dedicated high-temperature resistant glue, the conical shape was conferred to prevent possible 

movements of the pistons due to the forces provoked by the high pressure and temperature gases in the inner 

surface. 

 
 

Figure 6. Optical piston (left) and illustration of the windows overlap at top dead center (right). 
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As explained before, the inner surface of the windows placed in the windows-holders and the windows 

used in the piston head, have a rounded shape to reproduce the geometry of the cylinder-liner and piston, 

respectively. This may have consequences if an optical technique using a laser sheet to illuminate the 

combustion chamber were used. In this sense, when passing through the windows, the laser sheet trajectory 

can be modify to be convergent or divergent due to the rounded shape of the windows, thus having a direct 

impact on the illuminated area of the combustion chamber. To evaluate this effect, a brief analysis was done 

using the OSLO (Optics Software for Layout and Optimization) software, whose results are shown in figure 7. 

As can be seen in figure 7a, which reproduces a situation in which the piston is not at TDC, the laser sheet 

becomes a little divergent at the outlet of the round side of the window. Figure 7b shows that, when both 

windows are aligned near TDC, the divergence is corrected at the outlet of the outer window, and it appears 

at the outlet of the piston window. In figures 7c and 7d, the laser sheet width at the inlet of the outer window 

has been set to maximize the illuminated area at TDC position. As can it be seen, the divergent effect is 

magnified at the outlet of the piston window, which is desirable to increase the illuminated area of the 

combustion chamber. 

 

 
 

Figure 7. Effect of the windows shape on the laser sheet trajectory. 

3.2. Engine characterization 

A necessary task after the engine redesign is to evaluate if the characteristics of the new engine are 

representative of those of the real engines. For this purpose, this section shows the engine compression ratio 

and swirl ratio characterization with the new optical layout, explaining the methodology followed to 

characterize both parameters. Knowing this information will allow to realize, in a first approach, what is the 

range of in-cylinder conditions that could be analyzed in dedicated studies using the new engine platform. 

3.2.1. Test cell characteristics 

As figure 8 shows, to characterize the optical engine, it was installed in a fully instrumented test cell, with 

all the auxiliary facilities required for operation and control. 
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Figure 8. Test cell set-up to characterize the optical engine with the new design. 

With this layout, the intake air is supplied by a roots compressor with an upper pressure limit of 3 bar. 

Then, the air flows through a filter to remove possible impurities. Independently on the ambient conditions, 

temperature and humidity of intake air are controlled using a heat exchanger and a dryer, respectively. 

Temperature in the inlet settling chamber is maintained constant by using a heater in the intake line.  

During the engine characterization, the oxygen concentration variation is performed using a synthetic 

exhaust gas recirculation (EGR) system in order to achieve non-reactive conditions. EGR is substituted by 

nitrogen gas, which greatly simplifies the system ensuring a controllable gas composition without an excessive 

time to adjust the facility. The strategy is based on decreasing the oxygen (O2) concentration at the inlet 

manifold by increasing the flow of nitrogen (N2) and keeping constant the total intake mass flow rate 

(substitution EGR). For this purpose, a proportional-integral-derivative (PID) controller governed by the intake 

O2 meter, is used to operate the N2 valve. By contrast, when the engine is used for analyzing the combustion 

process, conventional EGR is used to not alter the engine-out emissions. 

In the same way as in the intake line, a settling chamber is mounted in order to attenuate pressure pulses. 

Finally, an exhaust backpressure valve is used to maintain a fixed relative pressure to the intake pressure, in 

order to simulate more realistic conditions. 

3.2.2. Effective compression ratio characterization 

The compression ratio (CR) of an engine, defined in the equation 1, is a value that represents the ratio 

of the combustion chamber volume from its largest capacity (piston at BDC) to its smallest capacity (piston at 

TDC). In the equation 1, the term in brackets represents the volume at BDC, with D being the cylinder diameter 

and S the engine stroke. The term Vmin is the minimum combustion chamber volume, which occurs when the 

piston is at TDC position, and accounts both the combustion chamber volume (Vcc) mechanized in the piston 

and the additional volume introduced by the cylinder-head gasket and other clearances. 

 

𝐶𝑅 =
(𝜋 ∙

𝐷2

4 ∙ 𝑆) + 𝑉𝑚𝑖𝑛

𝑉𝑚𝑖𝑛
     (1) 

 

The actual CR of an engine typically differs from the one defined by the geometric parameters of the 

cylinder and combustion chamber (geometric CR) due to the precision of the machining process. One possible 

method to know the real CR is by filling the combustion chamber with a volume of fluid when the piston is at 

TDC position to know the term Vmin of the equation 1. This procedure is not easy to carry out and introduces 

not negligible uncertainties on the measured value. An alternative procedure to characterize the CR is through 
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the in-cylinder pressure signal measurement under motored conditions [46]. This method is widely used and 

accepted by the engine research community, and is based on the polytropic adjustment of the pressure signal 

during the engine cycle, while the rate of heat release (RoHR) should be zero. The CR characterization of the 

new optical engine has been done following this procedure, for which, an in-house developed thermodynamic 

model called CALMEC [47][48] was used.  

The CR characterization entails an iterative process in which several constants and coefficients must be 

adjusted, as illustrated in figure 9. In particular, the parameters and constants to be adjusted are the reference 

pressure (pref), TDC position (Δα), heat transfer constant (CW1), mechanical deformations coefficient (kdef) and 

compression ratio (CR). 

 

 

Figure 9. Scheme of the iterative process to characterize the engine [49]. 

As explained by Benajes et al. [49], pref and Δα can be determined by either experimental or 

thermodynamic methods, whose explanations are out of the scope of the current work. Nevertheless, it is 

interesting to remark that their correct characterization greatly affects the values of the rest of parameters. 

The heat transfer constant (CW1) plays a key role inside the heat transfer model implemented in CALMEC. Heat 

transfer to the combustion chamber walls in motored tests (and fired tests) is essentially governed by 

convection. By this reason, the heat transfer model implemented in CALMEC to calculate the heat transfer 

coefficient is based on Woschni’s expression. However, as described in a previous work [50], the values of the 

constants of the model have been modified, and the way in which the swirl effect is considered is also different 

to obtain more realistic predictions in direct injection engines. Thus, the expression used in CALMEC for the 

heat transfer coefficient is shown in equation 2: 

 

 

h = CD−0.2p0.8T−053 [CW1c𝑚 + CW2c𝑢 + C2

v𝑑T𝐼𝑉𝐶

v𝐼𝑉𝐶P𝐼𝑉𝐶

(p − p0)]
0.8

     (2) 

 

where C=0.12 and C2=0.001, D is the cylinder diameter, p and T are the in-cylinder pressure and 

temperature, cm is the mean piston speed, cu is the instantaneous tangential velocity of the gas in the chamber 

due to the swirl motion (see [50] for the details of the calculation), CW1 is a constant fitted in the iterative 

process using data from motoring tests, CW2 value is CW1 divided by 1.7 [51], Vd and VIVC are the displaced 

volume and the volume at the intake valve closing, respectively, and p0 is the motoring pressure assuming a 

polytropic evolution. 
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At this point, the blow-by mass should be taken into account, because the amount of gas mass flowing 

to the outside of the cylinder will affect to the heat transfer, among others, and therefore to the CR 

adjustment. The blow-by model implemented in CALMEC is based on the evolution of the gas in an isentropic 

nozzle [52]. Thus, the instantaneous blow-by mass flow is estimated by means of the equation of an adiabatic 

nozzle, as shown in equation 3: 

 

mbb = C𝑏𝑏A𝑟𝑒𝑓p√
x

R𝑐T
     (3) , where x =

2γ

(γ−1)
[(

p𝑎𝑚𝑏

p
)

2

γ
− (

p𝑎𝑚𝑏

p
)

γ+1

γ
]     (4) 

 

In the equation 3, Cbb is the discharge coefficient of the nozzle, Aref is the reference section proposed by 

Hohenberg [53] (3.5·10-6D), pamb is the ambient pressure, and Rc and T are the compression ratio and 

temperature, respectively. The discharge coefficient (Cbb) should be adjusted iteratively using experimental 

measurements, for which, the authors used a dedicated part to measure the actual blow-by flow through the 

optical piston rings at different operating conditions (i.e. engine speed, intake pressure and intake 

temperature). This task is important to be done considering as much operating conditions as possible due to 

the particular characteristics of the piston rings used in the transparent engine. 

The last parameter necessary to be adjusted for characterizing the effective compression ratio is the 

mechanical deformations coefficient (kdef), which is done by means of the mechanical deformations model. 

Through this model, the impact of the inertial and pressure forces on the effective compression ratio due to 

variations of the real in-cylinder volume, are accounted. To do this, the instantaneous volume is divided in 

four different terms, as shown in equation 5: 

 

𝑉(𝛼) = 𝑉𝑐𝑐 + 𝑉𝑑(𝛼) + ∆𝑉𝑝(𝛼) + ∆𝑉𝑖(𝛼)     (5) 

 
 The combustion chamber volume is obtained by means of the equation 6, Where Vd is the displaced 

volume and rc the geometric compression ratio of the engine. 

 

𝑉𝑐𝑐 =
𝑉𝑑

𝑟𝑐 − 1
     (6) 

 

 The instantaneous displaced volume Vd (α) depends on the connecting rod-crank mechanism, which 

includes the geometric offset if existing.  

 The terms concerning the mechanical deformations due to pressure (ΔVp) and inertial (ΔVi) forces 

are shown in the equations 7 and 8. In the equations, the term kdef is the deformations coefficient, which 

should be adjusted experimentally and typically has a value of 0.7 [54], which is taken as initial value for the 

iterative process. The term Esteel is the elastic modulus of the steel (2.1∙1011 N/m2), Dbolt is the piston bolt 

diameter, malt is the sum of masses with alternative movement, a is the instantaneous acceleration of the 

piston and L0 is a characteristic length defined as equation 9. 

 

∆𝑉𝑝(𝛼) =  𝑘𝑑𝑒𝑓 ∙
𝜋𝐷2

4
∙

𝑝

𝐸𝑠𝑡𝑒𝑒𝑙
∙ (

𝐷

𝐷𝑏𝑜𝑙𝑡
)
2

∙ 𝐿0     (7) 

 

∆𝑉𝑖(𝛼) =  𝑘𝑑𝑒𝑓 ∙
𝑚𝑎𝑙𝑡 ∙ 𝑎

𝐸𝑠𝑡𝑒𝑒𝑙
∙ (

𝐷

𝐷𝑏𝑜𝑙𝑡
)
2

∙ 𝐿0     (8) 

 

With these considerations, it is hypothesized that the deformations of the engine will be proportional to 

those suffered by a steel bar of diameter equal to that of the piston bolt (Dbolt) and characteristic length equal 

to L0 (equation 9). In the case of the inertial forces, the deformation is expected to occur in the piston, crank 

and connecting rod, while in the case of the pressure forces the deformation is supposed to occur in the piston, 

crank, connecting rod and engine block. 
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𝐿0 = ℎ𝑝𝑖𝑠 + 𝐿𝑏 +
𝑆

2
     (9) 

 

Considering mechanical deformations, the effective (or dynamic) compression ratio (CReff) can be defined 

as equation 10, where ∆Vdef (TDC) is the sum of the pressure and inertial forces at TDC. By this way, the 

effective compression ratio is estimated considering the mechanical deformations occurring at TDC, where 

the volume is minimum and the deformations by pressure (greater than the inertial ones) are higher. With 

deformations at TDC around 2% or 3%, the dynamic compression ratio is between 0.3 and 0.5 less points than 

the geometric compression ratio (CR). Here it is interesting to note that, during firing operation, the loss in 

compression ratio due to mechanical deformations at TDC are partially compensated by the differences in 

thermal dilatation of the piston assembly with respect to the engine block. 

 

𝐶𝑅𝑒𝑓𝑓 =
𝑉𝑑 + 𝑉𝑐𝑐 + ∆𝑉𝑑𝑒𝑓(𝑇𝐷𝐶)

𝑉𝑐𝑐 + ∆𝑉𝑑𝑒𝑓(𝑇𝐷𝐶)
     (10) 

 

The operating points measured under motored conditions to characterize the engine, are summarized 

in table 2. Each operating point was repeated 10 times and, to obtain an accurate characterization, 50 cycles 

were recorded each time. At these conditions, the coefficient of variation (COV) of the maximum in-cylinder 

pressure ranges from 0.1 to 0.16 % and the COV of the indicated mean effective pressure (IMEP) ranges from 

0.3 to 0.66 %, respectively. This means that the engine is thermodynamically repeatable. The average pressure 

traces for the 500 cycles of each operating point are shown in figure 10. After applying the iterative process 

defined in figure 9, the effective compression ratio for the new design was found to be 14.2:1, 0.5 points less 

than the geometric one (14.7:1). 

Table 2. Test matrix to characterize the engine under motored conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Motored in-cylinder pressure signal for the different cases summarized in table 2. 
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3.2.3. Swirl ratio characterization 

The swirl ratio is a dimensionless parameter to quantify the rotational motion of the charge within the 

cylinder. This rotational motion is important to accelerate and enhance the air-fuel mixing process, which has 

a direct impact on the pollutant emissions formation and the rate of heat release. 

A standard particle image velocimetry (PIV) system [55] was used for the measurement of instantaneous 

two-dimensional velocity fields, as shown in figure 11. The system main components are a double-head 15 Hz 

Nd:YAG laser with 135 mJ/pulse at a 532 nm wavelength, and a set of mirrors and lenses to drive the laser 

into the engine and change the laser output 5 mm circular beam into a laser sheet with around 1 mm thickness 

at the measurement section. The laser sheet passes through the optical accesses of the top work and piston 

head, and enables the illumination of particles seeded into the air intake flow. 

After some preliminary tests with different kinds of seeding particles and generation methods, Aluminum 

Oxide (Al2O3) particles were selected. Several tests were made with different liquids generated with an 

atomizer using the Laskin nozzle principle (TSI 6-jet atomizer). It was found that the use of a silicon oil, test 

fluid and some other liquids was not possible because these fluids vaporized at the late compression stroke, 

thus avoiding the PIV measurements. To prevent this phenomenon, some tests were performed using 

titanium oxide solid particles generated with a fluidized bed and cyclone, but they presented high tendency 

to agglomerate, requiring frequent drying. This behavior made its use impractical in the engine test cell. A 

better behavior was found with Aluminum Oxide particles since, although degradation of the windows surface 

is known to occur faster, these particles do not tend to agglomerate so easily. Consequently, Al2O3 particles 

where dispersed with a pulsed fluidized bed device, followed by a specially designed cyclone which blocked 

out particles with estimated diameters higher than 5 μm, so that seeding particles are ensured to follow the 

engine flows hence measurements reliability is not limited by the size of the seeding particles. 

The light scattered by the seeding particles was collected by a 4 megapixels CCD camera in two 

consecutive frames coincident with two laser shots by means of a synchronization box. Time elapsed between 

the two laser shots was set to 20 μs and was kept constant for all test points in the experimental test matrix. 

Based in these two frames, the particle position can be determined using cross-correlation algorithms. Hence, 

instantaneous two-dimensional velocity fields can be computed based on the displacement of particle groups 

within a given interrogation area of the image and the time step between frames. The magnification of the 

images taken was around 27 pixel/mm and the size of the interrogation area for calculation of the cross-

correlations was set to 80x80 pixels. This leads to the measurement of velocity fields with vectors separated 

a distance of 40 pixels, i.e. 1.5 mm. 

 

 

Figure 11. Optical set-up used to apply the particle image velocimetry (PIV) technique. 
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With this optical set-up, the swirl ratio can be characterized as described in figure 12. In particular, for a 

given crank-angle position, the swirl ratio (SR) is calculated by dividing the mean angular velocity of the air 

inside the cylinder and the crankshaft angular velocity (ωeng) according to the equation 11. 

SR =
∑ ωi

N
i=1

ωengN
     (11) 

 

In-cylinder air load angular velocity is calculated from the ensemble average velocity field (figure 12), as 

the tangential component of velocity divided by the distance relative to cylinder axis following the equation 

12. 

ωi =
Vi
⃗⃗⃗  . e⊥⃗⃗⃗⃗ 

|ri⃗⃗ |
     (12) 

 

 

Figure 12. Velocity vectors after processing the image taken trough particle image velocimetry (PIV) 

technique. 

Following the procedure previously explained, the swirl ratio of the engine was characterized in motored 

conditions (without combustion) and 1200 rpm for different laser timings referred to the piston position. As 

shown in figure 13, the swirl ratio varies between 1 and 1.7 depending on the timing considered, showing a 

general increasing trend as the piston moves towards TDC. This occurs because, as the piston approaches the 

TDC during the compression stroke, more gas is confined in a smaller cavity. Thus, the moment of inertia of 

the in-cylinder gas decreases and the angular velocity (and thus the swirl ratio) increases, as shown in figure 

14. 

 

 
Figure 13. Calculated swirl ratio from the PIV images for different laser timings. 

 

Figure 14 shows the velocity fields, standard deviations and vortex centers at the timings of the extreme 

cases of swirl ratio, -60 and +10 CAD ATDC. Comparing both figures, it can be seen that, as piston moves 

towards TDC, the average velocity field increases. The increase of the velocity field is more evident for 

distances farther than 10 mm from the geometric center, where increments up to 1.5 m/s are found in some 

areas. Some differences are also found in the center of the image. In particular, a near quite flow field it is 

seen in the case of -60 CAD ATDC, while values between 0.5 and 1 m/s are found for +10 CAD ATDC. Finally, it 

is also seen that the standard deviation of the velocity field decreases for crank timings near TDC and the 

vortex center is nearer the geometric center of the combustion chamber in this case. 
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Figure 14. PIV results from the images taken through the piston window for laser timings set at -60 and +10 

CAD ATDC, which corresponds to the extreme cases of swirl ratio. 

4. Conclusions 

The present work has described the redesign and characterization processes of an optical engine to 

maximize the optical accessibility and its operating efficiency. The main drawbacks found during the operation 

with the original design, were highlighted first. In this sense, the major source of operating inefficiency is the 

excessive time consumed to clean the optical parts. The piston window cleaning takes around 40 minutes, 

while the substitution of the piston rings takes around 4-5 hours due to the need of disassembling the cylinder-

head. 

To minimize these shortcomings, a modular design was proposed instead of using a single piece top work. 

New design main components are: four columns, a new optical top work in which three windows are placed 

using windows-holders, three piston windows accommodated in the piston head, and a metal piece acting as 

base joining the new assembly with the engine block. A key part of the new design are the window-holders, 

which allow fitting the upper-windows in the optical flange. This assembly method allows a fast transition 

between optical and metal engine, and also a very fast cleaning procedure. In this sense, the time consumed 

to clean all the optical parts and replace the piston rings is around 10 and 8 minutes, respectively. 

The new optical engine was mounted in a fully instrumented test cell for its characterization. The 

effective compression ratio of the new optical engine was found to be 14.2:1, similar to the geometric one 

(14.7:1). The swirl ratio was characterized at 1200 rpm under motored conditions by means of the particle 

image velocimetry (PIV) technique using Aluminum Oxide seeding particles. The results of this study revealed 

swirl ratios varying from 1 to 1.7 depending on the timing considered. The lowest swirl ratio was found at the 

earliest timing tested (-60 CAD ATDC) and the highest one at +10 CAD ATDC.  
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